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1. Introduction

Intensity-duration-frequency (IDF) relationships of extreme
rainfall intensities are one of the most commonly used tools in
water resources engineering for planning, design and operation
of water resources projects. The construction of IDF curves has a
long history, going back at least to the paper of Bernard (1932).
Numerous commonly used IDF models have been published in
the hydrological literature; an historical overview and discussion
has been included in Garcia-Bartual and Schneider (2001).
Koutsoyiannis et al. (1998) have provided a general formula for
the IDF relationship, consistent with the theoretical probabilistic
foundation of the analysis of rainfall maxima.

The modelling of extreme events is of increasing interest, and
there currently exists powerful statistical theories of extremes
(Beirlant et al., 2004; Coles, 2001). The theory has been widely
used in hydrology (Katz et al., 2002; Schliep et al., 2010; Van de
Vyver, 2015), and other environmental sciences and finance as well
(Chavez-Demoulin et al., 2006; Van de Vyver, 2012). In the past
decades, many authors working on IDF curves have modelled
annual maximum rainfall events with the generalised extreme
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value (GEV) distribution or Gumbel distribution, see Demarée
(1985), Mohymont et al. (2004), Muller et al. (2008), Overeem
et al. (2008) and Lehmann et al. (2013), to mention a few.
Traditionally, in IDF analysis one first fits a probability distribution
to each series of maximum intensity for a specific duration. Next,
an IDF relationship is fitted to a range of quantiles of these
distributions.

A commonly overlooked feature when estimating IDF relation-
ships is the assessment of uncertainty. In statistical analysis,
uncertainty is generally as important as estimates themselves,
especially in extreme value analysis since the observations are,
by definition, scarce. However, the typical estimation procedure
of IDF relationships suffers the drawback that uncertainty in
parameter estimates cannot be identified. To the best of our
knowledge, the only contributions to this subject are provided in
Overeem et al. (2008), and in a Bayesian framework, in Muller
et al. (2008) and Lehmann et al. (2013).

Bayesian estimation techniques have steadily gained ground,
and are now recognised as a legitimate alternative to classical
statistics. A Bayesian framework is natural for handling uncertain-
ties because inferences on model parameters are presented explic-
itly as a posterior distribution. Prior to the Bayesian analysis of IDF
relationships, Muller et al. (2008) and Lehmann et al. (2013)
defined a likelihood for extreme rainfall intensity, which is based
on the assumption of independence amongst annual maximum
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intensities over different durations. The resulting likelihood can be
thought of as the most simplistic estimation equation, and is a
typical example of a composite likelihood (Varin et al., 2011).

In this paper, we adjust the independence likelihood for appro-
priate inference, an idea which has been based on recent advances
in Bayesian inference from composite likelihoods (Pauli et al.,
2011; Ribatet et al., 2012). Alternatively, Muller et al. (2008)
introduced another likelihood for IDF relationships by explicitly
modelling the dependence with a bivariate GEV-distribution. The
inferences based on both IDF likelihoods will be compared.

The remainder of the paper is structured as follows. Section 2
introduces IDF relationships, and details the general IDF relation-
ship. Then we give an illustration of commonly used classical esti-
mators in Section 3. Next, Section 4 and 5 outline the statistical
methodologies we employ and how inference is implemented.
Technical details are described more fully in the Appendix.
Section 6 summarises the results and the paper concludes with a
few discussion points in Section 7.

2. Intensity-duration-frequency (IDF) relationships

Let R/(d) be the total amount of precipitation (mm) that falls in
the time interval [t; —d,t;] (time expressed in h). The average
intensity is then I;(d) = R/(d)/d (mm h™!). Next, we form the series
of annual maximum intensities

I(d) = max{l(d),x(d),...,In(d)}. (1)

In practice, the construction of the series of maximum intensities is
performed for a number of M durations di,k =1,...,M, starting
from a minimum duration (e.g., from 5-10 min to 1 h), and ending
with a maximum duration of interest. The key quantity in the IDF
analysis is the return level of I(d) with return period T, here denoted
by ir(d), for a given duration d € [dy,dy]. Earlier IDF relationships
are empirical relationships amongst ir(d) and d, for a specific
T-value (Chow et al., 1988; Garcia-Bartual and Schneider, 2001).
Our study is based on the general IDF relationship of
Koutsoyiannis et al. (1998), which is a semi-empirical relationship
expressing ir(d) as a function of both d and T. IDF curves are
logarithmic plots of ir(d) against duration d, for different fixed
T-values. Fig. 1 (solid lines) serves an example of IDF curves for
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Fig. 1. IDF curves at Uccle (Belgium) for return periods T=2, 5, 10, 20, 50 and
100 year.

Uccle (Belgium), for durations starting from 10 min, and ending
with 72 h.

2.1. General IDF relationship

For any rainfall duration d, we denote by Fq (i;d) = P{I(d) < i}
the probability distribution of I(d). The return period T associated
with the return level ir(d) is computed with

1

T=——r———. 2
1 — Fya)(ir; d) @

Conversely, the T-year return level, ir(d), is defined as a value which,
on average, is exceeded once in T years, and can be obtained by
solving Eq. (2) for ir. The general IDF relationship of Koutsoyiannis
et al. (1998), is of the form

ir(d) = %7 3)

and has the simplicity of a separable functional dependence on T
and d. Here, the function b(d) is

b(d)=(d+06)", with 0>0, 0<y<1. (4)

As the nominator a(T) is independent of the rainfall duration d, the
family of curves are parallel for different fixed T-values. The denom-
inator b(d) determines the shape of the curves: # is indicative of the
slope of the straight part of the IDF curves, and 0 is connected with
the curvature change point. For the Uccle series, the general IDF
relationship is, to a good approximation, valid for rainfall durations
ranging between 10 min and 72 h. In Fig. 1, it can be seen that the
curvature change point is around d = 1 h, and the IDF curves appear
to be nearly straight lines in the region where d € [1,72]. We can
thus suggest the following simplified IDF model when d € [1,72]:

b(d)=d", with0O<n<1. (5)

It will be confirmed later, in Section 6.2, that we may reject model
Eq. (4) in favour of model Eq. (5) when modelling maxima intensity
for these durations.

From Eq. (3), we can see that a(T) is the T-year return level of
the scaled maximum intensity Y = I(d) b(d). We get

a(T) =Fy'(1-1/T), (6)

where Fy (y) is the probability distribution of Y. Obviously, I(d) and Y
follow the same family of distributions. The difference lies in the
fact that the distribution parameters of Fq)(i;d) are d-dependent,
whereas those of Fy(y) are constant. Several distribution functions
for I(d) (for example Gumbel-, GEV-, Gamma-, log Pearson III distri-
bution,...) have been included in the analysis of Koutsoyiannis et al.
(1998).

2.2. General IDF relationship using the GEV distribution

Throughout this work, we assume that the annual maximum
intensity, I(d), follows to a good approximation the generalised
extreme value (GEV) distribution. This is concerned with the statis-
tical behaviour of block maxima (Beirlant et al., 2004; Coles, 2001),

My, = max{X,..., Xn}, (7)

where X;,...,Xn is a sequence of independent and identically dis-
tributed (iid) random variables.

A key result is that, under regularity conditions, Pr{M,, < z} can
be approximated by the GEV distribution for large m-values. This is
a three-parameter family of functions

(1 +yZ;“)4/y}, (8)

G(z;u,0,7) = exp



H. Van de Vyver/Journal of Hydrology 529 (2015) 1451-1463 1453

where the location-parameter (u) specifies the centre of the distri-
bution; the scale-parameter (o) determines the size of deviations
around the location parameter; and the shape-parameter (y)
governs the tail behaviour of the distribution. We shortly denote
M, ~ GEV[u, g, 7]. For sufficiently long time series, it is customary
and convenient to extract the block maxima, generating a block
maxima-series. Pragmatic considerations often lead to the adoption
of one year blocks.
In the above notation, we have

I(d) ~ GEV[u(d), a(d), ]. 9

According to the analysis in Nadarajah et al. (1998), the shape
parameter y is modelled as a constant over d. More specifically, they
proved that the next inequalities (which are trivially satisfied for
rainfall depth R(d)):

max{Ri(d)} < max{Ri(d")}
1 1
< (d/d) max{Ri(d)}, with d" a multiple of d,
1
imply that y, = 74.

It follows that the scaled intensity Y = I(d) b(d) obeys a GEV-
distribution, i.e. Fy(y) = G(y; u,0,7), whereby p = u(d)b(d), and
o = o(d)b(d). Putting everything together, the general IDF rela-
tionship Eqgs. (3)-(6) becomes

e Ford e [1/6,72]:

p-2{1-[-log(1-H]"}

ir(d) = s 0y . with
0>0 0<np<1. (10)
e Ford e [1,72]:
u—241—[-log(1 =417
ir(d) = '{ [d” - } with 0 < 57 < 1.

(11)

Egs. (10) and (11) are denoted by ir(d) < (d+60)"" and
ir(d) oc d”", respectively.

An equivalent formulation to Egs. (10) and (11), which will form
a keypoint in our Bayesian methodology (see Sections 4 and 5), is
to explicitly express I(d) ~ GEV[u(d), a(d),y]:

o IDF model valid for d € [1/6,72]:

U g )
d) = d)=—"—> tho>0,0 1.
:u() (d+6)n7 O-() (d+9)ﬂ7W1 > U, <n<
(12)
o IDF model valid for d € [1,72]:
pwd) =2 =2, witho <y <1. (13)

“d" d'

3. Point estimators for IDF relationships

To highlight the need of a Bayesian approach for IDF models, we
give a real world application of a classical point estimator. This
involves the use of data to calculate a single value for the model
parameters, which is to serve as a “best guess” or “best estimate”.
We introduce the 10 min precipitation series of Uccle, which is
used for illustration throughout the paper. The series was recorded
by a Hellmann-Fuess pluviograph in the period 1898-2007, and
since 2008 by an automatic instrument. The Uccle series is world-
wide unique, because not only of its length and high temporal res-
olution, but also because of the completeness and homogeneity

Table 1
Classical point estimations for IDF model ir(d) o (d + 0)", see Koutsoyiannis et al.
(1998) (Section 3). Units are d/h, ir(d)/mm h~'.

Method i o b [ 0

Typical procedure 16.95 5.36 0.0535 0.80 0.11

Robust estimation 15.23 5.00 0.0400 0.75 0.07

One-step procedure 1545 4.99 0.0470 0.75 0.08
Table 2

Classical point estimations for IDF model ir(d) « d", see Koutsoyiannis et al. (1998)
(Section 3). Units are d/h, ir(d)/mm h~'.

Method [t (mm) 0 (mm) b [

Typical procedure 16.30 4.62 0.0591 0.78
Robust estimation 14.53 424 0.0482 0.73
One-step procedure 14.62 4.22 0.0571 0.73

(Demarée, 2003). Previous studies of IDF curves based on the Uccle
rainfall series have been included in Demarée (1985), Mohymont
et al. (2004) and Willems (2000).

For a given variety of rainfall durations, the matrix of annual
maximum intensities is given by i = (ij(dx)) = (ix) € RV™, where
j=1,... N refers to the year, and dy,k=1,...,M to the rainfall
duration. We denote by i(dy) € RY the vector of annual maximum
intensities with duration d,. The GEV-distribution of I(dy) has loca-
tion u(di) = i, and scale o(dy) = . The typical estimation proce-
dure consists of three steps (Koutsoyiannis et al., 1998).

e Determine the matrix i for durations 1/6, 1/3,1/2, 1, 2, 6, 12, 24,
48 and 72 h. For each duration di, we fit the GEV[y,, oy, 7]-
distribution to the annual maximum series i(d)) with maximum
likelihood, i.e. maximise the logarithm of the likelihood function

N

L(i(di); i) = [ [8(: ), (g : GEV-density), (14)

=

with respect to ;, = (i, 0%, y), resulting in the maximum likeli-
hood estimator v, (Coles, 2001). Beside maximum likelihood
estimation, moment-based estimation methods are also popular
(Hosking and Wallis, 1997).

o Calculate for each duration d; the return level

fr(dk)zﬂk—(;k {1 _ {7log (1})]*} (15)

for return periods T = 2, 5, 10, 20, 50 and 100 year. The return
levels have been plotted in Fig. 1 (open circles).

o Estimate finally the parameters (i, a,7,1,6) of model Eq. (10)
by minimising the total squared difference between the IDF

model and the return levels fT(dk).

The estimation results have been listed in Table 1. In addition,
we have implemented two alternative estimation techniques of
Koutsoyiannis et al. (1998) for the general IDF relationship; the
results have also been listed in Table 1. Likewise, the estimation
results for model ir(d) oc d~" have been listed in Table 2.

Because the traditional methodology is a multiple-step algo-
rithm, it is difficult to assess the error propagation through the
steps. On the other hand, Bayesian inference includes uncertainty
in the probability model, yielding more complete predictions.

4. Likelihoods for IDF relationships

In all model-based statistical inference, the likelihood function
is of central importance, since it expresses the probability of the
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observed data under a particular statistical model. In this section
we attempt to formulate approximate likelihoods for intensity data
i. Consider the M-dimensional random vector I = (I(d1),...,I(du)),
with joint probability density function g(i;y, o). Here, i/ parame-
terises the marginal structure of each I(dy), and oo parameterises
the interdependence between I(d,) and I(dy ). The form of the mar-
ginal distribution I(d) ~ GEV[u(d),o(d),y] has been already
expressed in Egs. (12) and (13). We thus have y = (u,0,7,7,0) or
v = (u,0,y,1n), according to the IDF model. Under the assumption
that the matrix of annual maximum intensities i = (ij(dy)) = (i) is
based on N independent realisations of I, the full likelihood is

N

Ly, o) = [[el, . i v, ). (16)

j=1

The joint density function g(i;y, «) is, however, unknown. Further-

more, because the goal of the analysis is inference about IDF param-

eters 1, and o is of no interest, the use of Eq. (16) may be considered

impractical. In such a situation, one commonly assumes indepen-

dence amongst the components of I, so that y/ can be inferred from

the independence likelihood

N M

Lina(isy) = [ [ [ L& v), (17)
j=1

Jj=1 k=1

where g(e) is the density function of GEV[u(d), a(d), y]. Regarding to
the estimation of IDF relationships, the likelihood Eq. (17) was
already formulated in Muller et al. (2008), and in a spatial
framework, in Lehmann et al. (2013). The term independence
(log-) likelihood was taken from Chandler and Bates (2007), where
it was used for dependent data structures in general. It is, in turn, a
special case of a composite likelihood which is used in applications
where the full likelihood is analytical unknown, or computationally
prohibitive. For background on composite likelihoods, see Varin
et al. (2011).

An alternative to the independence likelihood Eq. (17) has been
formulated by Muller et al. (2008), who modelled the dependence
explicitly by including only three rainfall durations: 1, 24 and 72 h.
In fact, they considered yet a fourth duration, namely the daily
maxima from a neighbouring station, but this is out of context
for our illustrative purposes. Since the 1 h extreme rainfall occurs
generally during a thunderstorm, whereas the 72 h extreme rain-
fall occurs generally during a frontal rainfall event, both events
may be considered as independent. The dependence between 24
and 72 h annual maximum intensities is modelled by a bivariate
extreme value distribution. A popular standard class, defined for
marginal unit-Fréchet distributions, is the logistic family (Coles,
2001)

P{X <X, Y <y} =exp [—(x*”“ +y*1/“)“]7 x>0,y>0,  (18)

where the parameter o is a measure of dependence. It is easy to ver-
ify that the transformed intensity

_ 1/y(d)
R e e (19

is unit-Fréchet distributed, i.e. P{U(I(d)) < z} = exp(-z~!). We
arrive at the likelihood (Muller et al., 2008), which is termed by
us the trivariate likelihood:

N
Ls(i: v, 0) = [ Jg((1);9) g(U(i5(24)). U(§(72)): ¢, )
j=1
x U'(i;(24)) U'(i5(72)), (20)

where g(e, e) is the density function of the bivariate logistic distri-
bution Eq. (18), and U'(e) presents the derivative of U(I(d)) with

respect to the intensity I(d). The vector of marginal parameters is
v = (W, 0,7,1), and the matrix of annual maximum intensities is
i=(i(1),i(24),i(72)). It should be noted that the trivariate likeli-
hood is not a composite likelihood because it is not an approxima-
tion of the full likelihood Eq. (16). It is rather a good representation
of the likelihood for maximum intensity data with durations 1, 24
and 72 h.

5. Bayesian inference for IDF relationships

There is now a large body of literature focusing on Bayesian
statistics for extremes. For some general background, see Coles
(2001) who devotes a section to this topic in Chapter 9. There is
also the R-package evdbayes (Stephenson and Ribatet, 2012)
which provides functions for the Bayesian analysis of univariate
extreme value models. Recent advances in Bayesian modelling of
spatial extremes are reviewed in Davison et al. (2012).

5.1. Bayesian framework

The set-up for a Bayesian analysis is the following. We assume
annual maxima data i to be realisations of a random variable
whose density falls within a parametric family {g(i;y) : ¢y € ¥}.
We can express the likelihood for v/ as L(i;y) = L(i|y). For nota-
tional brevity we have omitted «, the vector of dependence param-
eters. The posterior distribution is given by
(i) oc L(ij) (), (21)
where 7(y) denotes a prior distribution. If a single estimate is
required from the Bayesian inference, the mean, median or mode
of the posterior distribution can be used. A Bayesian credible interval
(CI) consists of posterior values that cannot be ruled out at some
probability level.

Since the independence likelihood, Li,4(i; ¥), is not the probabil-
ity of the observed data, the independence posterior distribution

Tina (WIE) o< Ling(i; ) (), (22)

can be misleading. Recently, two adjustments to the composite like-
lihood were proposed which retrieve some of the desirable proper-
ties of the full likelihood (Pauli et al., 2011; Ribatet et al., 2012). They
are termed by Ribatet et al. (2012) the magnitude- and curvature-
adjustment; technical details can be found in Appendix A. Inference
from the trivariate likelihood Eq. (20) needs no adjustment because
it is, as already noted, no genuine composite likelihood.

5.2. Implementation of the Bayesian inference procedures

Here we implement the Bayesian inference procedure devel-
oped in the foregoing. In Table 3 we specify the different prior dis-
tributions for the IDF parameters. The choices for y and o are
similar to those in Coles (2001). About the shape prior, it is reason-
able to restrict the choice to a plausible range, consistent with rain-
fall depths observed worldwide. For example, Papalexiou and
Koutsoyiannis (2013) have analysed the annual maximum daily
rainfall of more than 15,000 records from all over the world, and
came to the conclusion that y is expected to belong in a narrow
range, approximately from 0 to 0.23. Taken in this context, a beta
prior for 7, with support on [-0.5,0.5] and mean 0.1 seems realistic
and not overly informative, a choice which was recommended by
Martins and Stedinger (2000). Further, the prior distributions of
and 0 were chosen in agreement with conditions 6 >0 and
0 <n <1, see Eq. (4). For the additional dependence parameter
in the trivariate likelihood, o, we have chosen a uniform prior with
support [0, 1].

We obtain approximate draws from the posterior distribution
via an MCMC algorithm. For background on Bayesian inference
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Table 3
Prior distribution of the IDF parameters.
I 4 b n 0
N(0,10%) InA(0,10%) Beta(x =6, =9,-05,0.5) Unif(0, 1) In A (0,10%)

via MCMC, see Gelman et al. (2013). Two commonly used random
walk MCMC methods are the Metropolis—Hastings sampler and the
Gibbs sampler, see Appendices B.1 and B.2. In short, the Metropolis—
Hastings method generates a random walk using a proposal
density q(.|¢), and a method for rejecting some of the proposed
moves. In this work, we use a Gaussian proposal distribution
q(.ly) ~N(,0%). For many multi-dimensional problems, the
Gibbs sampler has been found useful, and is defined in terms of
subvectors of /. Suppose the parameter vector has been parti-

tioned into G components or subvectors, = (ﬂ,...,%)’. Each
iteration of the Gibbs sampler cycles through the subvectors of
/, drawing each subset conditional on the y/-value of all the others
with a Metropolis—-Hastings-step. There are thus G Metropolis-
Hastings-steps per Gibbs iteration. Different possibilities for Gibbs
partitions are explored in Section 6.1.

Ribatet et al. (2012) presented two ways of incorporating an
adjusted composite likelihood into the Gibbs sampler. The simplest
one is termed by them the overall Gibbs sampler. The other one, the
adaptive Gibbs sampler, improves the accuracy of the overall Gibbs
sampler, but it is a much more computationally intensive method.
Technical details are described more fully in Appendix B.3. With
respect to this work, implementation issues have been sum-
marised in the form of a pseudo-code at the end of Appendix B.4.

5.3. MCMC convergence diagnostics

To determine when it is safe to stop sampling, and use the sam-
ples to estimate characteristics of the posterior distribution of
interest, we have used R-package cODA (Plummer et al., 2006)
which contains a set of functions for convergence diagnostics for
MCMC. We rely on the procedure of Heidelberger and Welch
(1983), which includes the Cramer-von-Mises statistic to test the
null hypothesis that the sampled values come from a stationary
distribution. The test is successively applied, firstly to the whole
chain, then after discarding the first 10%, 20%, .. .of the chain until
either the null hypothesis is accepted at significance level p = 0.05,
or 50% of the chain has been discarded. The latter outcome consti-
tutes “failure” of the stationarity test and indicates that a longer
MCMC run is needed. The half-width test calculates a 95% confi-
dence interval for the mean, using the portion of the chain which
passed the stationarity test. Half the width of this interval is
compared with the estimate of the mean. If the ratio between

the half-width and the mean is lower than 0.1, the half-width test
is passed. Otherwise, the length of the sample is deemed not long
enough to estimate the mean with sufficient accuracy.

6. Application
6.1. Gibbs sampling: convergence, sensitivity, comparisons

Each statistical model was run for 10> MCMC iterations. In order
to reduce the burn-in period, the MCMC algorithms were ini-
tialised with the values of a classical point estimator, obtained by
a preliminary analysis. Tables 4-6 summarise the convergence
diagnostics. For the simplest IDF model, ir(d) oc d”, convergence
was reached by every MCMC scheme. For model ir(d) o (d + 6) ",
only the overall Gibbs sampler including the curvature-adjusted
independence likelihood appeared to have converged; in case of
the magnitude-adjustment, the half-width test did not pass for
the simulated ¢-values, even not by 10° simulations. The adaptive
Gibbs simulations may converge too slowly to be of practical value,
or never arrive at the proper solution.

All the Gibbs samplers used blocks containing one model
parameter, but other block dimensions are possible as well.
Because the parameters of the general IDF relationship fall into
two categories (those of function a(T), and those of function
b(d)), we might suggest to run two-block versions of the Gibbs
sampler with y; = (u,d,7), and ¥, = (1, 0) for ir(d) « (d + 0)™", or
W, =1 for ir(d) oc d™". Concerning the independence likelihood,
the adjusted posterior distributions provided by the one-element
and two-block versions (if passed the Heidelberger and Welch
(1983) test) are hardly different (not shown). In contrast, the
three-block version v, = (i, 6,7), ¥, = y and y; = o for the trivari-
ate likelihood did not converge.

To assess the sensitivity to the priors, we ran several additional
MCMC simulations with different priors. We saw no substantive
change in the posterior distributions for the pu-, o- and y-
parameter estimates. Our particular interest in rainfall extremes
are the parameters y and 0, which are known to be difficult to esti-
mate. We proposed the following additional priors:

e (y): (i) a normal distribution, A(0,0?), with variance
0% = 0.16, (ii) a uniform distribution on [-0.5,0.5], and (iii) an
improper prior, Unif(—oo, 00).

Table 4
Convergence diagnostics with the Heidelberger and Welch (1983) test of simulated model parameters, obtained with the overall Gibbs sampler with the adjusted independence
likelihood. “~" indicates that the half-width test failed.

Parameters Magnitude-adjusted Curvature-adjusted

p-value Mean Half-width p-value Mean Half-width

ir(d) ocd ™"

n 0.97 14.44 0.17 0.92 14.31 0.06

T 0.35 4.25 0.04 0.47 418 0.02

Y 0.20 0.06 0.002 0.63 0.06 0.003

n 0.88 0.73 0.003 0.94 0.72 0.002

ir(d) o< (d+0)7"

u 0.20 14.99 0.17 0.98 15.29 0.08

T 0.09 496 0.038 0.83 5.04 0.03

Y 0.09 0.06 0.001 0.49 0.05 0.002

n 0.16 0.74 0.003 0.97 0.74 0.001

0 0.12 - - 0.94 0.08 0.001




1456 H. Van de Vyver/Journal of Hydrology 529 (2015) 1451-1463
Table 5
Convergence diagnostics with the Heidelberger and Welch (1983) test of simulated model parameters, obtained with the adaptive Gibbs sampler with the adjusted independence
likelihood. “~" indicates that either the Cramer-von-Mises failed (p < 0.05), or the half-width test failed.
Parameters Magnitude-adjusted Curvature-adjusted
p-value Mean Half-width p-value Mean Half-width
ir(d) ocd™"
n 0.31 14.26 0.07 0.43 14.23 0.07
a 0.28 418 0.02 0.23 4.16 0.02
Y 0.10 0.06 0.002 0.26 0.06 0.002
n 0.35 0.72 0.001 0.38 0.72 0.002
ir(d) o< (d 4 0)7"
u 939.107° - - 0.52 14.57 0.36
a 3.01-1073 - - 6.7-107* - -
b 0.36 0.05 0.002 21-103 - -
n 135.10°4 - - 0.32 0.73 0.006
0 5.69-1077 - - 0.08 - -

Table 6
Convergence diagnostics with the Heidelberger and Welch (1983) test of simulated model parameters, obtained from the trivariate
likelihood.
Parameters p-value Mean Half-width
n 0.56 14.22 0.03
4 0.41 4.34 0.02
Y 0.53 0.09 0.003
n 0.53 0.72 0.0006
o 0.21 0.35 0.001
= — Mart-Sted
— Normal
Uniform
— Improper
0 4
2“7 2
= =
= c
7} o)
o .| o
N 4
o 4

T T T
0.10 0.15 0.20

6

T T
0.00 0.05

Fig. 2. Sensitivity analysis to priors. Posterior distributions of y (left), and 0 (right), corresponding to the priors of Table 3 and Section 6.1. Overall Gibbs sampler with the

curvature-adjusted independence likelihood.

e 7(0): (i) a lognormal distribution, InN(0, ¢?), with variance
0?2 =1, (ii) a uniform distribution on [0,1], and (iii) a Beta
distribution, B(2,5).

Fig. 2 shows that the resulting posterior distributions are very
similar for the overall Gibbs sampler including the curvature-
adjusted independence likelihood. Similar results were obtained
for the other MCMC algorithms (not shown).

The adaptive Gibbs sampler is expected to improve the estima-
tion provided by the overall Gibbs sampler, so we compared the
approximations of both algorithms. From Fig. 3 it is clearly seen
that the posteriors obtained by both samplers differ slightly for
the simplified model ir(d)  d~". The question arises if it is really
advantageous to implement the adaptive Gibbs sampler. A chain
of 10° iterations provided by the overall Gibbs sampler takes a
bit less than 1 h to run, whereas the adaptive Gibbs sampler takes
47 h to run.

6.2. Bayesian IDF model selection

We examined which of the two models, ir(d) « (d + 6)™" and
ir(d) o« d”™", is the most appropriate when considering d < [1,72).
Particular attention was paid to the prior choice of 0: because of
d > 1, we have condition 0 > —1, instead of condition 0 > 0 in
Eq. (4). The #-prior in Table 3 was therefore being shifted leftward
with one unit. Lower and upper bound estimates of the 95% CI
were calculated by taking the pointwise 0.025 and 0.0975
empirical quantiles from the 6-draws. The overall Gibbs sampler
with the adjusted independence likelihood gives a posterior mean
0 =0.011, and a 95% CI of (—0.258,0.354), which suggests that the
specific choice 6 = 0 might be appropriate. We investigated this
point further, and used the deviance information criterion (DIC)
(Spiegelhalter et al., 2002) as a guide for model selection. The
DIC produces a measure of the model fit, and a measure of model
complexity p,, (i.e. the effective number of parameters), and sums
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Table 7
Model comparison with DIC, in the case that d € [1,72].

Likelihood ir(d) cd ™" ir(d)oc (d+6)™"

P DIC Pp DIC
Trivariate 4.8 2456 4.8 2487
Independence 3.9 5930 4.8 5933

them to get an overall score (lower is better). The model compar-
ison has been examined with both trivariate- and independence
likelihood (Table 7). When using the trivariate likelihood, model
ir(d) xd™" is superior to model ip(d) x (d+6)"", for rainfall
durations d € [1,72] (in terms of DIC performance). For the
independence likelihood, a comparison of DIC suggests that both
models are virtually indistinguishable. Pragmatically, we might
prefer model ir(d) oc d”" because of its simplicity.

6.3. Comparison of independence- and trivariate likelihood

The trivariate likelihood only considers rainfall durations of
1-, 24- and 72 h. To make a fair comparison with the independence
likelihood, we considered the same durations in the latter likeli-
hood as well. The inference results in Table 8, and the posterior
distributions of Fig. 4, indicate that estimations based on both like-
lihoods differ, in particular for x4 and ¢. A major observation is that
for these parameters, the posterior distributions from the trivariate
likelihood are more narrow. An extension of the trivariate likeli-
hood definition could be considering the pairwise composite
likelihood where each component is a bivariate likelihood based
on maxima intensity data for durations dy; and d,. This should,
however, substantially increases the complexity of the model since
every pair needs to be modelled with a different dependence
parameter o. For instance, modelling ir(d) « (d + 0)"" may require
10 rainfall durations, leading to at most (10 x 9)/2 different o’s.

Table 8

Trivariate-versus independence likelihood (including 1-, 24- and 72 h data). Overall
Gibbs sampler with adjusted independence likelihood. Sample mean and standard
deviation (in parentheses) of simulated values of IDF parameters of model ir(d) oc d™".
Units are d/h, ir(d)/mm h~".

14 4 Y n
Trivariate likelihood

14.25 (0.44) 4.35 (0.26) 0.091 (0.044) 0.72 (0.010)
Independence likelihood
Non 14.13 (0.47) 4.09 (0.24) 0.080 (0.040) 0.72 (0.010)
Magn 14.14 (0.54) 4.11(0.27) 0.081 (0.046) 0.72 (0.012)
Curv 14.13 (0.61) 4.10 (0.29) 0.080 (0.041) 0.72 (0.011)

The question whether or not this is technically feasible is reserved
for future work. In the meantime, we proceed further with the
independence likelihood.

6.4. Return level inference

Tables 9 and 10 show the posterior means and their approxi-
mate standard errors. The sample means provided by the new
methods fairly match the classical point estimations (Tables 1
and 2). It is clearly seen that the variability of the unadjusted pos-
terior is small with respect to the adjusted posterior. This is a direct
reflection of the fact that we have lost information because the full
likelihood was unavailable.

For operational purposes, the posterior distribution of the IDF
parameters is difficult to use. Extreme behaviour is summarised
by the T-year return level, ir(d). As we have draws from the poste-
rior distribution, ¢V, ..., ", we can naturally obtain draws from
the posterior distribution of ir(d), viz. i{" (d), ..., i (d) is computed
by means of Eqgs. (10) or (11). The posterior distributions of the
return levels have been shown in Figs. 5 and 6. Again, the variabil-
ity of the adjusted posteriors is higher. The probability level
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Fig. 4. Posterior marginal distributions for the IDF parameters of model ir(d)  d". Trivariate- and adjusted independence likelihood (overall Gibbs sampler) including 1-,
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Table 9

Posterior means and their approximate standard errors (in parentheses) of simulated
values of IDF parameters of model ir(d) o d”". Units are d/h, ir(d)/mm h~". Overall
and adaptive Gibbs sampler with an adjusted independence likelihood.

I g Y n

Non 1427 (033)  4.16(0.16)  0.060 (0.027)  0.72 (0.008)
Overall Gibbs sampler

Magn 1427 (0.57)  4.19(0.28)  0.065 (0.045)  0.72 (0.014)
Curv 1424 (0.60) 4.16(0.29)  0.062 (0.038)  0.72 (0.011)
Adaptive Gibbs sampler

Magn 1428 (0.68) 4.19(0.31)  0.062 (0.041)  0.72 (0.016)
Curv 1427 (0.67)  4.18(0.31)  0.061(0.042)  0.72 (0.016)

determines the credible interval Cl=(CI~,CI") for i;(d), and is con-
ventionally set at 95%. The direct computation of the 95% CI with
MCMC algorithms is not really product oriented because this can
take a long time to run. For operational purposes, the logarithm
of the bounds CI* can be fairly good approximated by a bivariate
linear regression model

Model ir(d) ocd™ :
Model ir(d) o< (d + 6)™" :

log CI* ~ ap + a; logd + a, logT,

log CI* ~ ag + a; log(d + 6) + a, log T,
(23)

for T ranging from 10 up to 1000 years. The estimated regression

models, expressed in a multiplicative form, have been summarised
in Table 11. In providing higher return level estimates, notice we

Table 10

extrapolate beyond the range of the data. As we can see from
Table 11, extrapolation increases the amount of uncertainty of these
estimates.

6.5. Model diagnostics

We evaluated how good the estimated models describe the
available data. In the present context, classical QQ-plots are not
useful as the maximum intensity data are not identically dis-
tributed. A possible extension of classical QQ-plots consists in
transforming the data to identically distributed variables. Under
the assumption I(d) ~ GEV[u(d), (d), y], the transformation
uwv

T(d):%log(lw%

results in a Gumbel distributed random variable (Beirlant et al.,
2004; Coles, 2001), i.e. P{I(d) < z} = exp (— exp(—z)). The Gumbel
distribution obtained does not any longer depend on d, and hence

the random variable I(d) =: I is identically distributed. The quantile
function associated with the Gumbel distribution is given by

(24)

Q(p) = —log(~logp), 0<p<1, (25)
yielding the Gumbel QQ-plot coordinates

i = .
(—log (—logm>,l(i)), i=1,....K, (26)

Posterior means and their approximate standard errors (in parentheses) of simulated values of IDF parameters of model ir(d) o (d + 0) "
Units are d/h, ir(d)/mm h~'. Overall Gibbs sampler with the adjusted independence likelihood.

n o b n 0
Non 15.23 (0.46) 5.01 (0.19) 0.048 (0.023) 0.74 (0.010) 0.078 (0.011)
Curv 15.24 (0.71) 5.02 (0.35) 0.051 (0.037) 0.74 (0.013) 0.079 (0.015)
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Fig. 5. Posterior distributions of 20-year return levels of the maximum intensity. Overall Gibbs sampler with the (adjusted) independence likelihood. IDF model: ir(d) oc d™".

where 1) < --- < I are the corresponding order statistics of I, and
K = MN the total number of data. If the Gumbel model provides
accurate description of the data, one expects the points on the
Gumbel QQ-plot to be close to the leading diagonal. Observing
Fig. 7, one can conclude that the IDF models reasonably describe
the maximum intensities.

7. Conclusion

The statistical contribution of this work lies in developing and
applying a Bayesian analysis for extreme rainfall IDF relationships.
We reconsidered the independence likelihood of Muller et al.
(2008) and Lehmann et al. (2013), assuming independence
between annual maximum intensities over different durations.
The main issue of this paper is about demonstrating the Ribatet
et al. (2012) composite likelihood adjustments for IDF modelling.

We have examined two implementations of the Gibbs sampler
(overall and adaptive version) for obtaining draws from the
adjusted independence posterior. The overall Gibbs sampler is
computationally efficient, and easy to implement. In contrast, the
adapted Gibbs sampler requires an enormously computational
effort. The modelling of ir(d) oc d™" did not give rise to particular
problems. Both the overall and adaptive Gibbs sampler converged
properly, and the posterior distributions are remarkably robust to
the prior choice. There was virtually no difference in the estimates
of the magnitude- and curvature-adjusted posteriors obtained by
both Gibbs samplers, suggesting that both adjustments adequately
capture the information contained in the independence likelihood.
In addition, for the one-block version and a two-block version of
the Gibbs sampler, there was likewise no difference in the
estimates of the posteriors. The things change, however, when con-
sidering the model ir(d)  (d + 6)~" which covers rainfall durations

less than one hour. Only the overall Gibbs sampler with the
curvature-adjusted likelihood was able to draw from the indepen-
dence posterior.

An alternative to the independence likelihood was proposed by
Muller et al. (2008) who proceeded with a bivariate extreme value
model, assuming, in particular, that a logistic model is appropriate.
Their likelihood formulation, which is termed by us the trivariate
likelihood, includes only annual maximum intensities over dura-
tions 1, 24 and 72 h. Although, the resulting posterior is more nar-
row than the adjusted independence posterior (based on 1, 24 and
72 h data as well), we recommend to use the independence likeli-
hood because it features the ability to incorporate more rainfall
durations. In particular, short-duration (10 min to 1h) rainfall
extremes, which are equally important for a number of purposes,
cannot be modelled when using the trivariate likelihood.

Likelihood based methods allow for applying model selection
with information criteria. The model comparison with DIC indicates
that the simplification 0 = 0 in the model iz (d) ~ (d + 0)"" should be
strongly preferred when considering durations d € [1,72].

Part of the reason for adopting a Bayesian methodology was to
obtain natural uncertainty estimates, and contrasts with classical
analysis in which it is usual to calculate a point estimate. The sam-
ple mean of the adjusted posterior distribution agrees very well
with the classical point estimations. The variance of the adjusted
posterior is larger than that of the unadjusted posterior, illustrating
the effect of not having the full likelihood available. Because MCMC
simulations can be time-consuming, a more product oriented
approach is to fit a bivariate regression model (as a function of d
and T) to the estimated credible bounds of ir(d).

This study can be extended in various ways. First, the analysis
was focused on the general IDF relationship (Koutsoyiannis et al.,
1998). We could explore different IDF models, as given in Muller
et al. (2008), Overeem et al. (2008) and Willems (2000) for



1460 H. Van de Vyver/Journal of Hydrology 529 (2015) 1451-1463
d =10 min d =20 min d =30 min
N
; 1 —— Non S -
- — Curv s S
2z 3 z > °
z o E 7 4
o ] s 2] S o
S-S o s o 24
© =
o o o
S S S
S T T T T T S T T T T S T T T T
70 80 90 100 110 55 60 65 70 40 45 50 55
Intensity (mm/h) Intensity (mm/h) Intensity (mm/h)
d=1h d=2h d=6h
© | ©
p <
< ]
S i
2 3 2 S > 2
o N ] o
[a T o o | o w |
o o
S 7 -
< | < | e |
e T T T T T S T T T T T 71 e T T T T T T
26 28 30 32 34 15 16 17 18 19 20 21 70 75 80 85 90 95
Intensity (mm/h) Intensity (mm/h) Intensity (mm/h)
d=12h d=24h d=48h
w < | T
o~ o] o
o - o 7]
o 7 -
2 2 3 2 o
2 21 2 2 &7
S o 9] [} E
a 24 Q o | o 4]
9 - -
o - —
< | < | <
e T T T S T T T T T T 71 e T T T T T
45 5.0 5.5 24 26 28 3.0 32 34 36 14 16 18 20 22

Intensity (mm/h)

Intensity (mm/h)

Intensity (mm/h)

Fig. 6. Posterior distributions of 20-year return levels of the maximum intensity. Overall Gibbs sampler with the (adjusted) independence likelihood. IDF model:
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Table 11

Regression relationships for the bounds CI* of the 95%-credible intervals of the maximum intensity return levels, ir(d), for return
period T = 10,...,1000 year. Posterior distributions of ir(d) were obtained from an adjusted independence likelihood.

95%-credible interval Rel. Err. (%)
ir(d)ocd ™, for de[1,72]
Overall Gibbs sampler
Magn Cl™ ~ 17.674 x 727 x 10120 1.9
CI* ~ 16.652 x d 0718 x 70200 1.0
Curv Cl™ ~17.336 x d 726 x 10133 1.9
CI* ~ 17.001 x d %717 x 70188 11
Adaptive Gibbs sampler
Magn Cl™ ~ 17.547 x d 0728 « 70132 21
CI* ~ 16.923 x d 716 70191 11
Curv Cl™ ~ 17.531 x d™ %728 » 70131 2.0
CI* ~ 16.881 x d 716 70191 11
ir(d)oc(d + 6)™", for de[1/6,72]
Overall Gibbs sampler
Curv CI™ ~ 19.140 x (d + 0.079) 74 x 10137 22
13

CI* ~ 19.353 x (d + 0.079) 73 x 70188

example, and make a model comparison with DIC. Second, the
trivariate likelihood can in principle be extended to the composite
pairwise likelihood including all durations, but the computational
cost will be appreciably higher. Third, despite the fact that the
block maxima methodology is very popular in IDF analysis, it is a
wasteful approach if other data on extremes are available. As an

alternative, the peaks-over-threshold method could be employed
in the IDF analysis, which incorporates more data, resulting in
smaller uncertainty into return level prediction. Finally, another
area for focus of future research is to add a spatial component in
the independence likelihood for characterising rainfall extremes
over a region of interest, as was already done by Lehmann et al.
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(2013) with unadjusted inference. When combining precipitation
data of several sites, we hope to make a better inference, in partic-
ular for the difficult-to-estimate parameters y and 6. The investiga-
tion of these problems is now in progress.

Acknowledgements

This work is supported, in part, by the Belgian Science Policy
Office (BELSPO) under contract No. SD/RI/03A. The author wishes
to thank two anonymous referees whose invaluable comments
strongly aided me to develop the manuscript.

Appendix A. Bayesian estimation for composite likelihoods

Consider an M-dimensional random vector X, with probability
density g(x;y, o). For N independent replicates of X, the full likeli-
hood L(x; ) is already defined in Eq. (16), but with X = I. In many
research areas, one often uses complex models for which obtaining
the full likelihood poses not only theoretical, but also computa-
tional challenges. In these situations, it is desirable to search for
an approximation in the form of a composite likelihood. To some
extent, a composite likelihood, L.(x;), is an inference function
derived by multiplying a collection of marginal or conditional den-
sities. The simplest composite likelihood is obtained under inde-
pendence assumptions, and consists of a product of marginal
densities, see, for example, Eq. (17). The most general definition
of composite likelihoods falls outside the scope of this paper, but
the reader is referred to Varin et al. (2011). We briefly report recent
developments on Bayesian inference from composite likelihoods
(Pauli et al., 2011; Ribatet et al., 2012). The idea is to adjust the
composite likelihood in such a way that the usual asymptotic y2-
distribution for the likelihood ratio statistic is preserved. To be
more precise, suppose that the vector of parameters y € RP is equal
to W, and i maximises the full likelihood. Denote by
l.(x;4) = log L.(x; ), the composite log-likelihood. Also, denote by
. the composite likelihood estimator of y,, obtained by maximis-
ing I.(x; ). Let H(y) = —E[VI.(X; )] be the expected Hessian of
le(x;4), and J(y,) = Var[VI.(x; ,)]. Then, as N — oo,

Alg) =2 [l(x: ) — 1 wo)| - 72

In contrast, for the composite log-likelihood we have (Rotnitzky and
Jewell, 1990):

(A1)

R P
Aclo) = 2 [Le(: ) = ke o) | =D aXs, (A2)
i=1

where X1, ..., X, are independent y? random variables, and /1, ..., %,
are the eigenvalues of H(yy,) ' J(1o). Since y, is unknown, H(y,) is

approximated by H(j.), which has been included in the standard
output of optimisation routines. The estimation of V(i) poses more

difficulties, since the naive estimator V(y.) disappears when evalu-
ated at the maximum likelihood estimator. A more detailed discus-
sion on the estimation of V() may be found in Varin (2008).

A.1. Magnitude adjustment (Pauli et al., 2011; Ribatet et al., 2012)

The idea is to determine k:

1T (x) = klo(x;4), (A3)
in such a way that the first and second order moments of
Amagn(to) = 2 [ (%) — 17" (x; o). (A4)
converge to those of the X;—distribution. One gets
» -1
k=p(> 4| . (A.5)
i1
A.2. Curvature adjustment (Ribatet et al., 2012)
Determine C € RP*P in
lium(x§ ‘//) = lc(x§ lz)v ‘/A/ = ':bc + C(l// - @c% (A~6)

such that the usual property Eq. (A.1) is recovered for """ (x; ). One
gets

C=M"M,, (A7)

where M" M = H(y), and Mi M, = H(y)J (o) " H(Wp). If p > 1 the
matrix square roots M and M, are not unique; a possible solution
was suggested by Chandler and Bates (2007).

Appendix B. Markov Chain Monte Carlo samplers
B.1. Metropolis-Hastings sampler

The idea behind one such method, the Metropolis-Hastings
sampler, is to produce simulated values from the posterior distri-
bution, m(y|x) oc L(x;y) (y), in the following way: set an initial
value " and introduce a probability rule q(-|¢) to generate a
proposal value y* for y"*V. Specifically, letting
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— { | LW W) } B.1)
LW Xgw ) [

we set

S = {W with probability o,
v¥  with probability 1 — .

B.2. Gibbs sampler

Gibbs sampling can be regarded as a special case of the Metro-
polis—Hastings algorithm. Consider the partition of the parametric
vector v = (y!,... . yL)" € RP, where Y, €R% and Y7 p;=p. A
Gibbs sampler successively draws from

ﬂ(l/’ijjvx) X L(‘/’j"/’—jvx)n(l/fj)v .] = 17 LR Gv (B3)

where v ; is the parameter vector y with the elements of i;
removed. An iteration of the Gibbs sampler consists of cycling
through the G parametric subvectors by drawing a Metropolis-
Hastings sample of y;, conditional on the value of i ;. For every iter-
ation step, say t, and corresponding set of values

YO =@l ), the algorithm proceeds as follows:
Drawyi ™ ~ (s Yy, g ),
Dl‘an//(th (wZ‘w t+] 7w3 L] G ,X),

(B.4)
Draw "™ ~ (et x).

B.3. Gibbs sampling from adjusted composite posteriors

Draws from the adjusted composite posterior can be obtained by
replacing the full likelihood L(x; ) by the adjusted composite likeli-
hood L (x; y) in the Metropolis-Hastings step, Egs. (B.1) and (B.2).
The overall Gibbs sampler, calculates L"¥(x; ) in advance (Ribatet
et al.,, 2012). This requires only preliminary estimates of vy, H(y)
and V (i), which can be obtained by maximisation of the composite
likelihood L.(x;y), see Appendices A.1 and A.2. However, at each
Gibbs step, y; is drawn using the conditional composite likelihood
Lc(y;|¥_, x). In the overall Gibbs sampler, an adjustment of the total
Lc(x;y) is made, not of the conditional Lc(y;ly ;,x). Speaking in
terms of accuracy, the sampler can thus be improved by adjusting
Lc(jly_;, %) based on current values of y_; = w(fj) This requires max-
imum composite likelihood estimation with y ; held fixed at ',
resulting in: g, Hj(Jjc) = V2 L(Wjiclw"}, %) and Jii(Wjc), the sample
covariance matrix of Vlc(ni/j‘c\l//g},x). It is, however, much more
expensive than its overall counterpart, since every iteration step
needs extra maximum likelihood estimates. This version is called
the adaptive Gibbs sampler (Ribatet et al., 2012).

B.4. Pseudo-codes of Gibbs samplers using the independence IDF
likelihood

Overall adjusted Gibbs sampler

Input: (i) Matrix i of maxima intensities, (ii) IDF model, i.e.
ir(d) oc (d 4 0)7" or ir(d) oc d”", with parameters v,

(iii) prior distribution 7t(y) from Table 3, (iv) initial value
WV, provided by a classical point estimator, (v) partition of
Y in G blocks, = (4, ...,¥¢) (see Section 6.1), (vi) for the
ith parameter of the jth block, y;, define

q(-lji) ~ N (s, 0 ) a Gaussian random walk process, (vii)

adjusted 1ndependence likelihood, Lfﬂ( i;y), see Appendices
A.1 and A.2. (Unadjusted Li,4(i; ) given in Eq. (17))
Output: a Markov chain realisation of length S.
fort =2 toSdo
forj=1to Gdo
fori=1 to |y, do

Vi = 1// + €;; with €; ~ N(0, 0 )

end
o = min {1 w} (" : current value of y_;)
PO L O i) - E
~ Unif(0,1);
1f o < U then
l// (t+1) l//j :
else
wJ(IJrl l//j(t)
end
end
end

return {y},

Adaptive adjusted Gibbs sampler

Input: (i) Matrix i of maxima intensities, (ii) IDF model, i.e.

ir(d) < (d 4 0)"" or ir(d) o d”", with parameters 1,

(iii) prior distribution m(y) from Table 3, (iv) initial value

w1, provided by a classical point estimator, (v) partition of

Y in G blocks, = (4, ...,¥¢) (see Section 6.1), (vi) for the

ith parameter of the jth block, y;, define

q(-1ji) ~ N (i, 0 %), a Gaussian random walk process,

(vii) independence likelihood Ly,4(i; ), as given in Eq. (17).
Output: a Markov chain realisation of length S.
fort=2toSdo

forj=1to Gdo

Maximum independence likelihood estimation with y_;

held fixed at 1//(t> resulting in: v g, Hjj(¥jina) and Jji(¥jina);

Define adjusted Lf:é(wj\w(fﬂ i); (see Appendices A.1 and A.2)

fori=1 to || do

v = vl + € with &; ~ N(0,63);

end
. ) L s ') 4)
r= mm{l G
U ~ Unif(0,1);
if « < U then
lﬁ (t+1) l//
i
else
1
lﬁ;H ) _ l//;t);
end
end
end
return {9},

} (1//(3 : current value of l//,j)
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