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Abstract Extreme value analysis of precipitation is of

great importance for several types of engineering studies

and policy decisions. For return level estimation of extreme

24-h precipitation, practitioners often use daily measure-

ments (usually 08:00–08:00 local time) since high-fre-

quency measurements are scarce. Annual maxima of daily

series are smaller or equal to continuous 24-h precipitation

maxima such that the resulting return levels may be sys-

tematically underestimated. In this paper we use a rule,

derived earlier, on the conversion of the generalized

extreme value (GEV) distribution of daily to 24-h maxima.

We develop an estimator for the conversion exponent by

combining daily maxima and high-frequency sampled 24-h

maxima in one joint log-likelihood. Once the conversion

exponent has been estimated, GEV-parameters of 24-h

maxima can be obtained at sites where only daily data is

available. The new methodology has been extended to

spatial regression models.

Keywords Generalized extreme value distribution �
Extremal index � Rainfall � Sampling frequency � Spatial

process

1 Introduction

Extreme hydro-meteorological events usually have a large

impact on our society. For safety standards concerning life,

property and for design purposes of large structures, esti-

mation of extreme return levels are often required. A

practical difficulty when analysing observational data is the

effect of sampling frequency. For the calculation of return

levels of 24-h precipitation extremes, hydrologist are con-

fronted with the fact that daily data (usually 08:00–08:00

local time) only are available. To be precise, if IðtÞ is the

rainfall intensity (mm/h) at time t (expressed in h), then

XðtÞ ¼
Z t

t�24

Iðt0Þ dt0;

is the accumulated 24-h precipitation at time t. For a time

window ½0; T �, usually one year, the maximum of the

continuous process fXðtÞg is

MðTÞ ¼ supfXðtÞ j 0� t� Tg;

which in the hydrological community is often called a

sliding maximum (Dwyer and Reed 1995; van Montfort

1990). Continuous measurements, if feasible, are costly to

perform and difficult to record. If hourly precipitation

depths fXðiÞg ¼ fXig were recorded, a good approxima-

tion to MðTÞ is M
ð1Þ
n ¼ maxfX1; . . .;Xng, with n ¼ ½T� (½:�

denotes the integer part). However, long-term high-fre-

quency measurements are rather scarce in many parts of the

world, especially in developing countries. On the other

hand, daily observations are often longer, more reliable,

and the network is geographically denser. If only daily data

is available then M
ð24Þ
n ¼ maxfX24;X48; . . .;X24½n=24�g will

be observed, with M
ð24Þ
n �M

ð1Þ
n � MðTÞ, such that the

continuous 24-h maxima MðTÞ may be systematically

underestimated. The number of papers dealing with the

discretization problem in hydrological risk estimation is

limited. The earliest and most commonly cited references

are Hershfield and Wilson (1958) and Weiss (1964).

Hershfield and Wilson (1958) proposed an empirical
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solution to this problem, using a multiplier (the Hershfield

factor) to relate quantiles of continuous 24-h maxima and

daily maxima. An historical overview and discussion is

included in Dwyer and Reed (1995). More recently, Rob-

inson and Tawn (2000) proposed a general mathematical

framework that describes the effect of the sampling fre-

quency on extreme value distributions. They point out a

general relationship between the generalized extreme value

(GEV) distributions of sub-sampled time series. The fun-

damental difference with Hershfield’s empirical scaling

rule is that the conversion of daily to 24-h maxima is done

via the GEV-parameters. Beside the rainfall problem, this

theory can be applied to other environmental extremes as

well. In this paper we propose an estimation technique for

the conversion exponent by combining daily maxima and

high-frequency sampled 24-h maxima in one joint log-

likelihood. Once the conversion exponent has been esti-

mated, the GEV-parameters of 24-h maxima can be

obtained at sites where only daily data is available.

The paper is organized as follows. In Sect. 2 we give

basic facts of extremal theory for dependent and sub-

sampled sequences. In Sect. 3 we propose the general

assumption that there is a fixed, sufficiently small sampling

interval for which the maxima are a good approximation to

continuous 24-h precipitation maxima. Estimation methods

for GEV-parameters of continuous 24-h precipitation

maxima are introduced. A spatial extension of the new

estimator is introduced in Sect. 4. Numerical experiments

in Sect. 5 show the relevance of the new methodology.

Finally, in Sect. 6, some conclusions are drawn.

2 Extremes of sequences: background results

2.1 Classical theory of extremes

The use of extreme value models is increasingly common

in climate studies (Obeysekera et al. 2011; Siliverstovs

et al. 2010; Yoon et al. 2013). These models are concerned

with the statistical behavior of block maxima, i.e.

Mn ¼ max fX1; . . .;Xng; ð1Þ

where X1; . . .;Xn is a sequence of independent and identi-

cally distributed (iid) random variables. A key result in

classical extreme value theory (EVT) is that if there exist

sequences of constants an [ 0 and bn such that the cumu-

lative distribution of the normalized maxima converges to a

non-degenerate limit distribution GðxÞ, i.e.

P
Mn � bn

an

� x

� �
! GðxÞ; as n!1;

then G is the Fréchet, Weibull, or Gumbel distribution

(Beirlant 2004; Coles 2001; Embrechts et al. 1997;

Leadbetter et al. 1983). These three classical extremal

types can be rewritten in one unifying three-parameter

distribution, the generalized extreme value (GEV) distri-

bution, which takes the form

Hðx; l; r; cÞ ¼ exp � 1þ c
x� l

r

� ��1=c

þ

� �
; ð2Þ

where l 2 R, r[ 0 and c 2 R are the location-, scale- and

shape parameter, respectively. For notational convenience,

denote by Z the maximum of the sample X1; . . .;Xn. Thus,

for sufficiently large n, the probability PðZ � zÞ can be

approximated by the GEV distribution. Inference is usually

performed by maximum likelihood estimation (MLE),

though moment-based estimation methods are also popular.

For a given sample Z ¼ ðZ1; . . .; ZkÞ of iid GEV random

variables, the log-likelihood function is

lðZjwÞ ¼
Xk

i¼1

log hðZi; wÞ;

with w ¼ ðl; r; cÞ the vector of GEV-parameters, and

hðz; wÞ the probability density function. The MLE ŵ is

obtained by maximizing the log-likelihood function with

respect to w.

The return level zp associated with the return period

T ¼ 1=p is obtained by inverting HðzpÞ ¼ 1� p:

zp ¼
l� r

c
ð1� ð� log ð1� pÞÞ�cÞ; if c 6¼ 0;

lþ r log ð1� pÞ; if c ¼ 0:

(
ð3Þ

2.2 Extremes of dependent sequences

Classical EVT can be extended to a wide class of depen-

dent stationary sequences (Leadbetter et al. 1983). Obvi-

ously, some form of dependence restrictions is necessary to

obtain extremal type results in dependent cases. The main

condition to be used (termed DðunÞ) is defined with refer-

ence to a sequence fung of constants in terms of

Fi1...ir ðx1; . . .; xnÞ ¼ PðXi1 � x1; . . .;Xir � xrÞ. For brevity,

we write Fi1...irðunÞ for Fi1...ir ðun; . . .; unÞ.
The condition DðunÞ will said to be hold if for any

integers

1 � i1 \ � � � \ ip \ j1 \ � � � \ jq� n;

for which j1 � ip� ln, we have

jFi1...ip;j1...;jqðunÞ � Fi1...ipðunÞFj1...jqðunÞj � an;ln ;

where an;ln ! 0 as n!1 for some sequence ln ¼ oðnÞ.
The Extremal Types Theorem for stationary sequences

(Leadbetter et al. 1983) follows from the above

condition:
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Theorem 1 Let fXig be a stationary sequence and an [ 0

and bn given constants such that

P
Mn � bn

an

� x

� �
! GðxÞ; as n!1;

for some non-degenerate distribution GðxÞ. Suppose that

DðunÞ is satisfied for un ¼ an xþ bn for each real x. Then G

is one of the three classical extremal types, and is thus the

GEV distribution.

2.3 Extremes of sub-sampled sequences

We denote by X1; . . .;Xn the discrete time realizations of a

stationary stochastic process at the finest sampling rate of

interest. The maximum of the sequence sampled at d�1 times is

MðdÞn ¼ max fXd;X2 d; . . .;Xd ½n=d�g:

Robinson and Tawn (2000) have pointed out the relation-

ship between the GEV-distributions of M
ðdÞ
n and M

ð1Þ
n . Their

main findings are presented here, but our proofs have been

expressed in terms of the Extremal Types Theorem. We

will use the following lemma, which is due to Chernick

(Chernick 1981; Leadbetter 1983; Leadbetter et al. 1983).

Lemma 1 Let fXig be a stationary sequence (marginal

d.f. F) and fung a sequence of constants such that DðunÞ
holds. Let 0\s\1. Then

PðMn� unÞ ! e�h s; ð4Þ

for some 0� h� 1, if and only if

n
�
1� FðunÞ

�
! s; as n!1:

In Eq. (4), h is called the extremal index of the sequence

fXig.
The following result is a reformulation of a major result

of Robinson and Tawn (2000).

Theorem 2 Assume that DðunÞ holds for the stationary

sequence fXig (and consequently also for the subsequence

fXi dg). Assume that the conditions of Theorem 1 are satisfied

for fXi dg, i.e. there exist sequences a
ðdÞ
n [ 0 and b

ðdÞ
n such that

P
M
ðdÞ
n � b

ðdÞ
n

a
ðdÞ
n

� x

 !
! HðxÞ; as n!1; ð5Þ

with H the GEV distribution. Then

P
M
ð1Þ
n � b

ðdÞ
n

a
ðdÞ
n

� x

 !
! HðxÞd h1=hd ; as n!1; ð6Þ

where h1 and hd are the extremal indices of the sequences

fXig and fXi dg, respectively.

Proof For the sequence fXi dg, Eq. (5) may be rewritten

as P
�
M
ðdÞ
n � un

�
! e�hd s, with un ¼ a

ðdÞ
n xþ b

ðdÞ
n and

s ¼ �ðlog HðxÞÞ=hd. By Lemma 1, we have ½n=d�
�
1�

FðunÞ
�
! s as n!1, or equivalently, n

�
1� FðunÞ

�
!

s d as n!1. Now, we turn to the case of the sequence

fXig. By Lemma 1, we get

PðMð1Þn � unÞ ! e�h1 s d; as n!1: ð7Þ

Finally, Eq. (6) follows after a little arrangement

of Eq. (7). h

It is easy to verify that the GEV distributions HðxÞ and

HðxÞd h1=hd of Eqs. (5, 6) have the same shape parameter c,

so that it does not depend on the sampling frequency. We

denote by HdðzÞ :¼ Hðz; ld; rd; cÞ and H1ðzÞ :¼
Hðz; l1; r1; cÞ the approximative GEV-distributions of

ZðdÞ :¼ M
ðdÞ
n and Zð1Þ :¼ M

ð1Þ
n . It follows from Theorem 2

that for sufficiently large n, an approximate relationship

between HdðzÞ and H1ðzÞ is given by

H1ðzÞ � HdðzÞd h1=hd ;

which is the original formulation of Robinson and Tawn

(2000).

3 Continuous 24-h precipitation maxima

3.1 Continuous- versus discrete-time maxima

Let fXðtÞg be a stationary process. For the continuous

maximum

MðTÞ ¼ supfXðtÞ j 0� t� Tg;

we assume that there exist constants aT [ 0 and bT such that

P
MðTÞ � bT

aT

� x

� �
! HðxÞ; as T !1; ð8Þ

where G is one of the three extremal types. General con-

ditions for the continuous version of the Extremal Types

Theorem are rather technical, and are not summarized here.

For a complete overview, see Leadbetter et al. (1983).

We further assume that the conditions of Theorem 1 are

satisfied for the discrete sequence fXig. In order to relate

the asymptotic distribution of normalized continuous time

maxima MðTÞ to discrete maxima Mn we choose a positive

interval of small time-units d � 1, for which the maxi-

mum sampled at the associated frequency:

MðdÞðTÞ ¼ maxfXði dÞ j 0� i� T=dg; ð9Þ

is a sufficiently good approximation to MðTÞ. For any two

sequences fXði dÞg and fXði dÞg sampled at times d and d

respectively, the extension of Eq. (6) is

Stoch Environ Res Risk Assess (2015) 29:653–663 655
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P
MðdÞðTÞ � bn

an

� x

� �
! HðxÞHd ; as T !1;

with Hd ¼
d

d
hd

hd

:

ð10Þ

It is, however, not clear when the limit in Eq. (10) would

exist if d! 0, and one needs to understand the relation

between the maxima of continuous- and discrete-time

processes. A commonly used idea is selecting a grid

spacing d (which may depend on T) that converges to zero

at a specific rate. The coarsest grid over which continuous

and discrete maxima have the same asymptotic distribution

is called the Pickands’ grid (Leadbetter et al. 1983). The

most complete characterization of the relation between

both types of extremes for Gaussian processes is given by

Piterbarg (2004). Very recently, similar results are obtained

for non-Gaussian processes as well (Turkman 2011).

However, the above-mentioned papers fall outside the

scope of this work, because in the usual practise one selects

a sufficiently large fixed T (mostly one year) for which one

assumes that convergence of Eqs. (8 and 10) is satisfactory.

Then we get

HdðzÞ � HHd
d ðzÞ; ð11Þ

which is equivalent to

ld � ld �
rd

c
ð1�Hc

dÞ and rd � rd Hc
d: ð12Þ

For any fixed T , there exists a small d[ 0 such that the

GEV-distributions of ZðdÞ and Z :¼ MðTÞ are sufficiently

close, i.e. HðzÞ � HdðzÞ or

HðzÞ � HHd
d ðzÞ: ð13Þ

Such a methodology was also suggested by Robinson and

Tawn (2000) for approximating continuous time maxima.

3.2 Rainfall extremes: estimation method for Hd

In what follows, we reconsider the terminology of Sect. 1,

such that d ¼ 24 for daily data. If only daily precipitation

measurements are available, the conversion rule Eq. (13) is

particularly useful for obtaining GEV-parameters of con-

tinuous 24-h precipitation maxima. It is thus of great

importance to have a good estimate of Hd. To illustrate the

estimation, we take the 115-year time series of 10-min

rainfall of the Royal Meteorological Institute of Belgium

(Uccle, Brussels). The series was recorded by the same

instrument at the same location since 1898, and processed

with identical quality since that time (Demarée 2003). In

Belgium, 08:00 h local time is the typical time of day at

which daily aggregated data are recorded, so we initially

construct daily data in this way by aggregating 10-min

measurements. In Van de Vyver (2012) we have estimated

the extremal indices h24 and hd with the so-called runs

estimator (Smith and Weissman 1994), and substituted

them in Eq. (10), resulting in Ĥd ¼ 1:67. However, the

estimation error could not be provided. In the absence of a

general theory of extremal index estimation in sub-sampled

sequences, we employ here an alternative estimator. A

possible method could be to estimate the GEV-parameter

vectors wd ¼ ðld; rd; cÞ and w24 ¼ ðl24;r24; cÞ on the two

sets of maxima

ZðdÞ ¼ ðZðdÞ1 ; . . .; Z
ðdÞ
k Þ; Zð24Þ ¼ ðZð24Þ

1 ; . . .; Z
ð24Þ
k Þ;

respectively, and then manipulating these to estimate Hd

via Eq. (12). In the context of estimating the extremal

index, a similar procedure was already proposed in Gomes

(1993). Ancona-Navarette and Tawn (2000) advanced

further on this idea and suggested that it would be better to

perform a simultaneously estimation. For the estimation of

Hd we consider this procedure, but suitably adapted to our

case. We estimate the joint distribution of ðZðdÞ;Zð24ÞÞ
based on the joint log-likelihood lðZðdÞjwdÞ þ lðZð24Þjw24Þ
¼: lðZðdÞ;Zð24Þjwd;w24Þ. When introducing Eq. (12) we see

that parameter vector / ¼ ðl24;r24; c;HdÞ is a sufficiently

statistic for ðZðdÞ;Zð24ÞÞ. Throughout this work, parameter

vector w is referred to the standard GEV log-likelihood,

while vector / is associated with the present joint log-

likelihood lðZðdÞ;Zð24Þj/Þ. After some calculation, the joint

log-likelihood can be written as

lðZðdÞ;Zð24Þj/Þ ¼ �k ðlog r24 þ c log HdÞ

�
Xk

i¼1

r24 þ c ðZðdÞi � l24Þ
r24 Hc

d

 !�1=c

� ð1=cþ 1Þ
Xk

i¼1

log
r24 þ c ðZðdÞi � l24Þ

r24 Hc
d

 !

� k log r24 �
Xk

i¼1

1þ c
Z
ð24Þ
i � l24Þ

r24

 ! !�1=c

� ð1=cþ 1Þ
Xk

i¼1

log 1þ c
Z
ð24Þ
i � l24Þ

r24

 ! !
: ð14Þ

An estimation of Hd can then be obtained by maximization

of Eq. (14) with respect to /.

Special attention has to be paid to the dependence

between ZðdÞ and Zð24Þ. As well known, MLE is based on

the assumption of independent observations. The asymp-

totic properties of the independence MLE are well known,

but this is not the true model, because ZðdÞ and Zð24Þ are

highly correlated. A solution to account for dependence is

ignoring the dependence initially, thus working with MLE
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under misspecification, and then making adjustments to

estimates of parameter uncertainty (Chandler and Bate

2007; Davison 2003). More precisely, one has

/̂! N /0; Ið/0Þ�1
Vð/0Þ Ið/0Þ�1

� �
; as k!1;

ð15Þ

where /0 is the vector of true parameters, Vð/0Þ ¼
Cov ½rlð/0Þ�, and Ið/0Þ ¼ �E½r2lð/0Þ� the Fisher infor-

mation matrix (r and r2 denote the gradient and Hessian,

respectively). Two points are notable here. Firstly, Eq. (15)

indicates that MLE for a misspecified model is still an

unbiased estimator. Secondly, if the assumed model was

correct (i.e. the series were independent) then we would have

Vð/0Þ ¼ Ið/0Þ, and Eq. (15) reduces to the the usual

asymptotic distribution for the MLE (Davison 2003). In

practice, to get standard errors we need estimates of Ið/0Þ
and Vð/0Þ. The estimation of Ið/0Þ is straightforward, and

may be approximated by Ið/̂Þ. Usually, standard optimizers

are able to get finite-difference based estimates for Ið/̂Þ.
Because of Vð/̂Þ ¼ 0 for the MLE, the estimation of Vð/0Þ is
more difficult, and we have followed the guidelines of Varin

and Vidoni (2005). We finally get Ĥd ¼ 1:696, with error

variance VarðĤdÞ ¼ 0:129.

Having introduced an estimation method, we address

how good model HHd
24 ðzÞ in Eq. (11) describes the available

data. A goodness-of-fit is visually assessed by inspection of

QQ-plots in Fig. 1. On the vertical axis we have plotted the

observed quantiles, i.e. the ordered maxima Z
ðdÞ
ð1Þ � . . .

� Z
ðdÞ
ðkÞ . On the horizontal axis we have plotted the theo-

retical quantiles provided by HHd
24 ðzÞ, see Eq. (11). To be

more precise, the QQ-plot consists of the points

H�1
� i

k þ 1
; �ld; �rd; ĉ

�
; Z
ðdÞ
ðiÞ

� �
; i ¼ 1; . . .; k; ð16Þ

where the GEV-coefficients are calculated by Eq. (12):

�ld ¼ l̂24 � r̂24 ð1� Ĥĉ
dÞ=ĉ and �rd ¼ r̂24 Ĥĉ

d, see Table 1

(first line) for these values. For comparison, the GEV-

coefficients l24 and r24 for daily extremes are also listed,

and differ strongly from those of the 24-h extremes. In

addition, the GEV-parameters estimated directly from ZðdÞ

(Table 1, second line) agree very well with those obtained

here. Since the points are close to the leading diagonal, we

may conclude with an excellent fit of the new model.

3.3 Sensitivity of Hd when d decreases

We examine to which extend assumption HðzÞ � HdðzÞ is

valid, such that Eq. (13) might be a plausible model for

practical applications. Annual maxima ZðdÞ are constructed

for d = 10, 20, 30, 60, 120, 360, 720 and 1,440 min.

Automatic stations provide 5-min measurements, but these

series are shorter than 10 year, which is much too short for

an extreme value analysis. Estimated Hd-values, as a

function of d, are shown in Fig. 2. In addition, the esti-

mated distribution parameters �ld, �rd and ĉ are also plotted

in Fig. 2. There is a clear convergence as d! 10 min.

Furthermore, working with hourly sampled 24-h rainfall

may already result in good approximations to continuous

24-h maxima.

3.4 Constancy of Hd over space

Practical applications involve the following methodology.

If only daily maxima are available at a certain site, and

Hðz; w24Þ is fitted to this series, the distribution of contin-

uous 24-h maxima can be approximated by HĤdðz; ŵ24Þ
(cfr. Eq. (11)), where Hd is estimated as before. A key

point in our methodology is that Hd can be modeled as a

single value for the entire study region. This idea agrees

with earlier empirical scaling rules (quantiles of daily vs.

24-h maxima) where the conversion factors are supposed

not to vary too much in regions with the same precipitation

climate (Dwyer and Reed 1995). Indeed, a storm split (at

08:00) between two observations is under-recorded by

fixed interval measurements. If a typical storm arises from

20 30 40 50 60 70 80
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GEV quantile (mm)

E
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m
m

)

Fig. 1 QQ-plot for 24-h extremes from the Uccle series (1898–2012).

Dots: Eq. (16). Solid line leading diagonal

Table 1 Estimation results for daily and 24-h extremes from the

Uccle series (1898–2012)

Log-likelihood l24

(mm)

r24

(mm)

c ld
(mm)

rd

(mm)

lðZðdÞ;Zð24Þj/Þ, Eq. (14): 29.55 8.20 0.0865 33.98 8.58

lðZðdÞjwdÞ: – – 0.0900 33.97 8.60
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relatively few hours of intense rainfall, then there is less

chance of this happening than for a site experiencing longer

duration events. In general, the climate in Western Europe

belongs to the type Cfb in the Köppen classification (Pid-

wirny 2008). To illustrate the equality of Hd, we have used

the 115-year Uccle series, with the addition of 17 Belgian

pluviograph stations which also provide 10-min measure-

ments, but for a much shorter period (1967–2004), see

Fig. 4. There are statistical tests to indicate the regional

variability of parameters of a probability distribution, see

for example Van de Vyver (2012). However, they are not

immediately applicable here because of the spatial depen-

dence among the series and low density of the pluviograph

network. Alternatively, we can plot Ĥd, as estimated at

each station, together with the 95 %-confidence bounds,

see Fig. 3 (left). 115-year Uccle series features much

shorter confidence intervals, as we would expect. Overall,

no obvious inter-site differences in Hd are discernible from

visual examination. In Fig. 3 (right), the scatter plot of Ĥd

against the height H shows that fluctuations in Ĥd cannot

be explained by orographic effects. Taken together, the

above arguments appear to support the hypothesis that

fluctuations in Ĥd are probably due to sample-to-sample

variability, and that Hd can be kept constant when mod-

eling continuous 24-h precipitation maxima. In the fol-

lowing section the present MLE estimator generalizes

further to a spatial estimator in which it is also assumed to

have a constant Hd-value. As we will see, validation results

are equally good which justifies, again, our main hypoth-

esis here.

4 Spatial estimation of Hd

The foregoing analysis clearly shows the ability of the new

methodology for single-site estimations. The past decade,

there is a growing interest in modeling spatial extremes

(Cooley et al. 2012; Davison et al. 2012; Ribatet 2011). In

fact, the use of spatial data appears so often in atmospheric

sciences that the construction of models for them is cur-

rently seen as a well-established area of investigation. We

restrict our attention here to the modeling of marginal

distributions, rather than the multivariate case based on

copula models or max-stable processes. Our goal is to

investigate if the new estimation method can be naturally

extended to spatial precipitation data.

4.1 Estimation of Hd by using spatial regression

models

A spatial regression model for annual maxima (daily, or con-

tinuous 24-h precipitation) is defined as ZðrÞ	 GEV ½lðrÞ;
rðrÞ; cðrÞ�, where r is the location (expressed in longitude/

latitude, or other geographic coordinates). The parameters

characterize the regional variability in extreme precipitation,

and are possibly related to climatological and orographic
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effects. In Van de Vyver (2012, 2013), the following spatial

regression models were investigated:

GEV
ðaltÞ
10 : lðrÞ ¼ lð0Þ þlð1ÞHðrÞ; rðrÞ ¼ rð0Þ;

GEV
ðaltÞ
11 : lðrÞ ¼ lð0Þ þlð1ÞHðrÞ; rðrÞ ¼ rð0Þ þrð1ÞHðrÞ;

GEV
ðmarÞ
10 : lðrÞ ¼ lð0Þ þlð1ÞmarðrÞ; rðrÞ ¼ rð0Þ;

GEV
ðmarÞ
11 : lðrÞ ¼ lð0Þ þlð1ÞmarðrÞ; rðrÞ ¼ rð0Þ þrð1ÞmarðrÞ;

and cðrÞ ¼ c for all models. Here, covariates HðrÞ and

marðrÞ respectively refer to height and mean annual rainfall

at location r. It was found that mar is by far the strongest

covariate for extreme precipitation, a result which was also

confirmed in Blanchet and Lehning (2010), Coles and Tawn

(1996), Cooley et al. (2007), Smith (1990). In particular,

numerous validation tests in Van de Vyver (2012, 2013)

indicate an excellent performance of GEV
ðmarÞ
11 . Next, a

natural extension of Eq. (11) for spatial regression models is

H
�
z; ldðrÞ; rdðrÞ; c

�
� HHd

�
z; l24ðrÞ; r24ðrÞ; c

�
; ð17Þ

and our aim is now to estimate Hd by using Eq. (17). Of

course, the single-site estimation of Hd (Sect. 3.2) can be

used in practise, but combining data from several sites lead

to a significant reduction in the error Var(Ĥd). For spatial

data we adopt the following notation: ZðdÞ ¼ ðZðdÞij Þ and

Zð24Þ ¼ ðZð24Þ
ij Þ where subscripts i ¼ 1; . . .; k and j ¼

1; . . .; ns refer to the year and station number, respectively.

Putting everything together, a spatial extension of log-

likelihood Eq. (14) becomes

lðZðdÞ;Zð24Þj/Þ¼�knsc logHd�k
Xns

j¼1

logr24ðrjÞ

�
Xk

i¼1

Xns

j¼1

r24ðrjÞþc
�
Z
ðdÞ
ij �l24ðrjÞ

�
r24ðjÞHc

d

 !�1=c

�ð1=cþ1Þ
Xk

i¼1

Xns

j¼1

log
r24ðrjÞþc

�
Z
ðdÞ
ij �l24ðrjÞ

�
r24ðrjÞHc

d

 !

�k
Xns

j¼1

logr24ðrjÞ�
Xk

i¼1

Xns

j¼1

1þc
Z
ð24Þ
ij �l24ðrjÞ

r24ðjÞ

 ! !�1=c

�ð1=cþ1Þ
Xk

i¼1

Xns

j¼1

log 1þc
Z
ð24Þ
ij �l24ðrjÞ

r24ðrjÞ

 ! !
:

ð18Þ

The parameter vector / depends on the selected spatial

model. For example, if we consider GEV
ðmarÞ
11 , one has

/ ¼ ðlð0Þ24 ; l
ð1Þ
24 ; r

ð0Þ
24 ; r

ð1Þ
24 ; c;HdÞ.

Beside the dependence between ZðdÞ and Zð24Þ, one has

additionally to take into account the spatial dependency of

the data. Analogously to the methodology of Sect. 3.2, the

likelihood function Eq. (18) was constructed as if the data

was independent, but Eq. (15) is proposed for obtaining

standard errors which allows for dependence. In the context

of model selection we use the Takeuchi Information Cri-

terion (TIC), defined as

TIC ¼ �2 lð/̂Þ þ 2 Tr Ið/̂Þ�1
Vð/̂Þ

� �
;

where lð/̂Þ is the maximized log-likelihood Eq. (18). The

best model will be that having the lowest value of TIC.

4.2 Implementation and validation

We have used the 18 Belgian pluviograph stations which

provide 10-min measurements (period: 1967–2004), see

Fig. 4. Estimation results have been listed in Table 2.

Compared to the single-site estimation in Sect. 3.2, there is

a marked reduction of VarðĤdÞ. Model GEV
ðmarÞ
11 has the

lowest TIC-value, and is thus the version to choose, as we

would expect.

Again, as in Sect. 3.2 for single-site estimations, we

should evaluate how good model HHd
�
z; l24ðrÞ; r24ðrÞ; c

�
in Eq. (17) describes the available data. In the present

context, classical QQ-plots are not useful as the spatial data

is not identically distributed. A possible extension of

classical QQ-plots consists in transforming the data to

variables that satisfy the iid property. Assume

ZðdÞðrjÞ	 GEV ½lðdÞðrjÞ; rðdÞðrjÞ; c�; j ¼ 1; . . .; ns. The

transformation

~ZðdÞðrjÞ ¼
1

c
log 1þ c

ZðdÞðrjÞ � lðdÞðrjÞ
rðdÞðrjÞ

� �
; ð19Þ

results in a Gumbel distributed random variable Beirlant

(2004), Coles (2001), i.e. P
�

~ZðdÞðrjÞ� z
�
¼

exp
�
� expð�zÞ

�
: The Gumbel distribution obtained does

not any longer depend on the covariates, and hence the

random variable ~ZðdÞðrjÞ ¼: ~ZðdÞ is identically distributed.

Analogously to Sect. 3.2 we can calculate �lðdÞðrjÞ, �rðdÞðrjÞ
and ĉ via Eq. (12), and then substitute these values in

Eq. (19). Next, the spatial data ðZðdÞij Þ play the role of

ZðdÞðrjÞ in Eq. (19). The quantile function associated with

the Gumbel distribution is given by

QðpÞ ¼ � logð� log pÞ; 0\p\1;

yielding the Gumbel QQ-plot coordinates

� log � log
i

mþ 1

� �
; ~Z
ðdÞ
ðiÞ

� �
; i ¼ 1; . . .;m; ð20Þ

where ~Z
ðdÞ
ð1Þ � � � � � ~Z

ðdÞ
ðmÞ are the corresponding order sta-

tistics of ~ZðdÞ, and m ¼ k ns the total number of spatial data.

If the Gumbel model provides accurate description of the
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data, one expects the points on the Gumbel QQ-plot to be

close to the leading diagonal. Observing Fig. 5, one can

conclude that model HHd
�
z; l24ðrÞ; r24ðrÞ; c

�
in Eq. (17)

reasonably describes the 24-h extremes.

5 Application: return level estimation

Let us finally recall that the ultimate goal of extreme value

analysis is to provide return levels Eq. (3) of extreme

events. For practical applications we assume that only daily

measurements were recorded at a certain station, and the

GEV-parameters are w24 ¼ ðl24; r24; cÞ. The GEV-param-

eters wd ¼ ðld; rd; cÞ of 24-h maxima are approximated by

using the conversion rule Eq. (12), here shortly denoted by

wd ¼ f ðw24;HdÞ. The MLE is �wd ¼ f ðŵ24; ĤdÞ, where we

use the conversion exponent provided by GEV
ðmarÞ
11 , i.e.

Ĥd ¼ 1:655 with VarðĤdÞ ¼ 0:0019 (see Table 2). By

substitution of �wd in Eq. (3), the MLE �zp is obtained. By

the delta-method, the estimation error of �zp is

Var ð�zpÞ ¼ rzT
p Vw24

rzp þ
oðzp 
 f Þ

oHd

� �2

Var ðĤdÞ;

ð21Þ

evaluated at ðŵ24; ĤdÞ, where Vw24
is the variance-covari-

ance of ŵ24, and

rzT
p ¼

oðzp 
 f Þ
o l24

;
oðzp 
 f Þ

o r24

;
oðzp 
 f Þ

o c

� 	

¼ 1;�c�1
�
1� y�c

p Hc
d

�
; r24 c�2

�
1� y�c

p Hc
d

�h

�r24 c�1 y�c
p Hc

d log yp þ c�1 r24 y�c
p Hc

d log Hd

i
;

and

oðzp 
 f Þ
oHd

¼ r24 Hc�1
d y�c

p ; where yp ¼ � log ð1� pÞ:

To validate the new return level estimator �zp, we use as

reference the direct MLE, which is based on the 10-min

sequence of 24-h aggregations, here denoted by

ẑp :¼ zpðŵdÞ.
Return level plots, together with the standard error,

are plotted in Fig. 6 for two sites having 10-min
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Table 2 Spatial estimation of Hd

Method Ĥd VarðĤdÞ TIC Method Ĥd VarðĤdÞ TIC

GEV
ðaltÞ
10

1.607 0.0019 9,667.68 GEV
ðaltÞ
11

1.612 0.0018 9,653.00

GEV
ðmarÞ
10

1.656 0.0020 9,597.22 GEV
ðmarÞ
11

1.655 0.0019 9,582.71

660 Stoch Environ Res Risk Assess (2015) 29:653–663

123

Author's personal copy



measurements. For comparison, the curve agrees well with

the reference. The error Eq. (21) differs to the reference

error, but there is no clear relation found between both

errors. For example, in some stations the error is seen to be

smaller than the reference, in other stations not.

Analogously to single-site estimation, we consider spa-

tial data of daily measurements. We have collected rainfall

extremes of 68 daily series (Fig. 4), each of them con-

taining 60 years of data (1951–2010) (Van de Vyver 2012).

Next, we fit the spatial model GEV
ðmarÞ
11 to this data using

R-package SpatialExtremes (Ribatet 2011), resulting in

parameter values ŵ24 ¼ ðl̂
ð0Þ
24 ; l̂

ð1Þ
24 ; r̂

ð0Þ
24 ; r̂

ð1Þ
24 ; ĉÞ. A spatial

regression model for continuous 24-h precipitation

maxima is then obtained by Eq. (17), giving

�wd ¼ ð�l
ð0Þ
d ; �lð1Þd ; �rð0Þd ; �rð1Þd ; ĉÞ. Finally, return level compu-

tation and spatial extension of the error variance Eq. (21) is

straightforward. The 20- and 100-year return levels as a

function of mar (typically ranging from 700 to 1,400 mm),

together with the standard error are displayed in Fig. 7. As

reference we used a spatial model that is fitted directly to

24-h maximum series from 18 pluviograph stations, see

Sect. 4.2 and Fig. 4. There is an acceptable agreement

between the return levels obtained by both approaches. We

can see that for mar-values up to 900 mm, the error esti-

mated by the new methodology is just a little larger than

the reference error, which is obtained from a much sparser

network. It is easy to verify that the errors in the return

levels are quadratic in the covariate mar, so that the dif-

ference between both errors considerably grows for larger

mar-values. Here, we can see that this is the case in the

higher-altitude parts of Belgium, where mar-values are

larger than 1,000 mm.
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Fig. 6 Top return level plots for

24-h precipitation maxima.

Estimation from daily

maximum series, and then

conversion by Eq. (12).

Reference: direct estimation

from the individual 24-h

maximum series. Bottom

corresponding standard error
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6 Conclusions

We conclude with some remarks about the usefulness of the

new methodology. The main aim was to estimate GEV-

distribution parameters of 24-h precipitation maxima, given

the fact that only daily measurements are available. It was

already pointed out in Robinson and Tawn (2000) that for a

known GEV-distribution H24ðzÞ of daily maxima, the dis-

tribution of high-frequency sampled 24-h maxima is of the

form HHd
24 ðzÞ. Throughout this work, it was assumed that a

sampling time d exists for which the associated maxima are a

sufficiently good approximation to continuous 24-h precip-

itation maxima. Although we have included 10-min obser-

vations in our analysis, it turned out that hourly-sampled time

observations may already give good approximations to

continuous 24-h maxima. Assuming a constant Hd-value, a

condition which is certainly met in a region with the same

precipitation climate, the conversion rule HHd
24 ðzÞ can be

applied to obtain GEV-parameters of 24-h maxima.

An important amount of work was devoted to estimating

the conversion exponent Hd. Here we have introduced a

new MLE-scheme which enables us to assess the estima-

tion error of Ĥd. Firstly, the estimation of Hd was dem-

onstrated with the 115-year time series of 10-min rainfall

recorded in Uccle. Secondly, the estimation of Hd was

further refined by combining 10-min data from several

sites, resulting in a marked reduction in VarðĤdÞ. The

results of practical return level estimation for single series

are promising, showing that it is possible to overcome

sampling issues. For spatial modeling of 24-h maxima, it is

likely that the new scheme is more useful than using the

10-min series directly because this network is less dense

than for daily series. The question arises whether or not the

number of 10-min series is too low for modeling spatial

differences in extreme 24-h precipitation. In particular, in

higher-altitude parts of Belgium where mar [ 1;000 mm,

the estimated errors in the return levels provided by the

new methodology are superior compared to those of the

direct estimation. However, such a comparison is not free

of subjective or empirical considerations since the standard

error is an estimation too, and is only derived from the

model itself. Taking account that the above conclusion is
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Fig. 7 Top return level plots for 24-h precipitation maxima provided

by GEV
ðmarÞ
11 . Estimation from daily maximum series, and then

conversion by Eq. (17). Reference: GEV
ðmarÞ
11 which was directly

estimated from 24-h maximum series, 18 in total. Bottom corre-

sponding standard error. Return periods are T ¼ 20 year (left) and

T ¼ 100 year (right)
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made on the assumption of having known mar-values. In

practical return level mapping, gridded mar-values are

obtained by spatial interpolation (kriging), which intro-

duces additional uncertainties (Van de Vyver 2013).

Complete inference of spatial regression models which

includes all these types of errors is reserved for a future

paper.

This analysis can be immediately extended in various

ways. Firstly, the estimation of 48-h precipitation extremes

is an equally important issue in hydrological sciences

(Dwyer and Reed 1995; van Montfort 1990), although, the

difference with two-daily maxima is much smaller than in

the present case. Likewise, the effect of sampling fre-

quency is also present on other climatological variables

such as air temperature and wind speed (Dwyer and Reed

1995), such that the new methodology could be applied

there as well. Secondly, seasonal effects are not distin-

guished, possibly due to different climate patterns in dif-

ferent months. It might be interesting to examine whether

there are significant differences between the conversion

exponents of different seasons. Finally, an interesting fur-

ther development is the introduction of Bayesian tech-

niques in our methodology in order to provide a more

complete inference.
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