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Abstract. The spatial distribution and scale dependence of

the very short-term predictability of precipitation by La-

grangian persistence of composite radar images is studied

under different flow regimes in connection with the presence

of orographic features. Data from the weather radar compos-

ite of eastern Victoria, Australia, a 500× 500 km2 domain at

10 min temporal and 2× 2 km2 spatial resolutions, covering

the period from February 2011 to October 2012, were used

for the analyses. The scale dependence of the predictability

of precipitation is considered by decomposing the radar rain-

fall field into an eight-level multiplicative cascade using a

fast Fourier transform. The rate of temporal development of

precipitation in Lagrangian coordinates is estimated at each

level of the cascade under different flow regimes, which are

stratified by applying a k-means clustering algorithm on the

diagnosed velocity fields. The predictability of precipitation

is measured by its lifetime, which is derived by integrating

the Lagrangian auto-correlation function. The lifetimes were

found to depend on the scale of the feature as a power law,

which is known as dynamic scaling, and to vary as a function

of flow regime. The lifetimes also exhibit significant spatial

variability and are approximately a factor of 2 longer on the

upwind compared with the downwind slopes of terrain fea-

tures. The scaling exponent of the spatial power spectrum

also shows interesting geographical differences. These find-

ings provide opportunities to perform spatially inhomoge-

neous stochastic simulations of space–time precipitation to

account for the presence of orography, which may be inte-

grated into design storm simulations and stochastic precipi-

tation nowcasting systems.

1 Introduction

The scale dependence of the predictability of the atmospheric

flow was already studied by Lorenz (1969), who found that

there is an intrinsic predictability limit associated to each

scale of motion. Similar conclusions can also be extended to

the predictability of precipitation, in particular if considering

rainfall fields as emerging from multiplicative cascade pro-

cesses (Schertzer and Lovejoy, 1987; Marsan et al., 1996).

The intuition that large-scale precipitation features are

more predictable than small-scale features can be easily veri-

fied empirically using both Lagrangian persistence of radar

precipitation patterns and outputs from numerical weather

prediction (NWP) models. Zawadzki et al. (1994) found that

the decorrelation time of radar precipitation patterns by La-

grangian persistence is dependent on the degree of spatial

smoothing. Grecu and Krajewski (2000) also detected that

the predictability depends on precipitation intensity, the most

intense rain rates being less predictable. Seed (2003) stud-

ied the scale dependence of the predictability of precipita-

tion by Lagrangian persistence using a fast Fourier trans-

form (FFT) to decompose the radar rainfall field into a mul-

tiplicative cascade. Turner et al. (2004) employed a wavelet-

based decomposition to filter out the unpredictable scales of

a radar-based extrapolation technique. Wavelet decomposi-

tions were also exploited for the scale-dependent verification

of NWP precipitation forecasts to account for the loss of pre-

dictability at small scales (e.g., Casati et al., 2004; Bous-

quet et al., 2006). Sinclair and Pegram (2005) applied an

Empirical Mode Decomposition to iteratively decompose the
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precipitation field into meaningful physical structures from

the high to the low frequencies. Surcel et al. (2014) used a

Discrete Cosine Transform to study the filtering properties of

ensemble averaging and discovered that the ensemble mem-

bers are completely decorrelated below a certain cutoff scale.

The multifractal and scale-dependent nature of rainfall not

only complicates the study of its predictability and the ver-

ification of forecasts, but also demands more sophisticated

forecasting and downscaling techniques. The Short-Term En-

semble Prediction System (STEPS; Seed, 2003; Bowler et

al., 2006) is a stochastic precipitation nowcasting scheme

that exploits the multifractal principle by decomposing the

radar rainfall field into an eight-level multiplicative cascade

with an FFT. The cascade is advected with optical flow in

Lagrangian coordinates and stochastically evolves in time

according to a hierarchy of auto-regressive processes of or-

der 1 – AR(1) – or 2 – AR(2). This allows accounting for

the empirical observation that the rate of temporal evolution

of precipitation features is a power law of the scale of the

feature, which is known as dynamic scaling (see, e.g., Venu-

gopal et al., 1999; Mandapaka et al., 2009). STEPS estimates

the rate of Lagrangian development of the cascade levels in

real time, which allows adapting to the predictability of the

observed sequence of radar images. This is necessary since

the predictability of precipitation exhibits a strong temporal

variability as shown by Seed (2003), Germann et al. (2006),

and Seed et al. (2013).

Germann et al. (2006) also analyzed the geographical dis-

tribution of the predictability of precipitation over the con-

terminous United States and found a region of longer life-

times extending from eastern Nebraska to Lake Michigan

through Iowa, Wisconsin, and northern Illinois. Berenguer

and Sempere-Torres (2013) performed a similar analysis us-

ing the European radar composite and discovered the pre-

dictability to be seasonally dependent, with higher values

over the central part of the UK, central continental Eu-

rope, and the Baltic regions. However, such geographical dif-

ferences are strongly affected by the inhomogeneous qual-

ity of the European radar composite between the different

countries, which use different hardware, operating wave-

length, scanning strategy, and signal processing (Huusko-

nen et al., 2014). The spatial heterogeneity of the statisti-

cal properties of rainfall also poses issues for its multifractal

simulation, which traditionally assumes spatial homogene-

ity of the stochastic process. One way to avoid construct-

ing complicated, spatially heterogeneous models is to sep-

arately add a spatial trend to correct a homogeneous multi-

fractal model. This trend should account for the spatial in-

homogeneity of the long-term climatological distribution of

precipitation, which is often controlled by the presence of

orographic features (see, e.g., Pathirana and Herath, 2002;

Badas et al., 2006).

The climatology of precipitation over complex orogra-

phy is strongly controlled by flow direction and air stability

(Panziera and Germann, 2010), which can also be exploited

to design analogue-based nowcasting techniques (Foresti et

al., 2013). The contribution of orography to the precipitation

enhancement also seems to be a scale-dependent process.

This can be observed by extracting features from a digital

elevation model (DEM) at different spatial scales and look-

ing at the spatial distribution of persistent precipitation cells.

It appears that orographic features need a certain character-

istic size (scale) in order to control the spatial distribution of

precipitation patterns (e.g., Foresti et al., 2012).

The goal of this study is to analyze the spatial distri-

bution of the scale-dependent predictability of precipitation

by Lagrangian persistence of composite radar images under

different flow regimes in connection with the presence of

orographic features. Data from the weather radar compos-

ite of eastern Victoria, Australia, a 500× 500 km2 domain at

10 min temporal and 2× 2 km2 spatial resolutions, covering

the period from February 2011 to October 2012, are used for

the analyses. A k-means clustering algorithm is employed to

classify the velocity fields into six main flow regimes and to

stratify the evaluation of statistics.

This research is an extension of the study of Foresti and

Seed (2014), who analyzed the geographical distribution of

the STEPS nowcasting biases using the same radar data set

in order to detect regions of systematic precipitation growth

and decay. The typical areas of rainfall growth and decay due

to orographic forcing should be observed also in the spatial

distribution of the predictability of rainfall. The orographic

forcing is expected to control the spatial distribution of the

predictability of precipitation at the meso-gamma (2–20 km)

and partly the meso-beta (20–200 km) scales, which are

smaller than the continental scales analyzed in the litera-

ture (e.g., Germann et al., 2006; Radhakrishna et al., 2012;

Berenguer and Sempere-Torres, 2013).

The dependence of the dynamic scaling relationship on

flow regimes is also studied to test whether there are weather

regimes that are more predictable than others. On the other

hand, the geographical distribution of the spatial power spec-

trum is analyzed to explore the degree of spatial scaling

of precipitation over the forecast domain. The findings of

this study should increase our understanding of the pre-

dictability of precipitation by Lagrangian persistence of radar

images, which is essential to improve its very short-term

forecasting, space–time stochastic simulation, and statistical

downscaling.

The paper is structured as follows. Section 2 describes the

radar rainfall data set. Section 3 details the methodology.

Section 4 illustrates the obtained results and interpretations,

while Sect. 5 concludes the paper, and discusses potential

improvements and future research perspectives.

2 Radar rainfall data set

Data from the weather radar composite of Eastern Victo-

ria, Australia were used for the analyses (see Fig. 1 for the
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domain and the radar locations). The composite merges data

from four weather radars located at Melbourne (operating

at S-band), Yarrawonga (C-band), Gippsland (C-band) and

Canberra–Captains Flat (S-band). The period under analysis

is from 15 February 2011 to 31 October 2012.

The operational radar data processing chain for quantita-

tive precipitation estimation (QPE) at the Australian Bureau

of Meteorology consists of the following steps:

– Ground clutter removal with Doppler filtering at the

radar site.

– Additional ground clutter filtering based on a static clut-

ter map and on the gradients of the vertical profile of

reflectivity.

– Beam blockage correction using a DEM to correct for

the lost power due to the interception of the radar beam

with orography.

– Estimation of the vertical profile of reflectivity using

data within a range of 50 km from the radar.

– Interpolation of the volumetric data into constant

altitude plan position indicators (CAPPIs). CAPPIs

are computed at a height of 1000 m using the 3-

dimensional anisotropic Kriging technique of Seed and

Pegram (2001).

– Application of a different climatological Z–R relation-

ship for stratiform and convective rain based on the

Steiner classification (Chumchean et al., 2008).

– Compositing operation involving a linear combination

of the radar measurements in the overlapping regions as

a function of distance from the radar.

– Mean field bias correction with respect to rain gauge

measurements using a Kalman filtering approach for its

temporal update (Chumchean et al., 2006b).

The final product is a 256× 256 grid with a spatial resolution

of 2 km2
× 2 km2 and a temporal resolution of 10 min in a

Gnomonic projection. More details on the operational QPE

chain at the Australian Bureau of Meteorology are given in

Chumchean et al. (2006a, b, 2008) and Seed et al. (2007).

These pre-processing steps are not sufficient to completely

remove the radar measurement errors, especially over moun-

tainous regions. The two sources of errors that are the most

critical for the analysis of the precipitation predictability are

the range dependence of estimated rainfall rates and the re-

duced visibility in the inner Victorian Alps. In addition, the

compositing operation generates some discontinuities in the

regions of overlapping radar measurements. Rainfall could

also be slightly underestimated in a radius of ∼ 20–30 km

around the radar due to the excessive filtering of ground

clutter, which also eliminates some precipitation measure-

ments. Precipitation is also underestimated at ranges exceed-

ing 90–100 km due to the increasing beam width (sampling
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Figure 1. Radar composite of Eastern Victoria, Australia, overlaid

on the DEM. Triangles denote the locations of the three radars at

Melbourne, Yarrawonga, and Gippsland. In the top-right corner of

the domain there is some contribution from the Canberra radar.

White tones represent the ocean.

volume), attenuation by rainfall and blockage by orographic

features. Hence, precipitation accumulations are strongly un-

derestimated in the inner part of the Victorian Alps where

the correction for the vertical profile of reflectivity is evi-

dently not sufficient to extrapolate the higher elevation mea-

surements to the elevation of the CAPPI.

3 Methodology

Section 3.1 explains the cascade decomposition framework

for the analysis of the scale dependence of the predictabil-

ity of precipitation. Section 3.2 details the method for esti-

mating the Lagrangian temporal auto-correlation of precipi-

tation, which is needed to evaluate its lifetime (Sect. 3.3). The

simultaneous calculation of the Lagrangian auto-correlation

at each point of the radar grid using rules for the online

computation of the covariance is presented in Sect. 3.4. Sec-

tion 3.5 presents a simplified approach to estimate the slope

of the power spectrum from the variance of the cascade lev-

els under the scaling hypothesis. Finally, Sect. 3.6 provides

a brief summary of the k-means stratification of optical flow

fields.

3.1 Cascade decomposition framework

The radar rainfall field is decomposed using an FFT into a

multiplicative cascade of the form (Seed, 2003; Bowler et

www.hydrol-earth-syst-sci.net/18/4671/2014/ Hydrol. Earth Syst. Sci., 18, 4671–4686, 2014
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al., 2006):

dBRij =

K−1∑
k=0

Xkij for i = 1, . . ., L and j = 1, . . ., L, (1)

whereL= 384 is the size of the squared domain andK = 8 is

the number of cascade levels. A buffer of 64 pixels is added

at each side of the original 256× 256 grid in an attempt to

reduce the edge effects arising from the FFT transformation,

thus giving a larger domain of 384× 384 pixels. The cas-

cade is multiplicative when rewritten in terms of original rain

rates R instead of the multiplicative decibel scale dBR. The

cascade decomposition is achieved by applying a Gaussian

band-pass filter to isolate a given set of spatial scales in the

frequency domain (Seed, 2003; see Fig. 2). Xk will be re-

ferred to as cascade level and is obtained by applying an in-

verse FFT to the filtered data in order to return the Fourier

components back into the spatial domain. Thus, Xk repre-

sents the variability of the original radar field with spatial fre-

quencies [km−1] in the range qk−1/L<ωk <q
k+1/L, where

ωk is the central frequency of the Gaussian filter and q = 2.12

is the branching number (inverse of the scale reduction fac-

tor). Each level of the cascade is normalized to zero mean

and unit variance for convenience and the normalization is

kept constant in space and during the forecast period.

Figure 2 illustrates the Gaussian band-pass filters that are

used to isolate the spatial scales composing the set of cas-

cade levels. Given the size of the extended radar domain, an

eight-level multiplicative cascade with the following spatial

scales is obtained (see Fig. 2): 768–362, 362-171-81, 171-81-

38, 81-38-18, 38-18-8, 18-8-4, 8-4-2 and 4-2 km. The non-

integer scales resulting from the non-integer branching num-

ber of 2.12 were rounded. The scales on which the Gaussian

filters are centered are marked in italic. The first and last lev-

els of the cascade will not be considered in the analyses be-

cause of not having a regular Gaussian shape. In addition,

the largest scale is not able to capture the appropriate scales

since the radar composite only covers a certain fraction of the

512× 512 km2 domain. This would lead to the underestima-

tion of the precipitation lifetime at that scale (see Sect. 3.3).

3.2 Lagrangian temporal auto-correlation

The Lagrangian temporal auto-correlation is a measure for

the rate of development of precipitation in storm coordinates

and consequently of its predictability (Zawadzki, 1973). An

efficient way to follow the rainfall evolution in storm coor-

dinates is to estimate a velocity field using a sequence of

radar rainfall fields. STEPS uses an optical flow algorithm

(Bowler et al., 2004) for the estimation of the velocity field

and a semi-Lagrangian backward-in-time scheme for its ad-

vection, which keeps the velocity field fixed and retrieves the

rainfall values upstream by following the lines of the velocity

field (e.g., Germann and Zawadzki, 2002).
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Figure 2. The set of eight Gaussian band-pass filters used to iso-

late the spatial frequencies composing the cascade levels. The total

magnitude for a given spatial frequency is normalized to one.

The Lagrangian lag 1 temporal auto-correlations at each

level of the cascade are estimated as follows (Bowler

et al., 2006):

1. Estimate the velocity field with optical flow using rain-

fall fields at time t − 1 and t .

2. Decompose the radar rainfall field at time t − 1 using

FFT into a multiplicative cascade.

3. Decompose the radar rainfall field at time t using FFT

into a multiplicative cascade.

4. Advect the cascade from time t − 1 to time t . Note that

each level of the cascade is advected with the same ve-

locity field computed on the original rainfall fields.

5. The lag 1 Lagrangian temporal auto-correlation is sim-

ply obtained by computing the correlation coefficient

between each cascade level k advected from time t − 1

to t and the corresponding cascade level at time t :

ρ1(k)=

1
L·L

L∑
i=1

L∑
j=1

(
Xkij −Xk

)
·

(
Xadv
kij
−X

adv
k

)
√√√√ 1
L·L

L∑
i=1

L∑
j=1

(
Xkij −Xk

)√√√√ 1
L·L

L∑
i=1

L∑
j=1

(
Xadv
kij
−X

adv
k

)
for k = 1, . . ., K − 1, (2)

where L= 256 is the size of the radar domain and “adv”

refers to the previous value advected forward to the cur-

rent time. The smaller the correlation coefficients, the

higher are the growth and decay of rainfall processes oc-

curring in Lagrangian frame of reference. The lag 2 La-

grangian temporal auto-correlation could be estimated
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as well by advecting a cascade at time t − 2 to time t ,

but is not presented in this paper.

Equation (2) is the ordinary Pearson’s correlation coef-

ficient, which involves the subtraction of the field mean.

On the other hand, Zawadzki (1973) and Germann and Za-

wadzki (2002) employed a correlation estimation without

subtraction of the mean for estimating the decorrelation time

of precipitation fields. The difference between the two ap-

proaches is not very important over continental scales, where

the forecast and observed fields have similar mean values, but

it may become an issue over smaller domains, where the ob-

served mean field precipitation can be significantly different

than the forecast one (see, e.g., Foresti et al., 2012). In such a

case, Eq. (2) would give lower but more realistic correlation

coefficients compared with Germann and Zawadzki (2002).

The Lagrangian auto-correlation estimations are also af-

fected by the presence of different scales of motion. A mul-

tiscale optical flow estimation at each level of the cascade

may be foreseen but could cause algorithm convergence is-

sues when one is trying to correlate the small-scale features.

Also, it is not yet clear how to avoid the appearance of arti-

facts in the final reconstructed rainfall field when advecting

the cascade levels with different velocity fields over several

time steps.

Note that the correlation function of Eq. (2) is obtained

by integrating over space, i.e., over the total number of pix-

els L ·L within a radar image. This allows the Lagrangian

auto-correlation to be estimated in real time and to adapt to

the predictability of the sequence of radar images. This ap-

proach, however, assumes the predictability to be homoge-

neous over the forecast domain. Section 3.4 will explain how

to obtain estimates of the Lagrangian auto-correlation by per-

forming the summations through time, which is a necessary

step for analyzing its spatial distribution.

The hierarchy of Lagrangian temporal auto-correlations

defines a hierarchy of auto-regressive processes of order 1 –

AR(1). This is exploited by STEPS to stochastically simulate

the rainfall growth and decay processes that occur in storm

coordinates at different spatial scales to reproduce the dy-

namic scaling of the field (Seed, 2003; Bowler et al., 2006).

The procedure consists of blending the radar cascade with

a cascade of spatially and temporally correlated stochastic

noise. The spatially correlated noise field is generated us-

ing a power law filter while temporal correlations are main-

tained by a hierarchy of auto-regressive processes. The power

law filter ensures that the noise cascade has the same power

spectrum of the observed radar rainfall fields. This technique

was already employed to generate continuous multifractals

(Schertzer and Lovejoy, 1987) and also appeared in the now-

casting system SBMcast (Berenguer et al., 2011), based on

the “String of Beads” model of Pegram and Clothier (2001a).

The stochastic simulations are stationary and no attempt is

made to actually forecast temporal trends in growth and de-

cay of precipitation. Indeed, trying to predict growth and de-

cay processes using as predictor the past evolution of radar

precipitation does not seem to significantly improve the fore-

cast accuracy, except for the regions characterized by sys-

tematic orographic forcing (see a review in Foresti and Seed,

2014). In addition, Radhakrishna et al. (2012) showed that

the predictability of growth and decay patterns is 10 times

shorter than that of precipitation fields and is limited to spa-

tial scales of the order of 250× 250 km2, which would re-

quire continental-scale radar images to be studied properly.

The stochastic simulations are not presented in this paper but

only explained for completeness since they are based on the

Lagrangian auto-correlation coefficients.

3.3 Estimation of the precipitation lifetime

By knowing the lag 1 auto-correlation coefficient, the AR(1)

auto-correlation function (ACF) can be recursively derived

as follows:

ρ(t)= ρt1 for t = 1, . . ., T , (3)

where ρ1 is the lag 1 Lagrangian auto-correlation coeffi-

cient computed with Eq. (2). Note that this simplification in-

directly assumes that the diagnosed velocity field does not

change during the forecast period. In fact, it extrapolates the

whole ACF knowing only the lag 1 auto-correlation. This as-

sumption is reasonable up to 2–3 h (Germann et al., 2005)

and 3–4 h lead times (Bowler et al., 2006), since using the

correct velocity does not reduce the forecast errors much. A

complete study of the Lagrangian predictability of precip-

itation including the non-stationarity of the velocity field,

would involve the direct calculation of the correlation co-

efficients at each forecast lead time by comparing the fore-

casts to the observations (see Germann and Zawadzki, 2002).

The basic principle of STEPS is to actually estimate the La-

grangian ACF in real time and allow it to adapt to the pre-

dictability of the situation. It would be computationally in-

tensive to estimate the complete ACF using a few hours of

radar fields before the analysis time. Eventually, the pre-

dictability of the field would be representative of the previ-

ous hours and not of the last two or three rainfall fields. The

adaptability of the system is particularly important, for ex-

ample, when the field is rapidly evolving from a convective

to a stratiform situation or in the early stages of a new rainfall

event.

Finally, the lifetime of precipitation (decorrelation time)

can be evaluated by integrating the ACF over time

(Zawadzki, 1973; Germann and Zawadzki, 2002):

LT =

∞∫
0

ρ(t)dt. (4)

For an exponentially decaying ACF the lifetime is defined as

the time at which the ACF falls below the value 1/e= 0.37

(Zawadzki, 1973). Note that with an exponentially decaying

www.hydrol-earth-syst-sci.net/18/4671/2014/ Hydrol. Earth Syst. Sci., 18, 4671–4686, 2014
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function, the integral of Eq. (4) can be analytically derived

and is equal to − 1
ln(ρ0)

.

In order to generalize the methodology to different ACFs

and for the comparison of observed and forecast field at all

lead times, Eq. (4) was numerically integrated using the ex-

tended Simpson’s rule (Press et al., 2007).

3.4 Online collection of rainfall statistics

Instead of analyzing the temporal distribution of the La-

grangian auto-correlation by integrating the data over space,

we want to analyze its spatial distribution by integrating over

time. More precisely, the summations of Eq. (2) need to be

done over the number of radar images in the archive, not the

number of pixels within a radar image. A joint evaluation of

the summations at each pixel in a radar field is intractable as

it would require loading the whole archive of rainfall fields

into the computer memory to compute the correlations in a

single pass. An efficient way to overcome this issue is to ex-

ploit rules for the online computation of the mean, the vari-

ance and the covariance (Knuth, 1998). The online estima-

tion of the mean is obtained as follows:

xt+1 = xt + δ/N, (5)

where t is the iteration, xt+1 is the new mean, δ= xt+1− xt
is the residual contribution of the new sample xt+1 to the old

mean xt and N is the number of samples.

The online estimation of the variance is obtained similarly

as follows:

qt+1 = qt + δ (xt+1− xt+1) , (6)

where q is the squared sum of the differences of x from its

mean and δ= xt+1− xt . The variance is obtained offline by

dividing q by the number of samples N .

The online computation of the AR(1) Lagrangian temporal

auto-correlation is evaluated by keeping track of the sum of

squared residuals:

st+1 = st +
(
xadv
t+1− x

adv
t

)
·

(
xt+1− xt+1

)
. (7)

The Lagrangian auto-correlation is obtained offline as:

ρ
(
x,xadv

)
=

s

N

√
Var(x) ·Var

(
xadv

) . (8)

The online computation of statistics using these rules gradu-

ally converges towards a stable value as the time progresses.

In order to admit temporal fluctuations of the statistics and

local smoothing, one can introduce a weight in the recursive

equations similarly to the technique of recursive least squares

computation.

The technical implementation of the online update of the

field statistics is performed by keeping binary files contain-

ing the arrays of interim statistics. For each new radar field,

the old file is read, updated and rewritten with the new statis-

tics. The statistics are only updated when the rainfall frac-

tion exceeds 5 % over the radar composite and when the

four radars are jointly operating. With this criterion we ob-

tained 9578 valid rainfall fields, which roughly correspond to

1600 h of precipitation over the period spanning from Febru-

ary 2011 to October 2012.

3.5 Offline spectral slope estimation

A precipitation field that is scale-invariant (also referred to as

scaling) typically exhibits a power spectrum of the form:

P(f )∝ f−β , (9)

where f is the spatial frequency (km−1) and β is the scaling

exponent (the slope of the power spectrum). The power law

behavior of rainfall fields usually appears as a straight line

on a graph of the logarithm of the power against the loga-

rithm of the spatial frequency. The slope of the line measures

the degree of scaling of the field and is equal to 0 for an

unstructured white noise field. The scaling exponent of a 2-

dimensional rainfall field is often greater than 2, which com-

plicates its multifractal simulation (see, e.g., Schertzer and

Lovejoy, 1987). One possibility to simulate stochastic rain-

fall fields to obtain β > 2 is to apply a power law filter to a

field of white noise as briefly mentioned in Sect. 3.2.

Radar rainfall fields often deviate from the theoretical

framework of perfect scale-invariance and typically show a

scaling break at frequencies of 15–20 km−1 (see, e.g., Gires

et al., 2011; Seed et al., 2013). On the other hand, precipi-

tation fields computed by NWP models have a break around

40–50 km (e.g., Gires et al., 2011). The scaling break is ob-

served as an increase in the spectral slope at the smaller con-

vective scales. This seems to have a physical origin and could

be attributed to different scaling regimes of the large-scale

stratiform rainfall and the smaller convective scales. How-

ever, recent analyses explain this phase transition with the

presence of zeros in the field, which also affects the estima-

tion of universal multifractal parameters (Gires et al., 2012).

The presence of a scaling break requires using two spectral

slopes β1 and β2 for the study and parameterization of the

power spectrum. β1 accounts for wavelengths that are larger

than 15–40 km and β2 for wavelengths that are lower than

15–40 km.

In this research we analyze the spatial distribution of the

spectral slopes β1 and β2. A complete analysis would require

visiting each radar pixel and performing a local spatial FFT

decomposition in its neighborhood, which is very computa-

tionally demanding if one wants to repeat the analysis over a

long period of time. Instead, the two spectral slopes are de-

rived offline from the spatial distribution of the variance at

each level of the cascade. This can be achieved by assuming

scaling of the variance of the cascade levels (see Menabde et

al., 1997). It consists of evaluating the average slope incre-

ments between successive levels of the cascade level standard
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Table 1. Characteristics of the six flow cluster centers that are used to stratify the statistics. Wm and Ws refer to moderate and strong westerly

flows respectively. The detailed average velocity maps can be found in Foresti and Seed (2014).

Cluster label 0-SE 1-Wm 2-N 3-SW 4-NW 5-Ws

Average flow direction Southeast West North Southwest Northwest West

Average flow magnitude (km h−1) 8.2 17.2 21.3 21.9 40.0 37.5

deviations:

H =−
1

K − 1

K−1∑
k=1

log10

(
sd(Xkij )

sd(X(k+1)ij )

)
log10(q)

and β = 2H +E, (10)

where sd(Xkij ) is the standard deviation of cascade level k at

pixel ij and E= 2 is the dimension of the space. β1 is esti-

mated using levels 1 to 3 (scales of 171, 81 and 38 km,K = 3

in Eq. 10) while β2 using levels 3 to 6 (scales of 38, 18, 8 and

4 km; K = 4 in Eq. 10). A scaling break of 40 km instead of

20 km was chosen to obtain smoother fields of the spectral

exponent β2, which is consequently slightly underestimated.

Note that this approach is different than estimating power

spectra on rainfall time series and analyzing the spatial distri-

bution of the spectral exponents. The approach proposed in

this paper should give insights into the spatial heterogeneity

of the degree of spatial scaling of rainfall fields.

3.6 K-means stratification of optical flow fields

To analyze the dependence of rainfall statistics on flow

regimes, the optical flow fields were stratified using the k-

means clustering algorithm. The details on the preparation of

the archive of optical flow fields and the clustering algorithm

can be found in Foresti and Seed (2014).

Table 1 summarizes the statistics of the six cluster centers

obtained after running the k-means algorithm on the archive

of flow fields. The cluster centers mainly differ in terms of

flow direction and magnitude, while the spatial variability

of the velocity vectors within a field is only marginal (see

Foresti and Seed, 2014). The number of clusters was empiri-

cally chosen to represent a sufficient number of flow regimes

and to have enough samples per cluster to compute signifi-

cant verification statistics. The cluster 0 is characterized by

weak southeasterly winds, the cluster 1 by moderate westerly

winds, the cluster 2 by moderate northerlies, the cluster 3 by

moderate southwesterly winds, the cluster 4 by strong north-

westerly winds, and the cluster 5 by strong westerlies. It is

understood that winds refer to the apparent motion of radar

images derived with optical flow and not to real wind fields.

The online update of the statistics (Sect. 3.4) is per-

formed by keeping a set of six binary files containing the

interim fields of the rainfall mean, variance, Lagrangian auto-

correlations and number of samples. The files are read, up-

dated and rewritten according to the cluster membership of a

given field.

4 Results

Section 4.1 illustrates the scale-dependent geographical dis-

tribution of the precipitation lifetime without stratification

into flow regimes. On the other hand, Sect. 4.2 shows the

flow dependence of the dynamic and spatial scaling relation-

ships by averaging the results over space. Finally, Sect. 4.3

analyzes the spatial distribution of the precipitation lifetime

under different flow regimes to understand the effect of oro-

graphic forcing.

4.1 Geographical distribution of precipitation

predictability and spatial scaling

Figure 3 illustrates the spatial distribution of the precipitation

lifetime for the cascade levels 2, 3, 4, and 5 without strati-

fication into flow regimes. Refer to Fig. 1 for geographical

details. The level 0 is not presented since the FFT filter does

not have a Gaussian shape (see Fig. 2). On the other hand,

the level 1 is too influenced by the edge effects that prop-

agate from the borders of the radar composite towards the

interior regions. The levels 6 and 7 are too noisy and exhibit

lifetimes that are below the temporal resolution of the radar

composite (10 min).

The cascade level 2 (171-81-38 km, Fig. 3a) has lifetimes

comprised between 5 and 10 h but still highlights the pres-

ence of some edge effects. The long lifetimes obtained may

still be a consequence of assuming the diagnosed velocity

field to be temporally stationary. An important part of the

spatial variability at this scale is affected by the shape of

the radar composite, and long lifetimes tend to be located

in its central parts. The other cascade levels (Fig. 3b–d) are

less affected by the edge effects, which remain limited to

a small region close to the borders of the radar composite.

All of them have the longest lifetimes over the flat regions

surrounding the Yarrawonga radar. In this region the life-

times are up to 3.5 h, and 70 and 30 min for the 81-38-18,

38-18-8 and 18-8-4 km scales, respectively. These long life-

times can be explained by a higher Lagrangian predictability

over flat continental areas (see for instance Germann et al.,

2006). The lifetimes around the Macedon ranges are lower

on their southeast flanks in the direction of the Melbourne

radar compared with their northwest flanks. Despite being

www.hydrol-earth-syst-sci.net/18/4671/2014/ Hydrol. Earth Syst. Sci., 18, 4671–4686, 2014



4678 L. Foresti and A. Seed: Rainfall predictability from composite radar images

−200 −100 0 100 200

−
20

0
−

10
0

0
10

0
20

0

Precipitation lifetime, cascade level 2, scale 171−81−38 km

Easting [km]

N
or

th
in

g 
[k

m
]

2
3
4
5
6
7
8
9
10
11
12

 200 

 200 

 200 

 200 

 400 

 400 

 4
00

 

 400 

 4
00

 

 600 

 6
00

 

 600 

 600 

 800 

 800 

 800 

 800 

 1000 

 1000 

 1000 

 1000 

 1
50

0 

Melbourne

Yarrawonga

Gippsland

hours

a)

−200 −100 0 100 200

−
20

0
−

10
0

0
10

0
20

0

Precipitation lifetime, cascade level 3, scale 81−38−18 km

Easting [km]

N
or

th
in

g 
[k

m
]

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50

 200 

 200 

 200 

 200 

 400 

 400 

 4
00

 

 400 

 4
00

 

 600 

 6
00

 

 600 

 600 

 800 

 800 

 800 

 800 

 1000 

 1000 

 1000 

 1000 

 1
50

0 

Melbourne

Yarrawonga

Gippsland

hours

b)

−200 −100 0 100 200

−
20

0
−

10
0

0
10

0
20

0

Precipitation lifetime, cascade level 4, scale 38−18−8 km

Easting [km]

N
or

th
in

g 
[k

m
]

20
25
30
35
40
45
50
55
60
65
70

 200 

 200 

 200 

 200 

 400 

 400 

 4
00

 

 400 

 4
00

 

 600 

 6
00

 

 600 

 600 

 800 

 800 

 800 

 800 

 1000 

 1000 

 1000 

 1000 

 1
50

0 

Melbourne

Yarrawonga

Gippsland

min

c)

−200 −100 0 100 200

−
20

0
−

10
0

0
10

0
20

0

Precipitation lifetime, cascade level 5, scale 18−8−4 km

Easting [km]

N
or

th
in

g 
[k

m
]

10
12
14
16
18
20
22
24
26
28
30

 200 

 200 

 200 

 200 

 400 

 400 

 4
00

 

 400 

 4
00

 

 600 

 6
00

 

 600 

 600 

 800 

 800 

 800 

 800 

 1000 

 1000 

 1000 

 1000 

 1
50

0 

Melbourne

Yarrawonga

Gippsland

min

d)

Figure 3. Spatial distribution of the precipitation lifetimes for the four middle cascade levels. (a) 171-81-38 km, (b) 81-38-18 km, (c) 38-18-8

and (d) 18-8-4 km. White tones are used for regions outside the radar domain or presenting values that exceed the range of the color scale.

less pronounced, this pattern was already observed by Foresti

and Seed (2014) and is a consequence of the prevailing west-

erly flows, which cause systematic rainfall decay on the lee-

ward side of the Macedon ranges and orographic enhance-

ment on their windward side. This effect is also the origin of

the long lifetimes observed on the Dandenong ranges as they

are located upwind relative to the prevailing westerlies. The

lifetimes surrounding the Gippsland radar tend to be longer

over the ocean, which is particularly visible in Fig. 3b and c.

Finally, the shorter lifetimes on the inner parts of the Vic-

torian Alps are probably due to the reduced accuracy of the

radar measurements (see Sect. 2). In particular, the blockage

of radar beams, the rainfall attenuation and overshooting re-

duce the accuracy of the optical flow estimations, which con-

sequently affects the lifetimes derived from the Lagrangian

auto-correlation. In addition, it seems that there is a propor-

tional effect between the precipitation lifetime and the cli-

matological precipitation amount: the lifetimes are generally

lower in the places where the radar measures less precipita-

tion (see e.g., Berenguer and Sempere-Torres, 2013).

Figure 4 illustrates the spatial distribution of the spectral

slopes β1 and β2 derived from the standard deviation of the

cascade levels (see Sect. 3.5). β1 represents the degree of

scaling above the 40 km scale; β2 represents that below it

and they therefore account respectively for the large-scale

precipitation structures and convective features. Except for

the regions close to the radar domain edges, β1 is generally

larger than 2 with the highest values in the range 2.2–2.4 and

centered on the three radars. These are the regions where the

spatial scaling of rainfall can be measured more efficiently

and is the highest. At first sight, these inhomogeneities can

only be explained by the shape of the radar composite and

not by the presence of different atmospheric processes. How-

ever, the spectral slopes are higher on the southern slope of
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Figure 4. Spatial distribution of the spectral slopes (a) β1 and (b) β2 derived by assuming the scaling of the standard deviation of the cascade

levels.

the Alps located northeast of the Gippsland radar. This de-

picts a region characterized by rainfall fields that are highly

organized in space with convection embedded into stratiform

rainfall, which is typical of orographic rainfall (see Fig. 6a).

It would be interesting to perform a similar analysis using

outputs from NWP models to eliminate the heterogeneities

introduced by the inhomogeneous quality of radar measure-

ments. As expected, the spectral slopes at the small scales

(β2, Fig. 4b) are systematically higher than the ones at the

large scales (β1, Fig. 4a), with values in the range 2.3–2.8.

However, the spectral slope β2 is lower in the surroundings

of the Melbourne radar (S-band) compared with the other

two (C-band). Both the C- and S-band radars have a 1◦ az-

imuth and 250 m range resolution (see for instance, Ren-

nie, 2012). Notwithstanding the same resolution, the rain-

fall field exhibits more power in the last cascade level in the

surroundings of the Melbourne radar, which can explain the

lower spectral exponent β2 (Fig. 4b). The patterns observed

in Fig. 4b are hard to explain in terms of different precip-

itation regimes and seem to be more associated to the type

of radar or data processing chain. Despite these differences,

the spectral exponents β2 tend to be lower upwind than up-

stream of the mountain ranges, in particular over the Yarra

and Dandenong ranges, the southern slopes of the Alps be-

tween Avon and the Snowy River, and on the northern slopes

of the Alps located southeast of the Yarrawonga radar. This

depicts that strong convection is more likely to occur over flat

regions than over complex orography, where it is less intense

and often embedded into stratiform rainfall.

4.2 Flow dependence of the dynamic and spatial scaling

relationships

Table 2 and Fig. 5 illustrate the dynamic scaling relation-

ship between the spatial scale and the precipitation lifetime

for each flow regime. As already explained in Sect. 3.1, only

the cascade levels 1 to 6 are shown. The values are obtained

by spatial averaging of the lifetimes within the radar com-

posite. Figure 5 demonstrates the presence of dynamic scal-

ing, which is observed as a clear power law relationship be-

tween the spatial scale of precipitation features and its es-

timated lifetime (Venugopal at al., 1999; Seed, 2003). It is

worth mentioning that Venugopal at al. (1999) employed an-

other statistical quantity to account for the temporal evolu-

tion of rainfall and the obtained dynamic scaling exponents

cannot be directly compared. The figure also shows signifi-

cant variability of the lifetimes as a function of flow regime.

The clusters NW and Ws are characterized by the shortest

lifetimes, and the cluster SE by the longest. These differ-

ences are in part due to the type of rainfall, which is more

convective under northerly than southerly flows. In fact, the

organized convective activity mostly occurs when the warm

continental northwesterly flows meet the colder maritime air.

On the other hand, it is not clear whether the faster transla-

tional speed of convective rain relative to stratiform rain af-

fects the estimation of the predictability by Lagrangian per-

sistence. These lifetime estimations are a bit higher than the

original ones of Seed (2003), who used a single motion vec-

tor to advect the radar rainfall field. Similar issues were en-

countered by Pegram and Clothier (2001b) because of using

a single displacement vector and as a consequence of the high

level of noise at the pixel scale. This demonstrates the added

value of the optical flow algorithm of Bowler et al. (2004),

which better defines the differential motion within a rainfall

field, as well as the analysis of the Lagrangian predictability

at larger scales using the Fourier-based scale decomposition.

The estimations also compare well with the results of Ger-

mann et al. (2006), who reported lifetimes of 0.1–0.2 h on the

4–8 km scale using a wavelet decomposition of the rainfall

www.hydrol-earth-syst-sci.net/18/4671/2014/ Hydrol. Earth Syst. Sci., 18, 4671–4686, 2014



4680 L. Foresti and A. Seed: Rainfall predictability from composite radar images

Table 2. Precipitation lifetimes for each spatial scale and flow regime averaged over the radar composite. Levels 0–3 are expressed in hours

and 4–7 in minutes. The power law extrapolation of lifetimes for smaller spatial scales is given in seconds. Ext.: estimation of the lifetimes

at smaller spatial scales by extrapolating the power law. The extrapolation uses the original non-integer scales for increased precision. The

scales on which the Gaussian filters are centered are marked in italic.

Level Spatial scales Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Weighted

[km] SE Ww N SW NW Ws average

0 768-362 27.7 25.9 28.5 25.4 19.3 20.2 24.1 h

1 362-171-81 24.9 21.4 18.6 22.5 14.6 16.0 19.2 h

2 171-81-38 13.7 8.9 7.9 9.6 5.6 6.3 8.3 h

3 81-38-18 4.6 2.8 2.5 3.1 1.8 2.0 2.7 h

4 38-18-8 79.6 53.9 48.9 56.3 34.4 38.7 49.8 min

5 18-8-4 26.4 21.0 19.2 20.5 14.0 15.7 19.0 min

6 8-4-2 10.5 9.2 8.5 8.7 6.4 7.31 8.3 min

7 4-2 5.9 5.0 5.2 5.4 4.7 5.0 5.1 min

ext. 8 1.89-0.89-0.42 78 65 62 58 43 49 58.0 s

ext. 9 0.89-0.42-0.20 28 23 23 16 16 18 20.5 s

ext. 10 0.42-0.20-0.09 10 8 8 5 6 7 7.4 s

No. of fields 1095 2390 1449 1112 2058 1474 9578

field over the continental United States. In Fig. 5 the 4–8 km

scales roughly correspond to the 8-4-2 km and 18-8-4 scales,

which exhibit lifetimes of 0.1–0.4 h.

To obtain an order of magnitude for the predictability

at smaller spatial scales, power law relationships were fit-

ted using the method of least squares per each flow cluster.

The extrapolation of the fitted power laws towards smaller

spatial scales could give an idea of the minimum tempo-

ral resolution that is required to reliably measure the La-

grangian auto-correlation of precipitation, which is very

important for stochastic precipitation nowcasting at urban

scales (e.g., Goormans and Willems, 2013; Ruzanski and

Chandrasekar, 2012). The bottom of Table 2 shows the re-

sults of such extrapolations for scales of 1.89-0.89-0.42,

0.89-0.42-0.20 and 0.42-0.20-0.09 km. Because of working

on a logarithmic scale such estimations are quite uncertain

and to a certain degree pessimistic, in particular because

the dynamic scaling relationship does not perfectly follow a

power law. The imperfect dynamic scaling could also be due

to using the lifetime instead of the temporal rainfall changes

as a measure for the rainfall evolution (see Venugopal et al.,

1999). It must also be considered that the optical flow is

representative of the scales measured by the C- and S-band

radars and cannot capture the motion at smaller scales. From

this simple extrapolation, the kilometric scale (1.89-0.89-

0.42 km) only displays a predictability of 40–80 s. It would

be interesting to study whether the temporal resolution of X-

band radars is sufficient to reliably measure the Lagrangian

auto-correlation of the very small scale precipitation features.

Using such high resolution data will also pose the computa-

tional challenge of generating the nowcasts before the pre-

dictability limits have been exceeded to avoid the forecasts

becoming obsolete. Ruzanski and Chandrasekar (2012) re-

ported a predictability of 20 min using data from a network of

X-band radars and the CASA nowcasting system. The scale

dependence was analyzed by upscaling the forecasts and the

values are not directly comparable to the ones obtained by

scale separation within STEPS. At these temporal scales, the

quality of the nowcasts is still strongly affected by the accu-

racy of the input radar observations. Therefore, it becomes

necessary to complement nowcasting systems with heuristic

models of the radar measurement uncertainty, for example to

account for stochastic sampling errors (Jordan et al., 2003).

Table 3 illustrates the spectral slopes β1 and β2 of the spa-

tial power spectrum stratified by flow regime. β1 typically

oscillates around the dimension of the field with the small-

est values occurring under the flows SE–SW (1.88–1.91) and

the largest under the flows Wm, N, and NW (2.01–2.03).

The values are slightly smaller than the ones found in the

literature (e.g., Seed et al., 2013), which is explained again

by the presence of edge effects that locally reduce the spec-

tral exponents (see Fig. 4a). This may have consequences

on the power law filtering performed by STEPS to generate

the noise cascade needed to update the hierarchy of auto-

regressive processes. In fact, the filtering uses the spatial

power spectrum of rainfall as target distribution, which does

not account for the spatial heterogeneities within the forecast

domain.

The values of β2 are significantly higher and oscillate be-

tween 2.45 and 2.8. The clusters NW and Ws have the high-

est β2 (2.68–2.79), which can be attributed to a higher con-

vective activity occurring under these flow conditions. The

cluster NW also has a high β1 and is the one having the most

organized rainfall structures from the large down to the small

convective scales.
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Table 3. Average spatial spectral exponents stratified by flow regime. The standard deviation over space is given in brackets.

Cluster label 0-SE 1-Wm 2-N 3-SW 4-NW 5-Ws

β1 1.88 (0.29) 2.02 (0.24) 2.03 (0.25) 1.91 (0.22) 2.03 (0.24) 1.96 (0.23)

β2 2.46 (0.20) 2.55 (0.15) 2.61 (0.18) 2.46 (0.19) 2.79 (0.16) 2.68 (0.18)
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Figure 5. Dynamic scaling relationship between the spatial scale and precipitation lifetime stratified by flow regime. The equations of the

power law fits are shown in the upper left corner.

4.3 Effect of orography on the predictability of

precipitation

According to the results of Berenguer and Sempere-

Torres (2013), the regions of long predictability seem to be

correlated with the regions with the highest rainfall accumu-

lations. In fact, the regions that are often affected by orga-

nized large-scale precipitation systems are more likely to ex-

hibit higher predictability than the ones with infrequent iso-

lated convection. It is therefore important to analyze the cli-

matology of precipitation to study the spatial distribution of

its predictability.

Figure 6 shows the conditional mean 10 min rainfall ac-

cumulations stratified by flow regime. It clearly illustrates

the flow dependence of the spatial distribution of precip-

itation, which is mostly located on the windward side of

mountain ranges. Most of the precipitation occurring under

southeasterly flows is located along the upwind side of the

Victorian Alps in a region going from Avon to the Snowy

River (Fig. 6a). The spatial distribution of rainfall under

moderate westerly flows presents maxima on the Dandenong

and Macedon ranges, but also on the northern side of the

Alps around Mount Buffalo (Fig. 6b). The enhancement on

the Northwest flank of the Alps is much more pronounced

with northerly and northwesterly flows, which approach the

mountain range more perpendicularly (Fig. 6c and e, respec-

tively). Southwesterly flows lead to high accumulations on

the Yarra and Dandenong ranges as well as the southern side

of the Alps around the Gippsland radar (Fig. 6d). It is inter-

esting to note that northwesterly flows also give high accu-

mulations on the leeside of the Alps (Fig. 6e), which could

be caused by the lower air stability of these conditions (refer

to Foresti and Seed, 2014, for a more detailed interpretation).

Finally, strong westerly flows lead again to high accumula-

tions on the Dandenong and Macedon ranges, but also on the

West of the Gippsland radar (Fig. 6f). A clear rainfall shadow

effect on the leeside of the Macedon ranges is noticed for the

clusters Wm, NW, and Ws.

Figure 7 shows the spatial distribution of the precipita-

tion lifetime at the convective scale (38-18-8 km) stratified
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Figure 6. Conditional mean 10 min rainfall accumulations for flow regimes (a) SE, (b) Wm, (c) N, (d) SW, (e) NW and (f) Ws.
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by flow cluster. Despite some variability arising from peri-

odic features of the Fourier transform, it is possible to notice

that lifetimes are higher on the upwind side and lower on the

downwind side of terrain features. An illustrative example

can be observed under southwesterly conditions (Fig. 7d).

The lifetime of precipitation upstream of the Dandenong

ranges is about 20–40 min; it increases to 50–70 min on the

upwind side and falls again to 20–30 min when moving into

the Alps. Similar patterns can be observed under the flow

regime Ws (Fig. 7f). On the other hand, under NW flows

short lifetimes are located on the leeward side of the Mace-

don ranges (Fig. 7e). Note that with reversed flow conditions

(SE, Fig. 7a), this region exhibits lifetimes of 80–100 min

and the shortest ones are located on top of the Macedon

ranges with values oscillating between 40 and 80 min. The

region located South and Southeast of the Yarrawonga radar

is also interesting to analyze in particular for the clusters N

and NW. In fact, the location of the longest lifetimes up-

stream of the Alps is different depending on flow direction

(Fig. 7c and e). The plains surrounding the Yarrawonga radar

also show very long lifetimes under flow conditions SE, Wm,

and SW. However, this effect could be an artefact of the

low rainfall accumulations over these regions (see Fig. 6a, b,

and d).

These findings corroborate the results of Harris et

al. (1996), who demonstrated that the precipitation intermit-

tency is higher upstream compared with the top of the moun-

tain ridge, with intermediate values on the upwind flank.

From Fig. 7 it seems that the decreased intermittency of rain-

fall upwind of orographic features has a positive impact on

its predictability by Lagrangian persistence. It is worth men-

tioning that leeside precipitation enhancement is also pos-

sible due to leeside flow convergence, flow perturbations by

mountain gravity waves, or the presence of cold air pools that

force the unstable air to rise. Such processes are not very fre-

quent and would require stratifying the statistics using more

complex criteria based on moist air stability indices among

others.

The relationship between the precipitation lifetime and

orography is less pronounced than that of nowcast biases

presented in Foresti and Seed (2014). This is mostly due

to the increased difficulty in computing higher order statis-

tics, which require many more samples than a simple lin-

ear or multiplicative bias. Also, the cascade decomposition

framework still needs some improvements to reduce the edge

effects and to better interpret the intricate statistical depen-

dencies between consecutive cascade levels (see Seed et al.,

2013).

5 Conclusions

The geographical distribution of the scale-dependent pre-

dictability of precipitation by Lagrangian extrapolation of

radar images was analyzed under different flow regimes

in connection with the presence of orographic features.

Data from the Victorian radar composite, Australia, a

500× 500 km2 domain covering the period from Febru-

ary 2011 to October 2012, were used for the analyses. The

scale dependence of the predictability of precipitation was

considered by decomposing the radar rainfall field into a

multiplicative cascade using an FFT (Bowler et al., 2006).

The lifetime of precipitation features was found to be a power

law function of the scale of the features and to depend on flow

direction, which confirms the presence of dynamic scaling

(Venugopal et al., 1999; Mandapaka et al., 2009). The pre-

cipitation lifetime was found to be up to a factor of 2 higher

on the upwind compared with the downwind slopes of oro-

graphic features and to be strongly flow-dependent. The de-

gree of spatial scaling of the rainfall field was also shown

to be spatially inhomogeneous. These spatial heterogeneities

due to orographic forcing can be exploited to locally adapt

the space–time stochastic simulation of precipitation, which

is needed for very short-term forecasting (e.g., Seed et al.,

2013), generating radar ensembles (Germann et al., 2009),

design storm studies (e.g., Paschalis et al., 2013), and precip-

itation downscaling (e.g., Pathirana and Herath, 2002).

The study raised several methodological questions, in par-

ticular because the quality of radar data is much more homo-

geneous over time than over space. This has to be accounted

for when interpreting the maps of the predictability of precip-

itation. Some patterns could be simply due to the geograph-

ical biases that affect the radar measurements, for example

due to beam blockage, signal attenuation, or increasing sam-

pling volume with range. Nevertheless, in the regions close

to the radar, it was possible to detect a clear signal in the dis-

tribution of the precipitation lifetime, which was attributed to

orographic forcing.

The predictability estimates presented in this paper are af-

fected by other sources of uncertainty. The first is related

to the assumption of the temporal stationarity of the diag-

nosed velocity field, which leads to over-optimistic estimates

of the precipitation lifetimes, especially at the large scales.

The second arises from the uncertainty in the estimation of

the velocity field with optical flow. In fact, precipitation fields

often show differential motion at different spatial scales. An

illustrative example occurs when stationary orographic rain-

fall contains fast moving cellular convection (e.g., Foresti et

al., 2013). Better estimates of the Lagrangian predictability

would require the optical flow to be estimated on each spatial

scale separately.

Finally, it is not yet clear whether the spatial variability

of precipitation lifetime is more significant than its tempo-

ral variability, and how to account for both aspects in the

real-time nowcasting of precipitation using stochastic simu-

lation approaches such as STEPS. The natural solution would

be to allow the predictability to vary through time in a first

stage and to gradually add some spatial heterogeneity when

more and more radar data are collected. This goal could be

achieved by exploiting the online computation of statistics,
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Figure 7. Spatial distribution of the precipitation lifetimes at cascade level 4 (38-18-8 km) stratified by flow regime. (a) SE, (b) Wm, (c) N,

(d) SW, (e) NW, (f) Ws.
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which would enable the nowcasting system to learn about the

spatial distribution of predictability as more and more radar

data are collected and analyzed.
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Abstract. Gauge-based radar rainfall adjustment techniques

have been widely used to improve the applicability of

radar rainfall estimates to large-scale hydrological mod-

elling. However, their use for urban hydrological applica-

tions is limited as they were mostly developed based upon

Gaussian approximations and therefore tend to smooth off

so-called “singularities” (features of a non-Gaussian field)

that can be observed in the fine-scale rainfall structure. Over-

looking the singularities could be critical, given that their

distribution is highly consistent with that of local extreme

magnitudes. This deficiency may cause large errors in the

subsequent urban hydrological modelling. To address this

limitation and improve the applicability of adjustment tech-

niques at urban scales, a method is proposed herein which

incorporates a local singularity analysis into existing adjust-

ment techniques and allows the preservation of the singu-

larity structures throughout the adjustment process. In this

paper the proposed singularity analysis is incorporated into

the Bayesian merging technique and the performance of the

resulting singularity-sensitive method is compared with that

of the original Bayesian (non singularity-sensitive) technique

and the commonly used mean field bias adjustment. This test

is conducted using as case study four storm events observed

in the Portobello catchment (53 km2) (Edinburgh, UK) dur-

ing 2011 and for which radar estimates, dense rain gauge and

sewer flow records, as well as a recently calibrated urban

drainage model were available. The results suggest that, in

general, the proposed singularity-sensitive method can effec-

tively preserve the non-normality in local rainfall structure,

while retaining the ability of the original adjustment tech-

niques to generate nearly unbiased estimates. Moreover, the

ability of the singularity-sensitive technique to preserve the

non-normality in rainfall estimates often leads to better re-

production of the urban drainage system’s dynamics, partic-

ularly of peak runoff flows.

1 Introduction

Traditionally, urban hydrological applications have relied

mainly upon rain gauge data as input. While rain gauges

generally provide accurate point rainfall estimates near the

ground surface, they cannot properly capture the spatial vari-

ability of rainfall, which has a significant impact on the ur-

ban hydrological system and thus on the modelling of urban

runoff (Gires et al., 2012; Schellart et al., 2012). Thanks to

the development of radar technology, weather radar data have

been playing an increasingly important role in urban hydrol-

ogy (Krämer et al., 2007; Liguori et al., 2011). Radars can

survey large areas and better capture the spatial variability

of the rainfall, thus improving the short-term predictability

of rainfall and flooding. However, the accuracy of radar mea-

surements is in general insufficient, particularly in the case of

extreme rainfall magnitudes (Einfalt et al., 2004, 2005). This

is due to the fact that, instead of being a direct measurement,

radar rainfall intensity is derived indirectly from measured

radar reflectivity. As a result, both radar reflectivity measure-

ments and the reflectivity–intensity conversion process are

subject to multiple sources of error.

First, errors in radar reflectivity measurements may arise

from blockage of the radar beam, attenuation, ground clutter,

anomalous propagation of the signal, among other sources

(Collier, 1996; Einfalt et al., 2004; Harrison et al., 2000). Al-

though the radar reflectivity measurements undergo a number

Published by Copernicus Publications on behalf of the European Geosciences Union.
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of corrections before they are converted into rainfall inten-

sity, it is virtually impossible to have error-free reflectivity

measurements. Second, the conversion between radar reflec-

tivity (Z) and rainfall rate (R) uses the so-called Z–R rela-

tionship,Z= aRb (Marshall and Palmer, 1948), where a and

b are variables generally deduced by physical approximation

or empirical calibration. This can be theoretically linked to

the rain drop size distribution, which varies for different rain-

fall types. Operationally, a number of “static” Z–R relations

are usually derived to generate radar rainfall rates for dif-

ferent rainfall types (e.g. stratiform, convective and tropical

storms), and the associated a and b variables are calibrated

based upon long-term comparisons (Collier, 1986; Krajewski

and Smith, 2002). However, in reality, it is almost impossi-

ble to classify a single storm purely under a specific rain-

fall type. Consequently, it is not entirely appropriate to use

a static Z–R relation to derive rainfall intensities, even for a

single storm event. This has been confirmed by several stud-

ies, which indicate that rain drop size distribution is a highly

dynamic process and may significantly or suddenly change

within a storm event (Smith et al., 2009; Ulbrich, 1983). Be-

cause of this, the Z–R derived rainfall intensity cannot ef-

fectively reflect the short-term dynamics of true rainfall in-

tensities and may statistically compromise with intermediate

rainfall intensities.

In order to overcome these drawbacks of radar rainfall es-

timates while preserving their spatial description of rainfall

fields, it is possible to dynamically adjust them using rain

gauge measurements. Many studies on this subject have been

carried out over the last few years, though most of them fo-

cus on hydrological applications at large scales (Anagnostou

and Krajewski, 1999; Fulton et al., 1998; Germann et al.,

2006; Goudenhoofdt and Delobbe, 2009; Harrison et al.,

2000, 2009; Seo and Smith, 1991; Thorndahl et al., 2014).

Only few studies have examined the applicability of these

adjustment techniques to urban-scale hydrological applica-

tions and concluded that they can effectively reduce rain-

fall bias, thus leading to improvements in the reproduction

of hydrological outputs (Smith et al., 2007; Vieux and Bedi-

ent, 2004; Villarini et al., 2010; Wang et al., 2013). How-

ever, despite the improvements achieved with the current

adjustment techniques, underestimation of storm peaks can

still be seen after adjustment and this is particularly evident

in the case of small drainage areas (such as those of urban

catchments) and extreme rainfall magnitudes (Wang et al.,

2012; Ochoa-Rodríguez et al., 2013). This may be due to the

fact that the underlying adjustment techniques, mainly based

upon Gaussian (first and/or second statistical moments) ap-

proximations (Goudenhoofdt and Delobbe, 2009; Krajewski,

1987; Todini, 2001), cannot properly cope with the so-called

“singularities” (which imply non-normality and often corre-

spond to local extreme magnitudes) observed at small scales

(Schertzer et al., 2013; Tchiguirinskaia et al., 2012). In fact,

it is often the case that the radar image captures the spatial

structure of striking local extremes (albeit the actual rainfall

depth/intensity may be inaccurate), but these structures are

lost or smoothened throughout the merging process. This de-

ficiency may cause large errors in the subsequent urban hy-

drological modelling.

To address this limitation and improve the applicability of

adjustment techniques at urban scales, a method is proposed

herein which incorporates a local singularity (identification)

analysis (Cheng et al., 1994; Schertzer and Lovejoy, 1987;

Wang et al., 2012) into existing adjustment techniques and

enables the preservation of the singularity structures through-

out the adjustment process. The singularity-sensitive method

is particularly intended to improve geostatistical-based merg-

ing techniques (e.g. co-kriging, Krajewski, 1987; Bayesian

merging, Todini, 2001; kriging with external drift, Wacker-

nagel, 2003 and conditional merging, Sinclair and Pegram,

2005), which seek to represent the spatial covariance struc-

ture of the rainfall field or its errors by making use of the

semi-variogram (Goudenhoofdt and Delobbe, 2009). Being

a second-order tool, the semi-variogram cannot adequately

capture higher-order features of the rainfall field, thus caus-

ing these to be lost in the merging process.

The proposed singularity-sensitive method was initially

developed and preliminarily tested in the reconstruction of

a storm event which led to reported flooding in the Maida

Vale area, Central London, in June 2009 (Wang and Onof,

2013; Wang et al., 2014). The radar rainfall product for

this event showed strong and localised singularity struc-

tures, but the accuracy of the actual estimates was poor. A

dynamic gauge-based adjustment was conducted using the

Bayesian data merging method (Todini, 2001), which in pre-

vious studies had been shown to outperform other adjustment

methods (Mazzetti and Todini, 2004; Wang et al., 2013).

Nonetheless, for this particular event records from only a

few rain gauge sites were available and these were located

away from the area of interest and at points where less in-

tense radar rainfall was observed. Under these circumstances,

the aforementioned shortcomings associated with existing

adjustment techniques became evident. The Bayesian data

merging method proved inadequate as it smoothed out the

singularity structures, which had the effect of considerably

reducing the peak rainfall intensities. It was then that the

singularity-sensitive method was devised and effectively in-

corporated into the Bayesian merging technique. The result-

ing singularity-sensitive Bayesian merging method led to

rainfall fields which better preserved the spatial structure as

captured by the radar and better reproduced peak rainfall in-

tensities.

In the present paper the formulation of the proposed

singularity-sensitive method is explained in detail and new

numerical strategies aimed at improving the use of singular-

ity information are introduced. Moreover, the method is fur-

ther tested using as case study four storm events observed in

the Portobello catchment (53 km2) (Edinburgh, UK) during

2011 and for which radar estimates, a spatially dense net-
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Figure 1. Schematics of (a) original Bayesian merging method (adapted from Fig. 2 in Mazzetti (2012)) and (b) singularity-sensitive

Bayesian merging method.

work of rain and flow gauges, as well as a recently calibrated

urban drainage model were available.

The paper is organised as follows. In Sect. 2 a detailed

explanation is provided of the theoretical development of

the singularity-sensitive method, including the newly imple-

mented numerical strategies. In Sect. 3 we present the case

study, including a description of the study area and data

set, the performance criteria used to evaluate the proposed

methodology, and the results of the testing. Lastly, in Sect. 4

the main conclusions are presented and future work is dis-

cussed.

2 Formulation of the singularity-sensitive Bayesian

data merging method

Firstly, a description is provided of the two key techniques

used in this paper: the Bayesian data merging method and the

local singularity analysis. Afterwards, the proposed method

for integrating these two techniques is explained. Intermedi-

ate results of each of the steps described in this section, which

help illustrate the main features of the proposed methodol-

ogy, can be found in the Supplement.

2.1 Bayesian radar–rain gauge data merging method

The Bayesian data merging method (BAY) is a dynamic ad-

justment method (applied independently at each time step)

intended for real-time applications (Todini, 2001). The un-

derlying idea of this method is to analyse and quantify the un-

certainty of rainfall estimates (in terms of error co-variance)

from multiple data sources – in this case, radar and rain gauge

sensors – and then combine these estimates in such a way that

the overall (estimation) uncertainty is minimised. The BAY

merging method consists of the following steps (illustrated

in Fig. 1a):

a. For each time step t , the point rain gauge (RG) mea-

surements are interpolated into a synthetic rainfall field

using the block kriging (BK) technique. The result of

this step is an interpolated rain gauge rainfall field, with

areal estimates at each radar grid location (yRG
t ), and

which are accompanied by the associated estimation er-

ror co-variance function (V RG
εt

), representing the uncer-

tainty of rain gauge estimates.

b. The interpolated rain gauge rainfall field is compared

against the radar field (yRD
t ), based upon which a field

of errors (estimated as the bias at each radar grid lo-

cation: εRD
t = y

RD
t − y

RG
t ) is obtained empirically. As-

suming that areal rain gauge estimates are unbiased, the

expectation value (µεRD
t

) and the co-variance function

(V RD
εt

) of this radar–rain gauge error field at each time

step is used to represent, respectively, the mean bias and

the uncertainty of radar estimates.

c. Using a Kalman filter (Kalman, 1960), the two rainfall

fields are optimally combined such that the overall es-

timation uncertainty is minimised. In the Kalman filter

the radar data and the interpolated rain gauge estimates

act, respectively, as “a priori estimate” and “measure-

ment”. The degree of “uncertainty” of each type of es-

timate constitutes a gain value (the so-called Kalman

gain, Kt ) at each radar grid location, and determines

the proportion of each type of estimate that is used to

compute the merged output. The use of this gain value

ensures the minimisation of the overall estimation un-

certainty and is expressed as
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Kt = VεRD
t

(
VεRD

t
+VεRG

t

)−1

, (1)

and the optimally merged output, BAY (i.e. the a poste-

riori estimates y′′t in the Kalman filter) can be obtained

from

y′′t = y
′
t +Kt

(
yRG
t − y

′
t

)
, (2)

where y′t is the “unbiased” radar rainfall estimate

(i.e. y′t = y
RD
t −µεRD

t
) used as the a priori estimate in

the Kalman filter.

It can be seen that the Kalman gain is a function of

the co-variances of radar and rain gauge estimation er-

rors. When VεRD
t
�VεRG

t
(or Kt ≈ 1, i.e. radar estimates

have significantly higher uncertainty than the rain gauge

ones), the radar estimates are less trustworthy and the

output estimates will be very similar to the interpo-

lated rain gauge field. In contrast, when VεRG
t
�VεRD

t

(or Kt ≈ 0), the output will be closer to the radar esti-

mates.

It is in steps b and c where the problems associated with the

Bayesian merging technique, and geostatistical techniques in

general, arise. The (second-order) co-variance function that

these techniques employ to characterise radar–rain gauge er-

rors cannot well capture local singularity structures. Instead,

in second-order models singularities may be mistakenly re-

garded as errors in the radar data, thus leading to higher esti-

mated radar uncertainty, VεRD
t

. As a result, the radar data will

be trusted less, leading to smoother merged outputs, which

are closer to the interpolated rain gauge field.

2.2 Local singularity analysis

Various types of hazardous geo-processes, including precip-

itation, often result in anomalous amounts of energy release

or mass accumulation confined to narrow intervals in time

and/or space. The property of anomalous amounts of energy

release or mass accumulation is termed singularity and it is

often associated with structures depicting fractality or multi-

fractality (Agterberg, 2007; Cheng, 1999; Lovejoy and Man-

delbrot, 1985; Schertzer and Lovejoy, 1987). Several math-

ematical models and methodologies have been developed to

respectively characterise and treat singularities. In this work,

the local singularity analysis proposed by Cheng et al. (1994)

has been adopted to identify and extract singularities form

rainfall fields. Cheng’s method, which has been widely used

for estimation of geo-chemical concentrations (Agterberg,

2007; Cheng and Zhao, 2011; Cheng et al., 1994), employs

the definition of coarse Hölder exponent to characterise sin-

gularities. According to this model, singularities are defined

by the fact that the areal average measure (in this work, areal

rainfall) centred on point x (taken as the centre of a radar

pixel) varies as a power function of the area (Evertsz and

Figure 2. Schematic of the local singularity analysis (adapted from

Wang et al., 2014).

Mandelbrot, 1992). This power-law relationship can be for-

mulated as an equation (Cheng et al., 1994):

ρ(x,ε)= c(x)εα(x)−E, (3)

where ρ(x, ε) represents the density of measure (e.g. con-

centration of geo-data; in the context of this paper, rainfall

intensity) over a square area with side-length l and associ-

ated scale ε (ε= l/L, whereL is the side-length of the largest

square area under consideration) centred at a specific loca-

tion x; c(x) is a constant value (in the context of this paper,

a constant intensity value) at x; α(x) is the singularity index

(or the coarse Hölder exponent); and E= 2 is the Euclidean

dimension of the plane.

A schematic of the estimation of the constant value c(x)

and singularity index α(x) from gridded data is provided in

Fig. 2. For a given pixel with centre x (centre of top plot in

Fig. 2), the mean rainfall intensities at different spatial scales

(centred in x) can be calculated (i.e. rainfall intensities ρ1,

ρ2, . . .,ρn, respectively at scales ε1, ε2, . . .,εn). Then, the log-

arithms of these mean values and the associated spatial scales

are compared (bottom plot in Fig. 2). The constant value c(x)

and singularity index α(x) of the data set can be derived by

applying a simple linear regression analysis, where the slope

and the y-intercept of the regression line correspond, respec-

tively, to the terms (α(x)−E) and log c(x). A detailed expla-

nation of the computation of c(x) and α(x) can be found in

previous studies (Agterberg, 2012b; Chen et al., 2007; Cheng

et al., 1994). It is worth mentioning that the estimation of
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c(x) and α(x) can be trusted only if a good linear relation is

observed (i.e. if the scaling behaviour is well followed).

Going back to the definition of singularity, Eq. (3) consti-

tutes a useful tool to decompose an areal rainfall intensity at

a given location x into two components (Wang et al., 2012):

(1) the background (or non-singular, NS) magnitude c(x),

which is invariant as measuring scale ε changes and is more

approximately normal than the original field; and (2) a local

“scaling” multiplier, the magnitude of which changes as the

measuring scale ε changes, according to the local singularity

index α(x). When α(x)< 2, the rainfall magnitude strikingly

increases as the measuring scale ε decreases (namely local

enrichment); this corresponds to a “peak” singularity. In con-

trast, when α(x)> 2, the rainfall magnitude decreases as ε

decreases (i.e. local depletion), and it is therefore a “trough”

singularity. When α(x)= 2, there is no singularity: the rain-

fall intensity ρ(x, ε) within a ε× ε area remains the same as

scale changes (i.e. ρ(x, ε)= c(x)).

In practice however, there is a drawback to this local sin-

gularity analysis. Because it carries out a “local” analysis,

the singularity exponents are usually obtained from a small

number of data samples. This increases the uncertainty of

the estimation of α(x). The consequence of this drawback is

that the singularity is incorrectly estimated or incompletely

extracted; therefore, c(x) is an unreliable or incomplete non-

singular value. To circumvent this, two numerical strategies

were employed in this study. The first one involves constrain-

ing the value of the estimated singularity exponents within a

certain range. This can avoid obtaining unreasonably large

or small singularity exponents. A number of ranges, sym-

metric to the non-singular condition (i.e. α(x)= 2), were se-

lected for testing. They are (from the widest to narrowest

intervals): SIN1= [0, 4], SIN2= [0.5, 3.5], SIN3= [1, 3],

SIN4= [1.5, 2.5] and SIN5= [1.75, 2.25]. These “truncated”

singularity ranges were empirically chosen according to the

authors’ experience and the fact that the distribution of α(x)

is seldom largely skewed to a specific side of α(x)= 2. It

can be generally expected that, the wider the range is, the

more singularity information (both local enrichment and de-

pletion) from the radar images is taken into account in the

merging process. The impact of different singularity ranges

in rainfall estimation and hydraulic simulation is further dis-

cussed in Sect. 3.3.

The second numerical strategy is to decompose the rainfall

field using an iterative procedure (Agterberg, 2012b; Chen

et al., 2007):

c(k−1)(x)= c(k)(x)εα
(k)(x)−E, (4)

where the iterative index k =,0,1,2, . . .,n. As k= 0,

c(−1)(x)= ρ(x, ε) (i.e. the original value) and c(0)(x) is

the “calculated non-singular” value from the first iteration,

which is equal to c(x) from the non-iterative calculation

above (Eq. 3). This c(0)(x) is then used as the left-hand-side

value of Eq. (4) to calculate the “non-singular” value at the

next iteration, and so on. Substituting Eq. (4) into Eq. (3), one

can obtain an iterative local singularity analysis equation:

ρ(x,ε)= c∗(x)εα
∗(x)−E, (5)

where{
c∗(x)= c(n)(x)

α∗(x)= α(0)(x)+
∑n
k=1

(
α(k)(x)−E

)
.

(6)

The criterion to terminate the iteration procedure is when

α(k)(x)≈E (which is equivalent to c(k−1)(x)≈ c(k)(x)).

That means the singularity components have been clearly re-

moved from the data.

Moreover, in this work a spatial-scale range of 1–9 km,

which results in a total of five rainfall intensity samples (at

scales 1, 3, 5, 7 and 9 km), was used in the singularity anal-

ysis. This range was selected for two main reasons. Firstly,

our analyses revealed that a good linear behaviour was gener-

ally observed within this scale range, while small-scale struc-

tures were still preserved in the resulting rainfall product. As

such, the selected spatial scale range was deemed to repre-

sent a good balance between estimation uncertainty (which

depends upon the number of samples employed in the cal-

culations) and local feature preservation. Secondly, a scaling

break at approximately 8–16 km has been reported in studies

in which 1 km radar rainfall data were analysed (Gires et al.,

2012; Tchiguirinskaia et al., 2012). This means that the rain-

fall data at spatial-scale regimes ranging from 1 to 8–16 km

comply with the same or similar statistical or physical be-

haviour. This scaling range has also been used in other appli-

cations to represent relatively local characteristics of rainfall

fields (Bowler et al., 2006).

Lastly, a 10-iteration singularity analysis was applied in

order to ensure that most of the singularity exponents could

be extracted. The downside of conducting many iterations

is the longer computational time, which may be an issue

for real-time applications. Nonetheless, in practice, approxi-

mately 4–6 iterations are sufficient for effectively removing

most of the singularity.

2.3 Incorporation of the local singularity analysis into

the Bayesian merging method

The underlying idea of the proposed method is to use the lo-

cal singularity analysis to decompose each radar image into

a non-singular image and a singularity map before applying

the Bayesian merging (step (i) in Fig. 1b). The non-singular

radar image (NS-RD), which has a distribution closer to nor-

mality (thus being more suitable for Gaussian-based treat-

ments), is merged with the point rain gauge data following

the Bayesian procedure. This yields a non-singular Bayesian

merged field (NS-BAY). Afterwards, the singularity map is

applied back and proportionally to the NS-BAY merged field

(step (ii) in Fig. 1b), thus yielding a singularity-sensitive

merged field (SIN). This is done by multiplying each pixel
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Figure 3. Portobello catchment (a) general location; (b) sensor location, sewer network and radar grid over the catchment. Flow gauges

FM 3, 10, 14 and 19 (the circled round markers in (b), respectively located at the up-, mid- and downstream parts of the catchment) are

particularly selected for visual inspection in Sect. 3.3.2.

value of the NS-BAY field by the following ratio:

r(x)= εα
∗(x)−E (7)

which corresponds to the ratio difference between the orig-

inal radar field (RD) and the non-singular radar field (NS-

RD). In this way, a singularity-sensitive merged field (SIN),

which better retains the local singularity structures embedded

in the original RD field, is obtained.

It is worth noting that the proposed singularity-sensitive

merging method does not always increase the reliability of

RD estimates. Such increase only happens when the RD es-

timates exhibit high singularity and thus cannot be well han-

dled using Gaussian approximations.

A particular phenomenon which may cause problems in

the application of the proposed methodology and is therefore

worth highlighting is the eventual presence of singularity

structures in the interpolated rain gauge field (i.e. BK field)

and in the resulting supposedly non-singular Bayesian (NS-

BAY) merged field. While BK fields are generally highly

smooth, singularity structures may appear in the special case

in which a rain gauge is located within a convective cell or

a local depletion. Singularity structures in the BK field may

be preserved in the NS-BAY field. When this is the case, the

application of the singularity map back and proportionally to

the NS-BAY field may result in double-counting of singular-

ities. This can ultimately result in a merged (SIN) product

with more singularities than those originally observed in the

radar image. In order avoid this, a “moving window” smooth-

ing has been applied to the BK field before it is merged with

the NS-RD field. That is, each pixel value of the BK field is

replaced by the mean of the original value and neighbouring

pixel values within a 9 km diameter (which is equal to the

coarsest scale considered in the local singularity analysis). In

this way singularity structures potentially present in the BK

field are smoothed-off.

3 Case study

The proposed SIN merging method is tested using as case

study four storm events observed in the Portobello catchment

(Edinburgh, UK) during 2011 and for which radar estimates,

dense rain gauge and flow records, as well as a recently cal-

ibrated urban drainage model were available. Portobello is a

coastal town located 5 km to the east of the city centre of

Edinburgh, along the coast of the Firth of Forth, in Scot-

land (Fig. 3a). The catchment is predominantly urban, of res-

idential character. It stretches over an area of approximately

53 km2, of which 27 km2 are drained by the sewer system. Of

the drained area, 46 % corresponds to impervious surfaces.

This includes a small western part of Edinburgh city centre

and the surrounding southwestern region. The storm water

drainage system is predominantly combined with some sep-

arate sewers and drains from the southwest to the northeast

(towards the sea).

3.1 Available models and data sets

3.1.1 Urban storm-water drainage model

A semi-distributed model of the storm-water drainage sys-

tem of the Portobello catchment, including its sewer sys-

tem (Fig. 3b), was set up by the water utility of the area

in the commercial modelling package InfoWorks CS v13.0.

In this model the whole catchment surface is split into sub-

catchment units through which rainfall is applied (within

each sub-catchment rainfall is assumed to be uniform). Each

sub-catchment comprises a mix of pervious and impervi-

ous surfaces whose runoff drains to a common outlet point,

which corresponds to an inlet node of the sewer system (i.e. a

gully or a manhole). Each sub-catchment is characterised by

a number of parameters, including total area, length, slope,

proportion of each land use, amongst others. Based upon
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Table 1. Selected rainfall events over the Portobello catchment.

Event Date Duration RG total RG peak RD total RD peak

(h) (mm) intensity (mm) intensity

(mm h−1) (mm h−1)

Storm 1 6–7 May 2011 7 9.25 11.21 9.67 7.93

Storm 2 23 May 2011 7 7.70 5.03 11.02 4.10

Storm 3 21–22 Jun 2011 24 32.96 8.46 26.21 3.33

Storm 4 8 Jun 2011 11 5.03 7.11 4.69 2.41

Note: the accumulation and peak intensity values shown in this table correspond to areal mean values for the entire

domain under consideration (as shown in Fig. 3b).

these parameters, the runoff volume at each sub-catchment

is estimated using the NewUK rainfall–runoff model (Os-

borne, 2001). The estimated runoff is then routed to the sub-

catchment outlet using the Wallingford (double linear reser-

voir) model (HR Wallingford, 1983). Sewers are modelled

as one-dimensional conduits and flows within them are sim-

ulated based on the full de Saint-Venant equations (i.e. fully

hydrodynamic model).

The Portobello model contains a total of 1116 sub-

catchments, with areas ranging between 0.02 and 24.42 ha

and a mean area of 2.3 ha. Sub-catchment slopes range

from 0.0 to 0.63 m m−1, with a mean slope of 0.031 m m−1.

The model of the sewer system comprises 2917 nodes and

2907 conduits, in addition to 14 pumps. The total length

of modelled sewers is 250 km. The sewer system ranges in

height from 186.6 mAOD at Comiston to 3.8 mAOD along

the Firth of Forth. 2 % of the modelled pipes have a gradient

between 0.1 and 0.25 m m−1, 55 % have a gradient between

0.01 and 0.1 m m−1, and 43 % have a gradient< 0.01 m m−1.

Following UK standards (WaPUG, 2002) and using solely

rain gauge data as input, the model of the Portobello catch-

ment was manually calibrated in 2011 based upon three

storm events recorded during the medium-term flow sur-

vey described below. For the three storm events used for

model calibration, the following mean performance statis-

tics were obtained: Nash–Sutcliffe efficiency of 0.5782, root

mean square error of 0.0373 m3 s−1, coefficient of determi-

nation (R2) of 0.7756 and regression coefficient (β), which

provides a measurement of conditional bias, of 0.8826.

3.1.2 Local monitoring data (medium term survey)

Local rainfall and flow data were collected in the Porto-

bello catchment through a medium-term flow survey carried

out between April and June 2011. The survey comprised

12 tipping bucket rain gauges and 28 flow monitoring sta-

tions (each comprising a depth and a velocity sensor, based

upon which flow rates were estimated). Both rain gauge and

flow records were available at a temporal resolution of 2 min.

However, rain gauge records were linearly interpolated to

5 min, in order to ensure agreement with the temporal resolu-

tion at which radar estimates were available (see Sect. 3.1.3).

The location of the local flow and rain gauges is shown in

Fig. 3b.

3.1.3 Radar rainfall data

The Portobello catchment is within the coverage of C-band

radars operated by the UK Met Office (Fig. 3b). Radar rain-

fall estimates for the same period as the local flow survey

(i.e. April–June 2011) were obtained through the British At-

mospheric Data Centre (BADC). These estimates were avail-

able at spatial and temporal resolutions of 1 km and 5 min,

respectively, and correspond to a quality controlled multi-

radar composite product generated with the UK Met Office

Nimrod system (Golding, 1998), which incorporates correc-

tions for the different errors inherent to radar rainfall mea-

surements, including identification and removal of anoma-

lous propagation (e.g. beam blockage and clutter interfer-

ence), attenuation correction and vertical profile correction

(for a full description of the Nimrod system, the reader may

refer to Harrison et al. (2000, 2009)).

3.1.4 Storm events selected for analysis

During the monitoring period (April–June 2011), four rel-

evant storm events were captured which comply with

UK standards for calibration and verification of urban

drainage models (i.e. these events have instantaneous rainfall

rates> 5 mm h−1 and accumulation> 5 mm) (Gooch, 2009).

Three of these events (referred to as Storms 1, 2 and 3) were

used for calibration of the urban drainage model of the Por-

tobello catchment (following UK standards, as mentioned

above). In this study, all four storm events, including one not

used in the calibration of the model (Storm 4), were used to

test the proposed singularity-sensitive merging method. The

dates and main statistics of the four selected events are sum-

marised in Table 1. It is worth mentioning that, given the

response time of the catchment, as well as inter-event time

definition thresholds (IETD) recommended in the literature

(Guo and Adams, 1998), a minimum IETD of 6 h was used

as criteria to differentiate rainfall events.

As can be seen in Table 1, Storms 1, 2 and 4 are of rel-

atively short duration, whilst Storm 3 is of much longer du-
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ration. Moreover, well-structured storm cell clusters crossing

the catchment area can be found in Storms 1, 3 and 4, but not

in Storm 2. This is reflected in the lower RG peak intensity

observed in Storm 2.

3.2 Evaluation methodology

The performance of the proposed singularity-sensitive

Bayesian method (SIN hereafter) is assessed by inter-

comparison against radar (RD), rain gauge (RG) and block-

kriged (BK) interpolated RG estimates, as well against

adjusted estimates resulting from the original Bayesian

(non singularity-sensitive) technique (BAY) and the com-

monly used mean field bias (MFB) adjustment method.

It is important to note that, in this work, the MFB was

implemented in a relatively dynamic way by comput-

ing a sample cumulative bias (Bt ) at each time step as

Bt =
∑

RGcatchment/
∑

RDco-located, where RGcatchment and

RDco-located represent the rain gauge and the co-located radar

grid rainfall estimates over the experimental catchment dur-

ing the last hour. The MFB adjusted estimates are obtained

by multiplying the bias (Bt ) at each particular time step by

the original rainfall field; that is, MFB=Bt ·RD.

Two evaluation strategies were applied:

1. Through analysis of the different rainfall estimates, us-

ing as main reference local rain gauge records, while

also inter-comparing the behaviour of other estimates.

2. Through analysis of the hydraulic outputs obtained by

feeding the different rainfall estimates as input to the hy-

draulic model of the Portobello catchment and compar-

ison of these with available flow records. Note that the

RG estimates were applied to the model using Thiessen

polygons.

Both evaluation strategies have inherent limitations which

are next described. However, they provide useful and com-

plementary insights into the performance of the proposed

merging method.

The first strategy is a natural and widespread way of as-

sessing the performance of rainfall products. However, the

fact that all precipitation estimates entail errors and that the

true rainfall field is unknown, in addition to the differences

in the spatial and temporal resolutions of RG and RD esti-

mates (and the resulting merged rainfall products), renders

any direct comparison of rainfall estimates imperfect (Bran-

des et al., 2001). In the particular case of rain gauge records,

which are used as main reference in the present investiga-

tion, errors can arise from a variety of sources (Einfalt and

Michaelides, 2008). In order of general importance, system-

atic errors common to all rain gauges include errors due to

wind field deformation above the gauge orifice, errors due

to wetting loss in the internal walls of the collector, errors

due to evaporation from the container, and errors due to in-

and out-splashing of water. In addition, tipping bucket rain

gauges, such as the ones used in this investigation, are known

to underestimate rainfall at higher intensities because of the

rainwater amount that is lost during the tipping movement of

the bucket (La Barbera et al., 2002). This is a systematic er-

ror unique to the tipping bucket rain gauge and is of the same

order of importance as wind-induced losses. Besides these

systematic errors, tipping bucket rain gauge records are also

subject to local random errors, mainly related to their discrete

sampling mechanism (Ciach, 2003; Habib et al., 2008). The

order of magnitude of the two main error sources associated

with tipping bucket rain gauges is 2–10 % for wind-induced

losses (depending on wind speed, weight of precipitation and

gauge construction parameters) (Sevruk and Nešpor, 1998)

and up to 10 % for rainfall intensities of 100 mm h−1 and

20 % for intensities of 200 mm h−1, for water losses dur-

ing the tipping action (Luyckx and Berlamont, 2001; Molini

et al., 2005). Given that the storm events under investigation

were not extremely heavy and that a basic quality-control

was applied to ensure the quality of rain gauge measurements

(e.g. manual comparison between neighbouring rain gauge

data), the rain gauge records used in this study can be deemed

acceptable as reference for the evaluation of other rainfall

products. However, they are not perfect and the reader must

keep in mind that the true rainfall field remains unknown.

The second strategy (i.e. hydraulic evaluation) allows

some of the limitations of the rainfall evaluation strategy

to be overcome, and is particularly useful when dense flow

records are available, as is the case in the Portobello catch-

ment. However, it has two main deficiencies: the fact that

flow records (obtained based upon depth and velocity mea-

surements) used in the evaluation contain errors, and the fact

that the hydraulic modelling results encompass uncertainties

from different sources in addition to rainfall input uncertainty

(Deletic, 2012; Kavetski et al., 2006). In this regard, it is

worth reminding the reader that the hydraulic model used

in this study was calibrated using as input RG data. In fact,

the model was calibrated based upon the data of Storms 1–3,

which are used for testing in the present paper (Storm 4 is the

only event not used in the calibration of the model). Since the

model was “attuned” for RG inputs, it favours all RG-derived

(and RG-emulating) rainfall estimates. Moreover, the rela-

tively coarse spatial resolution of rainfall inputs (in this case

∼ 1 RG/4.4 km2) may have led to further biases in the model

(Kavetski et al., 2006). It would be desirable to re-calibrate

the hydraulic model using as input the different rainfall prod-

ucts analysed in this study. However, this would entail a sig-

nificant amount of work which falls outside of the scope of

the present study. In spite of these limitations, we believe that

the hydraulic evaluation strategy using the currently available

hydraulic model still provides useful insights into the perfor-

mance of the proposed SIN merging method in relation to

other rainfall estimates, and complements the findings of the

rainfall analysis.

Hydrol. Earth Syst. Sci., 19, 4001–4021, 2015 www.hydrol-earth-syst-sci.net/19/4001/2015/



L.-P. Wang et al.: Singularity-sensitive data merging 4009

3.2.1 Methodology for analysis of rainfall estimates

The performance of the SIN rainfall products in relation to

other rainfall estimates (including RD, RG, BAY and MFB)

is evaluated in terms of accumulations and rainfall rates at

the areal level (i.e. at a scale corresponding to the area over

which the Portobello catchment stretches) and at individual

point gauge locations. In addition, a qualitative assessment of

the spatial structure of the different (gridded) rainfall prod-

ucts is carried out based upon visual inspection of images of

the rainfall fields at the time of areal average peak intensity.

In view of the high density and coverage of the RG net-

work over the Portobello catchment, the areal average RG

estimates in the areal level analysis are assumed to be a good

approximation of the “true” areal (average) rainfall over the

experimental catchment (i.e. the areal reduction effect is ex-

pected to be minor – Bell, 1976) and are therefore used as

reference to evaluate the performance of the different areal

gridded rainfall estimates. The areal analysis includes com-

parison of event areal average accumulations and peak in-

tensities, as well as comparison of intensities throughout the

duration of each event (through scatterplots using RG areal

average intensities as reference).

In the analysis of rainfall estimates at rain gauge point lo-

cations a cross-validation strategy was adopted and three per-

formance statistics are used. The cross-validation strategy,

also referred to as “leave-one-out”, is an iterative method in

which, at each iteration, data from one RG site is omitted

from the calculations and the value at the “hidden” (i.e. omit-

ted) location is estimated using the remaining data. Perfor-

mance statistics are then computed from the comparison be-

tween the estimated and the known (but not used) values

(Velasco-Forero et al., 2009). The following three perfor-

mance statistics are used in the present study. Firstly, a sam-

ple bias ratio (B) is used to quantify the cumulative bias be-

tween gridded rainfall estimates (i.e. RD, BK, MFB, BAY

and SIN) and RG estimates at each RG location over the

event period under consideration. B = 1 means no cumu-

lative bias between the RG and the given gridded rainfall

estimates (i.e. equal rainfall accumulation recorded by RG

and the gridded product at the given gauge location); B > 1

means that the accumulations of the gridded estimates at the

point locations are greater than those recorded by RG, and

B < 1 means the opposite. In addition to the comparison of

rainfall accumulations, a simple linear regression analysis

is applied to each pair of “instantaneous” (rain rate) point

RG records and the co-located gridded estimates. The re-

sults of the regression analysis are presented in terms of R2

(coefficient of determination) and β (regression coefficient,

i.e. the slope or gradient of the linear regression). These two

measures provide an indication of how well RG rates are

replicated by the different rainfall estimates at each gaug-

ing location, both in terms of pattern and accuracy. The R2

measure ranges from 0 to 1 and describes how much of

the “observed” (RG) variability is explained by the “mod-

elled” (RD/BK/adjusted) one. In practical terms,R2 provides

a measurement of the similarity between the patterns of the

observed (i.e. RG) and “modelled” (i.e. gridded estimates)

rainfall time series at a given gauging location. However, sys-

tematic bias (under- or over-estimation) of the modelled es-

timates cannot be detected from this measure (Krause et al.,

2005). The regression coefficient, β, is therefore employed

to provide this supplementary information to the R2. β ≈ 1

represents good agreement in the magnitude of the rainfall

rates recorded by RG and those of the gridded estimates;

β > 1 means that the rain rates associated with the gridded

estimate are higher in the mean (by a factor of β) than those

recorded by RG; and β < 1 means the opposite (i.e. rain rates

of gridded estimates are lower in the mean than RG ones).

3.2.2 Methodology for analysis of hydraulic outputs

A qualitative analysis of the hydraulic outputs is carried out

based upon visual inspection of recorded vs. simulated flow

hydrographs (for the different rainfall inputs) at different

points of the catchment. Furthermore, similar to the rain-

fall analysis, a simple linear regression analysis is applied

to each pair of recorded and simulated flow time series (at

each flow gauging location). The performance of the asso-

ciated hydraulic simulations is evaluated using the R2 and

β statistics obtained from the linear regression analysis. In

addition, the “weighted” coefficient of determination (R2
w) is

employed to quantify the joint performance of hydrological

efficiency. This measure is defined as (Krause et al., 2005)

R2
w =

{
|β| ·R2 for β ≤ 1

|β|−1
·R2 for β > 1,

(8)

where higher R2
w values correspond to better hydraulic per-

formance.

In order to minimise the influence of the errors in the

flow measurements, the available flow records were quality-

controlled (QC) before carrying out the statistical analysis

of hydraulic outputs. The QC was carried out following UK

guidelines (WaPUG, 2002). It included analysis of depth

vs. flow scatterplots at each monitoring location (the shape

and spread of the resulting scatterplots provides insights into

the quality and consistency of depth and velocity records at

each site), as well as visual inspection of the observed hy-

drographs at each location. Whenever a flow monitor was

deemed unreliable, it was manually removed from the analy-

sis. Likewise, with the purpose of preventing systematic hy-

draulic modelling errors from affecting results, whenever the

model was found to be unable to replicate the recorded flows

at a given location, the given flow monitor was also manually

removed from the analysis. This left us with a total of 16 flow

monitors for analysis. Moreover, all records associated with

depth measurements below 0.1 m were left out when estimat-

ing performance statistics; this is due to the fact that at low

depths, both velocity and depth records become unreliable

(the 0.1 m threshold was adopted based upon UK guidelines
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Table 2. Areal average rainfall accumulations and peak intensities

for the different rainfall products.

Input Storm 1 Storm 2 Storm 3 Storm 4

AVG rainfall RG 9.25 7.70 32.96 5.03

accumulation RD 9.80 11.02 26.21 4.69

(mm) BK 8.87 7.77 31.41 4.08

MFB 8.64 7.25 31.87 4.55

BAY 8.76 7.79 27.24 3.81

SIN1 9.37 7.95 33.37 4.82

SIN2 9.37 7.95 33.38 4.83

SIN3 9.38 7.95 34.43 4.85

SIN4 9.41 7.96 33.73 4.94

SIN5 9.61 8.04 31.57 5.23

AVG rainfall peak RG 11.21 5.03 8.46 7.11

intensity over 5 min RD 7.93 4.10 3.33 2.41

(mm h−1) BK 10.66 4.54 7.59 5.09

MFB 9.06 4.68 4.05 3.34

BAY 10.47 3.80 6.82 4.92

SIN1 13.17 5.08 8.00 6.97

SIN2 13.17 5.08 8.00 6.97

SIN3 13.17 5.08 8.00 6.98

SIN4 13.19 5.08 8.01 7.03

SIN5 13.53 5.09 8.27 7.25

and recommendations from studies focusing on the perfor-

mance of flow gauges; Marshall and McIntyre, 2008).

3.3 Results and discussion

3.3.1 Rainfall estimates

Areal rainfall estimates

Table 2 shows the areal average (AVG) accumulations and

peak intensities for the different rainfall products for the four

storm events under consideration. As can be seen, the differ-

ence between RD and RG event areal average accumulations

is generally small, yet it is event-varying. For Storms 1 and 2,

the areal average RG totals are slightly overestimated by the

RD estimates, while for Storms 3 and 4 they are underesti-

mated, with the underestimation being largest in Storm 3. In

terms of areal average peak intensities, RD estimates appear

to consistently underestimate the areal average peak intensi-

ties recorded by RG. The relative difference between RG and

RD areal average peak intensities is approximately 20–30 %

for Storms 1 and 2, and it is as high as 60 % for Storms 3

and 4. This indicates that the RD estimates could not satisfac-

torily capture instantaneous rainfall rates, particularly high

rainfall rate values, and corroborates the need for dynamic

adjustment of RD estimates using local RG measurements.

As would be expected, the BK estimates exhibit areal av-

erage accumulations and peak intensities similar to those of

the RG. Small differences are observed (in general BK val-

ues are slightly lower than RG ones) which can be generally

attributed to the area-point rainfall differences (Anagnostou

and Krajewski, 1999). These differences become more evi-

Figure 4. Histogram of singularity exponents (α) at the time of areal

peak intensity for the four selected storm events.

dent when analysing results at individual gauge locations (in

next section).

When looking at the adjusted rainfall products (i.e. MFB,

BAY and SIN), it can be seen that all of them can improve

the original RD estimates, but the degree of improvement is

different for each method. As expected, the MFB success-

fully reduces the difference in event areal average accumula-

tions (i.e. bias), leading to areal average accumulations close

to those recorded by RG. In terms of peak intensities, the

MFB method leads to some improvement, but the resulting

peak intensities are still significantly lower than the RG ones.

Although the MFB was applied dynamically with an hourly

frequency of bias correction, these results suggest that more

dynamic and spatially varying (higher order) methods than

the MFB are required in order to successfully adjust radar

rainfall estimates for urban hydrological applications.

The BAY estimates show the least improvement in terms

of event bias, with a general tendency to underestimate RG

areal accumulations, which is even more marked than for BK

estimates. This is particularly the case in Storms 3 and 4,

in which strong singularity structures, as represented by the

high frequency of α values different from 2 (Fig. 4), were ob-

served. This tendency to underestimate can be attributed to a

combined effect of the BAY method “over-trusting” the BK

estimates (which show a slight underestimation tendency at

the areal level), in addition to smoothing off the singularity

structures (often associated to strong intensities) originally

present in the RD image. With regard to peak intensities, the

BAY estimates display a larger improvement than the MFB

ones, which demonstrates the benefits of more dynamic and

spatially varying adjustment methods. However, the areal av-

erage peak intensities of the BAY estimates still underesti-

mate the “true” (RG) areal peak intensities. Lastly, the SIN

estimates, particularly SIN ranges 1–4, exhibit very good

performance: both areal average accumulations and peak in-

tensities of SIN estimates are close to those of RG, and no

systematic over- or underestimation is observed in SIN esti-

mates. The better performance of SIN estimates suggests that

the singularity analysis can in fact improve the original BAY

merging method. With regard to the impact of the singular-

ity range, it can be seen that, as the range becomes narrower
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Figure 5. Scatterplots of instantaneous areal average RG vs. RD/BK/MFB/BAY/SIN rainfall rates over the Portobello catchment for the four

selected events, where SIN1–SIN5 represent the SIN estimates with different “truncated” singularity ranges (from widest to narrowest).

(from SIN1 to SIN5), the areal accumulations and peak in-

tensities tend to be higher. A particular steep increment is

observed in the areal accumulations and peak intensities of

SIN5, in relation to the other singularity ranges, which re-

sults in a slight overestimation of accumulations and peak

intensities, as compared to the RG estimates. This is espe-

cially apparent in Storms 3 and 4. The increment in rainfall

accumulation and peak intensities as the singularity range

becomes narrower can be explained by the fact that at nar-

rower ranges, only part of the singularity structures are re-

moved before merging, and a big proportion of them remains

in the radar image. This is evident from Fig. 4, where it can

be seen that for Storms 3 and 4 a significant number of sin-

gularity exponents spread beyond the narrowest singularity

range (i.e. SIN5: α ∈ [1.75, 2.25]). The problem arises be-

cause some singularity features remain in the radar image be-

fore the BAY merging is applied, and these may be partially

preserved throughout the merging process. Afterwards, when

the extracted singularity component is applied back and pro-

portionally to the merged rainfall field, it may interact (in a

nonlinear fashion) with the singularity structures preserved

throughout the BAY merging, thus leading to an overestima-

tion of extremes (whether these are enrichments or deple-

tions). These results suggest that a better approach is to be

sure to remove most of the singularity structures before car-

rying out the merging. Therefore, very narrow ranges such

as SIN5 should be avoided. In fact, it can be seen that the in-

termediate range of SIN3 (i.e. α ∈ [1, 3]) covers most singu-

larity exponents (see Fig. 4). Indeed, using wider singularity

ranges leads to very similar results as those obtained when

using the SIN3 range (notice the similarity between SIN1,

SIN2 and SIN3 estimates in Table 2). This suggests that the

singularity range of [1, 3] is appropriate.

Figure 5 shows a further comparison of instantaneous areal

average RG intensities vs. areal average BK, RD, BAY and

SIN intensities throughout each of the storm events under

consideration. As expected and in line with the analysis

above, the areal BK estimates are generally in good agree-

ment with areal RG estimates. Some underestimations can be

observed at high RG rainfall intensities; nonetheless, most of

them are fairly minor and are still within a reasonable range,

which can be attributed to areal-point differences. With re-

gard to the RD estimates, it can be seen that they tend to

overestimate small rainfall intensities and underestimate the
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peak intensities, with underestimation being more evident in

the events with relatively high intensities (i.e. Storms 1, 3

and 4). Unlike BK estimates, the difference between areal

RD and RG peak intensities is too large to be entirely ex-

plained by areal-point differences. The fact that the RD esti-

mates display relatively good performance in (long-duration)

accumulations but not in (short-duration) instantaneous in-

tensities corroborates the claim that RD estimates fail to cap-

ture the short-term dynamics of small-scale rainfall. As men-

tioned in Sect. 1, the main reason for this lies in the use of

a static Z–R conversion function, which represents a statisti-

cal compromise for the range of rainfall rates that frequently

occur (whereas the occurrence of very small and large in-

tensities is relatively rare). Concerning the MFB method,

from Fig. 5 it can be seen that it fails to satisfactorily im-

prove RD instantaneous rainfall rates; this is particularly ev-

ident at high intensities, at which, similarly to RD estimates,

MFB estimates perform poorly. An accurate representation

of peak intensities is of outmost importance in the modelling

and forecasting of urban pluvial flooding. This confirms that,

being a first-order technique, the MFB adjustment method

may be insufficient for urban-scale applications. In contrast,

it can be seen that over- and underestimation errors in RD

estimates can be improved by second- or higher-order ad-

justment techniques, such as BAY and SIN. In fact, in terms

of instantaneous rainfall rates the BAY estimates display a

significantly better performance than the MFB ones. How-

ever, the BAY estimates still fail to properly reproduce the

highest intensities. These shortcomings of the BAY method

seem to be overcome by the incorporation of the singularity

analysis: indeed, the SIN estimates exhibit the best overall

performance, particularly at peak intensities. In agreement

with the results displayed in Table 2, in Fig. 5 it can be seen

that as the singularity range becomes narrower, rainfall es-

timates with slightly higher intensities are generated. More-

over, it can be noticed that wider singularity ranges lead to

more conservative results and appear to be a good choice.

Rainfall estimates at gauging locations

The aforementioned features of the different rainfall esti-

mates are further highlighted through analysis at each rain

gauge location; the associated statistics, including sample

bias (B), regression coefficient (β) and coefficient of deter-

mination (R2), are summarised in Fig. 6.

As expected, the RD estimates (before adjustment) display

the largest differences from point RG estimates: in general,

they possess the largest cumulative bias (B) and the low-

est R2, and their statistics show great variability. Moreover,

the distribution of the β values indicates that RD estimates

tend to largely underestimate RG instantaneous rainfall rates.

This is the case for all storm events, except for Storm 2, for

which rainfall intensities were low on average.

Similarly to the results of the areal (average) analysis, the

individual-site BK estimates display the closest behaviour to

the RG ones. This is of course expected given that the BK

estimates are obtained by simple interpolation of point RG

data. It can be seen that the BK estimates are nearly unbi-

ased (B is very close to 1) and possess the highest R2 medi-

ans (i.e. closest to 1), as well as the narrowest R2 boxes and

whiskers. However, when looking at the distribution of β val-

ues of the BK estimates, it can be seen that most of the time

the whole boxes and whiskers are below 1. This reflects a

systematic underestimation of rainfall rates at point gauging

locations, which is discussed below.

With regard to the adjusted rainfall estimates, the MFB

method is found to bring original radar estimates slightly

closer to RG ones, but the improvement seems insufficient.

As expected, the main improvement of MFB estimates is

found in the bias (B), which is significantly reduced (thus be-

coming closer to 1). In terms of instantaneous rainfall rates,

the improvement provided by MFB is very limited. This is re-

flected in the low R2 values and in the poor β scores, which

remain remarkably close to those of the original RD esti-

mates. Similar to the results of the areal analysis, these re-

sults suggest that the MFB adjustment method is insufficient

for urban-scale applications, in which small-scale rainfall dy-

namics are critical.

When looking at the statistics of the BAY estimates, it can

be noticed that these behave similarly to the BK ones: their

bias is also small, the R2 is generally high and the β values

are systematically below 1. The similarity in the behaviour of

BK and BAY estimates suggests that for the selected events,

the BAY method tends to trust the (smooth interpolated)

BK estimates more than the RD estimates. As explained in

Sects. 1 and 2, this is the main shortcoming of the BAY

method. The systematic underestimation of rainfall rates ob-

served in BK and BAY estimates (reflected by β values sys-

tematically below 1) can be partially explained by the areal

reduction effect. However, considering that the individual-

site comparison was conducted using instantaneous rainfall

estimates for very short time intervals (i.e. 5 min), one would

expect the tendency of the areal-point differences to be of

higher randomness, rather than of a systematic nature. This

suggests that the systematic underestimation may be a joint

consequence of the areal reduction effect and of the under-

lying second-order approximation (which smooths off some

local extreme magnitudes).

With regard to the SIN estimates, it can be seen that their

bias is small (close to 1) and that the distribution of their

R2 values is somewhere between that of the BAY and RD es-

timates. This indicates that, as compared to the original BAY

estimates, the SIN method incorporates more spatial fea-

tures from the RD estimates throughout the merging process,

while retaining the accuracy of the RG estimates. In terms

of β, it can be seen that although the median values are usu-

ally below 1, they are generally much closer to 1 than other

rainfall estimates. Moreover, their distribution is more vari-

able than that associated with BK and BAY estimates (which

display a systematic underestimation). In line with the re-
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Figure 6. Boxplots displaying the distribution of sample bias ratio (B) (left column panels), regression coefficient (β) (middle column panels)

and coefficient of determination (R2) (right column panels) estimated between the different gridded rainfall estimates and RG records at

individual rain gauge locations following a cross-validation approach.

sults of the areal analysis, this serves to further highlight two

important features of the proposed SIN method: it generally

respects the commonly observed areal reduction effect, and

it integrates more small-scale randomness from RD data in

the data-merging process. Regarding the singularity ranges,

a similar behaviour can be observed for all of them, although

a slight tendency can be observed for the bias (B) and β val-

ues to increase as the singularity range becomes narrower.

This is in agreement with the results of the areal analysis and

suggests that working with intermediate ranges, as opposed

to very narrow ones which can truncate the singular struc-

tures, is advisable.

Spatial structure of rainfall fields

Snapshot images of the different gridded rainfall products

at the time of peak areal intensity for the four storm events

under consideration are shown in Fig. 7. Due to space con-

straints, images of only one of the SIN ranges (the interme-

diate one, SIN3: α ∈ [1, 3]) are shown in this figure. As men-
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Figure 7. Snapshot images of the different spatial rainfall products at the time of peak areal intensity for Storms 1 (top panels) to 4 (bottom

panels) over the Portobello catchment. From left to right panels: RD, BK, MFB, BAY and SIN3 (with singularity range [1, 3]) estimates.

The black polygon indicates the boundary of the Portobello catchment, and the black and white markers respectively represent the location

of flow and rain gauges.

tioned in the previous sections, the SIN3 range covers most

of the singularity indices and consistently led to good results

for the storms under consideration.

It can be seen that the spatial structure of the BK rainfall

field (fully based upon rain gauge data) is highly symmet-

ric and smooth, and is rather unrealistic. With regard to the

adjusted rainfall products (MFB, BAY and SIN), it can be

noticed that the proportion of radar (RD) and BK interpo-

lated rain gauge features that are preserved varies accord-

ing to the method. The MFB fields fully inherit the spatial

structure of the RD fields; the only change is that the ac-

tual intensity values are scaled up or down by an areal ratio

derived from the sample bias between mean rain gauge and

radar rainfall estimates. In agreement with the quantitative

results presented above, it can be seen that the structure of

the BAY peak rainfall fields is often similar to that of the

BK ones and is smoother than the original RD image. Sin-

gularity structures are often present in rainfall fields during

peak intensity periods (such as the ones shown in Fig. 7). As

explained in Sect. 2, the presence of these structures causes

the RD fields to be considered highly uncertain and therefore

these are less trusted in the BAY merging process. This re-

sults in BAY peak intensity merged fields closer to the BK

ones, instead of to RD ones. Some spatial features from RD

can be still observed in the BAY fields – for example, in the

lower-right area of the BAY image of Storm 1 and in the
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Figure 8. Observed flows vs. simulated flows with RG, RD, BK,

BAY and SIN3 rainfall inputs at selected flow gauging sites of Por-

tobello catchment during Storm 3. Selected gauging sites: FM3: up-

stream end of the catchment (top panels); FM10: mid-stream area

(bottom panels). The location of the selected monitoring sites is

shown in Fig. 3.

middle-left area of the BAY image of Storm 3 (see Fig. 7,

top). However, these features appear to be much smoother

and spreading over a larger area, as compared to their struc-

ture in the original RD image. As compared to the BAY peak

rainfall fields, the SIN fields display less smooth and more

realistic structures which preserve more features of the orig-

inal RD fields. In general, the inspection of the snapshot im-

ages of the different rainfall products confirms the findings

of the areal and point gauge analyses regarding the ability of

the SIN method to better preserve the singularity structures

present in rainfall fields (and captured by RD) throughout the

merging process, as compared to the original BAY merging

method.

Figure 9. Observed flows vs. simulated flows with SIN1–SIN5 rain-

fall inputs at selected flow gauging sites of Portobello catchment

during Storm 3. Selected gauging sites: FM14: upstream end of a

small branch of the sewer system (top panels); FM19: downstream

end of the catchment (bottom panels). The location of the selected

monitoring sites is shown in Fig. 3.

3.3.2 Hydraulic modelling results

Figures 8 and 9 shows example observed vs. simulated flow

hydrographs for the different rainfall inputs at four gauging

locations (see locations in Fig. 3) during Storm 3. Note that

Storm 3 is an event with high rainfall accumulations, rainfall

rates and strong singularity structures. Figure 10 summarises

the performance statistics resulting from the simple linear re-

gression analysis (i.e. β, R2 and R2
w) conducted at each flow

gauging station for each storm event.

From the hydrographs in Figs. 8 and 9 it can be seen that,

in terms of pattern and timing, all simulated flows (result-

ing from the different rainfall inputs) are generally in good
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Figure 10. Boxplots displaying the distribution of regression coefficient (β) (left column panels), coefficient of determination (R2) (middle

column panels) and weighted coefficient of determination (R2
w) (right column panels) statistics derived from the linear regression analysis

conducted for each pair of recorded and simulated flow time series at each gauging location.

agreement with observations. This indicates that all rainfall

products, including the RD before adjustment, can well cap-

ture the general dynamics of rainfall fields. The main differ-

ence between the simulated flows lies in their ability to re-

produce flow peaks, which in turn is a function of the ability

of the different rainfall estimates to reproduce peak rainfall

rates in terms of magnitude, timing and spatial distribution.

In line with the results of the rainfall analysis, the flow hy-

drographs associated with BK estimates are close to the ones

associated with RG records; however, the former display a

smoother behaviour and generally lead to flow peaks that are

lower than the recorded ones and the ones resulting from RG

inputs. The RD outputs can well match some of the observed

flow peaks, but significantly underestimate others (e.g. flow

peak at around 23 h in FM10); this can be attributed to the un-

derestimation of peak intensities observed in RD estimates.

The MFB associated flows show little improvement over the

RD ones and in many cases they even lead to a worse per-

formance (e.g. see overestimation of peak flows at around

02:00 UTC in FM14 and FM19). This is further confirmed
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by the statistics in Fig. 10 and corroborates the claim that the

application of a “blanket” MFB correction over the area of

interest is insufficient for urban applications. The BAY out-

puts, on the other hand, show a consistent improvement over

the RD outputs. Nonetheless, in agreement with the results

of the rainfall analysis, the BAY estimates behave similarly

to the BK ones and lead to smooth flow peaks which of-

ten underestimate observations. The SIN outputs also show a

consistent improvement over RD estimates, but, unlike BAY

outputs, the SIN outputs do not smooth off flow peaks and

instead show a better ability to reproduce these, sometimes

leading to a better match of observed flow peaks than RG as-

sociated outputs (which were used as input for the calibration

of the model). With regard to the singularity ranges, it can be

seen that the differences observed in the SIN1–SIN5 rainfall

estimates are mostly filtered out when converting rainfall to

runoff. As a result, the flow outputs of all SIN estimates are

very similar and their hydrographs can barely be differenti-

ated.

The preliminary conclusions drawn from the visual in-

spection of the selected hydrographs are corroborated by the

statistics in Fig. 10. As would be expected, the RG outputs

generally show the best performance in all statistics (except

for Storm 2). It is nonetheless noteworthy that the β values

for RG estimates (for which the model was calibrated) are

generally below 1. This reveals a slight bias of the model to

underestimate flows and partially explains the fact that β val-

ues associated with all rainfall inputs are mostly below 1.

With regard to the BK (i.e. interpolated RG) associated out-

puts, the tendency to underestimate, which is observed in the

rainfall analysis, becomes even more evident in the hydraulic

outputs: BK’s β values are significantly lower than 1 and

lower than the β values associated with RG estimates. Dif-

ferent from the results of the rainfall analysis, in which those

products closest to RG estimates (including BK) displayed

the best performance in terms of R2, in the hydraulic analy-

sis BK outputs generally lead to a deterioration in R2 values

(see statistics of Storms 2, 3 and 4). This suggests that the

smoothing caused in the BK interpolation affects the small-

scale dynamics of rainfall fields, leading to poor representa-

tion of associated flow dynamics. Contrary to RG-associated

outputs, RD flow estimates generally display the worst per-

formance. In agreement with the results of the rainfall anal-

ysis, RD outputs show a tendency to largely underestimate

flows (as indicated by β values well below one and much

lower than those obtained for RG outputs). Moreover, they

display relatively lowR2 and associatedR2
w values. Nonethe-

less, a special case is observed in Storm 2, when RD esti-

mates, which in the rainfall analysis displayed the poorest

performance, yielded the best flow simulations, thus empha-

sising the added value that RD estimates can provide, as well

as the complementary information provided by the hydraulic

evaluation strategy. In the cases in which RD outputs per-

form poorly (i.e. in Storms 1, 3 and 4), all adjusted rainfall

estimates lead to improvements over RD hydraulic results,

with the degree of improvement varying according to the ad-

justment technique. In Storm 2, when RD outputs displayed

the best performance, the different merging methods showed

to retain different degrees of RD features. Overall, it can

be seen that the MFB estimates provide little improvement

over the original RD estimates. In the cases in which RD led

to systematic underestimation of flows, the MFB estimates

managed to slightly reduce this underestimation by bringing

β values closer to 1, as compared to those of the original RD

estimates. However, in Storm 2, in which RD outputs per-

formed best, MFB caused a large deterioration of β values,

whereas the SIN estimates managed to keep β scores closer

to 1. In terms of R2, the MFB estimates do not provide much

improvement and can actually lead to a deterioration of this

statistic (e.g. Storms 2 and 4), suggesting that the applica-

tion of the MFB adjustment can alter the spatial-temporal

structure of the original RD fields. The BAY outputs show a

greater improvement than MFB, particularly in terms of R2.

Nonetheless, in agreement with the rainfall analysis and with

the visual inspection of hydrographs, the BAY outputs be-

have remarkably similarly to BK ones. One of the main fea-

tures of the BAY outputs is that they lead to systematically

lower flows than RG estimates (note β values consistently

lower than those of RG outputs). This confirms the smooth-

ing of rainfall peaks that occurs when second-order approx-

imations are applied. Lastly, it can be seen that the SIN out-

puts display the greatest improvement over original RD out-

puts, both in terms of correcting systematic bias, as well as

in terms of well reproducing rainfall and associated flow pat-

terns. As compared to MFB and BAY outputs, the SIN out-

puts generally display β values closer to 1, higher R2 values

(sometimes even higher than those of RG outputs) and con-

sequently higher R2
w values. The better performance of SIN

hydraulic outputs over BAY ones, particularly in terms of β,

provides an a posteriori confirmation that it was right, in the

SIN method, to view the singularities in the radar field as ac-

tual features of the real rainfall. Similarly as was observed in

the hydrographs in Figs. 8 and 9, the performance of the dif-

ferent SIN ranges is very similar. In line with the results of

the rainfall analysis, SIN5 shows a slight tendency towards

higher flows, which sometimes resulted in better hydraulic

statistics. Nonetheless, the differences are small and, based

upon the findings of the rainfall analysis, the adoption of a

wider SIN range and removal of most singularities appears

to be a more conservative option. However, this aspect must

be further investigated using a wider range of storm events

and pilot catchments.

Regarding the difference in hydraulic performance be-

tween the events used for model calibration (i.e. Storms 1–3)

and the independent event (i.e. Storm 4), it can be seen that

the statistics of the hydraulic outputs during Storm 4 are gen-

erally lower than for the other three storm events (Fig. 10).

This can be expected, given that the model was “tuned” to

give a good fit for the calibration events. However, as dis-

cussed above, the general features and relative performance
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of the hydraulic outputs associated with the different rain-

fall inputs was generally consistent in all storm events under

consideration. The particular differences that were observed

were due to the nature of a given storm and not to the fact

that a given event was used for model calibration or not.

4 Conclusions and future work

In this paper, a new gauge-based radar rainfall adjustment

method was proposed, which aims at better merging rainfall

estimates obtained from rain gauges and radars, at the small

spatial and temporal scales characteristic of urban catch-

ments. The proposed method incorporates a local singularity

analysis into the Bayesian merging technique (Cheng et al.,

1994; Todini, 2001). Through this incorporation, the merging

process preserves the fine-scale singularity (non-Gaussian)

structures present in rainfall fields and captured by radar,

which are often associated with local extremes and are gen-

erally smoothed off by currently available radar–rain gauge

merging techniques, mainly based upon Gaussian approxi-

mations.

Using as case study four storm events observed in the Por-

tobello catchment (53 km2) (Edinburgh, UK) in 2011, the

performance of the proposed singularity-sensitive Bayesian

data-merging (SIN) method, in terms of adjusted rainfall

estimates and the subsequent runoff estimates, was eval-

uated and compared against that of the original Bayesian

data-merging (BAY) technique and the widely used mean

field bias correction (MFB) method. This analysis clearly

brought out the benefits of introducing the singularity-

sensitive method. The results suggest that the proposed SIN

method can effectively identify, extract and preserve the sin-

gular structures present in radar images while retaining the

accuracy of rain gauge (RG) estimates. This is reflected

in the better ability of the SIN method to reproduce in-

stantaneous rainfall rates, rainfall accumulations and associ-

ated runoff flows. This method clearly outperforms the com-

monly used MFB adjustment, which simply fails to repro-

duce the dynamics of rainfall in urban areas, and the original

BAY method, which shows an overall good performance but

smooths off peak rainfall magnitudes, thus leading to under-

estimation of runoff extremes.

In this study the sensitivity of the SIN results to the “de-

gree” of singularity that is removed from the radar image and

preserved throughout the merging process was also tested.

While the impact of it was found to be generally small, the re-

sults suggest that partially removing singularities could have

a negative impact on the results. Therefore, removing most

singularity exponents from the original radar image is advis-

able.

While the proposed singularity method has shown great

potential to improve the merging of radar and rain gauge data

for urban hydrological applications, further testing including

more storm events and pilot catchments is still required in or-

der to ensure that the results are not case specific and to draw

more robust conclusions about the applicability of the pro-

posed method. Other aspects on which further work is rec-

ommended are the following:

a. The current version of the singularity-sensitive method

shows a slight tendency to overestimate rainfall rates

and accumulations. This is likely to be due to one of

two aspects, or a combination of them:

– In the eventual case in which a rain gauge is lo-

cated within the core of a convective cell, the re-

sulting interpolated (block-kriged; BK) field may

end up having singularity structures and, as ex-

plained in Sect. 2.3, this may ultimately lead to

“double-counting” of singularities. For the time be-

ing, a moving-window smoothing has been applied

on the BK field before it is merged with the non-

singular radar field, so as to remove singularity

structures potentially present in the BK field. While

this has proven to be an acceptable solution, we

believe it can be further refined. Other methods

for dealing with this particular problem have been

tested, including extraction of singularities from the

point rain gauge records using the singularity ex-

ponents derived from the co-located radar pixels,

and extraction of singularities from the BK field us-

ing local singularity analysis. However, these have

proven unstable and highly uncertain. Further work

to better deal with this issue is required.

– The asymmetric distribution of singularity expo-

nents and the numerical stability of singularity ex-

traction from a small set of data samples. This

drawback could be improved by forcing the mean

of non-singular components to remain equal to the

original radar estimates (Agterberg, 2012a). Alter-

natively, other techniques for singularity identifi-

cation and extraction could be used. For example,

the wavelet transformation (Kumar and Foufoula-

Georgiou, 1993; Mallat and Hwang, 1992; Robert-

son et al., 2003; Struzik, 1999), Principal Com-

ponent Analysis (Gonzalez-Audicana et al., 2004;

Zheng et al., 2007) and Empirical Mode Decom-

position (Nunes et al., 2003, 2005) techniques are

widely recommended in the literature.

b. Given that the proposed singularity-sensitive merging

method is particularly intended to improve rainfall es-

timates for (small-scale) urban areas, it would be inter-

esting to test it using higher spatial-temporal resolution

data (e.g. from X-band radars).

Lastly, a suggestion often made to us and therefore worth

briefly discussing is to use a transformation in order to bring

the distribution of the radar field closer to normality before

the merging (be it with the Bayesian or other geo-statistical
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method) is conducted. However, doing this would somehow

miss the point of the proposed method. The key point here

is that for a non-Gaussian structure, moments beyond the

second order are important, as each brings new information

worth preserving. To create a more “normal” field is not the

purpose of the singularity extraction; instead, it is the conse-

quence after removing singularities from the rainfall fields,

which can be physically associated with abnormal energy

concentration, such as “convective” cells, and which in the

proposed method are set aside to ensure their preservation

throughout the merging process.

The Supplement related to this article is available online

at doi:10.5194/hess-19-4001-2015-supplement.
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Maksimović, Č.: Radar-raingauge data combination techniques:

a revision and analysis of their suitability for urban hydrology,

Water Sci. Technol., 68, 737–747, doi:10.2166/wst.2013.300,

2013.

Wang, L.-P., Ochoa-Rodríguez, S., Willems, P., and Onof, C.: Im-

proving the applicability of gauge-based radar rainfall adjust-

ment methods to urban pluvial flood modelling and forecasting

using local singularity analysis, in: International Symposium on

Weather Radar and Hydrology (WRaH), 7–9April 2014, Wash-

ington, D.C., 10 pp., 2014.

WaPUG: Code of Practice for the Hydraulic Modelling of Sewer

Systems, Wastewater Planning Users Group WaPUG, Chartered

Institute of Water and Environmental Management (CIWEM),

UK, 2002.

Zheng, Y., Hou, X., Bian, T., and Qin, Z.: Effective image fu-

sion rules Of multi-scale image decomposition. in: 5th In-

ternational Symposium on Image and Signal Processing and

Analysis, 27–29 September 2007, Istanbul, Turkey, 362–366,

doi:10.1109/ISPA.2007.4383720, 2007.

www.hydrol-earth-syst-sci.net/19/4001/2015/ Hydrol. Earth Syst. Sci., 19, 4001–4021, 2015

http://dx.doi.org/10.1016/j.advwatres.2011.10.012
http://dx.doi.org/10.1029/JD092iD08p09693
http://dx.doi.org/10.1007/BF01544175
http://dx.doi.org/10.1016/S0273-1223(98)00330-8
http://dx.doi.org/10.1002/asl.85
http://dx.doi.org/10.1016/j.advwatres.2006.09.007
http://dx.doi.org/10.1029/2008WR006840
http://dx.doi.org/10.1016/j.jhydrol.2013.10.056
http://dx.doi.org/10.5194/hess-5-187-2001
http://dx.doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
http://dx.doi.org/10.1016/j.advwatres.2008.10.004
http://dx.doi.org/10.1016/j.jhydrol.2004.08.005
http://dx.doi.org/10.1016/j.jhydrol.2009.11.048
http://dx.doi.org/10.2166/wst.2013.300
http://dx.doi.org/10.1109/ISPA.2007.4383720


Journal of Hydrology 531 (2015) 408–426
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/locate / jhydrol
Enhancement of radar rainfall estimates for urban hydrology through
optical flow temporal interpolation and Bayesian gauge-based
adjustment
http://dx.doi.org/10.1016/j.jhydrol.2015.05.049
0022-1694/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +32 16322236.
E-mail addresses: Lipen.Wang@bwk.kuleuven.be (L.-P. Wang), s.ochoa-rodriguez@

imperial.ac.uk (S. Ochoa-Rodríguez), johan.vanassel@aquafin.be (J. Van Assel),
r.pina13@imperial.ac.uk (R.D. Pina), mieke.pessemier@aquafin.be (M. Pessemier),
stefan.kroll@aquafin.be (S. Kroll), Patrick.Willems@bwk.kuleuven.be (P. Willems),
c.onof@imperial.ac.uk (C. Onof).
Li-Pen Wang a,⇑, Susana Ochoa-Rodríguez b, Johan Van Assel c, Rui Daniel Pina b, Mieke Pessemier c,
Stefan Kroll c, Patrick Willems a, Christian Onof b

a Hydraulics Laboratory, KU Leuven, 3001 Leuven, Belgium
b Department of Civil and Environmental Engineering, Imperial College London, SW7 2AZ, UK
c Aquafin NV, Dijkstraat 8, 2630 Aartselaar, Belgium

a r t i c l e i n f o
Article history:
Available online 2 June 2015

Keywords:
Weather radar
Temporal interpolation
Advection
Urban hydrology
Optical flow
Bayesian merging
s u m m a r y

Rainfall estimates of the highest possible accuracy and resolution are required for urban hydrological
applications, given the small size and fast response which characterise urban catchments. While radar
rainfall estimates have the advantage of well capturing the spatial structure of rainfall fields and its vari-
ation in time, the commonly available radar rainfall products (typically at �1 km/5–10 min resolution)
may still fail to satisfy the accuracy and resolution – in particular temporal resolution – requirements
of urban hydrology. A methodology is proposed in this paper, to produce higher temporal resolution,
more accurate radar rainfall estimates, suitable for urban hydrological applications. The proposed
methodology entails two main steps: (1) Temporal interpolation of radar images from the
originally-available temporal resolutions (i.e. 5–10 min) to finer resolutions at which local rain gauge
data are commonly available (i.e. 1–2 min). This is done using a novel interpolation technique, based
upon the multi-scale variational optical flow technique, and which can well capture the small-scale rain-
fall structures relevant at urban scales. (2) Local and dynamic gauge-based adjustment of the higher tem-
poral resolution radar rainfall estimates is performed afterwards, by means of the Bayesian data merging
method. The proposed methodology is tested using as case study a total of 8 storm events observed in the
Cranbrook (UK) and Herent (BE) urban catchments, for which radar rainfall estimates, local rain gauge
and depth/flow records, as well as recently calibrated urban drainage models were available. The results
suggest that the proposed methodology can provide significantly improved radar rainfall estimates and
thereby generate more accurate runoff simulations at urban scales, over and above the benefits derived
from the mere application of Bayesian merging at the original temporal resolution at which radar esti-
mates are available. The benefits of the proposed temporal interpolation + merging methodology are par-
ticularly evident in storm events with strong and fast-changing (convective-like) rain cells.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Rainfall estimates of the highest possible accuracy and resolu-
tion are required for urban hydrological applications, given the
small size and fast response which characterise urban catchments
(Berne et al., 2004; Collier, 2009; Fabry et al., 1994; Liguori et al.,
2012; Ochoa-Rodríguez et al., in press). Due to their ability to well
capture the spatial characteristics of rainfall fields and their evolu-
tion in time, radar rainfall estimates are playing an increasingly
important role in urban hydrological applications (Krajewski and
Smith, 2002; Krämer et al., 2007; Schellart et al., 2012; Villarini
et al., 2010; Wang et al., 2011a). However, the operational radar
rainfall products provided by national weather services (typically
at �1 km/5–10 min resolution) may still fail to meet the demand-
ing requirements of urban hydrology, both in terms of accuracy
and resolution.

As regards accuracy, since radar quantitative precipitation esti-
mates (QPEs) are an indirect measurement of rainfall, they are sub-
ject to multiple sources of error. Firstly, radar reflectivity
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measurements, from which QPEs are subsequently derived, may be
affected by factors such as radar beam blockage, attenuation,
ground clutter and anomalous propagation of the signal (Collier,
1996; Einfalt et al., 2004; Harrison et al., 2000). A number of cor-
rections are usually applied in order to reduce errors arising from
these sources; however, it is virtually impossible to have
error-free reflectivity measurements. Additional errors arise in
the conversion of reflectivity measurements (Z) to rainfall rates

(R), which is usually done using the Z–R relationship, Z ¼ aRb

(Marshall and Palmer, 1948). The variables a and b can be theoret-
ically linked to rain drop size distribution and are generally
deduced by physical approximation or empirical calibration based
upon long-term comparisons (Collier, 1986; Krajewski and Smith,
2002). However, the highly dynamic nature of rain drop size distri-
bution, even within a single storm event (Smith et al., 2009;
Ulbrich, 1983), renders the use of a static Z–R relationship – as used
for single-polarisation radars – imperfect, especially when extreme
rainfall rates are observed (Einfalt et al., 2005; Goudenhoofdt and
Delobbe, 2013). In the case of dual-polarisation radars (dual-pol
radars hereafter), dual-polarisation parameters provide useful
information which enables significant reduction of some of the
sources of error mentioned above (especially detection of
non-weather echoes and improved attenuation correction), as well
as a dynamic adjustment of the Z–R relationship according to
drop-size distribution; this results in much more accurate rainfall
rate estimates (Bringi and Chandrasekar, 2001). Dual-pol radars
are being deployed in a number of countries around the world
(e.g. Sugier and Tabary, 2006; Chandrasekar et al., 2009; Bringi
et al., 2011; Wang et al., 2011b; Kim et al., 2012; Vasiloff, 2012;
Berkowitz et al., 2013), and it is likely that in the near future most
existing single-pol radars will be upgraded to dual-pol. However,
despite the advantages of this new technology and the better
QPEs that can be achieved with it, dual polarisation will not change
the limitations inherent to radar, such as the fact that rainfall is
measured indirectly, often well above the ground and often far
away from the radar, which results in beam broadening and range
degradation.

The uncertainties in QPEs propagate through hydrological and
hydraulic models and their effect is particularly evident at the
small scales of urban catchments (Collier, 2009; Schellart et al.,
2012; Vieux and Bedient, 2004). Gauge-based adjustment of radar
QPEs has proven effective to reduce these errors and improve the
accuracy of the estimates, thus improving their applicability for
hydrological applications (Harrison et al., 2009). However, most
gauge-based adjustment methods have been tested and applied
at large spatial and temporal scales (Anagnostou and Krajewski,
1999; Cole and Moore, 2008; Fulton et al., 1998; Germann et al.,
2009; Gerstner and Heinemann, 2008; Goudenhoofdt and
Delobbe, 2009; Harrison et al., 2009; Seo and Smith, 1991;
Todini, 2001). Relatively few tests have been conducted at urban/s-
mall scales and all of them have concluded that at these scales
more dynamic and localised adjustments are required (Borup
et al., submitted; Sinclair and Pegram, 2005; Wang et al., 2013b).
In fact, at urban scales, commonly used coarse-scale methods such
as Mean Field Bias (MFB) correction have proven to be insufficient,
while other more dynamic and higher (statistical-) order methods
(e.g. geostatistical methods) have exhibited a better ability to
reproduce fine-scale rainfall structures and dynamics (Wang
et al., 2015).

With regards to the resolution of radar QPEs, recent studies sug-
gest that the currently commonly available resolutions (i.e.
�1 km/5–10 min) may be insufficient for urban-scale applications.
In fact, the effect of insufficient spatial–temporal information of
rainfall inputs on urban hydrological simulations may be as signi-
ficant as that caused by insufficient accuracy. This is especially the
case when the drainage area of interest is small (Gires et al., 2014,
2012; Schellart et al., 2012; Wang et al., 2012). Therefore, the
impact of rainfall data resolution should not be ignored in urban
hydrology. Although the spatial and temporal resolution of rainfall
inputs are strongly related, a number of studies have suggested
that the latter generally constitutes a more critical factor than
the former (Ochoa-Rodríguez et al., in press; Singh, 1997;
Thorndahl et al., 2014) and that temporal resolutions of
�1–2 min (i.e. below those currently available) are required for
urban hydrological applications, while spatial resolutions of
�1 km (i.e. close to those currently available) appear to be
sufficient. The predominant effect of temporal resolution, as well
as the above mentioned resolution requirements for urban
hydrological applications are illustrated in Fig. 1 (adapted from
Ochoa-Rodríguez et al., in press). Moreover, it is often the case that
local rain gauge (RG) records are available at temporal resolutions
finer than those of radar QPEs. However, in order to perform local
gauge-based adjustments, the RG records are usually aggregated to
the temporal resolution of radar QPEs, thus losing valuable infor-
mation. In fact, for small-scale applications, recent studies suggest
that performing gauge-based adjustment of radar QPEs at shorter
time intervals leads to better results than doing so at longer inter-
vals (Borup et al., submitted; Thorndahl et al., 2014). Traditional
strategies for obtaining higher temporal resolution radar QPEs
include changes in radar scanning and sampling strategies
(Delobbe et al., 2008; Gill et al., 2006; Sadjadi, 2000; Tabary,
2007; Zhang et al., 2005) and stochastic downscaling (Deidda,
2000; Gires et al., 2012; Gupta and Waymire, 1993;
Koutsoyiannis and Onof, 2001; Marsan et al., 1996; Pegram and
Clothier, 2001; Segond et al., 2006; Tessier et al., 1993; Wang
et al., 2010). The former is not always possible, due to hardware
and operational limitations. With regards to the stochastic tempo-
ral downscaling, albeit applications exist that meet the high tem-
poral resolution requirements mentioned above (�1–2 min; e.g.
Gires et al., 2014), they result in large ensembles, which are diffi-
cult to use operationally, given the runtimes associated to urban
hydrodynamic models (Leandro et al., 2014). More recently, an
advection based temporal interpolation method, combined with
MFB correction, has been proposed by (Nielsen et al., 2014;
Thorndahl et al., 2014). Although this method has shown to
improve the performance of hourly and daily radar QPEs (assessed
through comparison against ground rain gauge measurements), its
performance at sub hourly scales was inconsistent. The unsatisfac-
tory performance at smaller scales may be explained by the way in
which storm movement is estimated in advection-based tech-
niques, as well as by the MFB-based adjustment techniques that
were employed, which may be insufficient to well capture and pre-
serve the small rainfall structures relevant at urban scales (Gao
et al., 1999; Germann and Zawadzki, 2002; Van Horne, 2003;
Laroche and Zawadzki, 1995; Rinehart and Garvey, 1978; Wang
et al., 2013b; Weickert and Schnörr, 2001; Wilson et al., 2004).

In this paper a methodology is proposed for producing accurate
radar rainfall estimates with high temporal resolution, suitable for
urban hydrological applications. Similar to the method proposed
by Nielsen et al. (2014), the procedure proposed herein entails
two main steps: (1) temporal interpolation of radar images,
followed by (2) gauge-based adjustment of radar QPEs at short
time intervals (1–2 min). Nonetheless, different from Nielsen’s
method, the techniques employed in this study to carry out the
aforementioned steps are particularly well suited to capture and
reproduce small-scale rainfall structures, thus making the
proposed method more appropriate for urban hydrological appli-
cations. For the first step, a novel temporal interpolation technique,
based upon the multi-scale variational optical flow technique, is
proposed to generate high temporal resolution (i.e. 1–2 min) radar



Fig. 1. Errors in urban runoff estimates in relation to drainage area, as a result of the coarsening of the spatial and temporal resolution of rainfall inputs. Logarithmic functions
were fitted to the hydrodynamic simulation results obtained for 7 urban catchments in North-West Europe, forced with data from 9 storm events recorded at high resolution
(100 m/1 min) by a polarimetric X-band radar. Coarser resolution rainfall estimates were generated by averaging in space, whereas coarser resolution temporal estimates
were generated by sampling radar images at the desired temporal resolution, thus replicating radar scanning strategies. Performance statistics were estimated using as
reference the runoff estimates associated to the highest available resolution rainfall estimates (adapted from Ochoa-Rodríguez et al., in press).
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rainfall estimates. The optical flow technique was initially devel-
oped to characterise detailed image motion and has also been
employed for short-term rainfall forecasting. In both realms it
has shown to outperform many other techniques. Considering
the nature of this technique, it is expected to be suitable for carry-
ing out temporal interpolation of radar images, especially when
small-scale rainfall structures are critical. For the second step,
the Bayesian data merging technique is used (Todini, 2001); this
has shown to outperform many other merging techniques, both
at large and small (urban) scales (Mazzetti and Todini, 2004;
Wang et al., 2013b), is applied locally and dynamically.

The proposed methodology is tested using as case study a total
of eight storm events observed between 2012 and 2014 in the
Cranbrook (London, UK) and Herent (Leuven, Belgium) urban
catchments. For these pilot locations radar estimates, local rain
gauge measurements, flow records, as well as recently calibrated
urban drainage models were available.

The paper is organised as follows. In Section 2 a detailed expla-
nation is provided of the temporal interpolation + gauge-based
adjustment methodology. In Section 3 we present the case study,
including a description of the two study catchments and available
dataset, the strategy and performance criteria used to evaluate the
proposed methodology, and the results of the testing. Lastly, in
Section 4 the main conclusions are presented and future work is
discussed.
2. Methodology

2.1. Overview

A schematic of the proposed methodology for producing accu-
rate radar rainfall estimates with high temporal resolution is
shown in Fig. 2. Let RDt and RGt , respectively, be radar and rain
gauge rainfall records at a specific time step t, but each with differ-
ent temporal resolutions: DT for radar images and Dt for point rain
gauge records, where DT = n � Dt and n P 1, as is often the case in
urban catchments (i.e. the temporal resolution of local rain gauge
records is finer than that at which radar rainfall estimates are
available). The first step of the proposed method is to derive a field
of movement vectors W between two successive radar images (i.e.
RDt and RDtþDT ) based upon the optical flow technique. Assuming
that this movement field remains constant within each time inter-
val (DT), intermediate radar images (RD0) with temporal resolution
Dt are derived through temporal interpolation with occlusion reason-
ing. Afterwards, the original RD and the intermediate (interpo-
lated) RD0 images are dynamically merged with the coincidental
RG records at time steps Dt, using the Bayesian data merging
method. This yields high temporal-resolution radar rainfall esti-
mates with better accuracy (RD00 with temporal resolution Dt).
Note that for the first two steps (i.e. movement field estimation
and temporal interpolation), radar images over a large domain
(>100 km � 100 km) are used, while for the last step (i.e. dynamic
data merging) only a sub-domain of the radar images is used
(which coincides with the urban area of interest and with the
coverage of the local rain gauge network).

The key techniques that are employed in the proposed metho-
dology are: (1) optical flow estimation, (2) temporal interpolation
with occlusion reasoning, and (3) Bayesian data merging. Each of
these techniques is described in the following sub-sections.

2.2. Optical flow estimation

Optical flow estimation is a technique used to characterise
image motion, which has been widely applied in the field of com-
puter vision, e.g. object detection and video compression (Ehrhardt
et al., 2007; Herbst et al., 2009; Larsen et al., 1997; Sadek et al.,
2012). Due to the nature of the technique, it is in particular suitable
for handling consecutive images with short time intervals (e.g.
video frames). Consequently, it has also been applied to meteoro-
logical data processing and proven to be successful in short-term
rainfall forecasting (Bowler et al., 2004; Cheung and Yeung,
2012; Krajewski and Smith, 2002).

The optical flow constraint (OFC, also known as the grey value
constancy assumption) constitutes the core of the optical flow esti-
mation (Bab-hadiashar and Suter, 1998; Baker et al., 2011; Brox
et al., 2004; Bruhn et al., 2005; Horn and Schunck, 1981;
Papenberg et al., 2006; Sun et al., 2010):

Iðx; y; tÞ ¼ Iðxþ u; yþ v; t þ DTÞ; ð1Þ

where Iðx; y; tÞ is the grey value (i.e. radar rainfall rate, in our case)
of a pixel located at x ¼ ðx; yÞ of a given image It at time step t, and
w ¼ ðu; vÞ is the movement vector to be estimated between images



Fig. 2. Schematic of the proposed methodology for generating accurate radar rainfall images with high temporal resolution. RD and RG (with solid outlines) respectively
represent radar and rain gauge observations; RD0 (with dashed outlines) corresponds to temporally-interpolated radar rainfall estimates; and RD00 with dotted outlines)
corresponds to interpolated plus gauge-adjusted (through Bayesian (BAY) merging) radar rainfall estimates.
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It and ItþDT . This constraint indicates that image pixels only translate
within DT, but their grey values remain invariant. However, this is
usually not the case, particularly for natural scenes. For instance, in
the case of high-resolution radar rainfall images, the decay or
growth of rainfall cell intensities can be observed even during a
short duration (Foresti and Seed, 2014; Radhakrishna et al., 2012).
In order to obtain better results, some smoothing treatment (e.g.
median filter) is usually applied to the images before optical flow
estimation is conducted (Bowler et al., 2004; Cheung and Yeung,
2012). This smoothing process is indeed helpful for solving OFC
and has proven to be useful in large-scale applications (e.g.
country-wide rainfall nowcasting and short-term flood forecasting;
Bowler et al., 2006). However, for urban-scale applications, the
smoothing process is usually not desirable because it may lead to
significant underestimation of extreme rainfall magnitudes and
associated runoff estimates (Wang et al., 2015).

In this work an alternative approach to handling the variations
in pixel values between consecutive images is used. In this
approach, an additional constraint, called gradient constancy
assumption, is incorporated into the optical flow estimation
(Brox et al., 2004; Papenberg et al., 2006; Sun et al., 2010). It is
expressed as:
rIðx; y; tÞ ¼ rIðxþ u; yþ v ; t þ DTÞ; ð2Þ
where r ¼ ð@x; @yÞ denotes the spatial gradient. This expression
allows slight changes in pixel values, which somewhat relaxes the
grey value constancy constraint. However, this constraint, as well
as the OFC, focuses exclusively on the movement of individual pix-
els; their interactions with neighbouring pixels are not taken into
account. This may cause the so-called aperture problem, which
means that there may be spatial discontinuities (or holes) in the
resulting movement fields. This is unrealistic and undesirable for
applications. To prevent this, it is necessary to introduce a third
constraint which ensures the smoothness of the movement field.
This can be achieved by minimising the Laplacian of the movement
fields (i.e. Dw orr2w), or equivalently by minimising the two com-

ponents of the expansion of r2w, i.e., r2u ¼ @2u
@x2 þ @2u

@y2 and
r2v ¼ @2v
@x2 þ @2v

@y2 (Bowler et al., 2004; Brox et al., 2004; Horn and

Schunck, 1981).
To completely incorporate the three constraints described

above into the optical flow estimation, a variational approach is
used in this work, which was proposed by Brox et al. (2004) and
is termed:

Eðu;vÞ ¼ EData þ a � Esmooth; ð3Þ

where

EDataðu;vÞ ¼
Z

X
WðjIðxþwÞ � IðxÞj2Þdxþ c �

Z
X

WðjrIðxþwÞ

� rIðxÞj2Þdx; ð4Þ

and

Esmoothðu; vÞ ¼
Z

X
Wðr2uþr2vÞdx: ð5Þ

where W is a penalty function and X is the radar domain. These two
constraints define an energy functional that ‘penalises’ the devia-
tion of image pixel values (i.e. EData) and the variation of movement
fields (i.e. Esmooth). The aim is therefore to determine a movement
field that minimises the overall (penalty) energy Eðu;vÞ, which is
a linear combination of each constraint with a given weight. In
our research, weight values of a ¼ 0:5 and c ¼ 50:0 were assigned,
based upon literature review (Sun et al., 2010) and a number of
parametric analyses that confirmed the robustness of this selection.
In addition, following the suggestion given in Brox et al. (2004) and
Sun et al. (2010), the Charbonnier penalty function Wðs2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ �2
p

(where � ¼ 0:001) is employed to better retain the convexity of each
energy term during the minimisation process.

This overall (penalty) energy functional can be minimised by
solving the associated Euler–Lagrange equations. Because it is a
classic approach to optimisation problems, the numerical formula-
tion of this problem will not be repeated in this paper; for details
readers are referred to Brox et al. (2004). Nonetheless, it is worth
mentioning that another advantage of Brox’s approach is the use
of the multi-scale numerical strategy. This is done by firstly aggre-
gating (in space) the original images into a number of images with
coarser spatial resolutions. The estimation then starts by solving
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the coarsest version of the problem (i.e. energy functional on the
images with the coarsest spatial resolution). The associated solu-
tion is then used as the initial guess for solving a finer version of
the problem. This iteration then continues until the original prob-
lem (i.e. at the original resolution) is solved. Numerically, this
strategy can effectively prevent the estimation from being trapped
in a local minimum and has proven to be able to largely improve
optical flow estimation (Brox et al., 2004; Sun et al., 2010).
Physically, this strategy explicitly takes into account the character-
istic differences of images (in particular natural scenes) at various
spatial and temporal scales, which has proven to be critical for
rainfall field modelling (Deidda et al., 1999; Foresti and Seed,
2014; Germann and Zawadzki, 2004; Goudenhoofdt and Delobbe,
2013; Lovejoy and Schertzer, 1990; Wang et al., 2013a).

2.3. Temporal interpolation with occlusion reasoning

The temporal interpolation method used in this study is a
bi-directional (i.e. forward–backward) advection-based one, which
is similar to the one used in Nielsen et al. (2014). However, Nielsen
et al. (2014) did not take into account the occlusion effect that is
usually found in the temporal interpolation of consecutive images.
Neglecting this effect may cause problems, such as the difficulty in
interpolating pixel values along the image boundary and the gen-
eration of an over-smooth (in space) intermediate image, which
may be problematic in the case of radar images over urban areas.

In order to include the occlusion effect, an additional technique,
called occlusion reasoning, is employed in this paper before the
intermediate images are interpolated (Herbst et al., 2009; Sadek
et al., 2012). The algorithm used to conduct the temporal interpo-
lation with occlusion reasoning is summarised as follows:

(0) Estimation of forward and backward movement fields
(w f ¼ ðu f ;v f Þ and wb ¼ ðub;vbÞ) using optical flow tech-
nique described in Section 2.2.

(1) Let IðxtþiDtÞ be the grey value (or intensity) of a given pixel at
location xtþiDt ¼ ðx; yÞ of an intermediate imageItþiDt (where
i ¼ 1;2; . . . ;n� 1).

(2) By forward projection (i.e. using only the forward movement

field w f ¼ ðu f ;v f Þ), the corresponding pixels (i.e., x f
t and

x f
tþDT ) respectively in images It and ItþDT can be inversely

identified. They can be termed:
x f
t ¼ ðx; yÞ � dðu f ;v f Þ; ð6Þ

and
x f
tþDT ¼ ðx; yÞ þ ð1� dÞðu f ;v f Þ; ð7Þ

where d ¼ i=n.

(2-1) If the (absolute) difference between Iðx f
t Þ and Iðx f

tþDTÞ is
smaller than a given threshold s (that means, within time

interval DT, Iðx f
t Þ is not in a significant decay or growth

stage, so presumably occlusion does not occur), forward

interpolation is conducted; i.e., IðxtþiDtÞ ¼ ð1� dÞ � Iðx f
t Þþ

d � Iðx f
tþTÞ.

(2-2) If the difference is larger than the threshold, no forward
interpolation is conducted (the targeting pixel value will
temporarily be a hole).

(3) (Backward projection) Based upon the backward movement
field, the same algorithm as the forward projection is applied
to fill the holes.

(4) If there are still holes left, they will be filled by the linear

combination of Iðx f
t Þ and Iðxb

tþDTÞ; i.e., IðxtþiDtÞ ¼ ð1� dÞ�
Iðx f

t Þ þ d � Iðxb
tþTÞ.
2.4. Bayesian data merging

The Bayesian data merging method (BAY) is a dynamic adjust-
ment method (applied independently at each time step) intended
for real-time applications (Todini, 2001). In previous studies this
method has shown to outperform other commonly-used adjust-
ment methods (Mazzetti and Todini, 2004; Wang et al., 2013b).
This is why it was adopted to conduct the gauge-based adjustment
of radar estimates in the present study.

The underlying idea of the BAY method is to analyse and quan-
tify the uncertainty of rainfall estimates (in terms of the
co-variance of estimation errors) from multiple data sources – in
this case, radar and rain gauge sensors – and then combine these
estimates in such a way that the overall (estimation) uncertainty
is minimised.

The implementation of the BAY merging method includes the
techniques of block-kriging interpolation and Kalman filter
(Kalman, 1960). The former is used to generate a field of rain gauge
estimates (which represent the ‘measurements’ in the Kalman fil-
ter) and the latter is used to combine radar (defining the ‘a priori’
estimate) and block-kriged rain gauge rainfall estimates, to pro-
duce the merged rainfall output (i.e. the ‘a posteriori’ estimate).
For a detailed description of the BAY technique the reader may
refer to Todini (2001), Wang et al. (2013b) and Wang et al. (2015).
3. Case study

The proposed temporal interpolation method, in combination
with the Bayesian merging, is tested using as case study a total
of eight (8) storm events observed between 2012 and 2014 in
the Cranbrook (London, UK) and Herent (Leuven, Belgium) urban
catchments. For these events radar estimates, rain gauge and flow
records are available. Moreover, recently-calibrated urban drai-
nage models are available for each of the two pilot catchments.
3.1. Pilot catchments and datasets

3.1.1. Cranbrook catchment
The Cranbrook catchment (Fig. 3) is located within the London

Borough of Redbridge (north-east part of Greater London). It is pre-
dominantly urban, of residential and commercial character, and
stretches over an area of 8.5 km2. Approximately 52% of the catch-
ment corresponds to impervious surfaces. The main water course
(the Cran Brook) is about 5.75 km long, of which 5.69 km are cul-
verted and have become part of the storm water drainage system,
which is mainly separate. The storm water drainage system of this
catchment discharges into the Roding River and, in turn, the
Roding River discharges into the river Thames.

Hydraulic model: A high-resolution semi-distributed model of
the storm-water drainage system of the Cranbrook catchment,
including its sewer system, was setup in the integrated catchment
modelling software InfoWorks ICM 5.5. In this model the whole
catchment surface is split into sub-catchment units to which rain-
fall is applied (within each sub-catchment rainfall is assumed to be
uniform). Each sub-catchment comprises a mix of pervious and
impervious surfaces whose runoff drains to a common outlet point,
which corresponds to an inlet node of the sewer system (i.e. a gully
or a manhole). The sub-catchments are characterised by a number
of parameters, including total area, length, slope, proportion of
each land use type, amongst others. Based upon these parameters,
the runoff volume at each sub-catchment is estimated using a fixed
runoff coefficient, which varies according to the type of surface.
The estimated runoff is then routed to the sub-catchment outlet
using the Wallingford (double linear reservoir) model
(Wallingford, 1983). Sewers are modelled as one-dimensional



Fig. 3. Cranbrook catchment boundary, sewer layout, sensor location and radar grid over the catchment.
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conduits and flows within them are simulated based on the full de
Saint–Venant equations.

The Cranbrook model contains a total of 4409 sub-catchments,
with areas ranging between 0.01 and 40.02 ha and a mean area of
0.19 ha. Sub-catchment slopes range from 0.02 to 0.41 m/m, with a
mean slope of 0.05 m/m. The model of the sewer system comprises
6953 nodes and 6994 conduits. The total length of modelled sew-
ers is 147 km. The sewer system ranges in height from 63.15 m
above ordnance datum (mAOD) at the upstream end of the catch-
ment to 6.05 mAOD at the downstream end. The modelled pipes
have gradients ranging from 0 to 4.44 m/m, with mean and median
gradients of 0.20 and 0.09, respectively. The flow in the sewer sys-
tem is mainly driven by gravity.

Following UK standards (WaPUG, 2002), the model of the
Cranbrook catchment was calibrated in early 2014 using data from
the monitoring system described below.

Local monitoring data available for this catchment: A real time
accessible monitoring system has been maintained in the
Cranbrook catchment since April 2010. It includes three tipping
bucket rain gauges (with 1-min resolution), two pressure sensors
for monitoring water levels at the Roding River (downstream
boundary condition of the catchment; with 2-min resolution),
one sensor for water depth measurement in sewers (with 2-min
resolution), one sensor for flow (i.e. simultaneous water depth
and velocity) measurement in sewers (with 2-min resolution),
and one sensor for water depth measurement in open channels
(with 1-min resolution) (see Fig. 3).

Radar rainfall data: The Cranbrook catchment and surroundings
are within the coverage of C-band radars operated by the UK Met
Office (UKMO). Radar rainfall estimates for the storm events
selected for this study – for an 800 km � 800 km domain, centred
at the Cranbrook catchment – were obtained through the British
Atmospheric Data Centre (BADC). These estimates were available
at spatial and temporal resolutions of 1 km and 5 min respectively,
and correspond to a quality controlled multi-radar composite pro-
duct generated with the UK Met Office Nimrod system (Golding,
1998), which includes corrections for the different errors inherent
to radar rainfall measurements, as well as an hourly-based
nation-wide mean field bias correction (Harrison et al., 2009,
2000).

Storm events selected for this study: Four storm events observed
between May and September 2014 were selected to test the tem-
poral interpolation + radar adjustment method proposed in this
study. These events are different from those used for the



Table 1
Selected rainfall events over the Cranbrook catchment.

ID Date Duration (h) RG# RG total (mm) RG peak (mm/h) 1/5/10 min RD total (mm) RD peak (mm/h) 5/10 min

CBK-S01 01–02 May 2014 23 3 25.8 36.00/28.80/26.80 19.94 18.22/17.70
CBK-S02 25–26 August 2014 20 3 28.73 16.00/8.00/6.80 28.84 7.01/5.56
CBK-S03 19 September 2014 3.5 3 11.47 40.00/34.40/32.00 12.47 25.73/25.73
CBK-S04 19 September 2014 3 3 7.07 32.00/25.60/18.40 10.06 20.10/20.02
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calibration of the model. The dates and main characteristics of
these events are summarised in Table 1.

3.1.2. Herent area
The catchment of Herent (called after the municipality of the

same name) is located immediately northeast of the town of
Leuven, the capital town of the Belgian province of Flemish
Brabant. It includes several villages, with a predominantly urban
residential character, which are separated by more rural areas.
Important railway lines and a motorway are cutting through the
catchment and contribute partly to the urban drainage system.
The drainage area analysed in this study stretches over an area of
approximately 25 km2, of which about 14% corresponds to imper-
vious surfaces. The sewer system in this area is mostly combined
and includes several combined sewer overflows (CSOs) along the
main flow path. The drainage system does not follow the natural
topographical runoff direction of the catchment (the main brook
is situated more along the northern edge), as a result of which
Fig. 4. Herent drainage area boundary, sewer layout, s
there are also several pumping stations on the main drainage
flowpath.

Hydraulic model: A semi-distributed model of the drainage sys-
tem of Herent was setup in the software package InfoWorks CS
15.0 by the water company Aquafin. Same as in the Cranbrook
model, runoff volumes are estimated using a fixed runoff coeffi-
cient, runoff is routed to the sub-catchment outlets using the
Wallingford (double linear reservoir) model (HR Wallingford,
1983), and sewer flow is simulated based upon the full de Saint–
Venant equations.

Herent’s model contains a total of 2495 sub-catchments, with
areas ranging between 0.001 and 16.30 ha and a mean area of
0.40 ha. Sub-catchment slopes range from 0.00 to 0.34 m/m, with
a mean slope of 0.01 m/m. The model of the sewer system com-
prises 3030 nodes and 2987 conduits. The total length of modelled
sewers is 222 km. The sewer system ranges in height from 90.22
mAOD at the upstream end of the catchment to 13.12 mAOD at
the downstream end. The modelled pipes have gradients ranging
ensor location and radar grid over the catchment.
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from 0 to 0.68 m/m, with mean and median gradients of 0.01 and
0.003, respectively. While the catchment is relatively flat, the flow
in the sewer system is mainly driven by gravity.

The original model (built in the late ‘90s) was validated using
the Flemish standard procedures described in Aquafin’s
Hydronaut procedure (Aquafin nv, 2014). In the years following,
further validation was performed on a regular basis using data
from the monitoring system described below, as well as from occa-
sional short term flow surveys.

Local monitoring data available for this catchment: A monitoring
system has been maintained in Herent and surroundings since
2006. It includes eight tipping bucket rain gauges (initially with
2 min resolution and since 2013 with 1 min resolution) and three
flow (i.e. depth and velocity) gauges in sewers (with 2 min resolu-
tion) (see Fig. 4).

Radar rainfall data: C-band radar rainfall estimates for the whole
of Belgium, including Herent, were derived from the radar reflec-
tivity product provided by the Royal Meteorological Institute of
Belgium (RMI) (Delobbe and Holleman, 2006). The reflectivity
measurements, originally in dBZ units and at temporal and spatial
resolutions of 529 m and 5 min respectively, were converted into
rainfall rates (mm/h) using the so-called Marshall–Palmer Z–R

relationship: Z ¼ 200R1:6 (Marshall and Palmer, 1948). Although a
new radar product is currently under development in RMI
(Goudenhoofdt and Delobbe, 2013, 2009), for this study the esti-
mates for Belgium do not include any gauge-based adjustment.

Storm events selected for this study: Four storm events observed
in Herent between September 2012 and July 2013 were selected to
test the temporal interpolation + radar adjustment method pro-
posed in this study. The dates and main characteristics of these
events are summarised in Table 2.

3.2. Experimental design and evaluation methodology

With the purpose of covering a range of operational conditions,
the proposed temporal interpolation and the Bayesian data merg-
ing method were applied to radar (RD) rainfall estimates at two
Table 2
Selected rainfall events over Herent area.

ID Date Duration (h) RG# RG total (mm) RG

HER-S01 23 September 2012 1.8 8 9.99 25
HER-S02 08 May 2013 4 7 9.22 32
HER-S03 27 July 2013 5 8 21.39 86
HER-S04 27 July 2013 3 8 21.73 88

* For event HER-S01 rain gauge records were available at 2 min resolution. For all oth

Table 3
Summary of rainfall estimates under consideration in this study.

Notation Description

RG Local rain gauge rainfall records at highest available tem
and 1-min for all other events)

RD 5 Original radar rainfall estimates sampled at 5-min time i
RD 5-1 (or RD 5-2) Temporally-interpolated radar rainfall estimates, obtaine
RD 10 Original radar rainfall estimates sampled at 10-min time
RD 10-1 (or RD 10-2) Temporally-interpolated radar rainfall estimates, obtaine
BAY 5 Bayesian-adjusted rainfall estimates, obtained from RD 5

from 1- or 2-min RG records)
BAY 5-1 (or BAY 5-2) Temporally-interpolated + Bayesian-adjusted rainfall estim

RG rainfall estimates
BAY 10 Bayesian-adjusted rainfall estimates, obtained from RD 1

from 1- or 2-min RG records)
BAY 10-1 (or BAY 10-2) Temporally-interpolated + Bayesian-adjusted rainfall estim

and RG rainfall estimates
commonly-available temporal resolutions: 5 min and 10 min.
Although for the pilot locations under consideration (i.e.
Cranbrook and Herent) radar estimates were available at 5-min
resolution, radar estimates at 10-min resolution are still commonly
provided by national weather services (Chen et al., 2007; Gill et al.,
2006; Vieux et al., 2003) and were for that reason included in the
test. In order to realistically simulate operational radar scanning
strategies, in this study the 10-min radar images were obtained
through sampling (instead of aggregation). Following the method-
ology described in Section 2, the original RD estimates (at 5- and
10-min resolutions, respectively) were temporally interpolated
to the finer temporal resolution at which rain gauge (RG)
estimates were available. Afterwards, the Bayesian data merging
was applied.

The performance of the resulting temporally-interpolated +
Bayesian-adjusted estimates was assessed by inter-comparison
against original RD and RG estimates, as well as against temporally-
interpolated-only RD estimates (i.e. without merging) and Bayesian-
adjusted-only estimates (i.e. at the original temporal resolution of
RD estimates, without temporal interpolation). A summary of the
rainfall estimates considered in the analysis, including the notation
used to refer to them, is provided in Table 3. Two strategies were
employed in the evaluation of the proposed method:

(1) Direct analysis and inter-comparison of the different rainfall
estimates, both at areal level as well as at point RG locations.

(2) Analysis of the hydraulic outputs obtained by feeding the
different rainfall estimates as input to the hydraulic model
of the pilot locations and comparison of these against avail-
able water depth records. Note that the RG estimates were
applied to the models using Thiessen polygons.

The performance measures employed in the evaluation are
described below. Both evaluation strategies, however, have limita-
tions. Firstly, the fact that all rainfall estimates (including RG ones)
contain errors and the differences in the spatial resolution of RG
and gridded rainfall estimates render any direct comparison of
peak (mm/h) 1–2*/5/10 min RD total (mm) RD peak (mm/h) 5/10 min

.94*/20.40/19.16 20.00 41.89/24.91

.48/28.97/20.80 7.97 18.16/18.16

.11/78.94/62.70 10.06 16.20/16.20

.85/78.11/67.25 10.75 22.23/21.67

er events, rain gauge records were available at 1 min resolution.

Temporal
interpolation

Bayesian
adjustment

poral resolution (i.e. 2-min for HER-S01 event No No

ntervals No No
d from RD 5 Yes No
intervals No No

d from RD 10 Yes No
and 5-min RG rainfall estimates (aggregated No Yes

ates, obtained from RD 5-1 (or RD 5-2) and Yes Yes

0 and 10-min RG rainfall estimates (aggregated No Yes

ates, obtained from RD 10-1 (or RD 10-2) Yes Yes
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rainfall estimates imperfect (Brandes et al., 2001). While the
hydraulic evaluation strategy allows some of these drawbacks to
be overcome, it has other deficiencies: hydraulic (depth and flow)
records contain errors, and hydraulic modelling results encompass
uncertainties from multiple sources in addition to rainfall input
uncertainty (Deletic et al., 2012). Despite these limitations, both
strategies provide useful and complementary insights into the per-
formance of the proposed temporal interpolation + Bayesian data
merging method.
3.2.1. Performance measures
Four performance measures were used to evaluate the pro-

posed temporal interpolation + Bayesian data merging method.
The first performance measure (i.e. event sample bias) was only
employed in the rainfall evaluation strategy. The other three per-
formance measures were used in both the rainfall and hydraulic
evaluation strategies. In the case of the rainfall evaluation strat-
egy, RG records at the highest-available temporal resolution were
used as reference or ‘observed’ values, while the radar and
radar-processed (gridded) rainfall estimates being assessed are
referred to as ‘modelled’ estimates. Moreover, in the rainfall eval-
uation performance measures were estimated both at areal level
(see areas shown in Figs. 3 and 4), as well as at RG point loca-
tions. In the case of the hydraulic evaluation strategy, water
depth records at given locations within the pilot catchments
were used as reference or ‘observations’, and the hydraulic simu-
lation results associated to the different rainfall inputs constitute
the ‘modelled’ estimates. The locations whose water depth
records were used in the hydraulic evaluation are circled in black
in Figs. 3 and 4; these locations were selected such that consis-
tent records were available for all the storm events under consid-
eration in this study.
Fig. 5. Areal-average rainfall rate profiles of the different estimates under consideration
estimates derived from 5-min RD estimates; Bottom: RG vs. temporally-interpolated an
(1) Event sample bias ratio (B): estimated as B ¼
P

Rgridded=P
RG, where Rgridded corresponds to the gridded (i.e.

radar-processed) rainfall product being assessed. B is used
to quantify the cumulative event bias between gridded rain-
fall estimates and RG estimates (i.e. unconditional bias).
B = 1 means no cumulative bias; B > 1 means that the accu-
mulations of the gridded estimates are greater than those
recorded by RG, and B < 1 the opposite.

(2) Coefficient of determination (R2): R2 corresponds to the coef-
ficient of determination of a simple linear regression analy-
sis applied to each pair of observed and modelled time
series. The R2 measure ranges from 0 to 1 and describes
how much of the observed variability is explained by the
modelled one. In practical terms, R2 provides a measurement
of the similarity between the patterns of the observed and
modelled time series. This measure, however, cannot detect
systematic bias (under- or over-estimation) of the modelled
estimates (Krause et al., 2005).

(3) Regression coefficient (b): b corresponds to the slope or gra-
dient of the linear regression analysis conducted between
each pair of observed and modelled time series. This mea-
sure provides information about conditional bias of the
modelled estimates. b � 1 represents good agreement in
the magnitude of observed and modelled estimates; b > 1
means that the modelled estimates are higher in the mean
(by a factor of b) than the observations; and b < 1 means
the opposite.

(4) Root mean square error (RMSE): the RMSE represents the
standard deviation of the differences between observed (O)
and modelled (M) values. The RMSE is estimated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

t¼1
ðOt�MtÞ2

n

r
. A perfect fit between observed and
for the CBK-S01 event. Top: RG vs. temporally-interpolated and/or adjusted rainfall
d/or adjusted rainfall estimates derived from 10-min RD estimates.
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modelled values corresponds to RMSE = 0. This measure pro-
vides information about overall performance of the mod-
elled estimates.

3.3. Results and discussion

The results of the rainfall and hydraulic evaluation strategies,
including selected images of the rainfall events and associated run-
off estimates, as well as tables with summary performance mea-
sures, are presented in Figs. 5–11 and Tables 4–7. In what
follows the results are analysed per rainfall product, starting with
a brief discussion of the original radar estimates, continuing with
an analysis of the independent effect of temporal interpolation
and Bayesian merging, respectively, and concluding with the anal-
ysis of the temporally-interpolated + Bayesian merged estimates.
Given that the results of the rainfall evaluation strategy are closely
Fig. 6. Plots of performance measures at RG point locations for the different gridded
linked to those of the hydraulic evaluation, these are analysed
simultaneously.
3.3.1. Analysis of raw radar rainfall estimates and associated runoff
estimates

As can be seen from Tables 1 and 4 and Fig. 6 (see sample bias
ratio), in the Cranbrook catchment the accumulations of RD esti-
mates, both at areal level and at point RG location, are generally
similar to those of RG records. This is however not the case for
the Herent area (see Tables 2 and 5 and Fig. 7). Except for the
HER-S02 event (which was a rather weak event), a large bias
between RD and RG accumulations is observed in Herent. This
difference in the performance in cumulative rainfall between
UKMO and Belgian RMI RD products may be attributed to the
different correction routines that are applied, in particular the
rainfall estimates, for the selected storm events over the Cranbrook catchment.



Fig. 7. Plots of performance measures at RG point locations for the different gridded rainfall estimates, for the selected storm events over the Herent area. The red circles
correspond to the median of the performance measures estimated at all 7 or 8 point RG locations for each rainfall product. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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gauge-based adjustment that is applied to the UKMO RD product
on an hourly basis, but not to the RMI product.

In terms of areal-average peak intensities, as compared with the
rainfall accumulation performance, a larger bias between RD and
RG estimates can generally be seen in both study areas (see
Tables 1 and 2 and Fig. 5). Except for the HER-S01 event, RD rain
rates appear to consistently underestimate the areal-average peak
intensities recorded by RG. For the Cranbrook catchment, the rela-
tive difference between RG and RD areal-average (5-min) peak
intensities ranges between 12 and 36%, while for the Herent area
the relative difference may be up to 80% (see HER-S03 event).
Even when the cumulative rainfall bias is small, the underestima-
tion of peak rain rates by RD estimates has a large effect on the
subsequent urban runoff estimates (notice how in Figs. 10 and
11 water depth estimates associated to RD 5 and RD 10 inputs
underestimate the recorded water depth peaks). This corroborates
the view that the correction processes that have been applied to
both UKMO and RMI RD products are insufficient to satisfactorily
capture the fine-scale dynamics of rainfall fields, which are critical
at urban scales. This confirms the need for local and dynamic
adjustment of original RD estimates. Another detail worth noticing
is the better performance of RD 5 associated hydraulic outputs, as
compared to those associated to RD 10 estimates; this already sug-
gests that there is an added benefit in using higher temporal reso-
lution radar rainfall estimates.

3.3.2. Analysis of temporally-interpolated-only radar rainfall estimates
and associated runoff estimates

From a visual point of view (see snapshot images in Figs. 8 and
9), the temporally-interpolated RD images show a smooth and



Fig. 8. Snapshot images of the original RD measurements in 5- and 10-min time intervals (images with red outlines), interpolated 1-min RD (i.e. RD 5-1 and RD 10-1,
respectively interpolated from 5- and 10-min RD measurements) and the Bayesian-adjusted rainfall estimates (i.e. BAY 5, 5-1, 10 and 10-1) during the period of areal average
peak intensity for the CBK-S03 event. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Snapshot images of the original RD measurements in 5- and 10-min time intervals (images with red outlines), interpolated 1-min RD estimates (i.e. RD 5-1 and RD 10-
1, respectively interpolated from 5- and 10 min RD measurements) and Bayesian adjusted rainfall estimates (i.e. BAY 5, 5-1, 10 and 10-1) during the period of areal-average
peak intensity for the HER-S03 event. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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realistic transition of the rainfall clusters, including small-scale
rainfall structures, between the available RD observations. By com-
paring the interpolated RD image over the Cranbrook catchment at
time 02:05 (interpolated from 10 to 1 min) vs. the observed RD at
the same time (Fig. 8), high consistency can be observed in the
location of the storm cell cluster between the two images, although
some differences are observed in terms of intensities. Based upon
visual inspection, it can be concluded that the proposed
temporal-interpolation method is suitable for the small scales
characteristic of urban areas. The fact that the location and shape
of storm clusters is well reproduced suggests that the assumption
of a constant field of motion vectors holds well within short time



Fig. 10. Observed and simulated flow depths for the selected events at the Valentine Open Channel (the circled blue round marker in Fig. 3) in the Cranbrook catchment. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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intervals. However, the differences observed in rainfall rates
between the interpolated and observed RD images suggests that
assuming a linear change in rainfall rates within the time intervals
under consideration may be inappropriate and that additional and



Fig. 11. Observed and simulated flow depths for the selected events at the M5 gauging site (the circled red round marker in Fig. 4) in the Herent area. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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complementary sources of information (e.g. RG records at higher
temporal resolution) are required to compensate for this
deficiency.

Quantitatively, at the areal level, it can be seen that the tempo-
ral interpolation has a negligible effect in rainfall accumulations: in
all cases coefficients b and b of the interpolated RD estimates stay
very close to those of the original RD estimates (see Tables 4 and
5). In terms of pattern, the intensities of the interpolated RD esti-
mates show higher and generally better dynamics. This is reflected
in the generally higher R2 values associated with RD 5-1 and espe-
cially RD 10-1 estimates, particularly in the case of storms with
strong peaks (see Tables 4 and 5). However, magnitude-wise the



Table 4
Summary of performance measures for the areal average gridded rainfall estimates for the selected storm events over the Cranbrook catchment (note that performance measures
were estimated using areal-average RG records as reference).

ID RD 5-1 RD 5 RD 10-1 RD 10 BAY 5-1 BAY 5 BAY 10-1 BAY 10

Sample bias ratio – B
CBK-S01 0.772 0.773 0.788 0.789 0.994 0.962 0.993 0.954
CBK-S02 1.005 1.004 1.009 1.005 1.034 1.002 1.033 0.999
CBK-S03 1.081 1.088 1.136 1.129 1.135 1.144 1.142 1.171
CBK-S04 1.430 1.424 1.417 1.414 1.114 1.126 1.084 1.125

Coefficient of determination – R2

CBK-S01 0.697 0.714 0.683 0.691 0.985 0.737 0.985 0.619
CBK-S02 0.315 0.310 0.304 0.277 0.962 0.302 0.962 0.284
CBK-S03 0.854 0.843 0.893 0.780 0.989 0.825 0.988 0.478
CBK-S04 0.596 0.634 0.628 0.624 0.956 0.578 0.968 0.348

Regression coefficient – b
CBK-S01 0.501 0.513 0.505 0.520 0.924 0.723 0.926 0.644
CBK-S02 0.360 0.359 0.350 0.340 0.973 0.352 0.974 0.326
CBK-S03 0.830 0.832 0.895 0.824 1.093 0.971 1.092 0.712
CBK-S04 0.874 0.909 0.896 0.929 0.975 0.697 0.974 0.519

Root mean square error – RMSE (in mm)
CBK-S01 0.038 0.037 0.038 0.037 0.009 0.032 0.009 0.039
CBK-S02 0.037 0.037 0.037 0.038 0.009 0.037 0.009 0.037
CBK-S03 0.054 0.056 0.046 0.066 0.022 0.063 0.022 0.112
CBK-S04 0.072 0.068 0.068 0.071 0.021 0.064 0.017 0.082

Table 5
Summary of performance measures for the areal average gridded rainfall estimates for the selected storm events over the Herent area (note that performance measures were
estimated using areal-average RG records as reference).

ID RD 5-1/RD 5-2 RD 5 RD 10-1/RD 10-2 RD 10 BAY 5-1/BAY 5-2 BAY 5 BAY 10-1/BAY 10-2 BAY 10

Sample bias ratio – B
HER-S01 1.629 2.002 1.418 1.833 1.170 1.287 1.158 1.241
HER-S02 0.846 0.864 0.824 0.854 1.061 1.040 1.055 1.043
HER-S03 0.464 0.470 0.428 0.484 1.033 1.044 1.036 1.054
HER-S04 0.489 0.495 0.429 0.491 1.027 1.022 1.022 1.020

Coefficient of determination – R2

HER-S01 0.684 0.718 0.575 0.405 0.968 0.652 0.964 0.245
HER-S02 0.859 0.740 0.843 0.444 0.993 0.646 0.993 0.336
HER-S03 0.754 0.631 0.563 0.381 0.998 0.617 0.998 0.200
HER-S04 0.883 0.862 0.898 0.700 0.999 0.723 0.999 0.292

Regression coefficient – b
HER-S01 1.093 1.300 0.803 0.787 0.970 0.734 0.958 0.420
HER-S02 0.592 0.556 0.579 0.444 0.984 0.750 0.985 0.492
HER-S03 0.216 0.196 0.152 0.156 1.032 0.777 1.033 0.411
HER-S04 0.309 0.311 0.277 0.281 1.024 0.849 1.023 0.516

Root mean square error – RMSE (in mm)
HER-S01 0.213 0.277 0.189 0.280 0.053 0.154 0.054 0.231
HER-S02 0.047 0.054 0.049 0.073 0.009 0.060 0.008 0.084
HER-S03 0.181 0.186 0.196 0.197 0.013 0.145 0.013 0.226
HER-S04 0.218 0.218 0.228 0.230 0.013 0.163 0.013 0.280
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intensities of the interpolated RD estimates stay very close to the
original RD intensities (see rain rate values in Fig. 5 and b values
in Tables 4 and 5). This is due to the assumption of linear change
in rainfall intensities mentioned above. Similar trends can be
observed at RG point locations (see Figs. 6 and 7). However, when
looking at the distribution of statistics at point locations, a larger
spread is observed in the results associated to the interpolated
RD estimates as compared to those of the original RD observations.
This could be partially due to the uncertainty in the interpolation
itself, as well as to the uncertainty in the high-resolution RG
estimates.

In terms of hydraulic outputs (Tables 6 and 7 and Figs. 10 and
11), the temporally-interpolated RD estimates do not lead to signif-
icant improvements, as compared to the original RD rainfall inputs.
The difference between the temporally-interpolated-only and the
original RD estimates is usually small (i.e. RD 5-1 vs. RD 5 and
RD 10-1 vs. RD 10) and mainly lies in the shifting (generally
improving) of the timing to peak flow depth. Nonetheless, the
improvements observed in the R2 values of the interpolated RD
estimates are generally smoothed-out throughout the hydrological
and hydraulic modelling. Moreover, it is often found that the RD
5-1 and RD 10-1 estimates result in lower peak flow depths than
the original RD estimates, which may be attributed to the inevita-
ble smoothing nature of the interpolation process.

From the analysis of the individual effect of interpolation it
can be concluded that while the interpolation helps re-gain
the dynamics of rainfall inputs, it is not sufficient to fully cor-
rect rainfall estimates. This implies that other sources of error
are still present and that a gauge-based adjustment is still
necessary.



Table 6
Summary statistics of the simulated flow depths at the Valentine open channel (the circled blue round marker in Fig. 3) of the Cranbrook catchment.

Event ID RG RD 5-1 RD 5 RD 10-1 RD 10 BAY 5-1 BAY 5 BAY 10-1 BAY 10

Coefficient of determination – R2

CBK-S01 0.827 0.796 0.838 0.789 0.874 0.886 0.858 0.881 0.775
CBK-S02 0.815 0.515 0.527 0.500 0.488 0.843 0.857 0.848 0.849
CBK-S03 0.976 0.970 0.972 0.971 0.888 0.980 0.955 0.972 0.814
CBK-S04 0.835 0.907 0.963 0.891 0.963 0.939 0.953 0.924 0.903

Regression coefficient – b
CBK-S01 0.770 0.786 0.803 0.776 0.806 0.989 0.956 0.973 0.895
CBK-S02 1.012 0.780 0.782 0.772 0.762 0.973 0.951 0.981 0.938
CBK-S03 0.942 0.935 0.929 0.949 0.909 0.947 0.929 0.950 0.882
CBK-S04 1.460 1.423 1.457 1.474 1.534 1.343 1.371 1.384 1.420

Root mean square error – RMSE (in metre)
CBK-S01 0.100 0.106 0.100 0.106 0.094 0.079 0.084 0.080 0.098
CBK-S02 0.076 0.110 0.108 0.111 0.112 0.070 0.068 0.070 0.070
CBK-S03 0.057 0.080 0.076 0.074 0.117 0.065 0.079 0.071 0.142
CBK-S04 0.153 0.117 0.102 0.135 0.124 0.095 0.093 0.105 0.122

Table 7
Summary statistics of the comparison of observed and simulated flow depth at the M5 (the circled red round marker in Fig. 4) of the Herent area.

ID RG RD 5-1/RD 5-2 RD 5 RD 10-1/RD 10-2 RD 10 BAY 5-1/BAY 5-2 BAY 5 BAY 10-1/BAY 10-2 BAY 10

Coefficient of determination – R2

HER-S01 0.965 0.930 0.936 0.889 0.879 0.957 0.953 0.962 0.978
HER-S02 0.962 0.903 0.892 0.903 0.892 0.943 0.919 0.941 0.905
HER-S03 0.890 0.724 0.693 0.708 0.636 0.985 0.970 0.984 0.934
HER-S04 0.929 0.888 0.869 0.870 0.856 0.994 0.979 0.994 0.937

Regression coefficient – b
HER-S01 1.022 1.045 1.044 1.030 1.036 0.979 0.998 1.075 1.111
HER-S02 0.734 0.520 0.524 0.474 0.571 0.731 0.712 0.692 0.781
HER-S03 0.911 0.655 0.693 0.663 0.617 0.974 0.972 0.972 0.955
HER-S04 0.846 0.786 0.775 0.766 0.775 0.904 0.897 0.903 0.877

Root mean square error – RMSE (in metre)
HER-S01 0.144 0.170 0.162 0.199 0.236 0.197 0.162 0.118 0.111
HER-S02 0.304 0.583 0.566 0.643 0.576 0.298 0.332 0.346 0.313
HER-S03 0.230 0.432 0.409 0.418 0.474 0.152 0.171 0.152 0.210
HER-S04 0.184 0.299 0.309 0.330 0.299 0.148 0.165 0.148 0.210

L.-P. Wang et al. / Journal of Hydrology 531 (2015) 408–426 423
3.3.3. Analysis of Bayesian-adjusted-only radar rainfall estimates and
associated runoff estimates

In contrast to the temporal interpolation, the gauge-based
adjustment alone generally has a large impact on rainfall estimates
and subsequent runoff simulations.

With regards to rainfall estimates, the Bayesian merging alone
largely improved the magnitude of peak rainfall rates as well as
the event rainfall accumulations, both at areal level and at point
RG locations (see magnitudes of peak intensities in Fig. 5 and b
values in Tables 4 and 5, Figs. 6 and 7). However, the application
of the merging at the original temporal resolutions, particularly
at 10 min, often caused a deterioration in the timing of peak inten-
sities and in the pattern of rain rate time series in general, as com-
pared to the original RD estimates. This is reflected in a decrease in
R2 and b values, often accompanied by a deterioration in RMSE val-
ues (see Tables 4 and 5 and Figs. 6 and 7). The deterioration of the
pattern implies a loss of dynamics which can be attributed to the
joint effect of using RD estimates at coarse resolution in combina-
tion with RG estimates aggregated to a coarser resolution.

The effects of the Bayesian merging alone propagate through
the hydraulic simulations, but are somehow smoothed in the pro-
cess. On the one hand, the improvement in peak rainfall rates and
accumulations clearly translated into improved reproduction of
runoff peaks (see Figs. 10 and 11). The loss of dynamics of rainfall
time series, on the other hand, did result in shifts (worsening) in
the time to runoff peaks, particularly for the BAY 10 rainfall inputs.
Nonetheless, the degree of dynamic loss (or alteration in time ser-
ies pattern) observed in the runoff simulations is not as significant
as that initially observed in the BAY 5 and BAY 10 rainfall
estimates.

3.3.4. Analysis of temporally-interpolated and Bayesian-adjusted
radar rainfall estimates and associated runoff estimates

As compared to the temporally-interpolated-only RD images,
the temporally-interpolated and Bayesian-adjusted images show
a similar shape and displacement of rain cells. Nonetheless, the
latter display stronger and less linear changes in rainfall intensi-
ties, as a result of incorporating of high resolution RG information
(see Figs. 8 and 9). This incorporation allows a more realistic rep-
resentation of the growth and decay of storm cells, which is partic-
ularly evident in the CBK-S03 event (Fig. 8).

An interesting visual feature worth highlighting is the differ-
ence in the 07:55 images of BAY 5-1 (observed + merged) and
BAY 10-1 (interpolated + merged) estimates in Fig. 9. It can clearly
be seen that the pattern of the BAY 10-1 estimates is much
smoother and less similar to the associated radar image than that
of the BAY 5-1 one. This is because the interpolated radar estimate
of the BAY 10-1 is found to be less reliable than the observed radar
estimate at time 07:55 employed in the generation of BAY 5-1. As a
result, given the theoretical formulation of the Bayesian merging
method, the proportion of the RG information that is preserved
throughout the adjustment is larger in the case of the BAY 10-1.
This finding highlights the advantages of using the Bayesian merg-
ing method – as opposed to other adjustment methods, which do
not account for the uncertainty of the different data sources being
merged – in combination with the temporal interpolation.
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Quantitatively, the combined application of temporal interpola-
tion and Bayesian merging led to the best performing rainfall esti-
mates (BAY 5-1 and BAY 10-1), both in terms of magnitude and
pattern, at areal level as well as at point RG locations (see Fig. 5,
Tables 4 and 5, Figs. 6 and 7). Remarkably, the BAY 10-1 estimates
performed better than BAY 5 estimates in almost all events, thus
bringing out the advantages of the proposed methodology. The
improvements observed in the rainfall estimates are clearly seen
in the associated runoff estimates, with BAY 5-1 and BAY 10-1
associated hydraulic outputs generally performing better than
others, often even better than the outputs resulting from the orig-
inal high resolution RG estimates. As compared to the runoff esti-
mates associated to the Bayesian-adjusted-only rainfall inputs, the
BAY 5-1 and BAY 10-1 estimates display a better agreement with
observations, particularly in terms of the time to runoff peak.
This highlights the benefits of applying gauge-based adjustments
at higher temporal resolutions.

4. Conclusions and future work

In this paper a methodology is proposed to produce higher
temporal-resolution (1–2 min), more accurate radar rainfall esti-
mates, aiming at meeting the stringent requirements of urban
hydrological applications. The proposed methodology involves
two main steps: firstly, radar images are temporally interpolated
from the original operational temporal resolutions (5–10 min) to
a higher resolution at which local RG records are available
(1–2 min). This is done using a novel interpolation technique intro-
duced in the present paper, based upon the multi-scale variational
optical flow technique, and which can well capture the small-scale
rainfall structures relevant at urban scales. Afterwards, the higher
temporal resolution radar rainfall estimates are dynamically
merged with local rain gauge records by means of the Bayesian
data merging method, which in previous studies had shown to out-
perform other merging methods, both at large and at small (urban
scales).

Using as case study a total of eight storm events observed
in the Cranbrook catchment (�9 km2) (London, UK) and in the
Herent area (�25 km2) (Leuven, Belgium), the performance of
the proposed method, in terms of the resulting rainfall estimates
and the subsequent runoff estimates, was evaluated and compared
against that of the original radar estimates and of the merged-only
(i.e. without temporal interpolation) and interpolated-only (i.e.
without merging) rainfall estimates. This analysis clearly brought
out the benefits of the proposed combination of temporal interpo-
lation and local and dynamic gauge-based adjustment of radar
rainfall estimates. The main conclusions and implications of the
testing are the following:

� The novel temporal interpolation technique introduced in this
study proved able to handle small-scale rainfall features, result-
ing in realistic intermediate (interpolated) radar images, which
served as basis for the subsequent local gauge-based adjust-
ment. While the temporal interpolation alone does not show
consistent quantitative results, its benefits are always evident
in the case of storm events with fast-changing features.
� The proposed temporal interpolation + merging methodology

can significantly improve radar rainfall estimates and associ-
ated runoff simulations at urban scales, much more so than
the mere application of Bayesian merging at the original tempo-
ral resolution at which radar estimates are available. In other
words, the results indicate that it is more effective to adjust
or merge radar estimates at higher temporal resolutions, as
opposed to doing so at coarser ones. In fact, at the coarsest tem-
poral resolution analysed in this study (10 min), the Bayesian
merging generally led to smaller improvements, and sometimes
even caused deterioration, in both radar QPEs and associated
runoff at the small urban scales considered in this study. This
finding implies that the nation-wide gauge-based adjusted
radar rainfall products which are generated through adjust-
ments often performed at rather coarse temporal resolutions
(P10 min) – e.g. the UKMO-Environment Agency product
(Jewell and Gaussiat, 2015) and the Belgian RMI product
being developed (Goudenhoofdt and Delobbe, 2009) – may
not provide tangible benefits at urban scales.

However, in order to draw more robust conclusions about the
applicability of the proposed method, further testing is required
based on more storm events and pilot locations. Other aspects on
which future work is recommended are the following:

� Testing of the proposed methodology using radar rainfall esti-
mates at higher spatial resolutions. Given the strong relation-
ship between the temporal and spatial resolution of rainfall
inputs (Ochoa-Rodríguez et al., in press), it is likely that the ben-
efits of the proposed methodology will become more evident
when using radar estimates of higher spatial resolution, which
is in agreement with the high temporal resolutions obtained
through the methodology demonstrated in this study.
� Application of the temporal interpolation technique proposed

herein in combination with the singularity-sensitive Bayesian
merging method (Wang et al., 2015), which has proven to better
preserve small-scale singularity structures throughout the
merging process, thus being more suitable for urban applica-
tions. However, the fact that the singularity analysis would be
applied on temporally-interpolated radar images, as opposed
to actual radar observations, poses particular challenges which
need to be carefully examined.
� Development of a stochastic temporal interpolation method,

which accounts for the uncertainties associated with the advec-
tion model. This stochastic model could serve as basis for a rain-
fall error model for urban scales.
� Exploration of the use of the improved rainfall estimates

obtained with the proposed methodology in a wider range of
urban hydrological applications, including calibration of urban
drainage models, reconstruction of historical storm events lead-
ing to known pluvial flooding, real-time simulation of urban
runoff, amongst others.
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rainfall sequences using multinomial multiplicative cascades. Hydrol. Earth
Syst. Sci. Discuss. 7, 5267–5297.

Wang, L.-P., Simões, N.E., Rico-Ramirez, M., Ochoa, S., Maksimović, C., 2011a. Radar-
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Urban catchments are typically characterised by high spatial variability and fast runoff processes result-
ing in short response times. Hydrological analysis of such catchments requires high resolution precipita-
tion and catchment information to properly represent catchment response. This study investigated the
impact of rainfall input resolution on the outputs of detailed hydrodynamic models of seven urban catch-
ments in North-West Europe. The aim was to identify critical rainfall resolutions for urban catchments to
properly characterise catchment response. Nine storm events measured by a dual-polarimetric
X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) of
the Netherlands, were selected for analysis. Based on the original radar estimates, at 100 m and 1 min
resolutions, 15 different combinations of coarser spatial and temporal resolutions, up to 3000 m and
10 min, were generated. These estimates were then applied to the operational semi-distributed hydrody-
namic models of the urban catchments, all of which have similar size (between 3 and 8 km2), but differ-
ent morphological, hydrological and hydraulic characteristics. When doing so, methodologies for
standardising model outputs and making results comparable were implemented. Results were analysed
in the light of storm and catchment characteristics. Three main features were observed in the results: (1)
the impact of rainfall input resolution decreases rapidly as catchment drainage area increases; (2) in gen-
eral, variations in temporal resolution of rainfall inputs affect hydrodynamic modelling results more
strongly than variations in spatial resolution; (3) there is a strong interaction between the spatial and
temporal resolution of rainfall input estimates. Based upon these results, methods to quantify the impact
of rainfall input resolution as a function of catchment size and spatial–temporal characteristics of storms
are proposed and discussed.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The impact of spatial–temporal variability of rainfall on catch-
ment response and the sensitivity of hydrological models to the
spatial–temporal resolution of rainfall inputs have been active
topics of research over the last few decades (e.g. Singh, 1997;
Berndtsson and Niemczynowicz, 1988; Lobligeois et al., 2014).
Several studies have shown that the spatial–temporal variability
of rainfall fields can translate into large variations in flows; as a
result, it is necessary to account for this variability in order to
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properly characterise hydrological response (Tabios and Salas,
1985; Berndtsson and Niemczynowicz, 1988; Krajewski et al.,
1991; Obled et al., 1994; Singh, 1997; Chaubey et al., 1999;
Arnaud et al., 2002; Syed et al., 2003; Smith et al., 2004; Kavetski
et al., 2006). This is particularly the case in small urban catch-
ments, which are characterised by fast runoff processes and short
response times, and are therefore very sensitive to the spatial
and temporal variability of precipitation (this variability was found
to be significant even at the small scales of urban catchments
(Emmanuel et al., 2012; Gires et al., 2014b)). In order to well rep-
resent urban runoff processes, high resolution precipitation infor-
mation is therefore needed (Schilling, 1991; Faurès et al., 1995;
Shah et al., 1996; Aronica and Cannarozzo, 2000; Einfalt, 2005;
Tetzlaff and Uhlenbrook, 2005; Segond et al., 2007; Vieux and
Imgarten, 2012; Schellart et al., 2012). This need has been further
fuelled by recent developments in, and increasing use of,
higher-resolution urban hydrological models (e.g. Fewtrell et al.,
2011; Giangola-Murzyn et al., 2012; Pina et al., 2014), which allow
incorporation of detailed rainfall, surface and runoff information.
With regards to rainfall monitoring, significant progress has been
made over the last few decades, including widespread increase in
the use of weather radar rainfall estimates, generally provided by
national meteorological services at 1 km/5–10 min resolutions.
Multiple studies have been conducted in recent years aimed at
analysing urban hydrological/hydraulic model sensitivity to the
spatial–temporal resolution of rainfall inputs and at establishing
required rainfall input resolutions for urban hydrological applica-
tions. However, there is not as yet a consensus on these topics.

A theoretical study undertaken by Schilling (1991) suggested
that, for urban drainage modelling, rainfall data of at least
1–5 min and 1 km resolutions should be used. Another study
undertaken by Fabry et al. (1994) suggested that finer resolution
data (i.e. 1–5 min in time and 100–500 m in space) are required
for urban hydrological applications. This however may vary
according to the application (Einfalt et al., 2004; Einfalt, 2005);
for detailed sewer system simulation, for example, it is believed
that the spatial–temporal resolutions suggested in Fabry et al.
(1994) are essential.

Berne et al. (2004) analysed the relation between catchment
size and minimum required spatial and temporal resolutions or
rainfall measurements in a study involving very high resolution
precipitation data (�7.5 m/4 s) and runoff records from six urban
catchments on the French Mediterranean coast (but not models
were used). Their study suggests that for small urban catchments,
of the order of 3 ha, �1.5 km/1 min resolution, rainfall estimates
are recommended, whereas for larger catchments, of the order of
500 ha, �3 km/5 min estimates may suffice. Slightly more strin-
gent resolution requirements were identified by Notaro et al.
(2013): using high spatial–temporal resolution rain gauge records
as input to the semi-distributed urban drainage model of a 700 ha
urban catchment in Italy, the authors investigated the uncertainty
in runoff estimates resulting from coarser resolution rainfall inputs
and concluded that temporal resolutions below 5 min and spatial
resolutions of �1.7 km are generally required for urban hydrolog-
ical applications.

Using a semi-distributed urban drainage model of a small urban
catchment in London, and stochastically-downscaled rainfall esti-
mates, Gires et al. (2012) and Wang et al. (2012) showed that the
unmeasured small-scale rainfall variability, i.e. occurring below
the typically available resolutions of 1 km in space and 5 min in
time, may have a significant impact on simulated flows, with the
impact decreasing as the drainage area of interest increases. A sim-
ilar study was undertaken by Gires et al. (2014a), but this time
using a fully-distributed model of a small catchment in Paris; sim-
ilar results were obtained, but the fully-distributed model dis-
played higher sensitivity to the resolution of rainfall inputs.
More recently, Bruni et al. (2015) analysed the relationship
between spatial and temporal resolution of rainfall input, storm
and catchment scales, urban hydrodynamic model properties and
modelling outputs. This was done using high resolution
(100 m/1 min) rainfall data provided by polarimetric weather
radar and a semi-distributed urban drainage model of a subcatch-
ment in Rotterdam, the Netherlands. They showed that for a
densely built, highly impervious urban catchment, modelling
outputs are sensitive to high resolution rainfall variability and that
deviations in model outputs significantly increase as rainfall inputs
are aggregated to coarser scales, particularly at very small drainage
areas (<1 ha).

As can be seen, few studies have analysed measured spatial–
temporal variability of rainfall at the 1 min and 100 m scales and
those which have not always involved hydrological/hydraulic
models and/or are limited to single catchment studies. Hence, evi-
dence to prove the added value of higher resolution rainfall esti-
mates and to provide an answer about actual resolution
requirements for urban hydrological applications is still insuffi-
cient. With the purpose of providing additional evidence in this
direction, the present study investigates the impact of rainfall
input variability for a range of spatial and temporal resolutions
on the hydrodynamic modelling outputs of seven urban catch-
ments located in each of the partner countries of the European
Interreg RainGain project (http://www.raingain.eu/) (i.e. UK,
France, Netherlands and Belgium). Rainfall estimates of nine storm
events were derived from a polarimetric X-band radar located in
Cabauw (The Netherlands). The original radar estimates, at 100 m
and 1 min resolutions, were aggregated to spatial resolutions of
500, 1000 and 3000 m, and were sampled at temporal resolutions
of 1, 3, 5 and 10 min. These estimates were then applied to
high-resolution semi-distributed hydrodynamic models of the
seven urban catchments, all of which have similar size (between
3 and 8 km2), but different morphological, land use and model
structure characteristics. Within the catchments, outputs were
analysed at different nodes along the main flow path to investigate
the effect of drainage areas of different sizes. Methodologies
for standardising rainfall inputs and hydrological outputs were
implemented to make results comparable. The impact of varying
spatial–temporal resolutions of rainfall input on hydrodynamic
model outputs was analysed in the light of storm and catchment
characteristics. Based upon these results, current research needs
and future work are discussed.

The paper is organised as follows. In Section 2, the pilot catch-
ments, hydrodynamic models and radar-rainfall datasets are intro-
duced. Methodologies for selecting relevant spatial–temporal
resolution combinations and characterising spatial–temporal char-
acteristics of the nine storms events are explained in Section 3, as
well as methodologies used for feeding the rainfall inputs into the
hydrodynamic models of the pilot catchments and for extracting
and analysing the hydrodynamic modelling results. Results are
presented and discussed in Section 4, followed by conclusions
and recommendations in Section 5.
2. Pilot catchments and datasets

2.1. Pilot urban catchments

Seven urban catchments, located in four North-West European
countries, were adopted as pilot locations in this study. With the
aim of facilitating inter-comparison of results, catchment areas of
similar size (3–8 km2) were selected for testing. The main charac-
teristics of the selected pilot catchments are summarised in
Table 1. Moreover, images of the boundaries and sewer layouts
of all pilot catchment can be found in Fig. 1. More detailed

http://www.raingain.eu/


Table 1
Summary characteristics of selected pilot urban catchments.

Cranbrook (UK) Torquay Town Centre
(UK)

Morée-Sausset
(FR)

Sucy-en-Brie (FR) Herent (BE) Ghent (BE) Kralingen (NL)

Catchment ID 1 2 3 4 5 6 7

Area (ha) 865 570 560 269 512 649 670

Catchment length
and width (km)*

6.10/1.42 5.35/1.06 5.28/1.06 4.02/0.67 8.16/0.63 4.74/1.37 2.12/3.16

Catchment shape
factor (�)**

0.23 0.20 0.20 0.17 0.08 0.29 1.49

Slope (m/m)*** 0.0093 0.0262 0.0029 0.0062 0.0083 0.0001 0.0003

Main flow direction
(�)

239 270 198 138 40 235 152

Type of drainage
system

Mostly
separate,
branched

Mostly combined,
branched

Mostly
separate,
branched

Separate, branched Mostly
combined,
branched

Mostly
combined,
branched

Mostly
combined,
looped

Is flow mainly driven
by gravity?

Yes Yes Yes Yes Yes Yes No

Control elements 3 storage lakes 3 storage tanks, 1
pumping station

2 storage tanks 1 storage basin, 1
pumping station

5 main CSO’s
with control

15 pumping
stations

20 pumping
stations

IMP (%)**** 52% 26% 37% 34% 27% 41% 48%

Predominant land
use*****

R&C R&C R&C R&C R R R&C

Population density
(per/ha)

47 60 70 95 20 24 154

* Length = Length of longest flow path (through sewers) to catchment outfall; Width = Catchment Area/Catchment Length.
** Shape factor = Width/Length (this parameter is lower for elongated catchments).

*** Catchment slope = Difference in ground elevation between upstream most point and outlet/catchment length.
**** IMP: total proportion of impervious areas in relation to total catchment area.
***** Predominant land use: R = residential; C = commercial.

Fig. 1. Catchment boundary and sewer layout for the pilot urban catchments.
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information on each of these catchments can be found in the
RainGain project website: http://www.raingain.eu/en/actualite/
learn-more-about-ten-locations-where-raingain-solutions-will-be-
implemented. As can be seen, the selected pilot catchments cover a
wide range of morphological, topographic and land use conditions.

2.2. Urban drainage models of the pilot catchments

Verified and operational semi-distributed urban drainage mod-
els of each catchment were used in this study; their main charac-
teristics are summarised in Table 2. In this type of models the
whole catchment surface is split into sub-catchment units through
which rainfall is applied. Each sub-catchment unit is treated as a
lumped model within which rainfall is assumed to be uniform.
Each sub-catchment comprises a mix of pervious (PER) and imper-
vious (IMP) surfaces the runoff of which drains to a common outlet
point, which corresponds to an inlet node of the sewer system (i.e.
a gully or a manhole). Each sub-catchment is characterised by a
number of parameters, including total area, length, slope and pro-
portion of each land use, amongst others. Based upon these param-
eters, runoff volumes are estimated and routed at subcatchment
scale using the rainfall–runoff and concentration models com-
monly employed in each country (see Table 2). Sub-catchment
sizes of the models used in this study typically varied from
0.09 ha to 13.07 ha (median values). Sewer flows in all pilot catch-
ment models are routed using the full de St. Venant equations (i.e.
dynamic wave approximation).

2.3. High resolution precipitation data

High-resolution rainfall data were obtained by a
dual-polarimetric X-band weather radar, IDRA hereafter, located
in the CESAR observatory of the Netherlands (Figueras i Ventura,
2009; Leijnse et al., 2010). IDRA is a frequency modulated contin-
uous wave (FMCW) radar working at 9.475 GHz. Its operational
range is of 15 km with a range resolution of 30 m, approximately.
IDRA is fixed at a height of 213 m from ground level; it scans at a
fixed elevation angle of 0.5�, and rotates the antenna over 360�
every minute. The technical specifications of IDRA are summarised
in Table 3.

The accuracy of radar measurements can be affected by multi-
ple factors, including clutter contamination and signal attenuation.
In order to ensure good quality of the final radar product, several
correction procedures were implemented; these are summarised
next.

Signals of ground and moving clutter were identified and
removed, using an optimum filter based on polarimetric spectra
(Unal, 2009). Moreover, random fluctuations were separated from
weather signals using a threshold of 3 dB above noise level. In
addition, areas with linear depolarisation ratio (Ldr) larger than
�15 dB were removed to ensure only rain particles are processed.
Because IDRA works at X-band frequencies, received signals can
Table 3
Specifications of dual-polarimetric X-band weather radar IDRA from which high
resolution precipitation data were derived for this study.

Radar type FMCW
Polarisation Dual polarisation
Frequency 9.475 GHz
Range resolution 3–30 m
Min range 230 m
Max range <122 km
Max unambiguous radial velocity 19 m/s
Temporal resolution 1 min
Beamwidth 1.8�
Elevation 0.5�

http://www.raingain.eu/en/actualite/learn-more-about-ten-locations-where-raingain-solutions-will-be-implemented
http://www.raingain.eu/en/actualite/learn-more-about-ten-locations-where-raingain-solutions-will-be-implemented
http://www.raingain.eu/en/actualite/learn-more-about-ten-locations-where-raingain-solutions-will-be-implemented
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experience large attenuation and as a result radar measurements
such as reflectivity (Z) can be underestimated. However, the speci-
fic differential phase (Kdp) is immune to attenuation and therefore
Kdp was used to correct reflectivity from attenuation effects as long
as the received signals were not totally extinct (Otto and
Russchenberg, 2011). Areas with extinct signals are typically
located behind regions with heavy precipitation. In the imple-
mented processing routines extinct areas were flagged and
excluded from further processing.

Kdp is also immune to radar calibration errors and hail contam-
ination. This makes Kdp suitable for rainfall rate estimation.
However, Kdp at X-band frequencies can be contaminated by the
backscattering component of the differential phase, which can
introduce bias. In addition, with the purpose of maintaining low
Kdp variability, Kdp is typically obtained at spatial resolutions of
the order of 2–3 km (Bringi and Chandrasekar, 2001), which can
be few times larger than the radar range resolution. Nonetheless,
the approach by Otto and Russchenberg (2011), adopted in the pre-
sent study, addresses both issues. First, the effect of the backscat-
tering component is filtered out by using a theoretical
relationship between the backscattering and the differential reflec-
tivity. Second, Kdp is obtained at radar spatial resolution by using
the self-consistency principle (Scarchilli et al., 1996).

Given the above considerations, for the present study rainfall
rate (R) is estimated using Kdp for areas with Z > 30 dBZ, otherwise
the corrected reflectivity is used according to Otto and
Russchenberg (2012):

R ¼ 13K0:75
dp ð1Þ

z ¼ 243R1:24 ð2Þ

where R, Kdp, and z are given in mm h�1, degrees km�1, and
mm6 m�3, respectively. Although these steps improve the estima-
tion of rainfall rate, there remain issues such as insect echoes,
melting-layer contamination, and multi-trip echoes. Each of these
echoes has a familiar pattern which can be detected through visual
inspection: insects are noticeable at short ranges, at which radar
reflectivity is highly sensitive; melting-layer contamination leads
to strong echoes in the form of a ring around the radar; and
multi-trip echoes can be identified in the reflectivity field by length-
ened and weak echo lines. The data used in the present study were
visually inspected to ensure that the effect of contamination by
undesired echoes was minimal.

Rainfall estimates from IDRA were initially available in polar
coordinates at temporal and spatial resolutions of 1 min and
30 m by 1.8� (i.e. radar beamwidth), respectively. However, to
facilitate handling of the data, it had to be converted from polar
to Cartesian coordinates. In this work, data were initially mapped
to a regular grid of 100 m by 100 m; this is therefore the finest spa-
tial resolution used as input for the urban drainage models in the
present study. From the available IDRA dataset, eight storm events
Table 4
Characteristics of selected storm events (estimated based upon 1 min/100 m resolution es

Event ID Date Duration Total depth
(areal average

E1 18/01/2011 05.10–08.00 h 31.48/17.89/4
E2 18/01/2011 05.10–08.00 h 36.12/16.48/4
E3 28/06/2011 22.05–23.55 h 8.94/4.46/17.6
E4 18/06/2012 05.55–07.10 h 10.12/8.03/11
E5 29/10/2012 17.05–19.00 h 5.34/1.20/13.6
E6 02/12/2012 00.05–03.00 h 4.94/2.39/7.86
E7 23/06/2013 08.05–11.30 h 4.19/0.73/13.3
E8 09/05/2014 18.15–19.35 h 4.48/1.40/8.88
E9 11/05/2014 19.05–23.55 h 5.99/1.22/12.6
recorded between 2011 and 2014 were selected for this study. The
selected events correspond to the most intense events recorded
during these years and can be considered characteristic of
North-West Europe. Nonetheless, it is worth mentioning that,
being a research radar, IDRA does not operate continuously; there-
fore, not all intense storm events which occurred between 2011
and 2014 were recorded by the radar and the selected events
include a combination of high intensity as well as moderate and
low intensity storms. For each storm event a square area of
36 km2, which is large enough to circumscribe the eight pilot
catchments (considering their different shapes), was clipped from
the total area covered by the radar and was used as input for the
models of the pilot catchments. The area for analysis was selected
such that it comprised the main rainfall cell(s) observed within the
radar domain. The dates and main statistics of the selected storm
events within the clipped (6 km � 6 km) area are summarised in
Table 4. It is important to note that during the storm event on
18/01/2011, strong storm cells were observed in different areas
of the radar domain. Given the high intensities and depths associ-
ated with the different areas, it was deemed appropriate to select
two different areas within the radar domain for analysis.
Consequently, for this storm event two sub-events were selected
for analysis (i.e. E1 and E2). Storm profiles, snapshot images during
the time of peak areal intensity as well as images of the rainfall
depth accumulations for each storm event within the clipped area
are shown in Fig. 2.

3. Methodology

3.1. Selection of rainfall input resolutions for analysis

To study the impact of spatial–temporal resolution of rainfall
inputs on hydrodynamic model outputs, sixteen combinations of
spatial–temporal resolutions were selected. The highest resolution
of 100 m in space and 1 min in time was used as reference.
Additionally, 15 resolution combinations were adopted based on
the following considerations (the rationale behind the selected res-
olution combinations, as well as the selected combinations, are
summarised in Fig. 3):

– In the framework of the simplest space–time scaling model that
relies on a scaling anisotropy coefficient Ht (Deidda, 2000; Gires
et al., 2011): when the spatial scale of the data is changed by a
ratio of kxy, the temporal scale should be changed by a factor of
kt ¼ k1�Ht

xy . By combining the scale invariance property of
Navier–Stokes equations with Kolmogorov’s (1962) formula-
tion, and assuming that the properties established for the atmo-
sphere remain valid for rainfall, it is possible to show that Ht is
expected to be equal to 1/3 (Marsan et al., 1996). This means
that when the spatial scale is multiplied by 3, the temporal scale
should be multiplied by 2 (i.e. 31�1=3 � 2:08) (Biaou et al., 2005;
timates for the clipped (6 km � 6 km) area). Time is in UTC.

/pixel min/pixel max) (mm)
Max intensity over 1 min
(areal average/individual pixel) (mm/h)

5.82 31.67/1120.20
7.17 26.48/124.00
4 28.42/241.82

.76 11.62/24.11
4 7.05/82.83

6.59/38.57
9 9.41/306.55

12.98/66.76
5 10.53/246.74



Fig. 2. Areal average storm intensity profile (left column), snapshot image during the peak intensity period of the storm (middle column) and total event accumulations for
the storm events under consideration.
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Fig. 2 (continued)
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Gires et al., 2012). This leads to the following resolution combi-
nations (indicated in blue in Fig. 3), upscaling from the refer-
ence resolution 100 m/1 min: 500 m/3 min; 1000 m/5 min;
3000 m/10 min.

– Operational resolutions: it is of interest to relate the results of
this study to resolutions typically available from operational
radar networks. The most common resolutions are
1000 m/5 min for national weather radar networks (e.g. in the
UK, France, Netherlands, US). Other operational resolutions
include: 1000 m/10 min (Malaysia), � 500 m/5 min (Belgium).
Moreover, the equivalent resolutions of operational urban rain
gauge networks are often of the order of several km in space
and 1–15 min in time (WAPUG, 2002; Wang et al., 2013). The
operational resolutions are indicated in yellow in Fig. 3.
– Berne et al. (2004) identified characteristic temporal and spatial
scales relevant to describe the hydrological behaviour of urba-
nised catchments. They used a simple power law relationship
to link lag time to the surface area of catchments. Based on this
power law and on the characteristic spatial and temporal
dimensions of storms typical of Mediterranean regions, the fol-
lowing approximate characteristic spatial–temporal resolutions
were derived (indicated in green in Fig. 3): 1 min/1500 m (for
catchment areas �2.6 ha); 3 min/2600 m (for catchment areas
�100 ha); 5 min/3300 m (for catchment areas �560 ha);
10 min/4700 m (for catchment area �5600 ha).

– In addition to the resolution combinations mentioned in the lit-
erature based on atmospheric processes and catchment
response characteristics, all remaining combinations of the



Fig. 3. Combinations of space and time resolutions of rainfall inputs investigated in this study. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of the article).
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selected space and time scales were investigated, so as to enable
the analysis of the ‘marginal’ as well as the combined effect of
the different temporal and spatial resolutions (these are indi-
cated in red in Fig. 3).

Using the finest resolution rainfall estimates (i.e. 100 m/1 min)
as starting point, coarser spatial resolutions of up to 3000 m were
generated through aggregation (i.e. averaging in space), and coar-
ser temporal resolutions of up to 10 min were obtained by sam-
pling a radar image at the desired time interval. The strategy to
generate coarser temporal resolution estimates was chosen so as
to replicate radar scanning strategies.
3.2. Spatial and temporal characterisation of storm events

Based upon the finest resolution rainfall data (i.e. 100 m/1 min),
the following parameters were estimated which provide a measure
of the spatial and temporal characteristics of the storm events
under consideration. These parameters are used in Section 4 to
analyse the observed impact of rainfall input resolution on hydro-
dynamic modelling results.

In the estimation of these parameters, only the (manually-
selected) radar images over the peak period of the storm (i.e.
period during which the core of the storm passes through the
6 km � 6 km clipped area) were considered. Including all radar
images in the estimation would result in smooth parameters which
do not reflect the dynamic and critical spatial–temporal features of
the storm events, hence the analysis was conducted over the peak
period only. It is worth noting that some of the storm events under
consideration comprised more than one peak; when this was the
case, each of the peaks was analysed separately and the peak with
the most stringent characteristics and resolution requirements was
adopted as representative of the storm event.
3.2.1. Spatial structure of storms and theoretically-required spatial
resolution of rainfall inputs

A climatological variogram (Bastin et al., 1984; Berne et al.,
2004; Bruni et al., 2015) was employed in this study to characterise
the average spatial structure of rainfall fields over the peak storm
period. Based upon the range of the variogram (r), which repre-
sents the limit of spatial dependence (Atkinson and Aplin, 2004),
the integral range measure (A) (Lantuéjoul, 1991, 2002) was
derived which can be considered as the mean area of the spatial
structure captured by the radar images over the area of interest.
Based upon A and following recommended signal/response
requirements from communication theory (Shannon, 1948;
Garrigues et al., 2006), a theoretically-required spatial resolution
was estimated for each storm event under consideration.

The specific steps that were followed to obtain these parame-
ters are the following:

(1) An empirical isotropic (semi-) variogram (cðhÞ) was com-
puted at each time step as:
cðhÞ ¼ 1
2n

Xn

i

ðZðxÞ � Zðxþ hÞÞ2
h i

ð3Þ

where n is the number of all pairs of radar pixels separated
by a distance h, Z are the rainfall rate values at the respective
pixels and x corresponds to the centre of a given radar pixel.
(2) Each empirical variogram was normalised by dividing it by
the sample variance.

(3) The normalised variograms obtained for each time step were
averaged over the time period of analysis; this yields a cli-
matological empirical variogram.

(4) An exponential variogram model was fitted to the empirical
climatological variogram using weighted least square fitting
(WLS). The exponential variogram function is the following:



Table 5
Estimated spatial and temporal characteristics and required rainfall input resolution
for the storm events under consideration.

Event
ID

Spatial
range
(r) (m)

Mean
velocity
(jv j) (m/s)

Max.
observable
singularity
(Small/Large)*

(cs) (�)

Required
spatial
resolution
(DSr) (m)

Required
temporal
resolution
(Dtr) (min)

E1 4056.69 9.76 0.33/0.23 1694.77 5.79
E2 3524.76 9.91 0.33/0.23 1472.54 4.95
E3 4655.10 14.04 0.53/0.27 1944.77 4.62
E4 3218.91 11.71 0.62/0.37 1344.77 3.83
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cðhÞ ¼ C0 þ C 1� exp �3 � jhj
r

� �� �
ð4Þ

where C0 is the nugget, C is the sill, and r is the (practical)
spatial range at which 95% of the sill is reached. It is worth
noting that the two classical models that are used to fit cli-
matological variograms are the exponential and spherical
ones. For the storms under consideration both models were
tested and a better fitting was generally obtained for the
exponential one, hence it was adopted to describe the struc-
ture of the variogram.
E5 2061.98 14.11 0.66/0.44 861.43 2.03
E6 3737.52 11.68 0.59/0.33 1561.43 4.46
(5) The integral range measure (A) was estimated as
(Lantuéjoul, 1991, 2002):
E7 1702.93 13.95 0.92/0.50 711.43 1.70
E8 3644.43 18.40 0.55/0.24 1522.54 2.76
E9 2354.53 16.97 0.80/0.36 983.66 1.93

* cs values were estimated for two ranges of scales, for which scale invariance
was found through multifractal analysis of rainfall images. These are: 100–600 m
(small scales) and 600 m–6 km (large scales).
A ¼
Z

h2R2
1� cðhÞ

r2

� �
dh ð5Þ

where r2 is the variance and R2 is the 2-dimensional domain
over which the variogram was derived. In simple terms, A
corresponds to the area under the correlogram curve. For
an exponential variogram model A is given by:

A ¼ 2pr2

9
ð6Þ

This measure summarises the (spatial) structural information
of the variogram provided by the range and the fraction of
total variance. As mentioned above, A can be considered as
the mean area of the spatial structure captured by the radar
images over the area of interest.
(6) The characteristic length scale of the storm event (rc), which
represents the mean extent of the spatial structure captured
by the data (Garrigues et al., 2008), was estimated as the
square root of A. For an exponential variogram model, rc is
given by:
rc ¼
ffiffiffiffiffiffiffi
2p
p

3

 !
r � 0:836r ð7Þ
(7) In a study focusing on the quantification of the spatial
heterogeneity of landscapes, Garrigues et al. (2006) demon-
strated that by adopting a maximum pixel size equal to half
of the characteristic length of the landscape image (i.e. rc=2),
it is possible to capture the major part of the spatial variabil-
ity of land use. Their derivation followed Shannon’s (1948)
theorem, according to which the proper sampling frequency
of a signal must be higher than twice the maximal frequency
of this signal. Following Garrigues et al. (2006) approach, the
coarsest spatial resolution (Dsr) that is required to properly
characterise a given storm event is therefore given by half
of the characteristic length scale. For an exponential
variogram:
Dsr ¼
rc

2
� 0:418r ð8Þ
In the case of a spherical variogram model, such as that used by
Berne et al. (2004), Dsr ¼ rc

2 � 0:396r, where the ratio 0.396 is sim-
ilar to the 1/3 ratio adopted by Berne et al. (2004), though it was
derived with a different rationale.

3.2.2. Storm direction and velocity
Storm motion was estimated using the TREC (TRacking Radar

Echoes by Correlation) method (Rinehart and Garvey, 1978), which
is widely used in rainfall nowcasting (Tuttle and Foote, 1990;
Laroche and Zawadzki, 1995; Horne, 2003; Li and Lai, 2004). This
method analyses the cross-correlation of each two consecutive
rainfall fields in order to derive a field of movement vectors (i.e.
the displacements in easting and northing directions). Given that
the study area was rather small (i.e. 6 km � 6 km), the domain
was analysed as a whole (i.e. it was not divided into
sub-domains, as is often done when large areas are analysed). A
single movement vector representing the main velocity (both
magnitude and direction) was thus obtained at each time step.
The series of vectors obtained for the multiple time steps of the
peak storm period were then averaged in order to obtain the mean
velocity during this period (estimated velocity magnitudes are
indicated in Table 5 of the results section).

3.2.3. Theoretically-required temporal resolution of rainfall inputs
The coarsest temporal resolution (Dtr) that is required to reflect

the spatial structure of a storm as captured by data can be defined
as the time needed to ’pass’ the mean extent of the spatial struc-
ture (defined above). Based upon this definition, Dtr can be com-
puted as:

Dtr ¼ rc=jv j ð9Þ

where jvj is the magnitude of the mean velocity of the storm over
the peak period.

3.2.4. Maximum observable singularity (cs)
While the geostatistical approach used to compute Dsr provides

a tangible estimate of the spatial features of a storm, it has the lim-
itation of being a second-order approximation which means that it
cannot properly reflect non-linear features (Schertzer and Lovejoy,
1987; Wang et al., 2015). With the purpose of further quantifying
the spatial variability of rainfall fields, including higher-order sta-
tistical features, the concept of maximum observable singularity
was used (Hubert et al., 1993; Douglas and Barros, 2003; Royer
et al., 2008). This concept relies on the Universal Multifractal
(UM) framework (see Schertzer and Lovejoy (2011) for a recent
review) and quantifies the extremes one can expect to observe
on a given sample of data according to its intrinsic variability. cs

is estimated not at a single resolution, but across a range of resolu-
tions over which scale invariance or scaling behaviour is detected
(i.e. fluctuations at small scales are related to larger ones by the
same scaling law). More precisely, a multifractal analysis is first
conducted on the rainfall images for a given storm event, based
upon which UM parameters are retrieved and scaling across differ-
ent resolutions, as well as breaks in scaling, are identified. cs is sub-
sequently computed from the UM parameters across the
resolutions for which scale invariance is detected. By comparing
cs over different scaling regimes, it is possible to detect changes
in the spatial variability of rainfall fields as a result of resolution
coarsening.
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3.3. Application of rainfall inputs to models

Rainfall estimates at the selected temporal and spatial resolu-
tions were applied as input to the hydraulic models of the seven
urban catchments in such a way that the resulting modelling out-
puts were as comparable as possible. Firstly, rainfall estimates
were applied such that the centroid of the clipped rainfall area
(see Section 2.3) coincides with the centroid of each catchment
(see Section 2.1). Moreover, rainfall inputs were applied in two rel-
ative directions: parallel and perpendicular to the main flow direc-
tion at each catchment. As explained in Section 3.2, storm direction
was estimated based on the TREC method. The predominant flow
direction at each pilot catchment was estimated based upon the
slope of the linear regression of the (x, y) coordinates of the nodes
located along the longest pipe flow path of each of the catchment
models (Fig. 1). By applying rainfall inputs in the same relative
direction to each catchment, variations in response due to differ-
ences in relative storm/flow direction (Singh, 1997) are avoided,
thus making the results more comparable. Moreover, by applying
rainfall inputs in these two relative directions it is possible to study
variations in response due to differences in relative storm/flow
direction.
3.4. Retrieval of hydraulic modelling results

For each of the hydraulic simulations carried out for each catch-
ment (i.e. 9 storm events � 16 resolution combinations � 2 storm
directions = 288), simulated flow time series at the downstream
end of 8 pipes were retrieved for analysis. The 8 pipe locations
were chosen such that the area that they drain (DA = drainage
area) was approximately the following:

� 2 locations with DA � 1 ha (i.e. characteristic length
(L ¼

ffiffiffiffiffiffiffi
DA
p

) � 100 m)
� 2 locations with DA � 25 ha (i.e. L � 500 m)
� 1 locations with DA � 100 ha (i.e. L � 1000 m)
� 1 locations with DA � 300 ha (i.e. L � 1700 m)
� 1 locations with DA � 500 ha (i.e. L � 2200 m)
� 1 locations with DA � 600 ha (i.e. L � 2500 m)

These points for analysis were selected so as to assess the
impact of rainfall input resolution in relation to the DA, which in
previous studies has shown to play a dominant role in the require-
ments/impacts of rainfall input resolutions (e.g. Berne et al., 2004;
Gires et al., 2012).

For the smallest catchments (e.g. Sucy-en-Brie (FR)), locations
with the largest DAs do not exist. In these cases, simulation results
for fewer points were retrieved. Conversely, in the case of catch-
ments with total area >600 ha, results at an additional point corre-
sponding to the downstream end of the catchment were retrieved.
It is important to mention that the looped nature of the Kralingen
catchment and the fact that flows may change direction through-
out a storm event make it difficult to determine and estimate the
area drained by a given pipe. For this catchment drainage areas
were determined following the approach proposed by Bruni et al.
(2015).
3.5. Evaluation of hydraulic modelling results

Using the hydraulic simulation results associated to the finest
resolution rainfall estimates (i.e. 100 m/1 min) as reference, the
following statistics were computed to quantify the impact of rain-
fall input resolution on the outputs of the hydraulic models of the
seven urban. In order to allow inter-comparison of results from dif-
ferent catchments, storm events and points of analysis, only
dimensionless statistics, which characterise different aspects of
the simulated hydrographs, were used in this study.

� Relative error (RE) in peak flow:
REst ¼ ðQmaxst � Qmaxref Þ=Qmaxref ð10Þ

where REst is the relative error in the flow peak (Qmaxst) corre-
sponding to a rainfall input of spatial resolution s and temporal
resolution t, in relation to the reference (100 m/1 min) flow
peak, Qmaxref . Positive RE values indicate overestimation by
the peak flow associated to the rainfall input st (i.e. Qmaxst),
and vice versa. The RE has the advantage of being a ’tangible’
statistic which evaluates the performance of a critical parameter
as is the peak flow. It is important to note that very large RE val-
ues can be obtained when low flows are evaluated, even if the
absolute difference in peak flows is small. Hence RE values must
be analysed with caution.
� Coefficient of determination (R2) and regression coefficient

(b) resulting from a simple linear regression analysis applied
between each simulated flows time series (Qst, resulting from
a rainfall input of spatial resolution s and temporal resolution
t) and the reference flow time series (Qref, resulting from the
100 m/1 min rainfall input). These two statistics provide an
indication of how well the reference flows Qref are replicated
by the ’simulated’ Qst flows, both in terms of pattern and accu-
racy. The R2 measure ranges from 0 to 1 and describes how
much of the ‘observed’ variability in the Qref time series is
explained by the ‘simulated’ one (i.e. Qst). In practical terms,
R2 provides a measurement of the similarity between the pat-
terns of the reference flow time series (Qref) and the ’simulated’
(Qst) flow time series. However, biases in modelled estimates
cannot be detected from this measure (Murphy, 1988; Krause
et al., 2005; Gupta et al., 2009). The regression coefficient, b,
is therefore employed to provide this supplementary informa-
tion to the R2. b � 1 represents good agreement in the magni-
tude of Qref and Qst time series; b > 1 means that the
simulated flows (Qst) are higher in the mean (by a factor of b)
than the reference flows (Qref); and b < 1 means the opposite
(i.e. Qst are lower in the mean than Qref). The R2 and b statistics
have the advantage of taking into account the entire time series
(as opposed to RE, which only provides an assessment of Qmax),
as well as of being relatively insensitive to the magnitudes of
the flows under consideration.

4. Results and discussion

4.1. Spatial/temporal characteristics of storm events

The estimated spatial and temporal characteristics of the storm
events, as defined in Section 3.2, are summarised in Table 5. As can
be seen, the mean velocity of the nine storms analysed in this study
varies from 9.8 m/s to 18.4 m/s. The combination of storm velocity
and catchment dimensions (namely length and width) provides an
indication of the time that it takes for a given storm cell to cross a
catchment. Given that the length and width of the pilot catchments
range between �0.6 km and 8.2 km (see Table 1) and considering
the minimum and maximum storm velocities, the time that it
takes for the storms under consideration to cross the pilot catch-
ments varies between �0.6 min and 13.9 min.

With regards to the minimum required resolutions, it can be
seen that the required temporal scales for all storm events are
rather small and generally below the 5 min temporal resolution
of rainfall estimates provided by most meteorological services
based on national weather radar networks. Considering the fine
requirements in terms of temporal resolution, significant changes
in hydraulic performance would be expected when switching from
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the finest temporal resolution of 1 min to coarser resolutions of 3, 5
and 10 min, which quickly exceed the minimum required temporal
resolution for most storm events. In contrast, the required spatial
resolutions are less stringent. In fact, the typical spatial resolution
of rainfall estimates provided by national networks (i.e. 1000 m)
matches the required spatial resolution for 6 out of the 9 storms
under consideration. Given that all of the theoretically-required
spatial resolutions are coarser than 500 m and most of them are
coarser than 1000 m, little impact is to be expected in the hydrau-
lic outputs associated to rainfall input resolutions of 500 m and
1000 m, as compared to those associated to the finest 100 m esti-
mates. However, a drop in performance would be expected for
hydraulic outputs corresponding to rainfall input resolutions of
3000 m, as this spatial resolution largely exceeds the
theoretically-required resolution of all storm events.

Storm events 5, 7 and 9 have the ‘finest’ requirements, both in
terms of temporal and spatial resolutions. Therefore, the impact
of resolution coarsening for these three events is expected to be
larger than for other events.

The scaling analysis prior to the computation of the maximum
observable singularity (cs) suggests that the studied storms gener-
ally exhibit a scaling behaviour on two ranges of scales: 100–600 m
(small scales) and 600 m–6 km (large scales). The actual location of
the scaling break varies from approximately 400 m to 800 m,
depending on the event. With the purpose of allowing
inter-comparison of cs values, these are reported for the same
ranges of scales for all storm events (i.e. 100–600 m and 600 m–
6 km; see Table 5), Fig. 4 shows plots of the theoretically required
spatial resolution (Dsr) as a function of cs. Before proceeding to the
analysis of these parameters, it is important to note that the lim-
ited range of scales available for the scaling analysis and computa-
tion of cs (due to the small domain of the X-band radar) means that
results are not very robust and should be interpreted as trends.
Nevertheless, they provide useful and complementary insights into
the intrinsic variability of the rainfall fields under consideration.
The first interesting finding of this analysis is the identification of
two different scaling regimes, which highlights the importance of
measuring rainfall at high resolution (i.e. below the identified scal-
ing break) in order to properly capture extremes, which cannot be
extrapolated from coarser scale measurements. Secondly, from
Fig. 4 it can be seen that, for both scaling regimes, the theoretically
required spatial resolution (Dsr) decreases with increasing cs. This
means that data at higher spatial resolution are required to well
characterise storms which display higher intrinsic variability.
This is logical and indicates that the outputs of the two analysis
Fig. 4. Theoretically required spatial resolution (DSr) as a function of maximum
observable singularity (cs), for small (100–600 m) and large (600 m–6 km) scale
ranges.
approaches used in the present study (i.e. geostatistical and multi-
fractal) provide consistent results with regards to observed rainfall
variability and extremes. However, it is worth noting that the
required spatial resolutions (Dsr) estimated with the geostatistical
approach are mostly within the larger scale regime identified from
the fractal analysis. This suggests that the geostatistical approach
may be insufficient to characterise small scale, non-linear spatial
features present in rainfall fields. This highlights the complemen-
tarity between the information provided by the two approaches,
though more work is needed to better understand their relation-
ship and optimise the way in which this information is used.

The way in which these spatial–temporal characteristics of
rainfall relate to the impact of rainfall input resolution on hydrody-
namic modelling results is investigated in the next section.

4.2. Hydrodynamic modelling results

Hydrodynamic modelling outputs are analysed based upon the
dimensionless statistics introduced in Section 3.5: relative error in
flow peaks (RE), coefficient of determination (R2) and regression
coefficient (b). In this section general trends observed in the
hydraulic outputs are first identified. Afterwards, a detailed analy-
sis is conducted to better understand the relationship between
storm characteristics, catchment drainage area and the impact of
rainfall input resolution on hydrodynamic modelling results.

4.2.1. General trends observed in hydrodynamic modelling results
In Fig. 5 performance statistics for all rainfall inputs are plotted

as a function of drainage area (DA) size, for storms applied paral-
lelly and perpendicularly to the catchments’ main flow direction.
At a glance and as was expected, a general trend can be identified
of the impact of rainfall input resolution to decrease as drainage
area increases. Moreover, the coarsening of temporal resolution
generally appears to have a stronger influence as compared to
the coarsening of spatial resolution; this is especially the case for
small drainage areas. The stronger impact of temporal resolution
over spatial resolution is in agreement with the estimated required
temporal and spatial resolutions discussed in Section 4.1, as well as
with previous studies (Krajewski et al., 1991; Meselhe et al., 2009;
Notaro et al., 2013). The strong impact of temporal resolution
coarsening can be partly explained by the way in which coarser
temporal resolutions were obtained (i.e. by sampling radar images
at the desired time resolution, in order to replicate radar scanning
strategies); this is further discussed in Section 5.

In terms of magnitudes, as captured by RE and b statistics, a
general underestimation tendency is observed as space and time
resolutions of rainfall inputs become coarser (notice general trend
of RE < 0 and b < 1). Noteworthy is the fact that coarser spatial res-
olutions systematically lead to underestimation of flows (notice
behaviour of 3000 m resolutions denoted by red to yellow triangu-
lar markers), while coarser temporal resolutions have a more
random effect and occasionally lead to large overestimation of
flows. The underestimation associated with coarser spatial resolu-
tions can be partly due to the smoothing of peak rainfall intensities
which occurs when rainfall is averaged in space. In addition, it can
also be explained by the fact that the cores of the storms were cen-
tred on the catchments; thus, as the spatial resolution of rainfall
inputs approaches catchment size, storm water may be transferred
outside of the catchment boundaries (Ogden and Julien, 1994;
Bruni et al., 2015). The random effect of the coarsening of temporal
resolution on flow magnitudes can in part be explained by the way
in which the varying temporal resolutions were obtained (i.e. by
sampling). It is interesting to note that, as DA increases, the
random effect of temporal resolution on flow magnitudes
decreases and a systematic underestimation tendency becomes
clearer. In terms of R2, it can be seen that the coarsening of



Fig. 5. Scatterplots of performance statistics relative error in maximum flow peak, R2 and b versus drainage area sizes for 15 resolution combinations relative to the reference
resolution of 1 min/100 m.
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temporal resolution can easily alter the pattern of flow hydro-
graphs: the lowest R2 values are associated to the coarsest tempo-
ral resolutions, even when the associated spatial resolution is
relative fine. Large drops in R2 are also observed at spatial resolu-
tions of 3000 m, which are significantly larger than the theoreti-
cally required spatial resolutions estimated for the storm events
under consideration.

Regarding storm direction, similar trends are observed when
storms are applied parallel and perpendicular to the predominant
flow direction in the catchments (top and bottom plots in Fig. 5,
respectively). Differences in response behaviour in relation to rain-
fall input resolutions for different storm direction would be
expected particularly for elongated catchments. Such differences
can be seen in some cases at the level of individual storms and
catchments (plots not shown here), but these are rather small
and do not have a significant impact on the general trends
observed in summary statistics over all events and catchments.
Given that a similar behaviour is observed for both relative storm
directions, from now onwards only results for the parallel storm
direction will be displayed and discussed. A detailed investigation
of the impact of storm direction and individual catchment beha-
viour remains a topic for future study.

It is important to mention that some of the points of analysis at
the different pilot catchments are subject to strong hydraulic con-
trols (see Table 1). These controls influence flow behaviour and
may lead to different sensitivity to rainfall input resolutions. To
investigate this effect, the summary statistics shown in Fig. 5 were
plotted separately for points with and without control elements.
The resulting plots showed similar trends, indicating that control
elements do not induce significantly different sensitivity to rainfall
input resolution for the investigated storms, catchments and drai-
nage area sizes.

Fig. 6 shows boxplots of the performance statistics by spatial–
temporal resolution, per group of drainage area (DA) sizes. These
boxplots allow direct comparison of the performance of different
rainfall inputs. Moreover, the separation by DA sizes allows for a
partial removal from the analysis of the impact of catchment
parameters on hydraulic outputs. The following groups of DA sizes
were defined, corresponding with the spatial resolutions investi-
gated in this study:

� DA1: 0.7–1.3 ha (i.e. characteristic length (L ¼
ffiffiffiffiffiffiffi
DA
p

) � 100 m)
� DA2: 20–30 ha (L � 500 m)
� DA3: 85–135 ha (L � 1000 m)
� DA4: 300–800 ha (1000 m < L < 3000 m)

From these boxplots it can clearly be seen that the temporal
resolution of rainfall input has a bigger impact on simulated flows
than spatial resolution, thus confirming the initial findings derived
from Fig. 5 and from the analysis of spatial–temporal characteris-
tics of storms (Section 4.1). The results show that coarse temporal
resolutions of 5–10 min can lead to large errors, even if spatial res-
olution is high. This also affects hydrograph shape, as reflected by
low R2 values. In agreement with Fig. 5, it can be seen that sensitiv-
ity to rainfall input resolution decreases with drainage area size:
drainage areas of spatial scales of 100–500 m show high sensitivity
to temporal resolution coarsening and comparatively moderate
sensitivity to spatial resolution coarsening. Drainage areas of spa-
tial scale above 1000 m display lower sensitivity to space and time
resolution. Large errors due to spatial resolution coarsening occur



Fig. 6. Box plots of performance statistics relative error in maximum flow peak, R2 and b per rainfall input resolution, per group of drainage area sizes. Note that the boxplots’
whiskers extend 1.5 times the interquartile range below the first quartile (Q1) and above the third quartile (Q3), respectively. Points beyond this distance are represented as
outliers.
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at 3000 m resolution, for all drainage area sizes. The trends
observed in Fig. 6 corroborate previous findings from Fig. 5 and
provide confirmation that the theoretically-derived required spa-
tial and temporal resolutions are sound.

An interesting feature that can be observed in Fig. 6 is the inter-
action and mutual dependence between temporal and spatial
resolutions. Notice, for instance, that the 1000 m/5 min (one of
the resolution combinations derived from Kolmogorov – see
Fig. 3) associated outputs generally display a better performance
than the 100 m/5 min ones, thus confirming the need for agree-
ment between spatial and temporal resolution. The dependence
between spatial and temporal resolutions has been widely dis-
cussed (e.g. Kolmogorov, 1962; Schertzer and Lovejoy, 1987;
Marsan et al., 1996; Deidda, 2000; Gires et al., 2012), but there is
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not as yet much evidence in urban hydrology to corroborate this
hypothesis. The results of this study do provide evidence to sup-
port it.

The findings from Figs. 5 and 6 are generally in agreement with
the findings and recommendations of Berne et al. (2004), but some
differences are found. Berne et al. (2004) derived a relationship
between space and time resolution of rainfall input required
for urban hydrological analysis, based on catchment sizes of
10–10,000 ha in the Mediterranean region. The relationship they
derived corresponds to a minimum rainfall resolution of
1 min/1.5 km for catchments smaller than 10 ha; 6 min/3.7 km
for catchments of about 1000 ha. The temporal resolution they
suggest for small drainage areas is in agreement with the findings
of the present study; however, in relation to the spatial resolution,
the present study suggests that for small drainage areas significant
differences in flow estimates can be caused by changes in spatial
resolution between 100 m, 500 m and 1000 m, at 1 min time reso-
lution. In addition, the present study suggests that even for larger
basins, relevant information is lost at time resolutions below
5 min.

4.2.2. Analysis of rainfall input resolution versus resolution
requirements based on characteristic space–time scale of storm events

To investigate the impact of the spatial–temporal characteris-
tics of storms on the observed variability in runoff estimates
resulting from different rainfall input resolutions, performance
statistics were plotted as a function of the following spatial and
temporal scaling factors, as well as a function of a combined spa-
tial–temporal factor which accounts for spatial–temporal scaling
anisotropy (described in Section 3.1):

hs ¼
DSr

DS

� �
ð11Þ

ht ¼
Dtr

Dt

� �
ð12Þ
Fig. 7. Scatterplots of performance statistic R2 as a function of scaling factors hs (top
hst ¼
DSr

DS

� �
Dtr

Dt

� � 1
1�Ht

ð13Þ

where h is a spatial–temporal scaling factor, DSr and Dtr are the
required spatial and temporal resolutions estimated based upon
storm characteristics (see Table 5), DS and Dt are the space and
time resolutions of the rainfall inputs applied in model simulation
and Ht is the scaling anisotropy factor, defined in Section 3.1,
which theoretically has a value of 1/3.

Figs. 7 and 8 show performance statistics R2 and b as a function
of the scaling factor h for scaling in space, scaling in time and com-
bined spatial–temporal scaling, accounting for anisotropy. Relative
errors (RE) plots were not included due to space constraints and
given that these display a very similar behaviour to that of the b
plots. Same as in Fig. 6, in Figs. 7 and 8 plots are displayed per
group of drainage area (DA) sizes, in order to partially remove from
the analysis the impact of catchment parameters on hydraulic out-
puts. In Figs. 7 and 8, for h values above 1, the applied rainfall input
resolution is finer than the theoretically required spatial–temporal
resolution, estimated based upon storm characteristics (see
Table 5). In the case of the spatial scaling factor (hs) alone (first
row in Figs. 7 and 8), significant dispersion is observed in the plots
and although performance statistics generally improve as hs

increases, the improvement is not significant and the trend is
rather unclear. In contrast, in the case of the temporal scaling fac-
tor (ht) (middle row in Figs. 7 and 8) a more clear pattern can be
observed in the plots, with performance statistics visibly improv-
ing at larger values of ht . In the case of the combined factor (hst)
(bottom row in Figs. 7 and 8) a significantly clearer pattern can
be identified, with performance consistently improving for higher
hst values, whereby small drainage areas remain more sensitive.
While some dispersion can still be seen in the plots of combined
factor (hst) vs. performance statistics, the fact that a significantly
clearer pattern is observed in the hst plots, in comparison to the
plots of the independent factors hs and ht , suggests that in order
to properly represent the effect of temporal and spatial resolution
row), ht (middle row) and hst (bottom row), for 4 groups of drainage area sizes.



Fig. 8. Scatterplots of performance statistic b as a function of scaling factors hs (top row), ht (middle row) and hst (bottom row), for 4 groups of drainage area sizes.

Fig. 9. Logarithmic functions fitted to data of performance statistics relative error in maximum flow peak, R2 and b as a function of drainage area size, for different space–time
resolution combinations. Line type denotes different temporal resolutions (1 min = solid; 3 min = dash-dot; 5 min = dashed; 10 min = dotted) and colour range denotes
different spatial resolutions (100 m = green; 500 m = blue; 1000 m = purple; 3000 m = orange). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article).
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of rainfall inputs, these must be considered together. This corrob-
orates the interaction that exists between the two resolutions.
Future work will focus on further investigating these interactions,
along with other catchment and model factors which influence the
results and may be responsible for the remaining dispersion
observed in the hst plots.

4.2.3. Analysis of hydrodynamic response statistics in relation to
rainfall input resolution and drainage area size

In Fig. 9, performance statistics were plotted as a function of drai-
nage area size, for different spatial–temporal resolution combina-
tions. A logarithmic function was fitted to the resulting plots using
the least squares method. The function structure was defined as
Performance Stat ¼ a � ln DAþ b ð14Þ

The obtained a and b parameters and the associated mean
square errors (MSE) of the fitting are summarised in Table 6.

The logarithmic functions provide a rough estimate of what
hydrodynamic modelling performance can be expected for a given
rainfall input resolution and catchment drainage area. For instance,
for drainage area size of 100 ha, relative errors in maximum flow
peak are expected to be below 0.1 for resolution combinations of
1 min/100–1000 m, while errors above 0.2 are expected for combi-
nations of 10 min/100–1000 m and 1–10 min/3000 m resolution.

Based on the logarithmic functions plotted in Fig. 9, operational
resolution of 5 min/1000 m provided by many national weather



Table 6
Parameters a and b and MSE-values for logarithmic function fitting, for performance statistics relative error (RE) in maximum flow peak, b and R2.

Res a b MSE a b MSE a b MSE
ID Abs RE Abs RE Abs RE R2 R2 R2 Abs b Abs b Abs b

2 �0.0221 0.1920 0.0255 0.0211 0.8439 0.0143 �0.0172 0.1577 0.0181
3 �0.0361 0.3242 0.0694 0.0349 0.7120 0.0334 �0.0274 0.2696 0.0361
4 �0.0444 0.4557 0.2265 0.0648 0.4432 0.0605 �0.0583 0.5073 0.0812
5 �0.0205 0.1412 0.0182 0.0056 0.9528 0.0054 �0.0123 0.0969 0.0090
6 �0.0253 0.1988 0.0246 0.0208 0.8525 0.0093 �0.0201 0.1702 0.0163
7 �0.0325 0.2991 0.0802 0.0336 0.7254 0.0309 �0.0266 0.2605 0.0329
8 �0.0404 0.4158 0.1642 0.0604 0.4738 0.0605 �0.0534 0.4745 0.0675
9 �0.0259 0.1959 0.0276 0.0115 0.9130 0.0082 �0.0189 0.1585 0.0175

10 �0.0361 0.2674 0.1594 0.0207 0.8510 0.0111 �0.0211 0.1860 0.0172
11 �0.0317 0.2786 0.0598 0.0333 0.7334 0.0294 �0.0303 0.2744 0.0307
12 �0.0358 0.3698 0.1023 0.0603 0.4779 0.0616 �0.0498 0.4489 0.0610
13 �0.0166 0.3265 0.0539 0.0214 0.7832 0.0310 �0.0132 0.3207 0.0501
14 �0.0209 0.3512 0.0532 0.0271 0.7372 0.0386 �0.0194 0.3596 0.0530
15 �0.0227 0.3574 0.0793 0.0334 0.6821 0.0451 �0.0200 0.3719 0.0579
16 �0.0304 0.4021 0.0939 0.0517 0.4979 0.0699 �0.0368 0.4947 0.0676
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radar networks is expected to result in relative errors in flow peak
of about 0.2 for small drainage areas (1–10 ha) down to about 0.1
for drainage area sizes of up to 800 ha. R2 and b values are expected
to vary between 0.8 and 0.95 and between 0.3 and 0.7 for drainage
area ranging from 1 to 800 ha.

While these results provide an indication of expected perfor-
mance for varying rainfall input resolutions, they should be inter-
preted with caution. As values in Table 6 show, MSE-values are
generally low for temporal resolutions of 1–3 min, but tend to
decrease for lower temporal resolution and for spatial resolution
above 1000 m.

Besides providing a practical estimate of the performance that
can be expected for a given rainfall input resolution, the fitted log-
arithmic functions provide useful insights into the impact and
interaction of spatial and temporal resolutions. In the case of rela-
tive error in peak flow and most evidently in the case of b, it can be
seen that the fitted curves are grouped into four main sets: three of
them corresponding to a given temporal resolution (and varying
spatial resolutions from 100 m to 1000 m), and a fourth group
corresponding to all the curves of spatial resolution 3000 m and
varying temporal resolutions. The first three sets of curves further
confirm the predominant effect of temporal resolution, which
determines the performance of a given rainfall input, regardless
of its spatial resolution, so long as the latter is kept close to the
estimated required resolution. The fourth set of curves, corre-
sponding to spatial resolutions of 3000 m and varying temporal
resolutions, confirms that the 3000 m resolution largely exceeds
the required spatial resolution, thus causing a general drop in per-
formance for all rainfall inputs at this spatial resolution, regardless
of their temporal resolution. A similar behaviour is observed in the
case of R2, although for this statistic the 3000 m estimates curves
are not grouped together, suggesting that in terms of the pattern
of flow hydrographs, as measured by R2, temporal resolution plays
an ever more predominant role, which even overshadows the
effect of the coarsest (3000 m) resolution.

5. Summary, conclusions and outlook

The aim of this paper was to quantify the impact of rainfall input
resolutions on operational urban drainage modelling outputs and,
based upon it, to identify critical resolutions which enable a proper
characterisation of urban catchment hydrological response. Using
X-band radar-rainfall estimates for nine storm events, initially at
100 m and 1 min resolution, 16 different combinations of spatial
and temporal resolutions, up to 3000 m and 10 min, were gener-
ated. Coarser spatial resolutions were generated by averaging in
space, whereas coarser temporal resolutions were generated by
sampling radar images at the desired temporal resolution, thus
replicating radar scanning strategies. The resulting rainfall esti-
mates were applied as input to the operational semi-distributed
hydrodynamic models of seven urban catchments in North-West
Europe, all of which have similar size (between 3 and 8 km2), but
different morphological, hydrological and hydraulic characteristics.

The spatial–temporal characteristics of the storm events, includ-
ing theoretically required spatial and temporal resolutions given
the observed rainfall variability, were derived using geostatistical
analysis and storm cell tracking. In addition, the concept of maxi-
mum observable singularity, which relies on the framework of
Universal Multifractals and allows quantifying higher-order statis-
tical features, was used to quantify the intrinsic variability of rainfall
fields at different spatial scales. Hydrodynamic response behaviour
was summarised using dimensionless performance statistics and
was analysed in the light of drainage area and critical spatial–tem-
poral resolutions computed for each of the storm events.

The main findings and implications of this study are the
following:

� Results of the geostatistical analysis and storm cell tracking
showed that very fine temporal resolutions, usually below
5 min, are required to properly capture the variability observed
in the rainfall data. This requirement is seldom met by rainfall
estimates available from national weather radar networks,
usually at temporal resolutions of 5 or 10 min. In contrast, the
theoretically required spatial resolutions (derived from the geo-
statistical analysis) appear to be less stringent, with required
resolutions ranging between 700 m and 2 km, which are gener-
ally met by the radar products provided by national weather
services (usually at 1 km resolution). Nonetheless, the multi-
fractal analysis of rainfall fields revealed a break in scaling
behaviour between 400 m and 800 m which suggests that rain-
fall should be measured at sub-kilometric scales, in order to
capture structures and extremes which cannot be extrapolated
from measurements at coarser resolutions.
� In agreement with previous studies (e.g. Berne et al., 2004;

Gires et al., 2012; Lobligeois et al., 2014), the impact of rainfall
input resolution on hydraulic outputs was shown to decrease
significantly as catchment drainage area increases. For drainage
areas of the order of 1 ha errors in peak discharges of up to 250%
were observed as a result of rainfall input resolution coarsening,
whereas for drainage areas of �800 ha maximum errors in peak
discharge were of the order of 50%.
� Across the entire range of drainage areas under investigation

(1–800 ha), the coarsening of temporal resolution of rainfall
inputs was shown to have a bigger effect upon hydrodynamic
modelling results than the coarsening of spatial resolution.
These results are in agreement with the independent
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(geostatistical and cell tracking) analysis of the storms and cor-
roborate the need for rainfall input temporal resolutions below
5 min for urban hydrological applications. The strong and dom-
inant effect of temporal resolution coarsening can be partially
explained by the way in which coarser temporal resolutions
were derived, i.e., by sampling radar images at the desired time
step, thus replicating radar scanning strategies. A study focusing
on investigating the impact of rainfall temporal resolution
coarsening through aggregation (i.e. averaging in time, which
resembles the functioning of rain gauges) is currently under-
way. Initial results indicate that the impact of temporal resolu-
tion decreases significantly when coarser temporal resolution
estimates are generated through aggregation as opposed to
sampling. When aggregation is used, coarsening of spatial and
temporal resolutions leads to impacts of comparable magni-
tudes on estimated runoff, although the latter still has a bigger
effect. Similar findings regarding the dominant effect of tempo-
ral resolution over spatial resolution have been obtain from
other studies, both in rural and urban catchments (Krajewski
et al., 1991; Meselhe et al., 2009; Notaro et al., 2013).
� With regards to required rainfall input spatial resolution, this is

strongly dependent upon the drainage area of interest. For very
small drainage areas, below 1 ha, rainfall input resolutions of
�100 m are required. For drainage areas between 1 ha and
�100 ha, rainfall inputs at a spatial resolution of 500 m appear
to be sufficient; for these areas no significant improvement is
observed when using finer spatial resolution rainfall estimates
and acceptable hydraulic performance is still obtained for rain-
fall estimates at 1 km/1 min resolution. For drainage areas lar-
ger than 100 ha rainfall input spatial resolutions of 1 km
appear to be sufficient, leading to high values of performance
statistics, as long as the accompanying temporal resolution is
fine enough (<5 min). For all drainage areas, rainfall input spa-
tial resolution of 3 km, which may be compared to common dis-
tances between rain gauges, appears to be insufficient, leading
to very poor hydraulic performance statistics. It can be seen
that, in general (except for very small drainage areas) and in
agreement with the results of the storm analysis described
above, �1 km resolution rainfall estimates appear to be suffi-
cient for urban hydrological modelling. However, it is important
to mention that these results are bound to the storm events
under consideration and to the type of models employed in this
study; it is, operational semi-distributed, albeit high-resolution
models (see subcatchment sizes in Table 2), calibrated using
rain gauge records of coarse spatial resolution as input, which
may lead to spatially homogeneous model parametrisation
(Finnerty et al., 1997). Higher-resolution fully-distributed mod-
els, implemented and calibrated using high resolution datasets,
are likely to be more sensitive to the spatial resolution of rain-
fall inputs and may therefore require sub-kilometric resolution
rainfall estimates as input (Schertzer et al., 2010; Gires et al.,
2014a,b; Pina and Ochoa-Rodriguez, 2014; Ichiba et al., 2015).
� Despite the dominant effect of temporal resolution, the hydrau-

lic results show that there is a strong interaction and depen-
dence between the spatial and temporal resolution of rainfall
input estimates. As such, in order to avoid losing relevant infor-
mation from the rainfall fields, the two resolutions must be in
agreement with each other. For example, the hydraulic outputs
associated with rainfall inputs at 1000 m/5 min resolution dis-
play a better performance than those associated with
100 m/5 min ones. The dependence between spatial and tempo-
ral resolutions has been widely discussed (e.g. Kolmogorov,
1962; Schertzer and Lovejoy, 1987; Marsan et al., 1996;
Deidda, 2000; Gires et al., 2012), but there is not as yet much
evidence in urban hydrology to corroborate this hypothesis.
The results of this study do provide evidence to support it.
� The theoretically derived minimum spatial–temporal resolution
of rainfall inputs, estimated on the basis of the sole analysis of
rainfall images, are consistent with the results of the hydraulic
analysis. This validates the proposed approach to characterise
storm events and suggests that, in addition to drainage area, a
big part of the impact of rainfall input resolution on urban run-
off estimates can be explained by the spatial–temporal charac-
teristics of the storm events. The influence of other factors such
as catchment and model characteristics was not investigated in
detail and remains a topic for future study.

While the present study has several limitations, the results pro-
vide useful insights into rainfall input resolution requirements for
urban hydrological applications, considering currently available
data and models. Evidently, higher spatial and temporal resolution
rainfall estimates are desirable. However, resolution comes at a cost
and resources are limited. According to the results of this study,
rainfall monitoring strategies may consider prioritising improve-
ments in temporal resolution (e.g. modifying radar scanning strate-
gies, using local X-band radars which have higher rotation rates,
employing temporal interpolation techniques), while keeping in
mind the dependence between temporal and spatial resolutions,
as well as the fact that measuring rainfall at higher resolutions
can lead to improvements in accuracy. Future research should focus
on gathering high resolution rainfall datasets alongside high resolu-
tion local urban runoff records and implementation of higher reso-
lution urban drainage models, which enable a better assessment of
the added value of high resolution rainfall data and models. Further
work is also needed to better understand factors affecting model
sensitivity to rainfall input resolution, including storm spatial–tem-
poral characteristics, as well as catchment and model characteris-
tics (e.g. slope, degree of imperviousness, presence of control
elements, spatial homogeneity/heterogeneity, amongst others).
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Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly
used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage
models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor
floods and basement floods and on the other hand between damage to residential buildings and damage to hous-
ing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the ef-
fects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By
using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into ac-
count the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor
of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indi-
cators are important. For example being aware of the risk just before the water enters the building reduces con-
tent damage considerably, underlining the importance of warning systems and policy in this case of pluvial
floods.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

In Europe floods are currently among the natural catastrophes that
cause the largest economic damage (European Environment Agency,
2012). In the future, the importance and occurrence of floods are ex-
pected to increase even further as predictions on the impact of climate
change indicate that the winters in Western Europe will be wetter
(Bruwier et al., 2015). As a result, flood riskmanagement is likely to be-
come more important in the coming years. An essential component of
flood riskmanagement and risk assessmentwill be to accurately predict
the damage caused by the flood as this is an essential element in under-
taking cost–benefit analyses to decide about e.g. government invest-
ments in specific infrastructure or for setting up flood warning
systems. Most of the currently used damage predictions make use of
depth–damage functions that relate themonetarydamage to residential
buildings and/or contents or other ‘receptors at risk’ to the depth of an
inundation (Jonkman et al., 2008; Messner and Meyer, 2006). These
functions are typically using data from floods caused by rivers
overflowing (called fluvial floods). Their generalizability to other floods
is unclear (Kellens et al., 2013).

In this paper, the focus is on the prediction of damage caused by a
type of flood that is rarely studied, i.e. floods in urban areas that are
caused by extreme rainfall events during which the water cannot be
recasting and management of
funded by the Belgian Science

ty, Belgium.
sufficiently processed by existing urban drainage systems (called plu-
vial floods). Fluvial floods are more devastating and spectacular, yet
they do not occur that often. Pluvial floods come with less damage,
but occur frequently and the cumulative damage over the years can be
just as high as with fluvial events (ten Veldhuis, 2011). Currently, the
lack of adequate pluvial damage models is a major bottleneck in esti-
mating damage and therefore in calculating costs in pluvial risk assess-
ments (Zhou et al., 2012). An exception is Blanc et al. (2012) who
estimate pluvial flood damage using rainfall simulations to compute
flood depth. The investigation of other than fluvial and coastal floods
is for that reason also oneof themain challenges for the implementation
of the EU flood directive by EUmember states (Kellens et al., 2013). In a
study on the monetization of urban flood damage, ten Veldhuis (2011)
shows that the depths and water velocities in the case of pluvial floods
are usually rather low. It is quite probable that with low inundation
depth and flow velocities, the damage during pluvial floods will depend
on other predictors than fluvial flood damage does (Spekkers et al.,
2012a). Research by Spekkers et al. (2011), (2012a), (2012b) and by
Kreibich et al. (2009) also points in that direction.

We conducted a questionnaire among victims of pluvial floods. So
the information we use, also about the flood, is self-reported. Our re-
spondents reported on the replacement value of goods, while insurance
companies pay only the depreciated value of the damaged goods. In ad-
dition, insurance companies may include deductibles in their contracts
and not all victims are always able to deal effectively with the insurance
companies (Michel-Kerjan and Kousky, 2010). As a result, compensa-
tions paid by insurance companies are on average below the damage re-
ported by the households (e.g. Thieken et al., 2006 for Germany). This

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eiar.2015.05.005&domain=pdf
http://dx.doi.org/10.1016/j.eiar.2015.05.005
http://dx.doi.org/10.1016/j.eiar.2015.05.005
http://www.sciencedirect.com/science/journal/01959255
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Table 1
Socio-economic indicators of respondents.

Socio-economic indicator Percent

Occupational situation
Full time working 35.2%
Part time working 8.0%
Retired 46.2%
Unemployed with benefits 1.5%
Disabled with benefits 2.5%
Non-paid homeworking 2.7%
Other 3.8%

Education
Basic education 10.9%
Lower secondary education 17.0%
Higher secondary education 28.6%
Bachelor 25.1%
Master or post-university 18.3%

Net income/month
Below 1000 euros 6.13%
1000–1499 euros 24.52%
1500–1999 euros 19.52%
2000–2500 euros 12.58%
Above 2500 euros 10.97%
No answera 26.29%

a In the regression analysis later on we treat this group as a separate
group so that these observations are not excluded from the analysis.

Table 2
Reported damage figures based on replacement values and based on payments by the in-
surance company and/or the Rampenfonds and zero damages (euro corrected for
inflation).

Damage to Observations Mean Zero damage Max damage

Based on replacement value (€)
Building 363 6244.5 37 77,499.3
Contents 413 2979.9 184 65,576.3
Total 453 7720.6 87 91,657.6

Based on insurance company/Rampenfonds
Total 212 1997.7 0 19,307.8

Table 3
Description of the outcome and explanatory variables included in the different model specifica

Description

Damage variables
Damage to building Natural logarithm of the monetary damage to the h

(in euros)
Damage to content Natural logarithm of the monetary damage to the h

(in euros)

Depth variables
Depth: basement Depth in the basement (in cm)
Depth: ground floor Depth at the ground floor (in cm)

Control variables
Part of building affected Dummy variable that takes a value of one if the ba

Dummy variable that takes a value of one if the gro
Dummy variable that takes a value of one if the ga

Type of buildingd Categorical variable distinguishing between three
Terraced.

Size of dwelling Size of the dwelling (in squared metres)
Recurrence Number of times that the household has been floo
Risk awareness Dummy variable that takes a value of one if the hou

entered the building; zero otherwise
Emergency measure: elevating
contents to another floor

Dummy that takes a value of one if the household

Income Categorical variable distinguishing between five in
1499 euros; (3) Between 1500 and 1999; (4) Betw

a In order to include the observations where zero damage was reported, we increased the le
b Included in those model specifications were the main explanatory variable of interest was
c Included in those model specifications were the main explanatory variable of interest was
d This variable is not included in the models that use the damage to the contents as the exp
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can lead to a downwardbias ofmore ‘objective’ damagefigures. As such,
self-reported damage figures by victims can be as appropriate (or as
problematic) as insurance figures are. Therefore, using the more opti-
mistic point of view, we explore and emphasize the opportunities that
can be created by using survey data. This is possible because we have
additional information (about zero damage) and also more detailed in-
formation (including non-hazard data and information concerning the
specific places that are flooded).

The contribution of our research is threefold. Firstly, we are able to
include ‘no damage cases’ of peoplewhowere flooded but did not suffer
any damage. Those people would not appear in insurance or disaster
fund records. As such, in that case, an unintentional truncation of the
data takes place (i.e. some data are omitted albeit being relevant). Our
questionnaire revealed that quite some flood victims suffer no damage
to buildings and/or contents. Such an observation is important, espe-
cially for a pluvial flood event. It is possible that people are able to re-
move the water immediately before/during the flood or they are able
to protect their belongings in some way (for instance by moving them
to another place). We use a Tobit model estimation technique (Tobin,
1958) to deal with this issue of reported zero damage.

Secondly, we extend the traditional bivariate depth–damage rela-
tion by constructing more detailed multivariate flood damage models.
For this model construction, thanks to the use of survey data, we can
use various non-hazard indicators that are mostly unavailable other-
wise. We include building characteristics (type of building, size of the
dwelling), behavioural predictors related to the behaviour of victimsbe-
fore and during the flood (recurrence, risk awareness, emergency mea-
sures) and income as socio-economic indicator. Depth–damage
functions usually relate themonetary damage only to the depth of an in-
undation (Jonkman et al., 2008; Messner andMeyer, 2006). In a related
approach, several depth–damage functions are constructed for different
categories of a specific hazard indicator other than depth or in some rare
cases also for a non-hazard indicator. Such an approach is still quite
common and is for instance used in the “BritishMulti-colouredManual”
by Penning-Rowsell et al. (2005) by constructing depth–damage curves
for different types of buildings (terraced, semi-detached, detached,flats,
bungalows and prefab buildings). Obviously, such a method becomes
tions.

Mean Std.
dev

ouseholds’ building increased by one euroa, corrected for inflation 7.13 2.79

ouseholds' content increased by one euro, corrected for inflation 4.26 3.97

87.86 77.76
14.08 21.37

sement was flooded and zero otherwiseb 0.70 0.46
und floor was flooded and zero otherwisec 0.46 0.50
rage was flooded and zero otherwise 0.60 0.49
types of buildings: (1) Detached; (2) Semi-detached; and (3) – –

143.52 199.23
ded (times) 3.39 4.67
sehold was aware of their house being at risk just before the water 0.42 0.49

moved some of their belongings to a higher floor 0.12 0.32

come categories: (1) Below 1000 euros; (2) Between 1000 and
een 2000 and 2499; and (5) Above 1500 euros.

– –

vel of damage by one euro before taking the natural logarithm.
the depth of the flood at the ground floor.
the depth of the flood in the basement.
lanatory variable of interest.



1 For building damage subcategories, respondents had to report either to have no dam-
age or stipulate the amount of damage. It happens that none of both options is used. For
the 240 respondents (used in the regressions later on) flooded in the basement, 55 per-
sons had a missing on at least one subcategory. For the 141 respondents flooded at the
ground floor, 31 had a least one missing. When summing up to construct total building
damage, themissing amount had to be set at zero value. This could imply a downwardbias
for the total building damage.

2 We provided the opportunity for respondents to report also ‘other’ damage. In case
they report damage in this ‘other’ category that clearly should have been reported as dam-
age to buildings or to contents, this was added to the total building or total contents
damage.

3 The distribution over time of the year in which respondents reported to have experi-
enced their worst flood experience is as follows: 11% of the respondents reported on a
flood that dated from before 2002, 16% of the respondents reported on a flood that dated
from the period 2002–2004; 46% of the respondents reported on a flood that dated from
the period 2005–2006; 9% of the respondents reported on a flood that dated from the pe-
riod 2007–2009 and 19% of the respondents reported ona flood that dated from theperiod
2010–2012.
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unworkable if one would like to include many indicators, as it would
lead to an endless amount of damage functions. Therefore, a shift to
more complex multivariate models has taken place in the literature in
recent years. In 2005, Thieken et al. (2005) investigated in addition to
the depth of the flood also the influence of other factors (such as flood
duration, contamination and preparedness for flood damage) based on
survey data for the 2002 floods in Germany. In another paper, Thieken
et al. (2008) developed the FLEMOps(+) model. The model includes,
apart from flood depth, also building type, building quality, water
contamination and private precautionary measures as explanatory
variables for damage to private sector buildings. The authors demon-
strated that the model had a much stronger explanatory power com-
pared to simple depth–damage functions, a result that was also found
by others such as Apel et al. (2009). In 2010 the FLEMOps+ model
was extended by Elmer et al. (2010) who also included recurrence as
a predicting variable. Recurrence can be important because of its impact
on private precautionary measures (long term protection) and emer-
gency measures (during the flood) that can strongly decrease the dam-
age suffered (Kreibich et al., 2011; Siegrist and Gutscher, 2006). A last
example of a multivariate model is the one developed by Merz et al.
(2013) who used an innovative tree-based damage model to evaluate
the impact of no less than 28 indicators. The construction of those
more complexmodels has been achieved only for fluvial flood research.
Pluvial flood research is only getting started and is still limited to
predicting damage by using one or two hazard indicators (Spekkers
et al., 2011, 2012a, 2012b). In the case of pluvial floods, other indicators
and specifically non-hazard indicators might be very relevant. For in-
stance, some authors have pointed out that private precautionary mea-
sures such as flood adapted building renovations are more useful in the
context of small, frequent floods than in the case of huge fluvial floods
when the water depth is often too high and velocity too strong to
avoid thewater from entering anyway (Kreibich et al., 2005).Moreover,
in areaswith frequentflooding (as anotherway of precaution) residents
sometimes store their valuable objects in the attics and not in the base-
ment or lower floors preventing them from an imminent loss (Stulc,
2007). The effect of emergency measures might also be different with
pluvial floods, because pluvial events take place very quickly and often
there is almost no time to act.

Thirdly, thanks to the detailed survey, we can construct differenti-
ated models. In current flood damage research, no consideration is
made w.r.t. the place where the water enters the building. For residen-
tial houses for instance, flood damage to buildings and contents can be
expected to differ strongly depending upon which rooms are flooded.
Water in the living room will have different (damage) effects from
water in the basement or the garage. Our survey distinguished between
basement floods and ground floor floods. Also, we made a distinction
betweendamage to the building and damage to contents. This combina-
tion enables us to estimate four differentiated models. We pursue as
follows. Section 2 describes the data (collection) and the Tobit-method-
ology. In Section 3 the damage models are discussed. Results (and the
limitations) are presented in Section 4 (and Section 5). Finally, conclu-
sions and policy implications are drawn in Section 6.

2. Survey data and Tobit estimation technique

We developed a survey that was conducted in 2013 among private
households that were presumed to be affected by one or more pluvial
floods. We specifically focused on pluvial floods caused by summer
storms, as those are themost common and are easy to explain to people
in a questionnaire. The survey was sent to 3963 addresses all over Flan-
ders (the northern region of Belgium). The majority of those addresses
came from a database of the Belgian national disaster fund that contains
addresses of pluvial flood victims. An important setback of the national
disaster fund data is the fact that no flood events after 2007 are re-
ported. The reason for this is a change in the legislation that year, oblig-
ing insurance companies to provide fire insurance and flood insurance
in one package. This implies that most people now have private insur-
ance, thereby ending the need for government compensations that
were provided by the disaster fund (Portaal Belgische overheid, 2012).
The lack of recent data was tackled in two ways. Firstly, we included
260 addresses from records of fire and police departments or from
local authorities in villages and cities that were flooded in recent years
during a pluvial event. Secondly, we asked people to fill in the question-
naire for themost severe flood since 2000 on their address. Many of the
addresses in the national disaster fund were expected to be quite prone
to pluvial floods, for instance because they are close to malfunctioning
sewer systems or in lower parts of the village or city. As such, it was
probable that quite some victims become flooded on a regular basis.
By asking to take the worst flood as a reference, people could report
also about floods after 2007 (21% of the reported floods occurred after
the year 2007).

973 households filled in the survey (24.6% of our sample). After a
first investigation, we deleted the files of 260 respondents that claimed
never to have suffered from pluvial floods. There are two probable rea-
sons for this. Firstly, a number of respondents suffered from damage
caused by hail or winds. That type of damage was not separated from
flood damage in the disaster fund database. Secondly, some people
moved to the address we found in the disaster fund database after the
recorded pluvial event took place at that address. The data of another
93 respondents were deleted, mainly because they turned out to be
small shopkeepers, farmers or other self-employed businessmen
reporting not only about the damage to their home, but also about the
damage to their business. Finally, we have the data of 620 respondents
on which we perform further analyses in this paper. The average age of
60.03 of our respondents shows that many elderly sent back the ques-
tionnaire. Somewhat more men (55.4%) than woman (44.6%) filled in
the questionnaire. Table 1 shows some other socio-economic character-
istics of the sample. The higher average age is reflected in the fact that
over 45% of the respondents indicate being retired. The summary statis-
tics on income indicate that our sample contains victims from all socio-
economic classes.

We asked people to report howmuch damage they suffered because
of the flood. First we asked them to report the financial damage to sev-
eral parts of the building. The reported amounts for the different parts of
the building are added to construct a total building damage variable.1

For damage to the contents, we did not differentiate between different
belongings and we asked victims to report immediately on the total
damage to their contents.2 Victims reported about floods inmanydiffer-
ent years, so the damage data have to be corrected for inflation. For this
correction, we used the Belgian Consumer Price Index. 108 respondents
did not answer the question about the year of the incident. Most of the
remaining 512 respondents (89%) reported on flood incidents that hap-
pened after 2001.3 Table 2 shows the summary statistics: 363 respon-
dents reported a damage figure for their building (and also provide
information on the flood year). For contents, there are 413 respondents
with a damage figure (that can be corrected for inflation). Clearly the



4 Note that we have tried to include the depth of the flood in the basement and the
depth of theflood at the groundfloor as two explanatory variables in one regression.How-
ever, both variables are strongly correlated (corr. 0.3942) and including them in one re-
gression causes problems related to multicollinearity.

Table 4
Missing values for the outcome and explanatory variables and reported zero damages.

Kind of flood/damage to Total floods Missing damage figure Missing year Flood damage data Missing explanatory variables Observations in regression Zero damage

Basement/building 430 133 36 261 21 240 26
Basement/content 430 111 28 291 31 260 108
Ground floor/building 283 94 26 163 22 141 5
Ground floor/content 283 82 15 186 34 152 55
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damage to the building is on average much higher than to the contents.
This can be partly explained by the higher share of zero damage obser-
vations for the category “damage to the contents”. In addition, we find
that the total damage reported by the households is substantially higher
than the payment they received from their insurance company or the
Belgian Rampenfonds.

For both building and content damage, and especially for content
damage, victims also reported zero damage. These respondents were
the victim of a pluvial flood (cfr. the selection of the sample) but have
no reported damage to their building or their contents. It can also be
the case that they do not report damage that is very small. This means
that in case the damage is lower than c (whichwe assume not necessar-
ily to be zero) the individuals report this as a zero damage case. This is
relevant if we want to estimate the impact of e.g. risk awareness or
emergency measures. A large number of zero observations lead to se-
verely biased regression coefficients when using OLS. One solution is
simply to delete the zero values, i.e. truncating the sample. However,
this would mean ignoring relevant information and therefore would
also lead to inconsistent estimations of the parameters (Wooldridge,
2010). The problem of many zero values is well-known in the field of
economics. A specific model has been developed by James Tobin
(1958) to deal with this issue, known as the Tobit model (James Tobin's
Probit model). The methodology is widely applicable for any situation
where observations are ‘censored’ above or below a certain border
value. The Tobit model is therefore also known as a specific type of ‘cen-
sored regression model’ (Wooldridge, 2010) and is used widely for
analysing diverse micro-economic topics such as the hours worked by
different socio-economic groups (see McDonald and Moffitt (1980)) or
explaining charity donations. To our knowledge, the Tobit model has
never been used before in flood damage research. A mathematical elab-
oration of the Tobit model can for example be found in Long (1997) or
Sigelman and Zeng (1999). In our case of flood damage, it seems reason-
able to claim that factors such as flood depth, flood duration, building
characteristics, behavioural predictors (such as emergency measures)
and socio-economic indicators all will contribute in a very comparable
way to the amount of positive damage on the one hand and to whether
or not there is any damage on the other hand. This is a necessary condi-
tion to use the Tobit model (see for example Wooldridge, 2010).

The Tobit coefficients refer to the latent variable, and this is not the
effect we are really interested in. We do want to take into account the
zero values in the estimations, but in the end we only want to know
the effect of the explanatory variables on the actual observed damage
(comparable to the interpretation of an OLS coefficient). Therefore, in
the next section, we calculate the averagemarginal effects of the hazard
and non-hazard indicators on the observed (or censored) damage. The
marginal effect is equal to the Tobit coefficient multiplied by the proba-
bility of obtaining an uncensored observation. It is calculated by the fol-
lowing formula (Collis et al., 2010; Sigelman and Zeng, 1999):

∂E yjxð Þ
∂x ¼ βΦ

xβ
σ

� �
: ð1Þ

The left hand side of this formula is thederivative of ywith respect to
x, which is the marginal effect by definition. The right hand side shows
that the marginal effect equals the original Tobit parameter of x (β)
multiplied by the estimated probability of obtaining an uncensored ob-
servation Φ(xβ / σ) where Φ is the cumulative density function from
the standard normal distribution and σ is the variance (Collis et al.,
2010). It is clear from this formula that the marginal effect depends
upon the value of x. To deal with this, we prefer to calculate average
marginal effects instead of marginal effects at the mean, which is in
linewithmodern practices (for a discussion on the topic of marginal ef-
fects at the mean and average marginal effects, see Bartus (2005)).

3. Differentiated flood models

The questionnaire made a distinction between basement floods,
ground floor floods and garage floods. Water in the garage is not inves-
tigated in itself, it is takenup as a control variable. Aswe alsomake a dis-
tinction between damage to the building and damage to the contents
(see Table 1), we will construct four different (refined) models4:

- Damage to the building for respondents that were flooded in the
basement

- Damage to the contents for respondents that were flooded in the
basement

- Damage to the building for respondents that were flooded at the
ground floor

- Damage to the contents for respondents that were flooded at the
ground floor.

Table 3 presents the outcome and explanatory variables included in
the different model specifications.

In Table 4, we summarize the information about the number of ob-
servations used in the regressions and about the number of reported
zero damages. Starting with 620 respondents, 56 of them reported
being flooded only in the garage or in ‘another place’ (with different
specifications). This brings the number of useful respondents at 564.
Out of these 564 respondents, 134 respondents were flooded at the
groundfloor but not in the basement, 281wereflooded in the basement
but not at the ground floor and 149 were flooded in both. As a result,
283 (134 + 149) respondents can be included in ground floor models
and 430 (281 + 149) can be included in basement models.

For many respondents, it seemed difficult to estimate and report the
damage caused by the flood. That is both the cases for content damage
and for building damage. Those respondents did not report a positive
nor a zero damage figure. Out of 430 people that reported being flooded
in the basement, only 297 reported a positive or a zero value for damage
to the building and 319 for damage to contents. For ground floor floods,
189 people reported damage figures to the building and 201 reported
damage figures for contents. Also, a number of the respondents (that
do report a valid damage value) did not fill in the year the flood took
place. For those respondents it was impossible to calculate the damage
figures corrected for inflation.

Missing values on the flood variable (damage or year) lead to a fall-
out between 32% (basement flood/content damage-model) and 42%
(ground floor flood/building damage-model). The main reason clearly
is that people have difficulties in estimating or reporting the damage
caused by the floods. We performed a non-response analysis making a



Table 5
Tobit model results — original coefficients.

Variables Tobit
Basement flood — building
damage (ln)

Tobit
Basement flood — content
damage (ln)

OLS
Ground floor flood — building
damage (ln)

Tobit
Ground floor flood — content
damage (ln)

Constant 4.6119⁎⁎⁎

(0.6475)
1.9542⁎

(1.1687)
6.6090⁎⁎⁎

(0.5663)
−0.1048
(0.4092)

Depth basement/gr floor 0.0114⁎⁎⁎

(0.0026)
0.0129⁎⁎

(0.0052)
0.0331⁎⁎⁎

(0.0078)
0.0775⁎⁎

(0.0227)
Gr floor/basement flooded 0.8880⁎⁎

(0.8880)
0.6690
(0.8418)

0.8599⁎⁎

(0.3623)
1.4913
(0.9251)

Garage flooded 0.3596
(0.4176)

1.2074
(0.8038)

−0.1333
(0.3199)

−0.8475
(1.0062)

Type: semi-detached 0.3045
(0.4810)

0.3039
(0.3896)

Type: terraced −0.3604
(0.4756)

−1.0380⁎⁎

(0.4215)
Size of dwelling 0.0017

(0.0010)
0.0040
(0.0040)

Recurrence 0.0172
(0.0430)

−0.2633⁎⁎

(0.1086)
0.0996
(0.0861)

0.2627
(0.2361)

Risk awareness 0.3383
(0.4145)

−3.6354⁎⁎⁎

(1.0207)
−0.1341
(0.3276)

−2.0096⁎

(1.0619)
Emergency measure: elevating contents to
another floor

4.2229⁎⁎⁎

(1.3211)
1.3787
(1.5646)

Income below 1000 1.6063⁎

(0.8143)
−1.7429
(1.6472)

0.0599
(0.8180)

0.0112
(2.1828)

Income 1500–1999 0.8185
(0.5691)

0.5940
(1.1300)

−0.0588
(0.4526)

3.7098⁎⁎⁎

(1.3548)
Income 2000–2499 0.9777

(0.61108)
2.9990⁎⁎

(1.2166)
−0.2734
(0.5075)

2.6687⁎

(1.4875)
Income 2500+ 0.4250

(0.7161)
−0.4502
(1.3874)

0.6704
(0.5594)

2.5716
(1.7098)

Obs/Pos 240/214 260/152 152/97
Obs/Cens 240/26 260/108 152/55
Log lik. −563.267 −564.440 −343.300
Prob N chi2 0.000 0.000 0.001
(Corr y ~ ^y)2 (Tobit)/
R-squared (OLS)

0.1815 0.1516 0.2836 0.2055

Standard errors in parentheses.
⁎ Significant at 0.10 level.
⁎⁎ Significant at 0.05 level.
⁎⁎⁎ Significant at 0.01 level.

6 Note that by estimating multivariate models in which in addition to the depth of the
flood also a number of control variables are included, a substantial larger share of the var-
iation in the damage is explained as compared to a restricted model in which only the
depth of the flood is included. In fact, in case only the depth of thefloodwould be included
as an explanatory variable, the explained variation ranges between only 5% and 10% for
our four model specifications. This underlines the importance of estimating multivariate
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comparison between respondents with missing values and those with
valid values on the inflation corrected damage figures. We did this for
both damage to building and damage to contents for a number of im-
portant characteristics (see Appendix A). The non-response analysis
shows that there exist some differences between the respondents in-
cluded in our models and the respondents that failed to answer a num-
ber of crucial questions. The differences are however restricted and any
bias would thus be quite limited.

4. Results and discussion

For the two basement flood models and for the ground floor flood-
content damage model, we used a Tobit-estimation because a high
number of reported damage figures are equal to zero. In contrast,
given the limited number of zero damage observations, we estimated
the model for ground floor flood-building damage using an OLS
regression.5 The estimation results of the four models are presented in
Table 5.

Our findings show that a number of the explanatory variables, in-
cluding the depth of the flood, are highly significant in explaining the
5 Although not necessary given the low number of zero values, it is possible to calculate
Tobit coefficients for the analysis of building damage during ground floor floods instead of
using theOLS analysis.Whendoing this, we find that the Tobit coefficients are very similar
to the OLS coefficients. This is very logical given that the Tobit model uses OLS for the non-
censored values and almost all observations (except for five zeros) are uncensored in that
case. This is not the case when comparing OLS-coefficients with Tobit-coefficients for the
three other models. The results of the alternative estimations are available from the au-
thors upon request.
damage. Moreover, the estimated models explain a reasonable share
of the variation in the damage variables. The squared correlation be-
tween the predicted values by the models and the actually observed
values is a measure for explained variation and can be used for compar-
ison with R2 in OLS regressions (Wooldridge, 2010). For the Tobit
models, the squared correlation ranges between 15% and 21%. The OLS
model (to estimate the ground floor model on building damage) ex-
plains 28% of the variance.6 The marginal effects of the Tobit and OLS
models are presented in Table 6.7

Looking at Table 6, it is clear that the depth of the flood is an impor-
tant predictor for damage, also in this case of pluvial flood analysis. The
effect of depth is highly significant and also important in terms of mag-
nitude for all fourmodels. For the basementmodels, there is an increase
depth–damage models.
7 Because of the logarithmic transformation of the outcome variable, the exponent of

the coefficients was taken, decreased by one and multiplied by 100 to obtain the effect
of an increase of one unit in the explanatory variables on the outcome variable in percent-
age changes. When doing a logarithmic transformation of the outcome variable, coeffi-
cients should be recalculated by the following formula to obtain the effects in percent
changes:

%Δy ¼ 100 � eβi � 1
� �

:



8 The number of respondents taking this measure is also limited. On a total of 620 re-
spondents, only 68 mention to take the measure. For the specific model on content dam-
age during basement floods, 35 respondents took this measure. For the model on content
damage during ground floor floods, only 19 respondents responded positively on the
questionwhether they took themeasure on a total of 152 observations in themodel. Leav-
ing out the variable from the model changes very little to the coefficients of other vari-
ables, although the overall explanatory power of the models does decrease somewhat.

Table 6
Differentiated models, based on average marginal Tobit effects and OLS results (percentage effects).

Variables Tobit
Basement flood — building
damage

Tobit
Basement flood — content
damage

OLS
Ground floor flood — building
damage

Tobit
Ground floor flood — content
damage

Depth basement/ground floor 1.14%⁎⁎⁎ 0.88%⁎⁎ 3.37%⁎⁎⁎ 5.88%⁎⁎⁎

Part: Ground floor/basement flooded 140.70%⁎⁎ 57.43% −12.48% 197.96%
Part: garage flooded 42.59% 123.56% 136.29%⁎⁎ −46.83%
Type: Semi-detached 35.22% 35.51%
Type: terraced −29.95% −64.58%⁎⁎

Size of dwelling 0.17% 0.29%
Recurrence 1.70% −16.21%⁎⁎ 10.47% 21.36%
Risk awareness 39.65% −90.15%⁎⁎⁎ −12.55% −77.08%⁎

Emergency measure: elevating contents to
another floor

2264.61%⁎⁎⁎ 186.74%

Income below 1000 389.40%⁎⁎ −64.84% 6.17% 0.72%
Income 1500–1999 123.92% 48.99% −5.71% 1548.91%⁎⁎⁎

Income 2000–2499 162.16% 809.02%⁎⁎ −23.92% 596.29%⁎

Income 2500+ 51.83% −25.04% 95.50% 544.17%

⁎ Significant at 0.10 level.
⁎⁎ Significant at 0.05 level.
⁎⁎⁎ Significant at 0.01 level.
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of 1.14% in building damage and of 0.88% in content damage for each
extra centimetre ofwater depth. The depth coefficients aremuch higher
in the ground floor flood models, with an increase in damage to the
building of 3.37% and to contents of 5.88% for each additional centimetre
of water depth. It is no surprise that the same increase in the depth level
causes more severe damage (to buildings and contents) in case of
ground floor floods compared to basement floods. On the ground
floor, the contentswill bemuchmore valuable andmore valuable build-
ing elements can be damaged. Fig. 1 presents the depth–damage rela-
tionship for the different model specifications graphically. Panel A for
the damage to the building caused by basement floods, Panel B for the
damage to the content caused by basement floods, Panel C for the dam-
age to the building caused by ground floor floods and Panel D for the
damage to the content caused by ground floor floods. For each panel,
there are two graphs. The first graph presents the relationship between
the depth of the flood and the natural logarithmof the damage, which is
linear. The second graph presents the relationship between the depth of
the flood and the damage, which is exponential.

Our findings illustrate the importance of using differentiated
models, here making a distinction based upon where the water enters
the building. It can be expected that people that were flooded also in
the garage or people that were flooded in both the basement and at
the ground floor will suffer more damage. Therefore we include a
dummy variable in case people were also flooded in the garage and an-
other dummy in case people were flooded in the other of the two op-
tions. This latter dummy variable takes a value of one when also the
ground floor was flooded (in case the explanatory variable of interest
was the depth of the flood in the basement) or when the basement
was flooded (in case the explanatory variable of interest was the
depth of the flood in the ground floor). The results show that these con-
trol variables have no effect on content damage. They are significant in
two cases for building damage. First, in case of a basement flood, the
fact that the ground floor was also flooded increased the damage to
the building by 141% compared to a situation in which the ground
floor was not flooded. Second, in case of a ground floor flood, the fact
that the garage was also flooded increased the damage to the building
by 136% compared to a situation in which the garage was not flooded.

Survey information provides the opportunity to include more non-
hazard indicators. We incorporated building characteristics and socio-
economic and behavioural information about the flood victims. Again
differentiating, the type of the building is considered to be relevant for
damage to the building, not for damage to contents. The reference cate-
gory of detached houses is compared to semi-detached houses and ter-
raced buildings. The type of building has no significant effect on damage
to buildings in the case of basement floods. For ground floor floods the
building damage for terraced houses is on average 65% lower than the
building damage to detached houses. We have information about the
size of the dwelling at the groundfloor, but this turns out not to be a sig-
nificant predictor for any of the two ground floor models, yet the P-
value is at the margin in the case of building damage (0.105).

Another category of variables are predictors related to the behaviour
of victims before and during the floods. There are important effects in
the models predicting damage to contents in the case of basement
flooding. Recurrence refers to the amount of times people have been
flooded. People seem to learn from those experiences: in the case of
basement floods the content damage decreases on average by 16% for
each new flood. Risk awareness is captured by a dummy variable in
case people were aware of their house being at risk just before the
water entered the building. Being aware of the risk just before the
water enters the building reduces content damage on average by 90%
in case of basement floods and by 77% in case of ground floor floods.
Such afinding underlines the importance ofwarning systems andpolicy
in this case of pluvial floods. We included an emergencymeasure in our
models that predicts damage to contents, namely elevating contents to
another floor. Unexpectedly, victims moving their contents from the
basement to a higher level seem to suffer significantly more damage.
Perhaps those people desperately try to protect their belongings by
moving them to a higher floor.8 Finally, we included income, which is
correlated with the level of education and the labour market situation
of the individual. The reference category here is respondents with a
netmonthly income between 1000 and 1500 euros. It seems, in general,
that people with a higher income suffer more content damage. In the
case of building damage during basement floods, people earning less
than 1000 euros net a month suffer more damage compared to people
in the reference category.

5. Limitations and scope for future research

The present study extends the traditional bivariate depth–damage
relation by constructing more detailed multivariate flood damage
models including no-damage cases. However, there are a number of
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limitations that provide scope for future research. First, the present
study reflects only a part of the total damage caused by floods and
additional information is required to be incorporated in any cost–
benefit analysis on flood management. Other authors have pointed
to damage to commercial and public property (Kreibich et al.,
2010) and damage caused by other types of floods, such as ground
water floods (Kreibich and Thieken, 2008). Also, pluvial floods can
have a large impact on non-monetary damage as they may have a
significant impact on the health of those individuals that have
been flooded. In addition to a physical non-monetary impact plu-
vial floods can also affect the well-being of individuals. In Van
Ootegem and Verhofstadt (2015) we analyse the impact of pluvial
floods on well-being and in particular on life satisfaction and
capabilities.

Second, the inclusion of non-hazard indicators is an important
strength of our paper. However, it may make the model less suitable
for making predictions of the damage as this requires information on
the non-hazard indicators and often this type of information is not
easily available. This issue becomes particularly problematic when
the population for which predictions are made is very different
from our sample in terms of its non-hazard properties. In addition,
it is unclear whether the existing hydraulic models will be able to
simulate the water depth as it has been interpreted in our models,
namely the subjective reported depth at the ground floor and in
the basement.
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Fig. 1. Graphical representation of the e
Third, the models that we present explain between 15% and 28% of
the variation in the damage caused by the flood. These figures are in
line with other economic models. Nevertheless, the explanatory
power of the model could be further improved by including additional
control variables that could explain the damage caused by the flood,
such as variables related to the characteristics of the flood (e.g. velocity
or the level of sediment of the water that entered the property) or var-
iables related to the socio-economic characteristics of the households
affected by the flood (e.g. total value of the building or contents
owned or rented by the household or detailed data on the wealth of in-
dividuals instead of income data).

Fourth, the data are collected based on recall from an event that may
have happened more than ten years ago. This may raise questions re-
garding the accuracy of some of the variables. In particular, it is unclear
to what extent respondents are able to remember in detail the amount
of the damage or the depth of the flood. In order to test for the robust-
ness of our results, we restricted the sample to the past ten years (pe-
riod 2002–2012) since we expect that respondents are better able to
remember recent events. This did not change the results significantly
(results are available from the authors upon request).

Finally, in our model specifications the main explanatory variable
of interest is the depth of the flood. Other authors have estimated a
direct relationship between the rainfall intensity and the monetary
damage (e.g. Spekkers et al., 2014). Such rainfall-damage models
have several advantages. Rainfall data are completely exogenous to
o the building caused by basement floods
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C) Depth-damage functions for damage to the building caused by ground floor 
floods

D) Depth-damage functions for damage to the contents caused by ground floor 
floods

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120
Depth of the flood at the ground 

floor (cm)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20 40 60 80 100 120

D
am

ag
e 

to
 th

e 
bu

ild
in

g 
(i

nf
la

te
d 

eu
ro

s)

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100 120
Depth of the flood at the ground 

floor (cm)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100 120

N
at

ur
al

 lo
ga

ri
th

m
 o

f 
da

m
ag

e 
to

 
th

e 
co

nt
en

t (
in

fl
at

ed
 e

ur
os

)

N
at

ur
al

 lo
ga

ri
th

m
 o

f 
da

m
ag

e 
to

 th
e 

bu
ild

in
g 

(i
nf

la
te

d 
eu

ro
s)

N
at

ur
al

 lo
ga

ri
th

m
 o

f 
da

m
ag

e 
to

 
th

e 
co

nt
en

t (
in

fl
at

ed
 e

ur
os

)

Depth of the flood at the ground floor 
(cm)

(cm)
Depth of the flood at the ground floor

Fig. 1 (continued).

98 L. Van Ootegem et al. / Environmental Impact Assessment Review 54 (2015) 91–100
the other control variables while depth is not necessarily exoge-
nous. In fact, the depth of the flood could be affected by some of
the control variables, which could bias the estimated coefficient
on the depth of the flood. In addition, rainfall-damage could be
rapidly implemented in early warning systems, while for the
depth–damage models the depth first needs to be simulated.
This is in particularly important with respect to pluvial floods,
which occur rather unexpectedly and have in general a short lead
time. Only few authors have estimated “rainfall-damage” models.
For example, Zhou et al. (2013)analysed the impact of the rainfall
on 1000 insurance claims related to pluvial floods in Aarhus
(Denmark). They find that the level of rainfall did not significantly
affect the cost per claim, but it did affect the total costs per
day. Spekkers et al. (2013) find that rainfall intensity has a signif-
icant impact on the monetary damage. However, overall the ex-
plained variance in case of the rainfall-damage models is rather
low, which emphasizes the need to further study these types of
models and include additional explanatory variables, such as the
socio-economic characteristics of the households that have been
flooded.
6. Conclusions

We explore a number of approaches and issues that are not
customary in flood damage research. First of all, we investigate
pluvial floods caused by heavy rainfalls, this instead of the more
traditional focus on fluvial or coastal floods. We use self-reported
data making use of a questionnaire conducted among flood victims
in the northern Dutch speaking part of Belgium. The data-base of-
fers possibilities to investigate a number of novelties because we
have information about cases with reported zero damage, we
have detailed non-hazard information (building characteristics,
behavioural responses and socio-economic data) and we have in-
formation about the specific places that are flooded (basement,
ground floor or garage) and the kind of damage that is suffered
(damage to contents or damage to the building). This allows one
to develop (four) differentiated multivariate flood damage models.
We differentiate between ground floor floods and basement floods
and between damage to the building and to contents. We apply a
Tobit estimation technique that specifically deals with the issue
of reported zero damage.
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The combination of the differentiatedmodels with also zero damage
information shows that the damage effect of an increase in the flood
depth is significantly stronger for ground floor floods than for basement
floods. For the basement flood models, there is an increase of about 1%
damage to the building or the contents for each extra centimetre of
water depth. For the ground floor floodmodels, damage to the building
increases with 3% and damage to the contents with 6% with each addi-
tional centimetre of water. This is because the contents will be much
more valuable on the groundfloor andmore valuable building elements
can be damaged on the ground floor. This result is also due to the fact
that there is a high number of reported zero damages for content dam-
age in the case of basement floods. The Tobit estimation technique
makes it possible to include that kind of information. For three of the
four models, an important number of no damage cases occur and the
Tobit-models yield results different from OLS-models.

Our results show that, although flood depth remains an important
predictor of flood damage (as it is also the case for fluvial floods), also
non-hazard indicators are important for explaining pluvial flood dam-
age. We find important effects on damage of building characteristics,
behavioural predictors and income. Risk awareness and other behav-
ioural predictors only affect the damage to contents and are more im-
portant in the case of basement floods than in the case of ground floor
floods. Being aware of the risk before the water enters the building re-
duces content damage on average by 90% in case of basement floods
and by 77% in case of ground floor floods. These results point to the po-
tential gain of policies that increase the awareness or the knowledge of
flood risks. Then, people can protect their belongings before the flood
takes place, and so before the flood (depth) can cause damage. Also,
people learn from past flooding. In the case of basement floods the con-
tent damage decreases for each new flood.

We can summarize that themost important hazard indicator (depth
of the flood) is more important because of its damage-increasing effect
in case of ground floor floods, while the non-hazard indicators aremore
important for their potential damage-decreasing effect; this is especially
for the content damage and specifically for basement floods. Non-
hazard indicators can partially be influenced by (warning) policies. A
cost benefit analysis could be conducted using these results.
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Appendix A. Non-response analysis

The non-response analyses in Tables A1 and A2 show us that there
are few significant differences in water depth levels between respon-
dents with valid and with missing damage figures. Only for the ground
floormodel predicting content damage, there is a statistically important
difference as respondents with missing damage values report signifi-
cantly higher water levels compared to respondents that were able to
estimate damage figures. As depth and damage are highly correlated,
the results are an indication that respondents with a lot of damage are
more likely not to report any figure, possibly because the damage was
so severe that they are not able to estimate it anymore. As a conse-
quence, the ground floor model for content damage is likely to lead to
somewhat underestimated damage figures as a number of respondents
with a lot of damage are probably excluded.

As for socio-economic indicators, respondents with missing values
are significantly (up to five years) older than those who are capable of
estimating their damage. It is probably no surprise that older people
have more difficulties in estimating damage figures. Also, respondents
with missing values are overrepresented among the lower income
groups and evenmore among respondents that are not willing to report
their income. The latter result is also quite logical as a number of people
did not fill in the questionnaire very rigorously and as such they have
missing values on many variables, among which also both the damage
figures and income. Women and lower educated groups are also over-
represented among respondents that do not report damage figures for
buildings.
Finally, we wanted to check whether there is a time effect. Indeed,
people with missing values on damage figures for buildings report on
floods that occurred further in the past, about 10 months on average.
Again, the result is not a surprise. As time passes, people will very prob-
ably find it harder and harder to recall the damage they suffered.

Table A1. Non-response analysis for building damage.
Variable
 Test
 Test
statistic
P-value
 Conclusion
epth
Ground
floor
T-test
 0.771
 0.411
 No significant difference
epth
Basement
T-test
 −0.994
 0.321
 No significant difference
ge
 T-test
 4.165
 0.000
 Respondents with missing values are
significantly older (+/−5 years) than
other respondents
ender
 Chi2
 5.001
 0.025
 Respondents with missing values are
significantly more often women than
other respondents
ducation
 Chi2
 13.374
 0.010
 Respondents with missing values are
overrepresented among the lower
educated groups
come
 Chi2
 25.603
 0.000
 Respondents with missing values are
overrepresented among the lower
income groups and even more among
respondents not reporting income
onth
passed
T-test
 2.067
 0.039
 Respondents with missing values report
on floods that happened earlier (+/−10
months)
Table A2. Non-response analysis for content damage.
Variable
 Test
 Test
statistic
P-value
 Conclusion
epth
Ground
floor
T-test
 2.027
 0.043
 Respondents with missing values have
significantly higher water levels than
other respondents (+/−5 cm)
epth
Basement
T-test
 −0.852
 0.395
 No significant difference
ge
 T-test
 0.011
 0.002
 Respondents with missing values are
significantly older (+/−4 years) than
other respondents
ender
 Chi2
 1.853
 0.173
 No significant difference

ducation
 Chi2
 7.495
 0.112
 No significant differences

come
 Chi2
 23.199
 0.000
 Respondents with missing values are

overrepresented among the lower
income groups and even more among
respondents not reporting income
onth
passed
T-test
 1.900
 0.058
 No significant difference (albeit at the
margin)
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Abstract. The Short-Term Ensemble Prediction System

(STEPS) is implemented in real-time at the Royal Mete-

orological Institute (RMI) of Belgium. The main idea be-

hind STEPS is to quantify the forecast uncertainty by adding

stochastic perturbations to the deterministic Lagrangian ex-

trapolation of radar images. The stochastic perturbations

are designed to account for the unpredictable precipitation

growth and decay processes and to reproduce the dynamic

scaling of precipitation fields, i.e., the observation that large-

scale rainfall structures are more persistent and predictable

than small-scale convective cells. This paper presents the de-

velopment, adaptation and verification of the STEPS sys-

tem for Belgium (STEPS-BE). STEPS-BE provides in real-

time 20-member ensemble precipitation nowcasts at 1 km

and 5 min resolutions up to 2 h lead time using a 4 C-band

radar composite as input. In the context of the PLURISK

project, STEPS forecasts were generated to be used as input

in sewer system hydraulic models for nowcasting urban in-

undations in the cities of Ghent and Leuven. Comprehensive

forecast verification was performed in order to detect sys-

tematic biases over the given urban areas and to analyze the

reliability of probabilistic forecasts for a set of case studies

in 2013 and 2014. The forecast biases over the cities of Leu-

ven and Ghent were found to be small, which is encouraging

for future integration of STEPS nowcasts into the hydraulic

models. Probabilistic forecasts of exceeding 0.5 mm h−1 are

reliable up to 60–90 min lead time, while the ones of exceed-

ing 5.0 mm h−1 are only reliable up to 30 min. The STEPS

ensembles are slightly under-dispersive and represent only

75–90 % of the forecast errors.

1 Introduction

The use of radar measurements for urban hydrological appli-

cations has substantially increased during the last years (e.g.,

Berne et al., 2004; Einfalt et al., 2004; Bruni et al., 2015).

Given the fast response time of urban catchments and sewer

systems, radar-based very short-term precipitation forecast-

ing (nowcasting) has the potential to extend the lead time of

hydrological and hydraulic flow predictions.

Nowcasting concerns the accurate description of the cur-

rent weather situation together with very short-term forecasts

obtained by extrapolating the real-time observations. Quan-

titative precipitation nowcasting (QPN) is traditionally done

by estimating the apparent movement of radar precipitation

fields using optical flow or variational echo tracking tech-

niques and extrapolating the last observed precipitation field

into the future (e.g., Germann and Zawadzki, 2002; Bowler

et al., 2004a). During recent years there has been significant

progress in NWP modeling with radar data assimilation tech-

niques (see a review in Sun et al., 2014), which reduces the

useful lead time of extrapolation-based nowcasts compared

with NWP forecasts. The development of seamless forecast-

ing systems that optimally blend the extrapolation nowcast

with the output of NWP models makes the definition of the

nowcasting time range even fuzzier (see, e.g., Pierce et al.,

2010).

Due to the lack of predictability of rainfall growth and de-

cay processes at small spatial scales (Radhakrishna et al.,

2012), it is very important to provide together with a fore-

cast an estimation of its uncertainty. The established method

to represent the forecast uncertainty in Numerical Weather

Prediction (NWP) is to generate an ensemble of forecasts by

Published by Copernicus Publications on behalf of the European Geosciences Union.
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perturbing the initial conditions of the model in the direc-

tions exhibiting the largest error growth, which amplify more

the spread of the obtained ensemble. However, in the now-

casting range the computation of large NWP ensembles (50–

100 members) that resolve features at the scales of 1 km and

are updated every 5 min is still impossible to achieve. Con-

sequently, the efforts in nowcasting research have recently

focused on developing heuristic techniques for probabilistic

precipitation nowcasting, which was the topic of the Heuris-

tic Probabilistic Forecasting Workshop that was organized in

Munich, Germany (Foresti et al., 2014).

Probabilistic QPN methods can be categorized into three

main classes: analog, local Lagrangian and stochastic ap-

proaches. The analog-based approach derives the forecast

probability density function (pdf) by retrieving a set of

similar situations from an archive of precipitation events

(Panziera et al., 2011; Foresti et al., 2015), the local La-

grangian approach derives the pdf by collecting the precip-

itation values in a neighborhood of a given grid point in La-

grangian frame of reference (Hohti et al., 2000; Germann and

Zawadzki, 2004) and the stochastic approach exploits a ran-

dom number generator to compute an ensemble of equally

likely precipitation fields, for example by adding stochastic

perturbations to a deterministic extrapolation nowcast (Pe-

gram and Clothier, 2001a, b; Bowler et al., 2006; Metta et

al., 2009; Berenguer et al., 2011; Seed et al., 2013; Aten-

cia and Zawadzki, 2014; Dai et al., 2015). The stochastic

approach is also extensively used to produce ensembles of

precipitation fields that characterize the radar measurement

uncertainty (e.g., Jordan et al., 2003; Germann et al., 2009)

and for design storm studies (e.g., Willems, 2001a; Paschalis

et al., 2013).

Uncertainty quantification is nowadays an integral part

of both weather and hydrological forecasting (Pappenberger

and Beven, 2006). Not surprisingly, an important part of

hydro-meteorological research aims at understanding how to

propagate the uncertainty of precipitation observations and

forecasts into the hydrological models (e.g., Willems, 2001b;

Cloke and Pappenberger, 2009; Collier, 2009; Zappa et al.,

2010).

Several studies already analyzed the value of determin-

istic nowcasting systems for catchment hydrology (e.g.,

Berenguer et al., 2005) and for better control of urban

drainage systems (e.g., Achleitner et al., 2009; Verworn et

al., 2009; Thorndahl and Rasmussen, 2013). Since an impor-

tant fraction of the uncertainty of hydrological predictions is

due to the uncertainty of the input rainfall observations and

forecasts, radar-based ensemble nowcasting systems are in-

creasingly used as inputs for flood and sewer system model-

ing (e.g., Ehret et al., 2008; Silvestro and Rebora, 2012; Sil-

vestro et al., 2013; Xuan et al., 2009, 2014). At longer fore-

cast ranges, the NWP ensembles are also exploited for un-

certainty propagation into hydrological models (see Roulin

and Vannitsem, 2005; Thielen et al., 2009; Schellekens et al.,

2011).

The Short-Term Ensemble Prediction System (STEPS) is a

probabilistic nowcasting system developed at the Australian

Bureau of Meteorology and the UK MetOffice (see the se-

ries of papers: Seed, 2003; Bowler et al., 2006; Seed et

al., 2013). STEPS is operationally used at both weather ser-

vices and provides short-term ensemble precipitation fore-

casts using both the extrapolation of radar images and the

downscaled precipitation output of NWP models. The main

idea behind STEPS is to represent the uncertainty due to the

unpredictable precipitation growth and decay processes by

adding stochastic perturbations to the deterministic extrap-

olation of radar images. The stochastic perturbations are de-

signed to represent the scale-dependence of the predictability

of precipitation and to reproduce the correct spatio-temporal

correlation and growth of the forecast errors.

One of the first applications of STEPS in hydrology is

presented in Pierce et al. (2005), who used the STEPS en-

semble nowcasts to quantify the accuracy of flow predic-

tions in a medium-sized catchment in the UK. The value

of STEPS nowcasts for urban hydrology was extensively

analyzed by Liguori and Rico-Ramirez (2012), Liguori et

al. (2012), Liguori and Rico-Ramirez (2013) and Xuan et

al. (2014). Liguori and Rico-Ramirez (2012) concluded that

the performance of the radar-based extrapolation nowcast

can be improved after 1 h lead time if blended with the out-

put of a NWP model. They also found that, according to the

Receiver Operating Characteristic (ROC) curve, the proba-

bilistic nowcasts have more discrimination power than the

deterministic ones. Liguori et al. (2012) integrated STEPS

nowcasts as inputs into sewer system hydraulic models in

an urban catchment in Yorkshire (UK). They concluded that

the blending of radar and NWP forecasts has the potential

to increase the lead time of flow predictions, but is strongly

limited by the low accuracy of the NWP model in forecast-

ing small-scale features. Liguori and Rico-Ramirez (2013)

performed a detailed verification of the accuracy of flow pre-

dictions and concluded that the STEPS ensembles provide

a similar performance as using a deterministic STEPS con-

trol forecast, but the ensembles lead to a slight underesti-

mation of the flow predictions. Xuan et al. (2014) used en-

semble STEPS nowcasts as inputs in a lumped hydrological

model for a medium-sized catchment in the southwest of the

UK. The hydrological model calibrated with rain gauges had

lower RMSE than the one using radar data, but the ability

of STEPS to account for the forecast uncertainty was useful

in capturing some of the high flow peaks and extending the

forecast lead time. However, the conclusions of the previous

studies are strongly affected by the limited number of flood

events analyzed. An extensive review of the usage of precip-

itation forecast systems for operational hydrological predic-

tions in the UK from very short to long ranges (including

STEPS) is provided in Lewis et al. (2015).

The goal of this paper is to present the development and

verification of the STEPS system at the Royal Meteorolog-

ical Institute of Belgium (RMI), referred to as STEPS-BE.
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STEPS-BE provides in real-time 20-member ensemble pre-

cipitation nowcasts at 1 km and 5 min resolutions up to 2 h

lead time on a 512× 512 km domain using the Belgian 4 C-

band radar composite as input. It was developed in the frame-

work of the Belspo project PLURISK for better manage-

ment of rainfall-induced risks in the urban environment. With

respect to the original implementation of STEPS (Bowler

et al., 2006), STEPS-BE includes two main improvements,

which are designed to generate better STEPS nowcasts with-

out NWP blending. The first one is related to the optical

flow algorithm, which is extended with a kernel-based in-

terpolation method to obtain smoother velocity fields. The

second one concerns the generation of stochastic noise only

within the advected radar composite. While the verification

of STEPS nowcasts with NWP blending has already been

extensive (Bowler et al., 2006; Seed et al., 2013), this paper

analyzes the accuracy of STEPS ensemble nowcasts without

NWP blending in the 0–2 h forecasting range.

Ensemble STEPS nowcasts are computed for a set of

sewer overflow cases that affected the cities of Leuven and

Ghent in 2013 and 2014. The accuracy of the ensemble mean

forecast is verified using both continuous verification scores

(multiplicative bias, RMSE) and categorical scores derived

from the contingency table (probability of detection, false

alarm ratio and Gilbert skill score). However, the most inter-

esting part of this paper is the probabilistic and ensemble ver-

ification of STEPS nowcasts using both stratiform and con-

vective rainfall events. Probabilistic nowcasts are verified us-

ing reliability diagrams and ROC curves. On the other hand,

the dispersion of the nowcast ensembles is verified using rank

histograms and by comparing the ensemble spread to the er-

ror of the ensemble mean.

The paper is structured as follows. Section 2 presents the

radar data processing and case studies that are used to gener-

ate and verify the STEPS forecasts. Section 3 describes the

STEPS nowcasting system and its extension and local imple-

mentation for Belgium (STEPS-BE). Section 4 illustrates the

forecast verification results. Section 5 concludes the paper

and discusses future perspectives.

2 Radar data and precipitation case studies

STEPS-BE integrates as input a composite image produced

from the C-band radars of Wideumont (RMI, single-pol),

Zaventem (Belgocontrol, single-pol), Jabbeke (RMI, dual-

pol) and Avesnois (Meteo-France, dual-pol). The compos-

ite is produced on a 500 m resolution grid by combining

single-radar pseudo Constant Altitude Plan Position Indica-

tors (CAPPI) at a height of 1500 m a.s.l. The compositing

algorithm takes the maximum reflectivity value from each

radar at each grid point.

The radars have different hardware and scanning strate-

gies, and are operated by different agencies (RMI, Belgo-

control and Meteo-France), which inevitably leads to differ-

ences in the data processing. The Wideumont and Zaventem

radars eliminate the non-meteorological echoes using stan-

dard Doppler filtering. The Jabbeke radar includes an addi-

tional clutter filtering that uses a fuzzy logic algorithm based

on the dual-polarization moments (essentially the co-polar

correlation coefficient, the texture of the differential reflec-

tivity and the texture of the specific differential phase shift).

A static ground clutter map and a statistical filter are used by

Meteo-France to remove the non-meteorological echoes of

the Avensois radar. The French radar data processing chain

is described in Tabary (2007) and in Figueras i Ventura and

Tabary (2013).

Since the Zaventem radar is mainly used for aviation ap-

plications, its scanning strategy is optimized for the mea-

surement of winds. Except for the lowest elevation scan, a

dual PRF mode (1200/800 Hz) is used. The azimuths that are

scanned with a high PRF (1200 Hz) only have a maximum

range of 125 km and are more affected by the second trip

echoes caused by convective cells located beyond the 125 km

range.

All radars use the standard Marshall–Palmer relationship

Z = 200R1.6 to convert the measured reflectivity to rain-

fall rate. A composite image with more advanced radar-

based quantitative precipitation estimation (QPE), that in-

cludes better ground clutter removal algorithms and also a

correction for the bright band, was recently developed and

the verification of the new product is ongoing.

STEPS forecasts were generated and verified for a set of

sewer system overflow cases that affected the cities of Ghent

and Leuven (see Table 1). The Ghent cases have a more strat-

iform character and occurred in late autumn and winter. On

the other hand, the Leuven cases are more convective and

occurred in summer months. A detailed climatology of con-

vective storms in Belgium can be found in Goudenhoofdt and

Delobbe (2009).

3 Short-Term Ensemble Prediction System (STEPS)

3.1 STEPS description

The Short-Term Ensemble Prediction System (STEPS) was

jointly developed by the Australian Bureau of Meteorology

(BOM) and the UK MetOffice (Bowler et al., 2006). STEPS

forecasts are produced operationally at both weather services

and are distributed to weather forecasters and a number of

external users, in particular the hydrological services.

The key idea behind STEPS is to account for the un-

predictable rainfall growth and decay processes by adding

stochastic perturbations to the deterministic extrapolation

of radar images (Seed, 2003). In order to be effective, the

stochastic perturbations need to reproduce important statisti-

cal properties of both the precipitation fields and the forecast

errors:
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Table 1. List of precipitation events that caused sewer system floods in Ghent and Leuven.

City Date Event start

(UTC)

Event end

(UTC)

Duration Predominant

precipitation

Main wind direction

Ghent

Ghent

Leuven

Leuven

10 Nov 2013

3 Jan 2014

9–10 June 2014

19–20 July 2014

13:50

03:00

06:30, 9th

22:00, 19th

22:00

14:00

15:30, 10th

06:30, 20th

8:10 h

11 h

33 h

8:30 h

Stratiform

Stratiform

Convective

Convective

WNW→ NNW

SW→WSW

SW

SSW

1. spatial scaling of precipitation fields,

2. dynamic scaling of precipitation fields,

3. spatial correlation of the forecast errors,

4. temporal correlation of the forecast errors.

The spatial scaling considers the precipitation field as

arising from multiplicative cascade processes (Schertzer and

Lovejoy, 1987; Seed, 2003). The presence of spatial scaling

can be demonstrated by computing the 2-D Fourier power

spectrum (PS) of a precipitation field. A 1-D PS can be ob-

tained by radially averaging the 2-D PS. The precipitation

field is said to be scaling if the 1-D PS draws a straight

line on the log-log plot of the power against the spatial fre-

quency (power law), which can be parametrized by one or

two spectral exponents (see, e.g., Seed et al., 2013; Foresti

and Seed, 2014). Within the multiplicative framework, a rain-

fall field is not represented as a collection of convective cells

of a characteristic size but rather as a hierarchy of precipi-

tation structures embedded in each other over a continuum

of scales. STEPS considers the spatial scaling by decompos-

ing the radar rainfall field into a multiplicative cascade us-

ing a fast Fourier transform (FFT) to isolate a set of eight

spatial frequencies (Seed, 2003; Bowler et al., 2006; Seed et

al., 2013). The top cascade levels (0, 1 and 2) represent the

low spatial frequencies (large precipitation structures), while

the bottom cascade levels (5, 6, 7) represent the high spatial

frequencies (small precipitation structures). Another impor-

tant behavior of rainfall fields is known as dynamic scaling,

which is the empirical observation that the rate of temporal

development of rainfall structures is a power law function of

their spatial scale (Venugopal et al., 1999; Foresti and Seed,

2014). This means that large precipitation features are more

persistent and hence predictable compared with small precip-

itation cells, which is closely related to the concept of scale-

dependence of the predictability of precipitation (Germann

and Zawadzki, 2002; Turner et al., 2004).

The stochastic perturbations should be able to reflect the

properties of the forecast errors. Generating spatially and

temporally correlated forecast errors is mandatory for hydro-

logical applications, in particular when the correlation length

of the errors is comparable or superior to the size and re-

sponse time of the catchment. Spatially correlated stochastic

noise can be constructed by applying a power law filter to a

white noise field (Schertzer and Lovejoy, 1987). In practice

it consists of three steps: computing the FFT of a white noise

field, multiplying the obtained components in frequency do-

main by a given filter and applying the inverse FFT to return

back to the spatial domain. The 1-D or 2-D power spectra

of the rainfall field can be used as a filter to obtain noise

fields that have the same scaling and spatial correlation of

the rainfall field. The 1-D PS of the precipitation fields often

appears to be a power law of the spatial frequency and ex-

plains why the procedure is also called power law filtering of

white noise. In order to represent the anisotropies of the pre-

cipitation field, the 2-D PS can also be used as a filter. In the

absence of a target precipitation field from which to derive

the PS, the filter can be parametrized by using a climatolog-

ical power law (see Seed et al., 2013). Finally, the temporal

correlations are imposed by auto-regressive (AR) filtering. A

hierarchy of AR processes defines the temporal evolution of

the cascade levels. With the exception of forecast lead times

beyond 2–3 h (Atencia and Zawadzki, 2014), an AR process

of order 1 or 2 is already a good approximation to describe

the temporal decorrelation of the forecast errors.

The practical implementation of STEPS to reproduce these

important properties consists of the following steps (see

Bowler et al., 2006; Foresti and Seed, 2014).

1. Estimation of the velocity field using optical flow on the

last two radar rainfall images (Bowler et al., 2004a)

2. Decomposition of both rainfall fields into a multiplica-

tive cascade using an FFT to isolate a set of eight spatial

frequencies

3. Estimation of the rate of temporal evolution of rainfall

features at each level of the cascade (Lagrangian auto-

correlation)

4. Generation of a cascade of spatially correlated stochas-

tic noise using as a filter the 1-D or 2-D power spectra

of the last observed radar rainfall field. A Gaussian filter

is used to isolate a given spatial frequency (see Foresti

and Seed, 2014).

5. Stochastic perturbation of the rainfall cascade using the

noise cascade (level by level)

6. Extrapolation of the cascade levels using a semi-

Lagrangian advection scheme
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Figure 1. Web platform of STEPS-BE showing the ensemble mean

forecast.

7. Application of the AR(1) or AR(2) model for the tem-

poral update of the cascade levels at each forecast lead

time using the Lagrangian auto-correlations estimated

in step (3)

8. Recomposition of the cascade into a rainfall field

9. Probability matching of the forecast rainfall field with

the original observed field (Ebert, 2001)

10. Computation of the forecast rainfall accumulations from

the instant forecast rainfall rates. This procedure is

known as advection correction and consists of advecting

the instant rainfall rate forward over the 5 min period by

discretizing the advection into smaller time steps.

3.2 STEPS implementation at RMI (STEPS-BE)

Bowler et al. (2006) introduced a general framework for

blending a radar-based extrapolation nowcast with one or

more outputs of downscaled NWP models (see also Pierce

et al., 2010; Seed et al., 2013). Because of being designed

for urban applications, the maximum lead time of STEPS-

BE is restricted to 2 h. The operational NWP model of RMI

(ALARO) runs only four times daily using a grid spacing of

4 km. Considering the model spin-up time and the absence

of radar data assimilation, it is very unlikely that ALARO

provides useful skill for blending its output with a radar-

based extrapolation nowcast within the considered nowcast-

ing range. It must also be remembered that the effective res-

olution of NWP models is much larger than the grid spac-

ing. For instance, Grasso (2000) estimates the effective res-

olution to be at least 4 times the grid spacing, while Ska-

marock (2004) estimates it to be up to 7 times the grid spac-

ing. ALARO would then only be able to resolve features that

are greater than 20 km. For all these reasons, STEPS-BE only

involves an extrapolation nowcast without NWP blending.

The STEPS-BE forecast domain is smaller than the extent

of the 4 C-band radars composite (see Fig. 1). The radar field

was upscaled from the original resolution of 500 m to 1 km

and a sub-region of 512× 512 grid points centered over Bel-

gium was extracted. The forecast domain was extended by

32 pixels on each side to reduce the edge effects due to the

FFT. This leads to an eight-level multiplicative cascade rep-

resenting the following spatial scales (rounded to the nearest

integer): 576–256–114, 256–114–51, 114–51–23, 51–23–11,

23–11–4, 11–4–2, 4–2–1 and 2–1 km. Italic characters mark

the scales on which the Gaussian filter is centered in the

frequency domain (see Foresti and Seed, 2014, for a more

detailed explanation and visualization of the Gaussian FFT

filter). The Gaussian filters of the largest and smallest spa-

tial scales are truncated in order to preserve the power of the

field. The top cascade level represents scales between the 576

and 256 km wavelengths and is not a perfect Gaussian filter.

One can notice that the spatial scales are not exact multiples

of 2. In fact, a multiplication factor of 2.246 was employed

to match the enlarged STEPS-BE domain size.

STEPS-BE includes a couple of improvements compared

with the original implementation of the BOM:

1. kernel interpolation of optical flow vectors;

2. generation of stochastic noise only within the advected

radar mask.

The optical flow algorithm of Bowler et al. (2004a) esti-

mates the velocity field by dividing the radar domain into

a series of blocks within which the optical flow equation is

solved. The minimization of the field divergence is only per-

formed at the level of the block, which leaves sharp discon-

tinuities in the velocity field between the blocks. In order to

overcome this issue, a Gaussian kernel smoothing was ap-

plied to interpolate the velocity vectors located at the center

of the blocks onto the fine radar grid. The bandwidth of the

Gaussian kernel was chosen to be σ = 24 km= 0.4k, where

k = 60 grid points is the block size. This setting has the ad-

vantage of obtaining velocity fields that are less affected by

the differential motion of small rainfall features and the pres-

ence of ground clutter. A too precise velocity field would

provide increased predictability at very short lead times but

worse forecasts at longer lead times due to excessive con-

vergence and divergence of precipitation features during the

advection. Smooth velocity fields could also be obtained by

using a smaller block size and by compensating with a larger

bandwidth of the smoothing kernel.
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In STEPS-BE the 1-D power spectrum of the last observed

rainfall field is used as a filter to generate the spatially corre-

lated stochastic perturbations. The PS is parameterized using

two spectral slopes to account for a scaling break that is often

observed at the wavelength of 40 km (see Seed et al., 2013;

Foresti and Seed, 2014). To simplify the computations, an

auto-regressive model of order 1 (AR(1)) was employed for

imposing the temporal correlations and to model the growth

of forecast errors.

The original STEPS implementation (Bowler et al., 2006)

was designed to blend the radar extrapolation nowcasts with

the output of NWP models. However, the domain covered

by the radars is smaller than the rectangular domain of the

NWP model and small amounts of stochastic noise are gen-

erated by default also outside the radar composite. This set-

ting was not adapted for radar-based nowcasts without NWP

blending and needed some adaptation. In fact, when advect-

ing the radar mask over several time steps, large areas with

small amounts of stochastic rain appear outside the validity

domain of the forecast and perturb the probability matching.

In STEPS-BE the stochastic perturbations are only generated

within the advected radar domain and set to zero elsewhere.

STEPS-BE can also account for the uncertainty in the es-

timation of the velocity field. The STEPS version that is im-

plemented in the UK (Bowler et al., 2006) includes a de-

tailed procedure to generate velocity perturbations that repro-

duce various statistical properties of the differences between

the forecast velocity and the actual future diagnosed velocity

(see details in Bowler et al., 2004b). In the BOM and RMI

implementations a simpler procedure is applied. The diag-

nosed velocity field is multiplied by a single factor C that is

drawn from the following distribution:

C = 101.5N/10, (1)

where N is a normally distributed random variable with zero

mean and unit variance. In other words, the velocity field is

accelerated or decelerated by a single random factor without

affecting the direction of the vectors. In fact, the uncertainty

on the diagnosed speed was observed to be higher than that

of the direction of movement (Bowler et al., 2006).

The BOM and RMI versions of STEPS also include a

stochastic model for the radar measurement error, a broken-

line model to account for the unknown future evolution of the

mean areal rainfall and the possibility to use time-lagged en-

sembles. However, a nowcasting model with too many com-

ponents is harder to calibrate and complicates the interpreta-

tion of the forecast fields. Because of these reasons, STEPS-

BE only exploits the basic stochastic model for the velocity

field and for the evolution of rainfall fields (due to growth

and decay processes).

The core of STEPS and the STEPS-BE extensions are im-

plemented in C/C++ and the production of figures in python.

Bash scripts were written to call multiple STEPS instances

and compute the ensemble members in parallel over several

processors. Once all the ensemble members are computed, a

separate script collects the corresponding netCDF files and

calculates the forecast probabilities. Most of the computa-

tional cost of STEPS consists of filtering the white noise field

with FFT, advecting and updating the radar cascade with the

AR model. The re-calculation of optical flow fields on each

processor takes less than 10 % of the total computational

time.

The python matplotlib library is used to read the netCDF

files, export the PNG figures and the time series of ob-

served and forecast rainfall at the location of major cities and

weather stations. A single STEPS nowcast generates more

than 600 figures, which takes a significant fraction of the

total computational time. In order to optimize the timing, a

bash script monitors continuously the directory with incom-

ing radar composites and triggers STEPS-BE once a field

with a new time stamp is found. All these implementation

details ensure that the user/forecaster can have access to an

ensemble STEPS nowcast in less than 5 min after receiving

the radar composite image.

The visualization system of STEPS-BE is very similar to

the one of INCA-BE, the local Belgian implementation of

the Integrated Nowcasting through Comprehensive Analysis

system (INCA, Haiden et al., 2011) developed at the Aus-

trian weather office (ZAMG). Figure 1 illustrates the web in-

terface with an example of an ensemble mean nowcast. The

user can highlight the major cities, weather stations and click

to visualize the time series of observed and forecast precip-

itation/probability, which appears at the bottom of the web

page. The navigation through the observations and forecast

lead times is facilitated by the scroll wheel of the mouse.

On the other hand, by clicking on the image it is possible to

easily scroll through the various ensemble members or prob-

ability levels for a given lead time. Scrolling the ensemble

members at different lead times is very instructive and can

make the user aware of the forecast uncertainty. In fact, at a

lead time of 5 min the ensemble members agree very well on

the intensity and location of precipitation. This means that

the ensemble spread is small and the probabilistic forecast is

sharp; i.e., most of the forecast probabilities are close to 1

or 0 (see an explanation in Appendix A). On the other hand,

at 1 or 2 h lead time the ensemble members disagree on the

location and intensity of rainfall, which enhances the ensem-

ble spread and decreases the sharpness of the probabilistic

forecast. The web page includes extensive documentation to

guide the user and a set of case studies to help understand-

ing the strengths and limitations of STEPS. The visualiza-

tion system was implemented with great attention to take full

advantage of the multi-dimensional information content of

probabilistic and ensemble forecasts.
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Figure 2. Average forecast and observed rainfall accumulations for the Ghent cases. (a) Forecast and (b) observed 0–30 min rainfall accu-

mulations on 10 November 2013. (c) Forecast and (d) observed 0–30 min rainfall accumulations on 3 January 2014. The mean and standard

deviation of the field within the 120 km range of the radars are shown on the bottom left corner. Field values are shown only if there are

at least 10 samples for the computation of the mean. The red triangles denote the location of the Wideumont (WID, coordinates 438 km

east/−405 km north), Zaventem (ZAV, 363/−296), Jabbeke (JAB, 266/−263) and Avesnois (AVE, 317/−382) radars. The 120 km range

from the radar is displayed as a dashed circle. The mountain range of the Ardennes covers the three most southern districts of Belgium and

Luxembourg (LUX).

4 Forecast verification

4.1 Verification set-up

This section presents the verification of STEPS-BE forecasts

using a set of case studies (see Sect. 2). The accumulated

radar observations were employed as reference for the verifi-

cation. The rainfall rates are accumulated over the last 5 min

by reversing the field vectors based on the observations and

then performing the advection correction. The 30 min ensem-

ble mean forecast was verified against the observed 30 min

radar accumulations using both continuous and categorical

verification scores. The deterministic verification procedure

follows the one presented in Foresti and Seed (2015), which

was designed to analyze the spatial distribution of the fore-

cast errors. More details about the forecast verification setup

and scores are given in Appendix A.

The continuous scores include the multiplicative bias and

the root mean squared error (RMSE), while the categori-

cal scores include the probability of detection (POD), false

alarm ratio (FAR) and Gilbert skill score (GSS) derived

from the contingency table for rainfall thresholds of 0.5 and

5.0 mm h−1. The rainfall thresholds are given in equivalent

intensity independently of the forecast rainfall accumulation.
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Figure 3. Average observed and forecast rainfall accumulations for the Leuven cases. (a) Forecast and (b) observed 0–30 min rainfall

accumulations on 9–10 June 2014. (c) Forecast and (d) observed 0–30 min rainfall accumulations on 19–20 July 2014.

Thus, a threshold of 5.0 mm h−1 on a 30 min accumulation

corresponds to 2.5 mm of rain. The multiplicative bias and

the RMSE were evaluated only at the locations where the

forecast or the verifying observations exceeded 0.1 mm h−1,

which can be referred to as a weakly conditional verifica-

tion. The probabilistic forecast of exceeding 0.1, 0.5 and

5.0 mm h−1 was verified using the reliability diagrams and

ROC curves. Finally, the dispersion of the ensemble was an-

alyzed by comparing the ensemble spread to the RMSE of

the ensemble mean and by using rank histograms. The prob-

abilistic and ensemble verification does not consider the spa-

tial distribution of the errors and pools the data together in

both space and time to derive the statistics.

4.2 Deterministic verification

Figures 2 and 3 show the average forecast and observed rain-

fall rates corresponding to the 0–30 min ensemble mean ac-

cumulation nowcast for the Ghent and Leuven cases, respec-

tively. In other words, they represent the average forecast and

observed rainfall rates over the duration of the precipitation

event (for the 0–30 min lead time). The average was com-

puted using the weak conditional principle explained above.

The average forecast and observed accumulations gener-

ally agree very well for the 0–30 min lead time forecast. The

Ghent case on 10 November 2013 (Fig. 2a and b) is the only

one with northwesterly flows and is characterized by the low-

est average rainfall rates. The Avesnois radar demonstrates

very well the range dependence of the average rainfall rates,

which gradually decrease with increasing distance from the
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Figure 4. Average 0–30 min multiplicative forecast biases for the Ghent cases on (a) 10 November 2013 and on (b) 3 January 2014 and the

Leuven cases on (c) 9–10 June 2014 and on (d) 19–20 July 2014. The interpretation of under- and over-estimations by STEPS as systematic

rainfall growth and decay or simply as radar measurement biases is subject to interpretation as explained in the text.

radar. On the contrary, the smaller ring of high rainfall rates

around the Zaventem radar is mostly due to the bright band

(Fig. 2b).

The bright band effect influences the radar observations

and hence the nowcasts based on their extrapolation. At

longer lead times the larger rainfall estimates due to the

bright band are extrapolated far from the location of the radar.

The stochastic perturbations of STEPS can help to gradually

dissolve the circular patterns introduced by the bright band

effect. However, the bright band affects more the observa-

tions used for the verification, in particular when the rainfall

is advected from upstream over the radar region. In such a

case, the local larger rainfall estimates lead to a verification

bias and the forecasts are wrongly supposed of rainfall under-

estimation. In spite of these issues, bright band effects might

not be so important for urban hydrological applications. In

fact, except for one stratiform case presented in this paper,

pluvial floods mainly happen in summer with convective pre-

cipitation events, during which the bright band is absent or

negligible.

The Ghent case on 3 January 2014 has higher rainfall rates

and the elongated structures of precipitation areas demon-

strate well the southwesterly flow regime (Fig. 2c and d). For

this case the measurements of the Zaventem radar are also

affected by second trip echoes, which appear as a set of radi-

ally oriented rainfall structures northwest of the radar. These

alternating patterns are explained by the dual PRF mode of

Zaventem (see Sect. 2).

The Leuven cases on 9 June and 19–20 July 2014 have an

important convective activity (Fig. 3a–d). The maximum av-
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Figure 5. Average 0–30 min forecast RMSE for (a) the Ghent winter case on 3 January 2014 and (b) the Leuven summer case on 19–20

July 2014.

erage rainfall rates are located over the Ardennes mountain

range and the city of Leuven, respectively. Since urban flash

floods can be triggered by a single convective cell, the aver-

age rainfall rate over the duration of the event may not be as

high in the considered city (e.g., Fig. 3b).

Figure 4 illustrates the multiplicative bias of the 0–30 min

nowcast averaged over each of the four events. A detailed

interpretation of such forecast biases using Australian radar

data and their connection to orographic features is given in

Foresti and Seed (2015), which point out that an important

fraction of the forecast errors is caused by the biases of the

verifying radar observations rather than systematic rainfall

growth and decay processes due to orography. In Fig. 4a it is

easy to notice the effect of bright band, which causes a series

of systematic forecast biases around the Zaventem radar and

perpendicularly oriented with respect to the prevailing flow

direction (NW). Systematic rainfall underestimation occurs

along the Belgian coast of the North Sea. One factor which

contributes to this underestimation is the absence of visibil-

ity of the radar at longer ranges. The incoming precipitation

is suddenly detected by the radar and therefore strongly un-

derestimated by STEPS. The only situation where the range

dependence of the rainfall estimation does not affect the fore-

cast verification occurs when the velocity field is perfectly ro-

tational and centered on the radar (assuming no beam block-

age). All the other cases have to deal with the fact that the

rainfall nowcast also extrapolates the biases of the radar ob-

servations! Contrary to expectation, on the upwind side of

the Ardennes there is overestimation, which may depict a re-

gion of systematic rainfall decay. The bias over the city of

Ghent is fortunately small and is included in the range from

0 to +0.5 dB (light overestimation, rainfall decay). Having

small systematic biases over the cities of interest is very im-

portant for future integration of STEPS nowcasts as input in

hydraulic models.

In Fig. 4b the systematic underestimation is also located

upstream with respect to the prevailing winds (SW). The

strong overestimations in Germany and the Netherlands are

mostly due to the underestimation of rainfall by the verify-

ing radar observations rather than caused by systematic rain-

fall decay. This is particularly visible after a range of 125 km

from the Zaventem radar, which demonstrates again that dis-

continuities and biases in the radar observations lead to bi-

ases in the extrapolation forecast. Also in this case the bias

over the city of Ghent is small but in the range from −0.5

to 0 dB (light underestimation, rainfall growth). Radar com-

posite discontinuities are also visible in Fig. 4c but this time

located at a range of 240 km north of the Wideumont radar

when entering the area covered by the Jabbeke radar. This

forecast bias is mainly explained by the negative calibration

bias of the Jabbeke radar, which is known to slightly underes-

timate the rainfall rates with respect to the Wideumont radar.

Strong underestimation occurs over the Ardennes due to the

systematic initiation and growth of convection that cannot be

predicted by STEPS (Fig. 4c). Fortunately the city of Leu-

ven is located in a region with small biases in the range from

−0.5 to +0.5 dB. Figure 4d is quite interesting since strong

underestimations are located in front of the rain band (from

Charleroi to Leuven and beyond) and overestimations at the

rear of the rain band (west of the Jabbeke radar). The under-

estimations are due to systematic rainfall initiation in front of

the rain band, while the overestimations are probably caused

by a too slow extrapolation of rainfall, which tends to drag

at the rear of the rain band. The two bands of underestima-

tions south of Leuven are caused by two different thunder-

storms. The first one passed over the city of Leuven and had

Hydrol. Earth Syst. Sci., 20, 505–527, 2016 www.hydrol-earth-syst-sci.net/20/505/2016/



L. Foresti et al.: Development and verification of STEPS 515

Figure 6. (a) POD, (b) FAR and (c) GSS of the 30–60 min ensemble mean forecast of exceeding 0.5 mm h−1 for the Leuven case on

19–20 July 2014.

a stronger westerly component with respect to the prevail-

ing southerly flow. The second thunderstorm was weaker and

had a stronger easterly component. When isolated convection

does not follow the prevailing movement of the rainfall field,

strong biases can appear in the nowcast during the first lead

times.

Figure 5 shows the spatial distribution of the RMSE for

the stratiform event on 3 January 2014 in Ghent and the con-

vective event on 19–20 July 2014 in Leuven. If compared

with Figs. 2d and 3d it is clear that the RMSE is strongly

correlated with the regions having the highest mean rainfall

accumulations (proportional effect). Thus, it is not surprising

that the RMSE of the convective case (Fig. 5b) displays val-

ues exceeding 10 mm h−1 over the city of Leuven. The winter

case only shows RMSE values below 2 mm h−1 over the city

of Ghent.

Figure 6 illustrates an example of categorical verification

of the 30–60 min ensemble mean forecast for the Leuven

case on 19–20 July 2014 relative to the rainfall threshold of

0.5 mm h−1. The probability of detection is high everywhere

(mean of 0.75) except in the neighborhood of Antwerp and

south of Leuven, where the initiation of thunderstorms could

not be predicted by STEPS (Fig. 6a). The false alarm ratio is

quite low (mean of 0.36) and the regions with high values are

mainly located at the rear of the front where the rainfall is ad-

vected too slowly compared with the actual movement of the

front (Fig. 6b). A high Gilbert skill score generally coincides

with the regions with the highest rainfall accumulations and
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Figure 7. Reliability diagrams for the Ghent case on 3 January 2014 relative to the probabilistic forecast of exceeding (a) 0.5 mm h−1 and

(b) 5.0 mm h−1. (c, d) Same as (a, b) but for the Leuven case on 19–20 July 2014.

becomes lower at the edges of the rain areas (Fig. 6c). This

finding can be explained conceptually if one thinks about

the verification of the future path of a single convective cell.

The regions with the highest uncertainty are located along

the edges of the predicted thunderstorm path and the highest

skill is obtained in the center of the predicted path.

4.3 Probabilistic verification

Figure 7 shows the reliability diagrams relative to the prob-

abilistic forecast of exceeding the 0.5 and 5.0 mm h−1 rain-

fall thresholds for the Ghent case on 3 January 2014 (Fig. 7a

and b) and the Leuven case on 19–20 July 2014 (Fig. 7c

and d). The reference probabilistic forecast is taken as the cli-

matological frequency of exceeding a given rainfall thresh-

old during that precipitation event (horizontal dashed line).

Unexpectedly, the forecasts of the stratiform case in Ghent
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Figure 8. ROC curves relative to the probabilistic forecast of exceeding 0.1 mm h−1 for (a) the Ghent case on 3 January 2014 and (b) the

Leuven case on 19–20 July 2014.

are less reliable than the ones of the convective case in Leu-

ven for both rainfall thresholds. Probabilistic forecasts of ex-

ceeding 0.5 mm h−1 for the Ghent case have a good relia-

bility and positive Brier skill score (BSS) up to 60 min lead

time (Fig. 7a). The higher rainfall threshold of 5.0 mm h−1 is

harder to predict and there is skill only up to 30 min lead time

(Fig. 7b). The convective case in Leuven is more predictable

and the probabilistic forecast of exceeding 0.5 mm h−1 ex-

hibits skill up to 90 min lead time (Fig. 7c). It is interesting

to note that forecast probabilities that are close to the climato-

logical frequency (intersection of lines around the probabil-

ity 0.15) can easily fall outside the skillful region (Fig. 7c).

In fact, a small systematic forecast bias is likely to be worse

than the event climatology at those frequencies. The rainfall

threshold of 5.0 mm h−1 shows again a limit of predictability

of 30 min (Fig. 7d). Despite having a negative BSS, the fol-

lowing lead times (Fig. 7d) have higher resolution than the

stratiform case in Ghent (Fig. 7b).

Figure 8 illustrates the ROC curves relative to the proba-

bilistic forecast of exceeding 0.1 mm h−1 for the Ghent case

on 3 January 2014 (Fig. 8a) and the Leuven case on 19–

20 July 2014 (Fig. 8b). All the ROC curves are very far from

the diagonal line of no skill. The probability level that is

marked with a cross is the one that maximizes the difference

between the hit rate (HR) and the false alarm rate (F ) (not to

be confused with the false alarm ratio, which is conditioned

on the forecasts). This point is located within the probabil-

ities 0.1 and 0.2, which means that an optimal forecast of

the probability of rain is achieved when only 10–20 % of the

ensemble members exceed the 0.1 mm h−1 threshold. A fore-

caster who is not scared of making false alarms would choose

a lower probability level to increase the number of hits. On

the contrary, an unconfident forecaster who would like to

minimize the false alarms would choose a higher probabil-

ity level, which has however the consequence of reducing the

number of hits. As expected, the area under the ROC curves

(AUC) decreases for increasing lead times. The discrimina-

tion skill for the convective event in Leuven is slightly higher

than the one of the stratiform event in Ghent, which con-

firms the findings on the reliability diagrams (Fig. 7). This

does not mean that small-scale features are easier to forecast

than larger-scale features, which is known to be false (see

Foresti and Seed, 2014). It means that the predictability of

well-defined and organized convective systems is higher than

the one of more moderate convection with shorter lifetime, at

least for the cases analyzed in this paper.

4.4 Ensemble verification

Figure 9 compares the error of the ensemble mean (RMSE)

and the ensemble spread for the Ghent case on 3 Jan-

uary 2014 and the Leuven case on 19–20 July 2014 (see inter-

pretation of ensemble spread in Appendix A). In both cases

the RMSE increases up to a lead time of 50–60 min and then

starts a slow decrease, which can be counter-intuitive. How-

ever, it must be remembered that the ensemble mean forecast

becomes smoother for increasing lead times, which reduces

the double penalty error due to forecasting a thunderstorm at

the wrong location. The ensemble spread also increases up to
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Figure 9. Comparison of ensemble spread and RMSE of the ensemble mean forecast at 5 min resolution for (a) the Ghent case on 3 January

2014 and (b) the Leuven case on 19–20 July 2014.

Figure 10. Rank histograms for the Leuven case on 19–20 July 2014 for a lead time of (a) 5 min and (b) 60 min.

50–60 min lead time and then slowly stabilizes. For both the

Ghent and Leuven cases the ensemble spread is lower than

the error of the ensemble mean at all lead times, which sug-

gests that the ensemble forecasts are under-dispersive. The

degree of under-dispersion is highest at a lead time of 5 min,

with the spread values being equal to 60 % of the forecast er-

ror for the winter event in Ghent (Fig. 9a) and 70 % for the

summer event in Leuven (Fig. 9b). Except for the 5 min lead

time, the ensemble spread represents 75–90 % of the forecast

error for the Ghent case (Fig. 9a) and 75–80 % for the Leu-

ven case (Fig. 9b), which is a good result. It is not yet clear

why the RMSE at a lead time of 5 min is higher than the one

at 10 min for the winter case in Ghent (Fig. 9a).

The underestimation of the ensemble dispersion at the first

lead time can be attributed to both the underestimation of

the ensemble spread and the overestimation of the ensem-

ble mean RMSE, but with different degrees according to

the different causes. High RMSEs at the start of the now-

cast can be due to using a very smooth velocity field for

the advection (see Sect. 3.2), which does not exploit suffi-

ciently the very short-term predictability of small-scale pre-

cipitation features, but is optimized for predictions at longer

lead times. Another explanation for this underestimation of

ensemble dispersion could be due to the space–time variabil-

ity of the Z–R relationship. Spatial and temporal changes in

the drop size distribution (DSD) can lead to changes in the

estimated rainfall rate that is used for the verification. There-

fore, there could be a mismatch between the “fixed” DSD

of the forecasts and the variable DSD underlying the verify-

ing observations. Another possible source of mismatch could

be due to the advection correction with optical flow when

computing the rainfall accumulations. The forecast accumu-
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lations are computed by advecting the previous rainfall field

forward. On the other hand, the observed accumulations are

computed by reversing the optical flow vectors and advecting

the rainfall field backwards (see Sect. 4.1). This choice in-

creases the differences when comparing the +0–5 min fore-

cast accumulations (advection of the 0 min image forward)

with the +0–5 min observed accumulations a posteriori (ad-

vection of the+5 min image backwards). The ideal approach

would be to derive the accumulation by advecting both the

previous image forward and the last image backwards. An

optimal accumulation could be computed by a weighted av-

erage of the two advected images by discretizing the 5 min

interval. However, such an approach is not very pragmatic

and would require additional computational time in order to

obtain a marginal improvement in the forecasts.

Figure 10 illustrates the rank histograms for the Leuven

case on 19–20 July 2014 for lead times of 5 and 60 min. The

U-shape of the rank histograms demonstrates again a certain

degree of ensemble under-dispersion. In particular, all the en-

semble members for the 5 min lead time are inferior to the

observations in ∼ 16 % of the cases (Fig. 10a), while for the

60 min lead time it happens in more than∼ 30 % of the cases

(Fig. 10b). On the other hand, the fraction of observations

falling below the value of the lowest ensemble member is

only 8 % for both lead times. Despite the fact that STEPS is

designed to reproduce the space–time variability of rainfall,

it underestimates a certain fraction of the observed rainfall

extremes. This underestimation grows with increasing lead

time and depicts an increasing smoothness of the STEPS en-

sembles, which is probably due to the advection of the radar

rainfall cascade (see Sect. 3, step 6). In fact, the small-scale

rainfall features represented by the bottom cascade levels suf-

fer more from numerical diffusion during the Lagrangian ex-

trapolation, which is observed as a gradual loss of variability

in the forecast ensembles.

4.5 Verification summary of the events

Table 2 provides a comparison of the verification scores for

each event. The average standard deviation of the multiplica-

tive biases of the 30 min lead time forecast is in the range

0.3–0.8. Except for the event on 19–20 July 2014 the biases

remain well below 1 dB for all lead times, which is a positive

result. Of course, these are average values, and locally they

can even exceed 3 dB (see Fig. 4).

On the other hand, the RMSE values mark more the dis-

tinction between the two winter cases in Ghent and the two

summer cases in Leuven. For the winter cases the RMSE val-

ues increase from 0.38–0.95 at a lead time of 30 min to 0.78–

1.48 at 120 min, while for the summer cases from 1.84–2.45

to 2.52–3.38 mm h−1. Thus, the RMSE of a 30 min lead time

nowcast of the two convective cases is higher than the RMSE

of a 120 min nowcast of the two stratiform cases, as might be

expected. It is interesting to mention that linear verification

scores such as the RMSE strongly depend on the variance

of the data. Consequently, it would be difficult to compare

the error of the STEPS ensemble mean nowcast with the one

of a deterministic nowcast, for example computed by INCA-

BE. In fact, the ensemble averaging process filters out the

unpredictable precipitation features and is rewarded in terms

of RMSE. Similar results were already observed in Foresti

et al. (2015), who also pointed out the difficulty of compar-

ing ensemble prediction systems having a different number

of ensemble members.

The probability of detection relative to the 0.5 mm h−1

threshold decreases from 78–86 to 33–58 %, while the false

alarm ratio increases from 10–17 to 46–65 %. The Gilbert

skill score starts with values of 0.58–0.64 and 0.29–0.40 at

the 30 and 60 min lead times, respectively, and decays to val-

ues of 0.08–0.20 at 120 min. Wang et al. (2009) reported a

critical success index value of 0.45 for STEPS nowcasts of

0–60 accumulations relative to the 1 mm h−1 threshold. Con-

sidering that the GSS is the CSI corrected by random chance,

this value is comparable with the ones of the 30–60 min accu-

mulations obtained in this paper. The GSS values relative to

the threshold of 5.0 mm h−1 are much lower. They oscillate

between 0.15 and 0.44 for the first lead time and become very

low and close to 0 afterwards. Thus, the predictability of rain-

fall structures exceeding 5.0 mm h−1 rarely exceeds 30 min

according to the GSS.

The areas under the ROC curve values characterizing the

potential discrimination power of the probabilistic forecast of

exceeding 0.5 mm h−1 start at 0.92–0.95 at 30 min lead time

and decrease to 0.69–0.79 at 120 min. For the probabilistic

forecast of exceeding 5.0 mm h−1 they start at 0.88–0.90 and

decrease to 0.62 for the convective cases and to 0.50 for the

stratiform cases (no discrimination).

From all these results we can conclude that there is not

much predictability beyond 2 h lead time by extrapolating

the 4 C-band composite radar images in Belgium. There-

fore, a maximum lead time of 2 h in STEPS-BE is a good

choice. Extending this lead time requires blending the radar-

extrapolation nowcast with the output of NWP models to in-

crease the predictability of precipitation.

5 Conclusions

The Short-Term Ensemble Prediction System (STEPS) is a

probabilistic nowcasting system based on the extrapolation

of radar images developed at the Australian Bureau of Mete-

orology in collaboration with the UK MetOffice. The princi-

ple behind STEPS is to produce an ensemble forecast by per-

turbing a deterministic extrapolation nowcast with stochastic

noise. The perturbations are designed to reproduce the spa-

tial and temporal correlations of the forecast errors and the

scale dependence of the predictability of precipitation.

This paper presented the local implementation, adaptation

and verification of STEPS at the Royal Meteorological Insti-

tute of Belgium, referred to as STEPS-BE. STEPS-BE pro-
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Table 2. Summary of the forecast verification scores of the next four 30 min accumulation forecasts for the precipitation events in Ghent and

Leuven. The lead time shown is the end of the 30 min accumulation period (e.g., 60 min is relative to the 30–60 min accumulation). The bias

values correspond to the standard deviation of the multiplicative bias, which is more interesting than its mean (often close to 0).

Event Bias

30 min

Bias

60 min

Bias

90 min

Bias

120 min

RMSE

30 min

RMSE

60 min

RMSE

90 min

RMSE

120 min

(dB) (mm h−1)

10/11/2013

03/01/2014

9–10/06/2014

19–20/07/2014

0.30

0.54

0.52

0.84

0.49

0.74

0.63

1.18

0.61

0.82

0.66

1.30

0.70

0.89

0.69

1.35

0.38

0.95

2.45

1.84

0.59

1.39

3.26

2.36

0.71

1.53

3.40

2.49

0.78

1.48

3.38

2.52

Event POD

30 min

POD

60 min

POD

90 min

POD

120 min

FAR

30 min

FAR

60 min

FAR

90 min

FAR

120 min

Forecast >= 0.5 mm h−1 Forecast >= 0.5 mm h−1

10/11/2013 0.83 0.71 0.62 0.54 0.17 0.30 0.38 0.46

03/01/2014

9–10/06/2014

19–20/07/2014

0.80

0.78

0.86

0.63

0.65

0.75

0.49

0.55

0.66

0.33

0.46

0.58

0.10

0.15

0.17

0.25

0.32

0.36

0.45

0.44

0.50

0.65

0.54

0.61

Event GSS

30 min

GSS

60 min

GSS

90 min

GSS

120 min

GSS

30 min

GSS

60 min

GSS

90 min

GSS

120 min

Forecast >= 0.5 mm h−1 Forecast >= 5.0 mm h−1

10/11/2013 0.58 0.38 0.27 0.20 0.15 0.02 0.0 0.0

03/01/2014

9–10/06/2014

19–20/07/2014

0.64

0.59

0.58

0.40

0.38

0.29

0.20

0.26

0.14

0.08

0.17

0.07

0.28

0.44

0.27

0.06

0.20

0.09

0.0

0.09

0.04

0.0

0.04

0.02

Event AUC

30 min

AUC

60 min

AUC

90 min

AUC

120 min

AUC

30 min

AUC

60 min

AUC

90min

AUC

120 min

Forecast >= 0.5 mm h−1 Forecast >= 5.0 mm h−1

10/11/2013 0.95 0.89 0.84 0.79 0.88 0.67 0.56 0.50

03/01/2014

9–10/06/2014

19–20/07/2014

0.92

0.93

0.94

0.85

0.86

0.87

0.78

0.81

0.82

0.69

0.76

0.77

0.90

0.89

0.88

0.72

0.77

0.75

0.57

0.68

0.68

0.50

0.62

0.62

duces in real-time 20-member ensemble nowcasts at 1 km

and 5 min resolutions up to 2 h lead time using the four C-

band radar composite of Belgium. Compared with the orig-

inal implementation, STEPS-BE includes a kernel-based in-

terpolation of optical flow vectors to obtain smoother veloc-

ity fields and an improvement to generate stochastic noise

only within the advected radar composite to respect the va-

lidity domain of the nowcasts.

The performance of STEPS-BE was verified using the

radar observations as reference on four case studies that

caused sewer system floods in the cities of Ghent and Leuven

during the years 2013 and 2014. The ensemble mean forecast

of the next four 30 min accumulations was verified using the

multiplicative bias, the RMSE as well as some categorical

scores derived from the contingency table: the probability of

detection, false alarm ratio and Gilbert skill score (equitable

skill score). The spatial distribution of multiplicative biases

revealed regions of systematic over- and under-estimation by

STEPS. The underestimations are often associated with the

locations of convective initiation and thunderstorm growth,

which cannot be predicted by STEPS. On the other hand, the

regions of overestimation are mostly due to the underestima-

tion of rainfall by the verifying observations rather than sys-

tematic rainfall decay (see Foresti and Seed, 2015, for a more

detailed discussion). In order to disentangle the forecast and

observation biases, detailed knowledge about the spatial dis-

tribution of the radar measurement errors for a given weather

situation is needed. The multiplicative biases over the cities

of Leuven and Ghent are very low (from −0.5 to +0.5 dB),

which is a good starting point to integrate STEPS nowcasts

as inputs into sewer system hydraulic models. The categor-

ical forecast verification helped discovering the places with

low probability of detection due to convective initiation at

the front of the rain band and high false alarm ratio at the
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rear of the rain band, likely due to a too slow rainfall extrap-

olation by STEPS. Reliability diagrams demonstrated that

probabilistic forecasts of exceeding 0.5 mm h−1 have skill up

to 60–90 min lead time. On the contrary, convective features

exceeding 5.0 mm h−1 are only predictable up to 30 min. In

terms of reliability and discrimination ability, it was also ob-

served that the forecasts of convective events have more skill

than the ones of stratiform events. The STEPS ensembles are

characterized by a certain degree of underestimation of the

forecast uncertainty, with values of the ensemble spread close

to 75–90 % of the forecast error.

The current contribution focused on the verification of

STEPS-BE nowcasts using only four precipitation cases of

different character. The deterministic and categorical verifi-

cations require many more cases to analyze the climatologi-

cal distribution of the forecast errors, e.g., as done in Foresti

and Seed (2015). On the other hand, the probabilistic and en-

semble verification pools the data in both space and time and

converges much faster to stable statistics.

From a research perspective, STEPS-BE could also be ex-

tended by including a stochastic model to account for the

residual radar measurement errors, in particular to obtain

more accurate estimations of the forecast uncertainty at short

range. The STEPS framework also allows blending of the ex-

trapolation nowcast with the output of NWP models, which

is a necessary step to increase the predictability of precipita-

tion for lead times beyond 2 h.

www.hydrol-earth-syst-sci.net/20/505/2016/ Hydrol. Earth Syst. Sci., 20, 505–527, 2016



522 L. Foresti et al.: Development and verification of STEPS

Table A1. Correspondence between the decibel scale and the power

ratio.

dB −6 −3 −1 −0.5 0 +0.5 +1 +3 +6

Power 0.251 0.501 0.794 0.891 1 1.122 1.259 1.995 3 .981

ratio (F/O)

Appendix A: Forecast verification scores

Forecast verification is an important aspect of a forecasting

system. A forecast without an estimation of its accuracy is

not very informative. For an in-depth description of fore-

cast verification science and corresponding scores we refer

to Jolliffe and Stephenson (2011) and the verification web-

site maintained at the Bureau of Meteorology (http://www.

cawcr.gov.au/projects/verification/).

The STEPS ensemble mean forecast was verified using the

following scores.

– Multiplicative bias:

bias=
1

N

N∑
i=1

10log10

(
Fi + b

Oi + b

)
, (A1)

where Fi is the forecast rainfall at a given grid point,

Oi is the observed rainfall at a given grid point, b =

2 mm h−1 is an offset to eliminate the division by zero

and to reduce the contribution of the forecast errors at

low rainfall intensities, and N is the number of sam-

ples. For the specific case of the verification of the spa-

tial distribution of forecast biases, the summation is per-

formed over time. Thus, N corresponds to the number

of forecasts where either the forecast or the observed

rainfall are greater than 0.1 mm h−1 at a given grid point

(denoted as weak conditional verification). The bias is

given in decibels (dB) in order to obtain a more symmet-

ric distribution of the multiplicative errors centered at 0,

which is not possible with the simple power ratio F/O.

Table A1 summarizes the correspondence between the

decibel scale and the power ratio. For example, a bias

of+3 dB occurs when the forecast rainfall F is twice as

much as the observed rainfall O.

– Root mean square error:

RMSE=

√√√√ 1

N

N∑
i=1

(Fi −Oi)
2 (A2)

– Contingency table of a dichotomous (yes/no) forecast,

see Table A2, where the “hits” is the number of times

that both the observation and the forecast exceed a

given rainfall threshold (at a given grid point), the “false

alarms” is the number of times that the forecast exceeds

the threshold but the observation does not, the “misses”

is the number of times that the forecast does not exceed

Table A2. Contingency table of a categorical forecast.

Observed

Yes No Total

F
o

re
ca

st Yes Hits False alarms Forecast yes

No Misses Correct negatives Forecast no

Total Observed yes Observed no Total

the threshold but the observation does and the “correct

negatives” is the number of times that both the observa-

tion and the forecast do not exceed the threshold.

– Different scores can be derived from the contingency

table to characterize a particular feature or skill of the

forecasting system:

– Probability of detection (hit rate):

POD=
hits

hits+misses
=

hits

observed yes
, (A3)

The “POD” characterizes the fraction of observed

events that were correctly forecast and is also

known as the hit rate (HR).

– False alarm ratio:

FAR=
false alarms

hits+ false alarms
=

false alarms

forecast yes
, (A4)

The “FAR” characterizes the fraction of forecast

events that were wrongly forecast.

– False alarm rate:

F =
false alarms

false alarms+ correct negatives
(A5)

=
false alarms

observed no
.

The false alarm rate F is conditioned on the ob-

servations, while the false alarm ratio FAR on the

forecasts.

– Gilbert skill score (equitable threat score):

GSS= (A6)

hits− hitsrandom

hits+misses+ false alarms− hitsrandom

,

where

hitsrandom =
(hits+misses)(hits+ false alarms)

total

=
(observed yes)(forecast yes)

total
(A7)

is the number of hits obtained by random chance,

which is calculated by multiplying the marginal
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sums of the observed and forecast events (such as

computing the theoretical frequencies for the Chi-

squared test). The GSS characterizes the detection

skill of the forecasting system with respect to ran-

dom chance. In practice it corresponds to the crit-

ical success index (CSI) adjusted for the hits ob-

tained by random chance.

The accuracy of probabilistic forecasts can be verified in

various ways. In this paper we employ the reliability diagram

and the Receiver Operating Characteristic (ROC) curve. The

reliability diagram compares the forecast probability with the

observed frequency. Reliability characterizes the agreement

between the forecast probability and observed frequency. For

a reliable forecasting system the two values should be the

same, which happens for example when we observe rain

80 % of the time when it is forecast with 80 % probability

(in average, diagonal line of Fig. 8). Unreliable forecasts ex-

hibit departures from this optimum (bias). Resolution charac-

terizes the ability of the forecasts to categorize the observed

frequencies into distinct classes. The complete lack of reso-

lution occurs when the forecast probabilities are completely

unable to distinguish the observed frequencies, which gener-

ally corresponds to the climatological frequency of exceed-

ing a given precipitation threshold (horizontal dashed line in

Fig. 8). The Brier skill score (BSS) characterizes the relative

accuracy of the probabilistic forecast compared to a refer-

ence system (see Jolliffe and Stephenson, 2011). Although

the climatology or sample climatology of the event is often

used as a reference, the BSS can also be computed against

other reference forecasts, e.g., another probabilistic fore-

casting method or even a deterministic forecasting method

treated as a probabilistic binary forecast. However, in such

cases it is not possible to draw a unique horizontal line repre-

senting complete lack of skill in Fig. 8. The region where the

probabilistic forecast has a positive BSS, i.e., it is better than

the climatological frequency, is grayed out. In fact, the points

located below the no skill line are closer to the climatological

frequency and produce a negative BSS. Reliability diagrams

usually contain the histogram of the forecast probabilities to

analyze the sharpness of the forecasts (small inset in Fig. 8).

Sharpness characterizes the ability to forecast probabilities

that are different from the reference forecast. Sharp forecast-

ing systems are “confident” about their predictions and give

many probabilities around one and zero.

The ROC curve is used to analyze the discrimination

power of a probabilistic forecast of exceeding a given rain-

fall threshold. It is constructed by plotting the hit rates and

false alarm rates evaluated at increasing probability thresh-

olds to make the binary decision whether it will rain or not.

The ROC curve of a random probabilistic forecast system

lies on the diagonal where the hit rate equals the false alarm

rate (no skill): the forecast probabilities do not have discrim-

ination power. When the false alarm rate is higher than the

hit rate the forecast is worse than that obtained by random

chance (below the diagonal). A skilled forecasting system is

observed when the hit rates are higher than the false alarm

rates, which draws a characteristic curve. The area under the

ROC curve (AUC) measures the discrimination power of the

probabilistic forecasts, with a maximum value of 1 (100 % of

hits and 0 % of false alarms) and a minimum value of 0.5 for

a random forecasting system. Values below 0.5 denote a fore-

casting system that performs worse than random chance. The

AUC is computed by integrating over all the trapezoids that

can be drawn below the ROC curve. The AUC is not sen-

sitive to the forecast bias and the reliability of the forecast

could still be improved through calibration. For this reason

the AUC is only a measure of potential skill.

The ensemble forecasts are verified to detect whether there

is over- or under-dispersion. It is common practice to com-

pare the “skill” (error) of the ensemble mean with the ensem-

ble spread (Whitaker and Loughe, 1998; Foresti et al., 2015):

spread=
1

N

N∑
i=1

√√√√ 1

M − 1

M∑
m=1

(
Fim−Fi

)2
, (A8)

where M is the number of ensemble members (ensemble

size), Fim is the forecast of a given ensemble member and

Fi is the ensemble mean forecast (at a given grid point).

Since we are not analyzing the spatial or temporal distri-

bution of the ensemble spread, N corresponds to the total

number of samples in space and time, which is the number

of forecasts within a rainfall event multiplied by the num-

ber of grid points within a radar field. The weak conditional

verification is also applied to the computation of the spread.

The ensemble spread characterizes the variability of the en-

semble members about the ensemble mean (standard devi-

ation). For a good ensemble prediction system, the ensem-

ble spread should be equal to the average variability of the

observations about the ensemble mean, as measured by the

RMSE of the ensemble mean (Eq. 2). If the spread is larger

than the RMSE, the ensemble is overestimating the forecast

uncertainty (over-dispersion), otherwise it is underestimat-

ing it (under-dispersion). It is interesting to mention that the

ensemble mean RMSE and ensemble spread could also be

computed starting from the logarithm of rainfall rates to ac-

count for the skewed distribution of precipitation (not used

in this paper).

Another way to analyze the spread of ensemble forecasts

is based on rank histograms (also known as a Talagrand di-

agram). First, the precipitation values of the ensemble mem-

bers are ranked in increasing order. Then, the rank of the

observation is evaluated by checking in which of the M + 1

bins it falls. By repeating the operation for a large number of

cases and forecasts it is possible to construct a histogram. A

good ensemble prediction system displays a flat histogram;

i.e., the observations are indistinguishable from the forecasts

and each ensemble member is an equi-probable realization of

the future state of the atmosphere. A bell-shaped histogram

with a peak in the middle is observed in the case of ensemble
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over-dispersion. On the contrary, a U-shape histogram with

peaks at the edges is observed in the case of ensemble under-

dispersion, which is more common (in particular for NWP

ensembles). In this case the values of the observations often

fall below or above the lowest or highest value of the ranked

ensemble, which is not dispersive enough to capture the ex-

tremes.
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ABSTRACT

Volumetric measurements from a C-bandweather radar in Belgium are reprocessed over the years 2005–14

to improve the quantitative precipitation estimation (QPE). The data quality is controlled using static clutter

and beam blockage maps and clutter identification based on vertical gradients, horizontal texture, and sat-

ellite observations. A new QPE is obtained using stratiform–convective classification, a 40-min averaged

vertical profile of reflectivity (VPR), a brightband identification, and a specific transformation to rain rates for

each precipitation regime. The rain rates are interpolated on a 500-m Cartesian grid, linearly accumulated,

and combined with hourly rain gauge measurements using mean field bias or kriging with external drift

(KED). The algorithms have been fine-tuned on 13 cases with various meteorological situations. A detailed

validation against independent daily rain gauge measurements reveals the importance of VPR correction. A

10-yr verification shows a significant improvement of the new QPE, especially at short and long range, with

roughly 50% increase in coverage. Adding the KED allows average improvements of 38%, 35%, and 80% for

themean absolute difference, themultiplicative error spread, and the fraction of good estimates, respectively.

The benefit is higher in widespread situations and increases when considering higher rainfall amounts. The

mitigation of radar artifacts is clearly visible on 10-yr statistics, including mean annual totals, probabilities to

exceed 10mm, andmaxima for hourly and daily accumulation. The correlation ofmean totals with rain gauges

increases from 0.54 to 0.66 with the new QPE and to 0.8 adding KED.

1. Introduction

Surface precipitation impacts human activities at a

wide range of space and time scales. Therefore, a de-

tailed knowledge of its characteristics is needed for

various applications. Predicting surface precipitation is

one of the biggest challenges for numerical weather

models, and thus, the verification of forecast accuracy

for this variable is important. Precipitation is also the

main driving force in agriculture and hydrology. The

interest of precipitation observations at high spatial and

temporal resolution is particularly high in urban hy-

drology. For many applications, long time series of

precipitation are needed. In hydrology, the estimation

of areal rainfall extreme statistics is required for risk

assessment. It is also useful for the verification of regional

climate models. In a changing climate the evolution

of the precipitation characteristics must be carefully

monitored.

Various efforts to construct reference precipitation

datasets have been reported in the literature. The sim-

plest approach is the collection of gauge measurements

that are interpolated on a gridded dataset. In Europe,

the reference 50-yr daily E-OBS (Haylock et al. 2008) is

used in many studies. The main weakness remains the

low spatial representativeness of rain gauges that can

miss small convective cells. Model reanalyses offer es-

timations over the globe but are prone to large biases

(de Leeuw et al. 2015). Their ever-increasing resolutions

are still not able to resolve convection properly.

Satellite-based precipitation estimation is available at

the global scale from infrared imagers or passive mi-

crowave radiometers, but their resolution and accuracy

are still limited (Tang et al. 2014). More reliable esti-

mation is available from spaceborne precipitation radar,

but only in the tropics (Yang and Nesbitt 2014).

The potential of single-polarization ground-based

weather radar to provide a reference precipitation

dataset at very high temporal and spatial resolution with
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good accuracy is large. Dual-polarization technology

offers a greater potential, but long time series are not

available yet. Using merged radar–gauge products,

Overeem et al. (2009) derived annual maximum rainfall

depths for durations from 15min to 24h and area sizes

from 6 to 1.73 103 km2 for theNetherlands. A reanalysis

based on the French radar network demonstrated good

results for streamflow simulation in some situations

(Lobligeois et al. 2014). However, rainfall estimation

from weather radar suffers from many sources of error

and uncertainties that have been extensively discussed

in the literature. The reader is referred to Uijlenhoet

and Berne (2008) and Villarini and Krajewski (2010)

for a detailed review. This has prevented the wide usage

of radar observations in operational applications (e.g.,

hydrology). Recently, the most important issues have

been tackled for operational quantitative precipitation

estimation (QPE) algorithms (Tabary 2007; Germann

et al. 2006). Since most weather services only archive 2D

operational radar products (Nelson et al. 2010; Fairman

et al. 2015), the quality of their dataset depends on the

operational algorithm that was used to derive 2D

products from the polar scans. Because of inherent up-

dates of QPE algorithms, time periods with consistent

data are limited. Improving the 2D radar product quality

without 3D information is a difficult task (Wagner et al.

2012; Tabary 2007). For example, it is not straightfor-

ward to correct for overestimation due to the melting

layer in an interpolated 2D product. Archiving of vol-

ume radar data was not common a decade ago because

of telecommunication and storage costs and the lack of

interest in precipitation reanalysis. Therefore, the

number of long-term precipitation datasets making use

of the full volumetric radar information is limited.

Thorndahl et al. (2014) made a reanalysis of a relatively

complete set of 10-yr volume data in Denmark. It has

been produced using careful processing but without a

correction for the vertical profile of reflectivity (VPR).

Krajewski et al. (2011) developed a flexible framework

for surface rainfall dataset generation from NEXRAD

level 2 (volumetric) measurements that are available

since 2002. The produced datasets have been used in

several hydrological studies (Smith et al. 2012).

At the Royal Meteorological Institute of Belgium

(RMIB), the volumetric data from a single-polarization

C-band Doppler radar are archived since 2002. Those

data have already been used to derive convective storm-

track statistics in Goudenhoofdt and Delobbe (2013).

The operational QPE algorithm used since 2004 is an

interpolation of reflectivity data from different elevation

angles at a given height combined with a Marshall–

Palmer relationship. This algorithm, which has been

applied on the archived volume data using a height of

800m above the radar level, is defined as QPE1. In this

study, a careful processing (defined as QPE2) of the

volumetric data is made, including beam blockage cor-

rection, application of a static clutter map, dynamical

clutter identification, correction for the height of the

measurement (i.e., VPR correction), and specific

reflectivity–rain rate (Z–R) relationships. A flowchart

summarizing the processing steps and data flow ofQPE2

is presented in Fig. 1. The algorithms have been de-

veloped based on a literature review and with simplicity

and robustness in mind for future operational use in real

time. A dense hourly rain gauge network with quality

control available since 2005 is used in combination with

the radar-based QPE using two methods. The new QPE

algorithms are compared to QPE1 in order to evaluate

the improvements. It is first validated on a selection of

cases and then on the period 2005–15 using an in-

dependent rain gauge network. To our knowledge, such

long-term verification of radar-based precipitation esti-

mates has not yet been done. Several interesting statis-

tics are derived from the 10-yr dataset and compared to

rain gauge statistics.

2. Weather radar measurements

a. Radar reflectivity measurement

Since 2001, RMIB has been operating a C-band

(5.62GHz) Doppler radar located in Wideumont

(49.98N, 5.58E), southeast Belgium, at 592m above sea

level (Fig. 2). With measurements up to 240 km, the

radar covers Belgium, Luxembourg, and parts of France,

the Netherlands, and Germany. It is a single-

polarization radar with Doppler capability used to fil-

ter ground echoes. During the study period, the radar

performed a dedicated reflectivity scan at five elevation

angles (0.38, 0.68, 1.88, 3.38, and 6.08) every 5min with a

pulse repetition frequency of 600Hz and pulse duration

of 0.836ms The radar volume data have a resolution of 18
in azimuth (an average of 33 pulses) and 250m in range

(an average of two successive range bins). Because of

the height of the radar tower and its position near the

top of the Ardennes ridge, beam blockage effects are

relatively limited. More information regarding the radar

characteristics and scanning strategy can be found in

Delobbe and Holleman (2006). The volumetric data of

the Wideumont radar have been archived at RMIB

since 2002. No significant changes in the radar calibra-

tion have been encountered, except in April 2013 when

software and hardware updates occurred. During the

update the radar constants have been reset to default,

resulting in a decrease of 1.3 dB. The Doppler filtering is

active sinceApril 2004 and is combinedwith a clutter-to-

signal ratio (CSR) of 10 dB. The CSR has been reset to
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the default value of 15 dB during the 2013 update, re-

sulting in fewer values set to zero. No further post-

processing corrections have been performed on the

volumetric data. The radar data availability is about

96% for the 2005–15 period. Since the data are coded

with a resolution of 0.5 dBZ, a random uniform field

(20.25 dBZ, 10.25 dBZ) is added to simulate actual

reflectivity values. This allows for generating a smooth

averaged empirical profile of reflectivity when the me-

dian is used as the averaging statistic.

b. Beam blockage correction

To compute beam blockage, we consider the trajec-

tory of the beam in normal propagation conditions (i.e.,

using a 4/3 factor for the earth radius). The Shuttle Radar

Topography Mission (SRTM) data (Farr et al. 2007) are

used as a digital elevation model (DEM) and have a

resolution of 3 arc s (90m). The beam blockage has been

estimated using a formula proposed byBech et al. (2007)

that assumes a constant ground elevation across the

beam. To simplify the computation, the DEM is in-

terpolated on a 300-m grid, which is the resolution of the

beamwidth at 10 km from the radar, where the first

blockage occurs. If the blockage occurs close to the

radar, a high accuracy of the height of the radar is re-

quired. It was found that using the Belgian reference for

the radar height (592m) results in a significant un-

derestimation of the closest blockage. A correction of

about 15m was applied to this height to match the World

Geodetic System used by SRTM. Because of the rela-

tively low elevation angle (0.38), blockages up to 18%

were found for several narrow sectors (Fig. 3). Un-

certainties in elevation angles, beam propagation, DEM

measurements, and blockage computation method can

FIG. 1. Flowchart of QPE2: ellipses represent data and rectangles represent processing steps.
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lead to under- or overestimation of the actual beam

blockage. The data are corrected for beamblockage using a

one-way correction.A smoothing of 18 is performed to take

into account sample averaging in azimuth.

c. Clutter identification

Weather radar measurements can be contaminated by

clutter (i.e., nonmeteorological signals). In the atmo-

sphere, airplanes, birds, and insects are a dynamical

source of clutter. Nevertheless, the main source of

clutter comes from the ground, which is hit by the side

lobes of the beam (or even its main lobe). Ground

clutter occurs mainly at elevated places (e.g., hills) sur-

rounding the radar. During abnormal propagation (AP)

conditions, the lowest part of the beam can bend pro-

gressively toward the ground and clutter can be found at

any distance from the radar. The identification and

mitigation of clutter remains a challenging problem in

radar meteorology because it can be difficult to distin-

guish from precipitation. Conventional radars use

Doppler filtering to remove near-zero velocity pulse

echoes. A statistical filter can also be used based on

pulse-to-pulse fluctuations. However, those filters are

not perfect, and too aggressive settings can partly elim-

inate precipitation. Since pulse data are usually not sent

to the data center, postprocessing of the radar moments

(based on several pulses) is usually performed for

remaining clutter. A summary of clutter mitigation

techniques can be found in Hubbert et al. (2009), who

recommend the fuzzy logic approach for its simplicity

and practicality. This technique uses a combination of

features and probability functions to make a clutter

identification decision. For example, Berenguer et al.

(2006) combine three statistics from 3D data: shallow

vertical extent, high spatial variability, and low radial

velocities. In this study we combine satellite cloud-free

echoes, strong vertical gradient, and high spatial vari-

ability in a deterministic fashion. This corresponds to

step probability functions in the fuzzy logic framework

with a probability of one associated to clutter.

Eventually, a measurement is considered as clutter if at

least one feature is equal to one.

1) PERMANENT CLUTTER

Radar measurements are contaminated by static

ground clutter even after Doppler filtering. Topographic

features such as hills are permanent while others (e.g.,

trees, towers, buildings) might evolve in time because of

human activities. Static clutter can be identified using

detection probability maps over a given period. In an

operational context, this map should be updated regu-

larly (i.e., each month) to take into account new sources

of static clutter (e.g., wind farms). The bins whose

measurements exceed 7dBZmore than 50% of the time

are identified as static clutter. The threshold is chosen to

match the threshold used for ‘‘no precipitation’’ in

subsequent algorithms. This probability threshold is

chosen to be significantly higher than the expected

monthly maximum rainfall occurrence in Belgium. To

compute this map, using unfiltered data is simple and

robust. Using filtered (e.g., Doppler) data is more diffi-

cult but allows keeping meteorological information for

the slightly contaminated bins. For the Wideumont ra-

dar, no choice was possible since only filtered data have

been archived. More problematic is the fact that bins

exceeding a defined CSR have been set to ‘‘undetected’’

without a flag and are therefore wrongly interpreted as

zeros. To solve this problem, radar data without CSR

thresholding have been generated during one day

without rain in 2013 and used to compute the static

clutter map (Fig. 3). In the lowest elevation, about 10%

of static clutter is found in the range 0–70km. The static

clutter map is applied before using the dynamical algo-

rithms to improve their performance.

2) SATELLITE-BASED IDENTIFICATION

Since 2005 a cloud type classification (Derrien and Le

Gléau 2005) with a resolution of 5 km is available each

15min from the Nowcasting Satellite Application Fa-

cility (NWC SAF) products based on Meteosat Second

Generation (MSG) satellite measurements. Radar echoes

in areas classified as ‘‘sea’’ or ‘‘ground’’ by the satellite

are identified as clutter. Areas classified as snow or

FIG. 2. Elevation map centered at the Wideumont radar (black

dot) up to 180 km range (circle) with SPW (triangle) and CLIM

(plus signs) rain gauge networks (gauges removed because of

clustering are not shown). Country borders with France, Lux-

embourg, Germany, and the Netherlands are also displayed.
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nonprecipitating clouds could also be identified as clut-

ter. Since areas with actual rain can be misclassified

in these classes, they are not used here. It is interesting

to note that a parallax correction would have been re-

quired for nonprecipitating cloud areas. The time lag

between radar and satellite observations (up to 8min)

is taken into account. An upper bound on the steering

wind, estimated from the ground wind, is used to reduce

the potential cloud-free areas. The clutter identifica-

tion based on satellite is very robust but limited to

well-defined cloud-free areas. It is particularly useful

when clutter is difficult to distinguish from rainfall

(e.g., in strong anomalous propagation conditions or

at very large distance from the radar). Unfortunately,

the availability of derived satellite products at RMIB

was limited to 90% during the study period. Using a

more complete dataset could help to remove evenmore

clutter.

3) VERTICAL GRADIENT

Algorithms based on the vertical profile of reflectivity

have been proposed in several papers (Steiner and

Smith 2002; Berenguer et al. 2006). In case of pre-

cipitation, clutter can be identified by unrealistic vertical

reflectivity gradients between two measurements at

different elevations. A measurement at a given eleva-

tion is considered as clutter if the gradient between its

value and the corresponding (horizontally) interpolated

value on a higher (lower) elevation exceeds in

magnitude220dBZkm21 (110dBZkm21). Because of

variations from signal fluctuations, a minimum absolute

difference of 5 dBZ between two corresponding values

at different elevations is required for clutter identifica-

tion. For this particular algorithm, all measurements

below 10 dBZ are set to 10dBZ since gradients are not

meaningful for low reflectivity values. Wrong clutter

identification may occur in the bright band (BB) where

high vertical gradient can be found. Therefore, the BB is

identified using the radar data or constructed from the

estimated freezing level. The freezing level is estimated

based on the extrapolation (18C per 150m) of the mean

surface temperature measured by nearby automatic

weather stations. Extra (e.g., model) information on the

freezing level is not used because of technical limita-

tions. In the BB, a safety margin is applied with higher

thresholds (260 and 40dBZkm21, respectively) for

clutter identification. Since measurements from differ-

ent elevations are not simultaneous (there is a lag of 30 s

between successive elevations), a smoothing distance is

computed based on the estimated steering wind and

applied to the data. An upper bound for the steering

wind is computed as three times the wind measurements

at 10m averaged over 10 stations. This algorithm is

useful for clutter inside precipitation regions that cannot

be easily identified by looking at the reflectivity texture.

4) TEXTURE

We use a simple and fast texture-based technique

originally developed by Gabella and Notarpietro (2002)

for Cartesian data. It consists of a two-part identification

algorithm using 1) echo continuity and 2)minimum echo

area. The algorithm has been improved and made ap-

plicable to polar data. For the first part, each bin is

compared with a neighborhood that is selected based

on a maximum distance. Since finding a circular neigh-

borhood is computationally intensive, it is approximated

by a square window. If the proportion of neighbors with

similar values is too small, the bin is considered as

clutter. In this study, two bins are similar if their dif-

ference is less than 7dBZ. The proportion of similar bins

FIG. 3. Static quality information for the lowest elevation (0.38) scan up to 50 km: (left) beam blockage and (right)

clutter.
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in the predefined neighborhood has to exceed 30% for

the bin to be identified as nonclutter. The maximum

distance defining the square window is the most impor-

tant parameter of the algorithm. It should be chosen

close to the smallest precipitation scale. The default

value of 1 km used in this study should be interpreted

as a lower bound for convective storm size. This corre-

sponds to a window of 27 bins for a range of 100km and

9 bins for a range of 200 km, where only the radial in-

formation is used. Using the proportion of similar values

instead of counting their total number allows dealing

with bins that have no values (e.g., after the application

of the static clutter map). For the second part (echo

area), too thin contiguous echo areas (with values above

0 dBZ) are considered as clutter. An echo area is too

thin if more than 90% of its bins belong to its border.

This second part is not applied when the bin azimuthal

resolution is larger than the precipitation scale (within

the range of 70 km). This texture-based technique can

identify many different kinds of clutter. It is particularly

useful for AP clutter in the lowest elevation and at dis-

tances where vertical information is limited.

3. Surface rainfall estimation

a. Radar-based estimation

The estimation of rainfall rate at the ground can be

derived from radar reflectivity measurements. Because

of the earth curvature and the positive elevation angles,

these measurements are obtained at heights increasing

with range. It is well known that the VPR depends on

the variations of hydrometeors’ phase and size distri-

bution. The most striking effect is the BB, which is an

increase of reflectivity caused by melting snow in a layer

under the freezing level. Another important effect is the

increasing underestimation with range due to the lower

reflectivity of snow and partial overshooting. Correction

for the VPR has been an active topic in radar meteo-

rology for decades. Parameterized models can be fitted

to observations using inverse methods (Vignal et al.

2003), but the most straightforward approach is to de-

rive averaged empirical profiles. The profile is best es-

timated using data at close range to the radar to limit the

beam broadening effect. Germann and Joss (2002)

compute the unconditional mean rain rate up to 70km

while Bellon et al. (2007) compute a reflectivity average

over 20-km range intervals. Some authors stress the

importance of distinguishing different types of precipi-

tation (Kirstetter et al. 2010). For some cases, a local

VPR correction should be preferred (Kirstetter et al.

2010; Zhang and Qi 2010; Hazenberg et al. 2013), but

this has a computational cost. A hybrid approach

combining empirical and modeled profiles has been re-

cently proposed by Koistinen and Pohjola (2014). At

the RMIB, a VPR correction has been proposed

(Goudenhoofdt and Delobbe 2012) based on a global

average of normalized local profiles from data in the

0–70-km range. This paper presents a new version of the

algorithm with a focus on robustness.

1) CONVECTIVE RAINFALL IDENTIFICATION

For convective precipitation a uniform VPR is as-

sumed and no correction is applied. Since their VPRs

are different, we first distinguish between stratiform and

convective precipitation. Following the Steiner algo-

rithm discussed in Biggerstaff and Listemaa (2000), a

reflectivity value is considered as convective if it exceeds

40 dBZ or if it is significantly higher than its local

background (defined by a search radius of 11 km). In a

last step, convective areas are expanded by range-

dependent smoothing. Values below 10 dBZ are set to

10dBZ for proper background computation (only for

this specific task). The original algorithm has been

adapted to be applied on polar data with possible

missing data. Another limitation was the false detection

of the bright band as convective precipitation. To

consider a point as convective, we require that the value

from the lowest elevation angle and the corresponding

interpolated value at 3000m above the radar level are

both identified as convective. No convective identifica-

tion is made before the highest elevation angle reaches

1500m, which corresponds to a range of 15 km.

2) AVERAGE PROFILE ESTIMATION

Assuming that the VPR does not vary in space, the

mean apparent VPR (MAVPR) is computed for each

height interval as the median of reflectivity values con-

sidered as stratiform (i.e., not convective and exceeding

10dBZ). Only data at close range are used to limit the

beam broadening effect. A maximum distance of 45 km,

which corresponds already to an 800-m beamwidth,

seems reasonable. A minimum distance of 5 km is cho-

sen to avoid computing the lowest part of the VPR on a

limited area. A minimum vertical resolution of 50m is

chosen to match the vertical resolution of the beam at

5 km from the radar. Even if the probability of residual

ground clutter is low, we prefer not to use the lowest

elevation in the computation of the MAVPR to make

our reanalysis robust. To support this choice, one notes

that the vertical coverage of the lowest elevation is

limited and that more useful data can be obtained from

higher elevations. Using an unconditional average of

reflectivity can be problematic in case of localized pre-

cipitation areas. The robustness of the profile depends

on the amount of available measurements. As in Bellon
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et al. (2007), we impose a minimal number (i.e., 1000) of

measurements for each vertical interval. This is un-

fortunately not enough since it does not take into ac-

count the increasing sampling area per bin with range.

Therefore, we use an additional criterion based on the

total sampled area (which is set to 1000km2) for each

vertical interval. To be representative, the MAVPR

should also cover a sufficient vertical extent. The

MAVPR is considered as valid if it is available between

500m and 2km above the radar. If the mean 7-dBZ echo

top in the selected area is lower than 2km, it is taken as

the upper limit required for a valid VPR. To increase the

availability of a valid MAVPR, we use successive radar

scans as in Hazenberg et al. (2013). The underlying as-

sumption of VPR stationarity seems reasonable for an

interval of 20min. This corresponds to nine radar vol-

umes using both previous and next data. One notes that

in real-time conditions, data from the future are not

available and then only five radar volumes can be used.

The MAVPR (denoted zm) is checked for abnormal

curvature by computing the second-order discrete dif-

ference dd2i for each vertical interval i:

dd(i)5 z
m
(i1 1)2 z

m
(i) and (1)

dd2(i)5dd(i1 1)2 dd(i) . (2)

TheMAVPR is not valid if themaximumdd2i (expected

at the brightband peak) exceeds 10 dBZ or if the number

of dd2i higher than 1dBZ exceeds 5. If the MAVPR is

not valid, the vertical resolution is increased by 50m and

the thresholds for dd2i adapted. This procedure is ap-

plied to a resolution not higher than 200m to ensure that

the bright band is properly resolved. If no validMAVPR

can be obtained, the closest one (up to 20min) is used. In

the worst case, a climatological profile with a constant

slope (22dBZkm21) above the freezing level is used. The

climatological profile is uniform below the freezing level.

3) BRIGHTBAND IDENTIFICATION

The identification of the BB is important for the ex-

trapolation of the MAVPR. Because of beam broad-

ening with increasing range, the BB depth increases and

the BB peak decreases. The peak of the BB is identified

by the maximum of the MAVPR. It is checked that the

peak is not a spike, that a strong gradient exists below,

that a very strong negative gradient exists above, and

that the peak value is 3 dBZ larger than the values at

6500m (at least one value is needed). Starting from the

peak, the bottom of the BB is identified by the first

gradient lower than 3dBZkm21 and at least 300m be-

low. Similarly, the top of the BB is identified by the first

gradient exceeding 25 dBZkm21 and at least 300m

above. If no lower or upper bound for the BB can be

found (i.e., when no profile value is available), the

MAVPR is extrapolated linearly to 6500m by 25

and28dBZ, respectively. If no BB can be identified, the

freezing level is estimated as in the clutter identification.

If the top of the MAVPR is above the freezing level, its

value is extrapolated aloft using a constant gradient

of 22dBZkm21. The MAVPR is finally extrapolated

(uniformly) to the ground using the value at the

lowest height.

4) MAVPR APPLICATION

The ratio between the median profile Zm(h) and the

apparent profile at a given range Za(r, h) is applied to

the measured equivalent reflectivity factor Ze(h) to ob-

tain the surface reflectivity Ze(h5 0):

Z
e
(h5 0)5Z

e
(h)

Z
m
(h5 0)

Z
a
(r,h)

, (3)

z5 10 log
10
(Z), and (4)

z
e
(h5 0)5 z

e
(h)1 z

m
(h5 0)2 z

a
(r,h), (5)

where h is the height above the radar and r is the dis-

tance to the radar (note that quantities Ze, Zm, and Za

are in units of mm6m23, and the corresponding ze, zm,

and za are expressed on a decibel scale with units in

dBZ). The quantity zm(h) is estimated at any height

from the discrete profile zm(i) (MAVPR) using linear

interpolation (decibel scale). The quantity Za(r, h) is

obtained by the convolution of the median profileZm(h)

with the two-way normalized power gain of the beam at

distance r. Since Zm(h) is based on data at a given range

interval, the convolution is started in the middle of this

interval. A more accurate but costly computation of the

convolution (Kirstetter et al. 2010) is not expected to

significantly improve the results. According to Joss and

Lee (1995), the correction factor should be limited to

avoid instability. Therefore, after a sensitivity test, a

maximum correction factor of 10 dBZ has been chosen.

The height of the radar is taken as the ground reference

for the extrapolation of the VPR. The case when the

radar is in the bright band is problematic since finding a

good Z–R relationship for melting snow can be com-

plicated. We solve this problem by using a theoretical

VPR profile in order to obtain a reflectivity value cor-

responding to rain. In practice we use the extrapolation

procedure described above to find the corresponding

value at the artificial lower limit of the bright band. The

estimation of reflectivity at the ground reference is ap-

plied for each elevation. Using a weighted (e.g., based

on distance) average of several elevations to mitigate

residual errors and reflectivity measurement uncertainty

is common. However, we think that after quality control

the estimation from the lowest elevation is much better
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than from higher elevation. Therefore, estimations from

higher elevations are only used to fill gaps caused by

the clutter removal. For this purpose, the data from

higher elevations are bilinearly interpolated in a range

to match the lowest elevation. Remaining gaps (i.e.,

when no precipitation information is found in the

higher elevation) in the grid are interpolated using a

nearest-neighbor technique up to a 2-km maximum

distance.

5) Z–R RELATIONSHIP

The Marshall–Palmer relationship (Z5 200R1:6) has

been used operationally since the beginning of the radar

measurements. For the reanalysis a more refined relation-

ship from the Radar-Online-Aneichung (RADOLAN)

product (Wagner et al. 2012) of the German weather

service has been considered:

Z5 200R1:6 if dBZ# 44 and (6)

Z5 77R1:9 if dBZ. 44. (7)

For high reflectivity, the rain rate obtained with the latter

is a bit lower. To deal with hail, a maximum reflectivity

of 55dBZ is used, which corresponds to 88mmh21. To

avoid remaining artifacts (e.g., insects), reflectivity values

below 7 dBZ (i.e., 0.1mmh21) are considered as no

precipitation.

b. Radar–gauge merging

In a final stage, radar estimates can be combined

with rain gauge measurements. A large variety of

radar–gauge merging methods have been tested in

Goudenhoofdt and Delobbe (2009) at the daily scale.

The results showed that a simple mean field bias cor-

rection (MFB) reduces the mean absolute error signifi-

cantly and that kriging with external drift (KED)

performs best. Cokriging (Krajewski 1987) is an attrac-

tive alternative method, but its computational cost is too

high to be considered in this study. Sideris et al. (2013)

proposed to add temporal information to KED via

cokriging. Because of the added complexity, this method

is also not used here. The benefit of using hourly over

daily adjustment has been shown by Thorndahl et al.

(2014) and Berndt et al. (2014). In this study both MFB

and KED methods are used on hourly Cartesian data.

For a given gauge, the corresponding radar-based esti-

mate is the one of the pixel where the gauge is located.

Averaging over several pixels does not improve the

correlation in most cases.

1) RAIN GAUGE MEASUREMENTS

The hydrological service of theWalloon region (SPW)

operates a dense (one gauge per 135 km2) and integrated

network of 90 telemetric rain gauges (Fig. 2). Most of

them are tipping-bucket systems providing hourly rain-

fall accumulation. The collected data are used for hy-

drological modeling and directly sent to RMIB. The rain

gauges are controlled on site every 3 months and in a

specialized workshop every year. Every day, a quality

control of the data is performed by RMIB using a

comparison with neighboring stations. Radar data are

also used in this quality control for the elimination of

outliers. The classification of gauge data for the period

2005–15 are 94.5% validated, 2.7% corrected, 2.3%

classified as dry snow, and 0.5% unclassified. Only val-

idated data are used for combination with radar data.

However, the quality control is not perfect since errors

in classification have been found in dry snow and con-

vective situations by comparison with the climatological

network. To make the merging methods more robust,

the clustering of the rain gauge network is reduced by

removing a few gauges.

2) RADAR RAINFALL RATE ACCUMULATION

Before accumulation, rainfall rate values from the

polar grid are interpolated on a Cartesian grid of

500-m resolution. The interpolation is done using a

uniform 500-m square window filter on the polar data

followed by a nearest-neighbor interpolation. This

method is more accurate than an interpolation of

points because it takes into account the actual areas

of the polar bins and the Cartesian pixels. Rainfall

accumulation over a given period is obtained by lin-

ear interpolation of the radar rain rates. No correc-

tion of temporal sampling errors (e.g., using optical

flow) is performed because their occurrence is rela-

tively low with a time step of 5min. Indeed, small

convective storms moving at a high speed are rela-

tively rare (Goudenhoofdt and Delobbe 2013). Using

Cartesian instead of polar data allows for a better

correlation between gauge and radar estimation by

reducing time and space sampling differences, espe-

cially at close range.

3) MEAN FIELD BIAS CORRECTION

The assumption here is that the radar estimates are

affected by a uniformmultiplicative error. This error can

be due to a bad electronic calibration or an erroneous

coefficient a in the Z5 aRb relationship. For each time

interval, the adjustment factor is computed as the me-

dian of the ratios of gauge and radar values. The ad-

justment is valid if there are at least 11 pairs with both

values exceeding 0.2mm. Because of a potential de-

crease (at least for QPE1) of radar rainfall estimates

caused by partial overshooting farther than a certain

distance, only gauges up to 100km are used.
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4) KRIGING WITH EXTERNAL DRIFT

This is a geostatistical method that combines the rain

gauge values linearly and uses the radar as auxiliary

information. It follows the same scheme as the ordinary

kriging, except that the expected value of the estimated

precipitation field is now considered as a linear function

of the radar field (the drift). The weights are obtained by

minimizing the estimation error that depends on the

spatial correlation between radar and gauge values and

their residuals. As proposed by Erdin et al. (2012), a

square-root transformation is applied to precipitation

values to approach Gaussianity, which is an underlying

assumption in kriging. Determining a suitable variogram

for the residuals between the estimated value and the

drift is challenging. The underlying assumption is that the

residuals are correlated in space. A robust method is

proposed by Schiemann et al. (2011), while Delrieu et al.

(2014) suggest deriving event-based variograms. For the

sake of simplicity, we use an exponential climatological

variogram with a nugget of 0.1 and a range of 10km. It is

not easy to determine the decorrelation distance of the

residuals. We prefer not to make assumptions on the

correlation between the residuals beyond 10km, since

QPE2 might have removed the large-scale errors. The

stability of the method depends on the validity of rain

gauge measurements and also the collocated radar esti-

mates. Therefore, no gauge locations are used beyond

160km because of potentially severe underestimation by

the radar. Additionally, a minimum correlation (Pearson

coefficient) of 0.5 is required between the two estimates.

The performance of this method decreases significantly

with the distance to the rain gauge network.

4. Evaluation

a. Rain gauge measurements

RMIB maintains a climatological network (CLIM)

including 270 stations with daily measurements of

precipitation accumulation between 0800 and 2000 local

time (LT). From Fig. 2, one notes that the coverage of

CLIM is larger than the SPW network and that only a

few locations belong to both networks. Most of these

stations are manual and the data are generally available

with some delay. The data are manually inspected on a

monthly basis by well-trained operators. By arraying

observers’ records geographically in time sequence,

pattern analysis performed by the trained staff can re-

veal inconsistencies or anomalies. Pattern analysis will

be used here to evaluate and compare the performance

of the QPE methods. As for the merging network, a

declustering is applied to reduce the influence of areas

with high rain gauge density on the results. The hourly

accumulation obtained by the merging methods are

summed to match the 24-h accumulation of CLIM.

b. Examples

In Fig. 4, a typical winter case with stratiform precipi-

tation is shown. A bright band appears in the MAVPR

between 600 and 1600m. Ifwe compareQPE2 (new)with

QPE1, we see that the rings due to the bright band have

been significantly reduced. The underestimation at long

range is also reduced.

In summer (Fig. 5), the distinction between convective

and stratiform precipitation plays an important role.

Indeed, for the identified convective precipitation on

each volume, no profile correction is performed. Fur-

thermore, because of the limited area covered by strat-

iform precipitation, a climatological profile is used.

There is a slight effect of decreasing the rainfall rate by

using a specific Z–R relationship for convective pre-

cipitation in QPE2, but the main effect in this case is a

significant decrease of the rainfall rates with QPE2 due

to the maximum (hail) threshold (55 dBZ).

c. Case validation

For the first six months of 2013, 13 days with different

rainfall situations have been chosen and sorted in

FIG. 4. Stratiform case on 12 Apr 2013: hourly accumulation from 0000 to 0100 UTC based on (left) QPE1 or (center) QPE2. (right)

Median averaged vertical profile of reflectivity based on nine polar volumes; the brightband peak and limits are identified by lines.
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chronological order. Stratiform precipitation (cases 1 ,4,

6, 9, and 10), a mix of rain and snow precipitation (cases

2, 3, 5, 7, and 8), and convective precipitation (cases 11,

12, and 13) were observed. The various algorithms of

QPE2 (and especially the VPR correction) have been

fine-tuned on those cases. A categorical verification

(Wilks 1995) that hourly values exceed 0.1mm against

the SPW network is reported in Table 1. The scores are

averaged over the 13 cases, plus a few cases with little or

no rain. It shows a decrease of the false alarm ratio

(FAR) and an increase of the probability of detection

(POD) with QPE2. This highlights the effect of the

mitigation of clutter and correction of underestimation

at long range, respectively. The high values of FAR

are due to some cases with gauges covered by dry snow

but not flagged by the quality control. A lower FAR

and higher POD both increase the critical success in-

dex (CSI), which measures the global performance.

The quantitative performance of the algorithms is

analyzed using three different scores. The mean ab-

solute difference (MAD) measures the average addi-

tive error between the radar estimate R and the gauge

measurement G:

MAD5meanjR
i
2G

i
j . (8)

This score is strongly influenced by heavy rainfall and

outliers. It is therefore a good indicator of the robustness

of the method. The scatter score (SCS; Germann et al.

2006) measures the multiplicative error spread:

SCS5 r
b
2 r

a
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where c
a
’ 0:16 and c

b
’ 0:84,

(11)

where n is the number of radar–gauge pairs and ri are the

ratios between radar and gauge estimates sorted in in-

creasing order. The ratios are expressed on a decibel

scale and set to 220 dB if the radar estimation is zero.

The indices a and b correspond to the normalized cu-

mulative sum of gauge values (defined as ci) closest to

0.16 and 0.84. The fraction of radar estimates with less

than 20% error F20 measures the number of good

estimates:

F
20
5
�
n

0
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i

n
, (12)

d
i
5 1 if 0:8# r

i
# 1:25, (13)

d
i
5 0 otherwise; (14)

where n and ri are defined above. This score allows a

tolerance for the sampling difference between the radar

and the gauge. It is worth pointing out that the SCS and

F20 are both immune to outliers. In Fig. 6, one can see

the relative performance of the quantitative pre-

cipitation estimates (QPE1 and QPE2) without merg-

ing [original radar data (ORI)] or with a merging

method (MFB, KED) against the 24-h CLIM up to

180 km. The scores are computed for each case on a

set of radar–gauge pairs and then averaged. We do

not compute the scores using all radar–gauge pairs at

once because it would favor cases with widespread

FIG. 5. Convective case on 19 Jun 2013: rainfall rate estimation at 1905UTC for (left) QPE1 and (center) QPE2 and (right) corresponding

identified convective area.

TABLE 1. POD, FAR, and CSI for hourly accumulation ex-

ceeding 0.1mm against the SPW network. The scores are com-

puted for all hours of the cases and then averaged.

POD FAR CSI

QPE1 0.601 0.550 0.322

QPE2 0.632 0.512 0.363
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precipitation. As in the merging process, the corre-

sponding radar-based estimate is chosen at the pixel

where the gauge is located. To properly compare the

methods, we use a fixed set of gauge values exceeding

1mm. One first notes that the MAD is lower for QPE2

than QPE1 for all cases and merging methods. This is

also true for SCS and F20 in most cases. The benefit of

QPE2 is higher for the stratiform cases than for con-

vective or snow/rain mix cases. The benefit of QPE2 is

reduced after merging for most cases, especially with

KED. It could be explained by the fact that themerging is

able tomitigate part of the error corrected by QPE2. The

MFBmethod has little effect on SCS since only the bias is

corrected. The F20 is clearly improved using QPE2 and

the merging methods for most cases and especially for

stratiform cases.

Table 2 reports the averaged statistics over all cases

for QPE1 and QPE2 and four additional estimates to

study the effect of the processing:

d PPI1: the uncorrected lowest elevation angle (PPI);
d PPI2: the lowest PPI where identified clutter have

been replaced by values from higher elevations;
d PPI3: PPI2 with beam blockage correction; and
d QPE2MP: QPE2 using the Marshall–Palmer Z–R

relationship.

As expected, PPI1 performs the worst for all scores and

merging methods. For all merging methods, PPI2 per-

forms slightly better than QPE1 for the MAD score but

slightly worse for SCS and F20. A slight benefit of the

beam blockage (PPI3) is obtained after merging for

SCS and F20. The significant improvement of QPE2

FIG. 6. Validation of daily accumulation against CLIM for the 13 cases: (top) MAD, (middle) SCS, and

(bottom) F20. For each numbered case the bars correspond (from left to right) to ORI (blue), MFB (red),

and KED (magenta) merging methods. The white and colored bars correspond to QPE1 and QPE2,

respectively.
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compared to PPI3 demonstrates the benefit of the

VPR correction. The replacement of the Marshall–

Palmer Z–R relationship with an adapted Z–R rela-

tionship has only a small positive impact on the

averaged results. On average, QPE2 without merging

(ORI) performs better than QPE1 1MFB, especially

for SCS. QPE1 with KED gives a similar performance

as QPE2 with MFB.

d. 10-yr verification

The precipitation estimates have been verified using

CLIM for the 2005–15 period. The results of the cate-

gorical verification (values exceeding 1mm) are shown

in Table 3. There is a positive impact of QPE2 with re-

spect to QPE1 on POD because of the correction of

underestimation at long range. The reduction of FAR

suggests that clutter mitigation has played a role. The

merging methods allow for improving the POD, but

using KED reduces slightly the benefit of QPE2.

Figure 7 shows the scores computed at each rain gauge

for values exceeding 1mm. It is displayed as a function

of the distance between the radar and the gauge. It is

important to note that a perfect match with the gauge

measurements is impossible since precipitation is esti-

mated by the radar on a much bigger area (500m 3
500m). It must be noted that a gauge with a very high

MAD for QPE1 (due to ground clutter) has been re-

moved to obtain a smooth average curve. The main re-

sult is that with QPE2 the MAD, SCS, and F20 are

improved for 98%, 92%, and 86% of the gauges com-

pared to QPE1, respectively. The general behavior for

QPE1 and QPE2 is a decrease of performance further

than a certain distance because of partial and complete

overshooting, respectively. The benefit of QPE2 with

respect to QPE1 is particularly apparent at short and

long range. It results from the correction of the bright-

band effect and the correction of partial overshooting,

respectively. The former result is more pronounced for

SCS and F20. It can be explained by the fact that the

brightband error is highly variable. Another observation

is that QPE2 has a relatively linear decrease of perfor-

mance along the range for SCS and F20. This could be

explained by the increasing probability of attenuation by

intense rainfall and hail, which is not corrected. There is

little effect at long range for SCSwhen comparingQPE1

and QPE2 because the VPR correction (i.e., linear

profile above the bright band) does not decrease the

spread of the error. The effective range (i.e., where the

MAD stays relatively constant) increases approx-

imatively from 100 to 125 km, which corresponds to a

50% increase in areal coverage.

In Fig. 8, one can see the mean absolute error for the

merging methods. The MFB allows us to improve both

QPE1 and QPE2 significantly, except at long range. The

relative benefit of QPE2 is slightly smaller in the mid-

range. The KED method allows us to further improve

the performance of QPE1 and QPE2 but reduces the

additional benefit of QPE2 at long range. The benefit of

QPE2 at short range is enhanced after merging and is

mainly due to the VPR correction. The results (not

shown) are similar for the other scores. The average

improvements from QPE1 to QPE2 1 KED for gauges

up to 150 km are 38%, 35%, and 80% for MAD, SCS,

and F20, respectively.

The scores averaged over all days with at least five

gauge values exceeding a given threshold can be found

in Table 4. Since the same weight is given for each day,

the results are slightly different than the gauge-averaged

statistics, which favor widespread situations. The range

has been limited to 150 km, where the performance

starts to drop significantly. Looking at gauge values ex-

ceeding 1mm, QPE2 1 KED reduces the MAD from

2.44 to 1.66mm and the SCS from 2.26 to 1.95 dB while

F20 is increased from 0.22 to 0.37. The added value of the

new processing increases with higher thresholds. At

10mm the MAD decreases from 6.17 to 3.92mm, the

SCS decreases from 1.40 to 1.14 dB, and F20 increases

from 0.28 to 0.53. It should be noted that part of the

TABLE 2. Verification of daily accumulation against CLIM for

gauges up to 180 km and values above 1mm. The results of QPE1,

QPE2, and four intermediate steps in combination of the merging

methods are shown. The scores are averaged over 13 cases with

more than five valid pairs.

QPE1 PPI1 PPI2 PPI3 QPE2MP QPE2

MAD (mm)

ORI 3.272 3.325 3.143 3.171 2.821 2.808

MFB 2.872 3.040 2.857 2.864 2.478 2.465

KED 2.546 2.793 2.485 2.488 2.176 2.170

SCS (dB)

ORI 2.980 3.196 3.173 3.180 2.409 2.391

MFB 2.938 3.113 3.137 3.109 2.441 2.426

KED 2.406 2.712 2.488 2.497 2.056 2.056

F20

ORI 0.199 0.205 0.209 0.208 0.244 0.242

MFB 0.234 0.214 0.220 0.225 0.293 0.293

KED 0.323 0.280 0.311 0.317 0.364 0.364

TABLE 3. POD, FAR, and CSI for daily accumulation exceeding

1mm against CLIM. The scores are computed for all days and then

averaged over the 10 years.

POD FAR CSI

QPE1 QPE2 QPE1 QPE2 QPE1 QPE2

ORI 0.663 0.704 0.365 0.323 0.466 0.517

MFB 0.671 0.710 0.364 0.322 0.475 0.525

KED 0.713 0.739 0.362 0.318 0.510 0.554
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performance of the KED method could be due to

smoothing effects.

e. Statistics

The global and local benefit of QPE2 and the merging

methods can be seen by looking at Fig. 9, which shows

themean annual total for the 10-yr period. The full radar

coverage is shown mainly to highlight the mitigation of

radar artifacts. It is important to note that the estimates

outside Belgium have not been verified, since it is not the

purpose of the paper. We can, however, expect good

results given the relatively similar meteorological con-

ditions within the radar coverage. The results of

QPE21 KED have little value outside Belgium but are

presented for the sake of consistency with the other

figures. It can be seen that the impact of clutter has been

FIG. 7. The 2005–15 verification of daily accumulation against CLIM for QPE1 (blue triangles) and QPE2 (red

stars) without merging. Only radar–gauge pairs with gauge value exceeding 1mm are selected. Shown are (top)

MAD, (middle) SCS, and (bottom) F20.
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significantly reduced. In particular, the small lines due to

airplanes (mainly southwest of the radar from 200-km

range) and the interference line (south of the radar)

have been removed. However, there are still some lim-

ited areas contaminated by ground clutter that are

slightly amplified by the merging methods. It is impor-

tant to note that only a few gauges are located in areas

with a higher probability of clutter. The underestimation

due to beam blockage is reduced but still visible. This

can be at least partially explained by variations in

propagation conditions. The effect of the bright band

(i.e., concentric circles) onQPE1 is not very pronounced

since it depends on the height of the freezing level and

is therefore spread over the range. The smoothed cir-

cles are properly removed by the usage of the low-

est elevation in QPE2. The underestimation at long

FIG. 8. The 2005–15 verification of daily accumulation (MAD) against CLIM for QPE1 (blue triangles) and QPE2

(red stars). Only radar–gauge pairs with gauge values exceeding 1mm are selected. Shown are the merging methods

(top) ORI, (middle) MFB, and (bottom) KED.
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ranges is reduced using QPE2 and even more using

QPE2 1 KED.

A comparison with mean annual totals of the SPW

and CLIM (up to 180 km) is shown in Fig. 10. Compared

to the SPW network, the correlation (Pearson coefficient)

increases from 0.70 (QPE1) to 0.85 (QPE2). There is

underestimation of radar estimates, even with QPE2,

for values exceeding 1100mm, which are located over

the hills nearby the radar. This can be at least partially

explained by the higher height of valid measurements in

TABLE 4. Verification of daily accumulation against CLIM (up to 150 km). The scores are computed for all days with more than five

valid pairs and then averaged over the 10 years. Valid pairs are those with a gauge value exceeding a threshold (mm) given in the

table header.

0mm 1mm 5mm 10mm

QPE1 QPE2 QPE1 QPE2 QPE1 QPE2 QPE1 QPE2

MAD (mm)

ORI 1.263 1.170 2.437 2.274 4.100 3.731 6.170 5.574

MFB 1.104 1.038 2.107 2.002 3.513 3.252 5.157 4.751

KED 0.920 0.875 1.736 1.660 2.886 2.690 4.257 3.924

SCS (dB)

ORI 2.963 2.770 2.255 2.211 1.622 1.538 1.397 1.312

MFB 2.977 2.782 2.271 2.223 1.635 1.550 1.401 1.333

KED 2.922 2.661 2.011 1.953 1.397 1.331 1.205 1.138

F20

ORI 0.371 0.441 0.216 0.243 0.266 0.305 0.278 0.317

MFB 0.392 0.460 0.264 0.288 0.339 0.374 0.369 0.404

KED 0.405 0.481 0.351 0.370 0.451 0.479 0.496 0.526

FIG. 9. Annual total mean for the 2005–15 period up to 220-km range based on (top left) QPE1, (top right) QPE2,

(bottom left) QPE2 1 MFB, and (bottom right) QPE2 1 KED.
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that region and the effect of orographic enhancement.

The correlation with CLIM increases from 0.54 (QPE1)

to 0.66 (QPE2) and 0.80 (QPE2 1 KED). The lower

correlation with CLIM can be explained by the greater

proportion of gauges located far from the radar.

However, a lower quality of some manual measure-

ments cannot be ruled out. In the study region, it appears

that the mean annual totals range between 600 and

1300mm. There is a general correlation of the mean

rainfall with topography (Fig. 2), and the maximum is

found in the Belgian Ardennes. However, one notes a

significant decrease of precipitation in the region with

the highest topography when crossing the border toward

Germany. This might be due to the positive and negative

orographic effects on precipitation associated with the

dominant southwesterly wind. The actual effect of to-

pography is more difficult to interpret beyond 150km

because of systematic radar underestimation, as seen

in the gauge verification. Those results are in good

agreement with the precipitation maps for the period

1981–2010 obtained by Journée et al. (2015) using in-

terpolated data from CLIM. Using 8 years of opera-

tional radar data in the United Kingdom, Fairman et al.

(2015) also suggest that overshooting and orographic

enhancement are the two main sources of difference

with the gauges.

In Fig. 11, one can see the probability of hourly and

daily accumulation to exceed 10mm. For both statistics,

using QPE2 1 KED allows us to remove most radar

artifacts appearing when using QPE1. The correlation

with daily gauge values from CLIM (not shown) in-

creases from 0.42 to 0.72. The probability of daily rain-

fall to exceed 10mm ranges between 4% and 12% of the

time, and it is correlated with themean annual total. The

probability to exceed 10mm in 1h is a less frequent event

and exhibits higher variations. It is larger in the south-

eastern part of the domain, where it reaches a probability

of about 0.1%. This area is known for a higher probability

of convective storms (Weckwerth et al. 2011).

Figure 12 shows the maximum values of hourly and

daily accumulation with QPE1 and QPE2 without

merging. The effect of merging on the extremes is lim-

ited given the fact that convective cells are poorly re-

solved by rain gauge networks and is therefore not

shown. It is known that precipitationmaxima on a 500-m

square are lower than rain gauge maxima because of

rainfall small-scale variability. However, for QPE1, one

finds values higher than expected from extreme pre-

cipitation models for Belgium based on rain gauges

(Van de Vyver 2012). Those unrealistic extremes, which

are caused by clutter or by a wrong Z–R relationship

applied to hail, are mitigated in QPE2. The radar max-

ima become slightly lower than rain gauge maxima (not

shown) as expected because of the averaging over a

much bigger area. The hourly accumulation maximum

exhibits high small-scale variations but no large-scale

trend. The daily accumulation maximum also shows

variations but at larger spatial scales. A region with

higher values is still present in the southeast.

5. Conclusions

The polar volumetric data from a single-polarization

weather radar (Wideumont, Belgium) have been re-

analyzed from 2005 to 2015 using a new processing chain

(i.e., QPE2) to generate rainfall rates. A static clutter

map and a beam blockage map are used to characterize

the quality of the data. Clutter is identified dynamically

using three different techniques: a comparison with a

cloud-type product from satellite observations, the

identification of unrealistic vertical gradient of reflec-

tivity, and the identification of abnormal horizontal

reflectivity texture. A robust VPR correction has been

applied to mitigate the effect of the bright band and the

FIG. 10. Scatterplots of mean annual total (mm) (left) from QPE1 (blue points) and QPE2 (red triangles) against

the SPW network and (right) from QPE1 (blue points) and QPE2 1 KED (red triangles) against CLIM.
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underestimation at long ranges. A distinction between

stratiform and convective precipitation is made using an

enhanced version of the Steiner algorithm. Different

VPR corrections and Z–R relationships are applied for

the two precipitation regimes. Themaximum reflectivity

is set to 55dBZ for mitigating contamination by hail.

Using a dense hourly rain gauge network, linearly ac-

cumulated radar rainfall rates are adjusted bymean field

bias. A kriging with external drift using a climatological

exponential variogram with 10-km range and a square-

root transformation is also applied to radar and rain

gauge hourly rainfall estimates.

All algorithms have been fine-tuned on a selection of

13 cases with various meteorological situations. A vali-

dation of the cases is performed using an independent

daily rain gauge network. The results for three different

scores (MAD, SCS, and F20) reveal a small to high

benefit of QPE2 and the merging methods when com-

pared to interpolated elevations at 800m above radar

level (QPE1). The VPR correction is responsible for

most of the benefit while beam blockage correction and

the alternative Z–R relationships hardly improved the

results. It is interesting to note that the quality-controlled

lowest elevation exhibits similar performance as QPE1.

A 10-yr verification of daily precipitation amounts has

been performed against the independent daily network

using the same scores. A categorical verification of

values exceeding 1mm shows that the false alarm ratio is

reduced and the probability of detection is increased

with QPE2, which are mainly due to clutter mitigation

and VPR profile correction, respectively. Computing

three different scores at each gauge location for values

exceeding 1mm reveals a clear benefit of QPE2 versus

QPE1, especially at short and long range. In addition,

QPE2 allows us to increase the range with good-quality

estimates from 100 to 125km or roughly 50% more

coverage. Using the merging methods allows further

improvements but reduces the benefit of QPE2, except

at short range. The average improvements from QPE1

toQPE21KED for gauges up to 150km are 38%, 35%,

and 80% for MAD, SCS, and F20, respectively. The

average of daily statistics exhibits smaller improvements

with 32%, 14%, and 52% obtained for the three scores

with QPE2 1 KED. This suggests that larger benefits

FIG. 11. Probability of (top) hourly and (bottom) daily accumulation to exceed 10mm for 2005–15 based on (left)

QPE1 up to 240-km range and (right) QPE2 1 KED up to 220-km range.
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are obtained for widespread situations. The benefit in-

creases when considering higher rainfall thresholds, and

with 10-mm daily amounts the improvements are 36%,

18%, and 89%, respectively.

The 10-yr mean annual total clearly shows the miti-

gation of radar artifacts by QPE2, especially the clutter

and the underestimation at long range. The correlation

with rain gauge values increases from 0.54 for QPE1 to

0.80 for QPE21KED. The probability to exceed 10mm

for hourly and daily accumulation further highlights the

improvements made by QPE2 and the merging methods

with mitigation of artifacts and increased correlation

with rain gauge values. Looking at the 10-yr maximum

of hourly and daily accumulation reveals unrealistic high

values for QPE1 compared to gauges because of clutter

and hail. Using QPE2 mitigates those artifacts with

more realistic hourly values slightly lower than rain

gauge maxima as expected because of the bigger area of

the radar estimate.

We would like to stress that finding parameters (e.g.,

reflectivity thresholds) that perform well in all condi-

tions is particularly difficult. This task represents a

significant part of the time spent on this study. For some

situations with strong horizontal temperature gradients,

the global VPR correction might not work properly, but

this effect is limited by using data from a 40-min time

window. While the most important errors have been

mitigated, the processing of radar volume data could be

further improved. One thinks of using dynamic beam

blockage correction, using other radars to deal with at-

tenuation, taking into account precipitation advection

(e.g., using optical flow) when computing accumulation

and refining the kriging with external drift (e.g., with a

real-time variogram estimation). The use of model

output like temperature could also help in the validation

of the brightband identification. The verification of the

precipitation dataset against rain gauge values gives a

lower bound on the quality of the estimates. Therefore,

quantifying the uncertainty of the new estimates remains

a challenge. A new dual-polarization radar has been in-

stalled in Belgium since 2013 and volume data are

archived. It will be interesting to see if the recently de-

veloped QPE algorithms making use of polarimetric in-

formation can significantly improve the scores of QPE2.

FIG. 12. Max (top) hourly and (bottom) daily accumulation for 2005–15 based on (left) QPE1 and (right) QPE2 up

to 240-km range.
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Given the good results obtained by the new radar

processing chain, it is going to be implemented in real

time. Since the radar now performs a 15 elevation scan

every 5min, further improvements are expected. The

enhanced operational QPE will propose a better input

for the nowcasting systems running at RMIB, Integrated

Nowcasting through Comprehensive Analysis in Bel-

gium (INCA-BE), and Short-Term Ensemble Pre-

diction System (STEPS; Foresti et al. 2015). The

validated 10-yr dataset produced here, which will be

extended each year, can be used as the basis for further

studies, especially in hydrology. A direct application is

to generate a rainfall climatology and compare the re-

sults with conventional climatology based on rain

gauges. One of the main benefits of using radar obser-

vations is the ability to compute areal rainfall extreme

statistics for different area sizes.
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1. Introduction

Natural events and disasters can lead to very different kinds of dam-
age. Typically, damage types are classified into direct vs indirect and
tangible vs intangible effects (Jonkman et al., 2008). Indirect damage oc-
curs as the result of direct damage and has a different time frame and/or
space dimension; that is, it occurs after the event has passed and/or out-
side the disaster area (Smith and Ward, 1998). Tangible damage can
easily bemonetized, while putting amonetary value on intangible dam-
age (not traded on the market) is more difficult (Smith and Ward,
1998). Examples of intangible, direct damage are fatalities and injuries,
moral damage and inconvenience such as transportation problems or
environmental losses. Intangible, indirect types of damage include psy-
chological or (mental) health problems and political, societal or envi-
ronmental consequences (Jonkman et al., 2008). Neglecting indirect,
intangible effects is problematic (see among others Parker et al., 2007;
Messner and Meyer, 2006; Murphy and Gardoni, 2006) as it strongly
and wrongly decreases the estimated benefits when protection and in-
vestment decisions are made.

This paper investigates an intangible, indirect effect of one specific
kind of natural disaster, namely, flooding. Most of the research on
flood damage focuses on fluvial floods caused by a river overflowing
(for Flanders, see Kellens et al., 2013) and uses “depth–damage” func-
tions to measure short-term direct and tangible damage. We analyze
the well-being of victims of pluvial floods, which are floods caused by
recasting and management of
funded by the Belgian Science

t, Belgium.
otegem).
extreme rainfall events that cannot be processed by existing urban
drainage systems. This flood type may be less spectacular than fluvial
floods, but is more common in urbanized areas.

There are very few studies on risk assessmentwhich use individuals'
well-being as the outcome variable. Most of the research addressing in-
tangible and indirect effects concentrates on mental health as outcome
variable (for a warning about the effect of climate change on mental
health, see Berry et al., 2010). In the field of epidemiology, many
scholars have demonstrated important mortality and health effects
both shortly and long after floods took place (for an overview, see,
e.g., Ahern et al., 2005; for an application of the effect of floods onmen-
tal health in Brisbane, see Alderman et al., 2013). Already in 1970, a fa-
mous study by Bennet (1970) showedmore psychological problems for
victims of the flooding in Bristol during the 12 months after the flood
compared to a control group, in addition to increased deaths and hospi-
tal referrals. In many later studies, comparable effects were found on
anxiety, depressions, and posttraumatic stress (Adeola, 2009; Bourque
et al., 2006; Liu et al., 2006; Tapsell and Tunstall, 2008; Tobin and
Ollenburger, 1996). These negative psychological effects have been
shown to linger for years after a flood event (Hajat et al., 2003; Tapsell
and Tunstall, 2008). Reacher et al. (2004) discovered that victims of
floods suffer more than other people from diseases and other physical
issues such as gastrointestinal problems or earache, which clearly can-
not be explained directly by the flood itself. This research on themental
health effects of disasters can be complementary to studies which take
individual well-being as the outcome variable. The main difference is
that (mental) health effects can be more directly linked to the event
while effects on well-being are much more indirect and therefore less
clearly attributable to the flood event.

For this study, we consider subjectivewell-being,making use of self-
reported information, and we compare two indicators: a traditional

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eiar.2015.12.001&domain=pdf
mailto:Luc.VanOotegem@UGent.be
http://dx.doi.org/10.1016/j.eiar.2015.12.001
www.elsevier.com/locate/eiar


1 LEVO is the Dutch acronym for “LEvensomstandigheden in Vlaanderen Onderzocht”
(research on living circumstances in Flanders). It is a yearly large-scale survey organized
in the context of a research seminar at Ghent University. The field work is carried out by
Ghent University students. Organization, supervision, controlling and cleaning is per-
formed by the authors.
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satisfaction-with-life indicator (as in Diener, 2000; Blanchflower and
Oswald, 2004, 2008; Dolan et al., 2008; Stiglitz et al., 2009; Helliwell
et al., 2012) and a “perceived capabilities” indicator (Van Ootegem
and Verhofstadt, 2012 and forthcoming). Capabilities are defined as
the options or opportunities individuals have in life, which is essential
to evaluate individual well-being (Alkire, 2005; Fleurbaey, 2006;
Gasper, 2007; Kuklys, 2005; Robeyns, 2006; Schokkaert, 2009; Sen,
1985; 1993). The capabilities framework is theoretically and ethically
appealing, but implementation is a real challenge. Not only do
researchers need a lot of data, but they also have to make choices in
order to first define and measure the different dimensions of an
individual's set of capabilities and then aggregate these dimensions to
obtain a composite index. This is particularly challenging as part of an
individual's capabilities is – by definition – not observable. As far as
we know, only one study applied the capability approach to the impact
of natural disasters: Gardoni and Murphy's (2010) Disaster Impact
Index (DII). The DII was illustrated for four disasters: earthquakes in
Japan, Pakistan and the United States, and hurricane Katrina. However,
from a theoretical point of view, a capabilities approach should focus
on people (individuals or households), not countries. Therefore, we
opted to directly ask people to evaluate their opportunities or capabili-
ties (Van Ootegem and Verhofstadt, forthcoming). Proceeding as such,
we sacrificed some of the objectivity of the concept of capabilities in
order to have one composite indicator at the level of individuals. The di-
mensions or weights are then chosen by the people themselves, not the
researchers.

The flood events selected for this study took place at various mo-
ments for various people, but individual well-being was measured for
one specific year (2013). Consequently, it is possible that some time
has passed and other events have occurred in between the flood event
and the measurement of well-being in 2013. Similar to the literature
on the impact of unemployment on well-being (e.g., Clark et al., 2010;
Carr et al., 2011; Lange, 2013), we hypothesized that (past) flooding
“scars” because it “scares” (terminology introduced by Knabe and
Rätzel, 2011). It is then the fear ofmore (future)flooding that influences
people's well-being rather than having experienced a flood as such. The
specific relation between a prior experience of a natural disaster and
subsequent behaviour and quality of life was studied in detail for the
Katrina catastrophe in Adeola (2009). O'Donnell et al. (2014) stated
that life evaluation questions such as on life satisfaction “capture a re-
flective assessment of how one's life is going” and “are the result of a
cognitive evaluation on the part of the subject rather than a description
of current emotional state” (p. 28). In contrast, the capabilities concept
has – by definition – a more forward-looking perspective as it reflects
opportunities in life and “respects the individual's ability to pursue
and realise the goals that he or she values” (Stiglitz et al., 2009, p.
152). This distinction was also confirmed by the analysis in Van
Ootegem and Verhofstadt (forthcoming): answering the satisfaction
question is a more backward-looking reflection, thinking about capabil-
ities and opportunities refers to a more forward-looking exercise.
Therefore, the difference between past and (fear for) future flooding
may be relevant when comparing satisfaction and capabilities.

In the next section, we explain the data collection methodology and
compare the well-being of flood victims with that of non-victims using
information on satisfaction and perceived capabilities. Section three ex-
amines the determinants (multivariate) of the well-being of flood vic-
tims and non-victims, and section four concludes.

2. Comparing flood victims with non-victims

We compared data from two sources. First, in 2013, a survey was
sent out to identified victims of pluvial floods in Flanders (the northern
Dutch-speaking part of Belgium). This survey asked the participants to
evaluate several aspects of their well-being and to provide information
about the flood disaster they were confronted with. Specifically, they
were asked about the severity of theflood (depth, duration and tangible
damage they suffered), the recurrence of floods (how often they have
been the victim of floods in the past) and their fear of future flooding.
This data collection is part of the Plurisk project about pluvial risks
(see infra) and is therefore referred to as the Plurisk survey. Our second
source is a representative survey (LEVO1 2013) of 1291 Flemish respon-
dents,most ofwhomhave of course not experiencedflooding. Only 6.1%
of the LEVO respondents have been a victim of a pluvial flood, while
5.3% reported another (non-pluvial) flood-related problem. These par-
ticipants were asked to assess the same aspects of their well-being as
in the Plurisk survey, and thus act as the control or reference group.

The Plurisk survey was distributed among private households that
were presumed to be affected by one or more pluvial floods. The survey
was sent to 3963 addresses all across Flanders. Themajority of these ad-
dresses come from a database of the Belgian national disaster relief
fund. This fund collected the addresses of pluvial flood victims, but
only until 2007. The reason for this is a change in the legislation that
year, obliging insurance companies to provide fire and flood insurance
in one package, thus ending the need for government compensations
that were provided by the disaster relief fund (Portaal Belgische
overheid, 2012). The lack of recent data was tackled in two ways. First,
we included 260 addresses from records of fire and police departments
as well as local authorities in villages and cities that were flooded in re-
cent years during a pluvial event. Second, we asked people to fill out the
questionnaire for the most severe flood since 2000 at their address.
Many of the addresses in the national disaster relief fundwere expected
to be quite prone to pluvial floods, for instance, because they are close to
malfunctioning sewer systems or in lower parts of the village or city. As
such, a fairly high number of victimswere confrontedwith flooding on a
regular basis. Since participants were asked to take the worst flood as a
reference, they could also report floods after 2007. Twenty-one percent
of the reportedfloods occurred after the year 2007. A total of 973 house-
holds completed the survey (24.6% of our sample). In a first step, 353
files were deleted, 260 of which were deemed not useful because re-
spondents claimed never to have suffered damage from pluvial floods.
A number of respondents suffered from damage caused by hail or
winds. This type of damage was not separated from flood damage in
the disaster fund database. In addition, some people moved to the ad-
dress found in the disaster fund database after the recorded pluvial
event took place at that address. The files of 93 other respondents
were also deleted, mainly because they turned out to be small shop-
keepers, farmers or other self-employed businessmen reporting the
damage to their business. The data of the remaining 620 respondents
were used to perform further analyses. In Van Ootegem et al. (2015),
we examine the reportedmonetary damage and estimate (depth) dam-
age functions. We found flood depth to be an important predictor of
damage, but with a different impact depending on whether the flood
occurred on the ground floor or in the basement. Non-hazard indicators
(e.g., risk awareness) are also important for the predicted damage, re-
vealing that warning systems and policies can be valuable.

The data from the Plurisk survey are compared to self-reported in-
formation obtained from the LEVO survey. As the LEVO respondents
are used as a control group of non-victims of flooding, we excluded
147 respondents that report that they have experienced flooding. How-
ever, including these respondents does not alter our conclusions. Since
the Plurisk sample does not contain any students, this group (100 re-
spondents) was also deleted from the control group. Another five re-
spondents were deleted because too many variables were missing.
This resulted in a sample of 1039 respondents. These data were then
weighted to obtain a sample representative for the Flemish population
according to life situation, gender and age distribution. The weighted



Table 1
Socio-economic indicators of respondents in the two samples.

Indicator Plurisk LEVO-weighted

Gender
Male 55.4% 49.6%
Female 44.6% 50.4%

Occupational situation
Working full-time 37.5% 44.0%
Working part-time 8.2% 14.5%
Retired 47.6% 28.0%
Unemployed 1.5% 4.4%
Disabled with benefits 2.5% 3.9%
Unpaid homemaker 2.7% 5.2%

Education
Basic education 10.9% 12.6%
Lower secondary 17.0% 17.1%
Higher secondary 28.6% 33.9%
Bachelor 25.1% 20.8%
Master or post-university 18.3% 15.6%
Age (mean) 60.03 51.83

Table 3
Pearson correlation between the estimated future flood probability and well-being
(satisfaction and capabilities).

Satisfaction Capabilities

Ground floor −.020 −.120⁎⁎⁎

Garage −.040 −.097⁎⁎⁎

Basement −.033 −.128⁎⁎⁎

⁎⁎⁎ Correlation significant at the 0.01 level (data LEVO and Plurisk merged).
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sample contains an equivalent of 847 cases. Table 1 compares some
socio-economic characteristics of the two samples. The average age of
60 in the Plurisk database shows that many elderly sent back the ques-
tionnaire. This higher average age is also reflected in the fact that over
45% of the respondents are retired.

We used two variables as proxies for subjective well-being. Respon-
dents were asked about their general satisfaction: “How is your satisfac-
tion with life in general?”, and about their perceived capabilities: “How
do you consider your possibilities/opportunities in life in general?” Both
questions had to be rated on a scale from 0 (“very unsatisfied” and “to-
tally insufficient”) to 10 (“very satisfied” and “excellent”). In Table 2,
flood victims (Plurisk) are compared with people that have never
been exposed to floods (LEVO). The average life satisfaction scores are
not significantly different. However, there is a difference in perceived
capabilities: the average capabilities are significantly (p = 0000)
lower for the flood victims (7.01 b 7.45).

All respondents were asked to estimate the probability of becoming
victims of a flood in the next five years. On average, the LEVO respon-
dents reported probabilities of 4.5%, 4.9% and 5.5% for a flooding of the
ground floor, the garage and the basement, respectively. For Plurisk re-
spondents, the average probabilities are much higher, 14.0%, 21.4% and
27.5%, respectively. Combining the Plurisk and LEVO data reveals that
the probability of future flooding is not correlated with life satisfaction.
For perceived capabilities, however, the negative correlation is signifi-
cant (see table 3). This probability of future flooding can be considered
as a proxy for the fear of future floods (i.e., the idea that past flooding
scars because it scares).

3. Determinants of the well-being of flood victims and non-victims

We now know that flood victims report lower perceived capabilities
and a higher probability of future flooding. However, the well-being of
people defined andmeasured in 2013will be influenced byother factors
and events than only a flood disaster. Therefore, our interpretationmust
be cautious. While depth–damage correlations can be interpreted as
real and direct effects of the flood, the well-being correlations do not
Table 2
Mean well-being (satisfaction and capabilities) according to flood history.

N Mean

Satisfaction LEVO 846 7.25
Plurisk 536 7.12

Capabilities LEVO 834 7.45
Plurisk 536 7.01
imply causality. The difference in capabilities may be caused by other
differences in the sample characteristics. Therefore, we proceed with a
multivariate analysis, which enables us to evaluate the relative impor-
tance of a flood event for individual well-being, taking into account
the effect of gender, age, income and the reported situation on health,
social life and expectations (the robustness analysis also includes per-
sonality traits). First, the variables for themultivariate analysis were se-
lected based on a short overview of the empirical literature on the
determinants of subjective well-being.

Many studies have summarized the main factors influencing
subjective well-being (among others, Blanchflower and Oswald, 2004;
Dolan et al., 2008; Stiglitz et al., 2009; Helliwell et al., 2012; O'Donnell
et al., 2014). The key determinants mostly identified are gender, age,
income, education, work, family life, social capital, religion, environment,
mental and physical health. For the regression analysis in this study (see
infra), the following indicators were selected: gender, age and age
squared, personal income, social life and health. For “social life” and
“health,” respondents were asked to indicate to what extent they agreed
with the followingquestions using a scale from0 (completely disagree) to
10 (completely agree): “I have a good social life (e.g., having friends, being
part of associations)” and “I considermyself to be in goodphysical health.”
“Age squared”was included to capture the possibility that happiness is U-
shaped over the life cycle (see, for example, Blanchflower & Oswald,
2008). As an income variable, we use “personal income.” Alternatively
for personal income, we used models including educational level and
the current socio-economic position. When we do this, the results for
the flood variables remained unchanged. Given the correlation between
income and education, on the one hand, and between age, socio-
economic position, social life and health, on the other hand, only income
was retained as variable in the regression models that are presented.

The importance of expectations is indisputable in happiness re-
search (e.g., Veenhoven, 1991; Diener, 2000; Helliwell et al., 2012).
Therefore, we included a measure for expectations in the analysis (rat-
ing having high expectations on a numeric 7-point scale). In a robust-
ness analysis, we also included traits related to personality: emotional,
extravert, conscientious, altruistic and creative. This did not affect the
results of the study.

After controlling for gender, age, income, health situation, social life
and expectations, we found that both past and possible future floods
have a significant importance for perceived capabilities but not for life
satisfaction (Table 4).When both past and possible future floods are in-
cluded in the same model, both remain significant, although at a lower
significance level because of their correlation. Thosewith a past flooding
experience have an average estimated future probability of 14%, while
this is only 4% for the group of non-victims.

There is no effect of gender on any of the well-being proxies, in con-
trast to health and social life, which significantly influence both well-
being indicators. Income is especially important for the capabilities indi-
cator. All the estimated coefficients are rather stable when past flooding
is substituted by future expected flooding. Alternative estimations (re-
placing health or social life with the educational level and the current
socio-economic situation, including personality traits) produce similar
results for both flood variables2.
2 Available on request from the authors.



Table 4
OLS regressions for satisfaction and capabilities—unstandardized coefficients.

Satisfaction Capabilities

Constant 1.938⁎⁎⁎ 1.801⁎⁎⁎ 2.839⁎⁎⁎ 2.921⁎⁎⁎

Dummy for being a
flood victim 0.037 −0.324⁎⁎⁎

Future probability of
flood on ground floor 0.000 −0.006⁎⁎⁎

Gender (dummy for men) 0.048 0.046 0.050 0.031
Age 0.029* 0.033⁎⁎ 0.018 0.016
Age2 −0.000 0.000 0.000 0.000
Health 0.199⁎⁎⁎ 0.208⁎⁎⁎ 0.173⁎⁎⁎ 0.178⁎⁎⁎

Social life 0.222⁎⁎⁎ 0.216⁎⁎⁎ 0.255⁎⁎⁎ 0.247⁎⁎⁎

Personal income
(in thousands, €) 0.110⁎ 0.110⁎ 0.227⁎⁎⁎ 0.212⁎⁎⁎

High expectations 0.222⁎⁎⁎ 0.225⁎⁎⁎ 0.127⁎⁎⁎ 0.128⁎⁎⁎

Prob N

F = 0.000
Prob N

F = 0.000
Prob N

F = 0.000
Prob N

F = 0.000
Adj. R2 =

0.184
Adj. R2 =

0.186
Adj. R2 =

0.295
Adj. R2 =

0.286

⁎⁎⁎ p b 0.01 (data LEVO and Plurisk merged).
⁎⁎ p b 0.05 (data LEVO and Plurisk merged) .
⁎ p b 0.10 (data LEVO and Plurisk merged).
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In summary, when comparing flood victims with non-victim re-
spondents, we found that past and expected future flooding are corre-
lated with a lack of reported capabilities in life. The question on
perceived capabilities appears to be interpreted as a question on the
person's opinion about future possibilities and opportunities in life. In
contrast, flooding information does not correlate with reported life
satisfaction.

4. Conclusion

We compared two samples of Flemish respondents (2013), one
comprising victims of a flood disaster in the past (Plurisk) and the sec-
ond comprising non-victims of a flood (LEVO). We used two proxies
for subjective well-being: the well-known satisfaction-with-life indica-
tor and an alternative indicator that asks for the perceived capabilities.
The latter is different from the capabilities application to disasters by
Gardoni and Murphy (2010) because they investigated the societal im-
pact of natural disasters whereas our study is based on self-reported
data at the individual level.

When comparing flood disaster victims with non-victim respon-
dents, we observed that past flooding is not correlatedwith life satisfac-
tion. Conversely, having been a victim of floods is associated with a lack
of capabilities in life. Particularly, there is a significant negative correla-
tion between perceived capabilities and the fear of future flooding. This
indicates that a flood “scares.” These findings confirm that “there is a
major negative impact on general quality of life” (Adeola, 2009, p.
483), quality of life being conceptualized here as reported capabilities.
Looking back to the past, people have adapted to what happened, and
therefore reported satisfaction is not influenced by the flood event.
Looking forward, being afraid of a next flood, is translated into lower re-
ported capabilities.

These results suggest that monetary damage and life satisfaction are
not the only variables needed to assess the possible impact of a disaster.
Using satisfaction as metric for subjective well-being would imply that
victims do not need to be compensated since our findings show no sig-
nificant difference in life satisfaction. Therefore, compensation based on
a capabilities deficiency should be considered, as this does yield a signif-
icant result. As such, these findings call for a reflection on the use of
well-being concepts when addressing the possible impact of disasters,
also when it comes to compensation. There must be a re-evaluation of
which notions are appropriate for which application for which kind of
disaster.

The significant differences between life satisfaction and perceived
capabilities found in Van Ootegem and Verhofstadt (forthcoming) are
confirmed. It is intuitively obvious that the two concepts as such pro-
voke different life evaluations. We can now add that a disaster (a
flood) can be correlated with significant differences between the two
concepts. The question remains whether this is also the case for other
events or disasters. For the design of a compensation policy for insur-
ances or governmental support, it is crucial to know which kind of po-
tential damage is relevant when going beyond direct and monetary
damage.

Another important route for further research is a longitudinal inves-
tigation of the exact nature of the causality between disasters anddiffer-
ent well-being concepts. Our findings support the idea that a (flood)
disaster can make people “scared” for the future because of the “scars”
that it provokes. This scarring effect of certain events on subjective
well-being might thus stretch much further than its traditional use in
research about the impact of unemployment on well-being.
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A B S T R A C T

This paper proposes a new object-based storm tracking algorithm, based upon TITAN (Thunderstorm
Identification, Tracking, Analysis and Nowcasting). TITAN is a widely-used convective storm tracking algorithm
but has limitations in handling small-scale yet high-intensity storm entities due to its single-threshold identifi-
cation approach. It also has difficulties to effectively track fast-moving storms because of the employed matching
approach that largely relies on the overlapping areas between successive storm entities. To address these defi-
ciencies, a number of modifications are proposed and tested in this paper. These include a two-stage multi-
threshold storm identification, a new formulation for characterizing storm's physical features, and an enhanced
matching technique in synergy with an optical-flow storm field tracker, as well as, according to these mod-
ifications, a more complex merging and splitting scheme. High-resolution (5-min and 529-m) radar reflectivity
data for 18 storm events over Belgium are used to calibrate and evaluate the algorithm. The performance of the
proposed algorithm is compared with that of the original TITAN. The results suggest that the proposed algorithm
can better isolate and match convective rainfall entities, as well as to provide more reliable and detailed motion
estimates. Furthermore, the improvement is found to be more significant for higher rainfall intensities. The new
algorithm has the potential to serve as a basis for further applications, such as storm nowcasting and long-term
stochastic spatial and temporal rainfall generation.

1. Introduction

Extreme convective rain storms may cause pluvial flooding and
potentially severe socio-economic consequences. For this reason, con-
vective events have been a fundamental object of study in the hydro-
logical and meteorological field. Convective weather systems imply
highly dynamic spatial and temporal processes which understanding
remains a challenging issue.

The development of high resolution radar products in recent years
(Einfalt et al., 2004; Seo et al., 2015; Thorndahl et al., 2016) has sig-
nificantly advanced the observations of these phenomena. Due to its
ability to better capture the spatial and temporal variability of the
rainfall fields, high resolution weather radars allow for a more detailed
analysis of the forming and movement of convective storms (Emmanuel
et al., 2012; Liguori et al., 2012; Sebastianelli et al., 2013; Vulpiani
et al., 2015).

Proper study of the spatial organization patterns and the temporal
evolution of convective precipitation fields demands accurate tracking
algorithms. There are two main types of methods that have been ex-
tensively developed to approach the storm tracking issue when using

radar data; these are field and object based methods (Reyniers, 2008).
The general idea of the former (also known as field trackers), is to
compute a field of displacements/movement vectors over a continuous
spatial grid by comparing two successive reflectivity/rainfall rate radar
images. The images are often divided into grid blocks with an identical
size. Then, the advection vectors of the blocks are obtained by using a
certain measure of similarity between these two images. These methods
have proven to provide a good ‘global’ motion estimation for the entire
radar image field. For example, TREC (Tracking Radar Echoes by Cor-
relation) method employs ‘spatial’ correlation coefficients to identify
the movement of each of the pre-defined grid blocks (Rinehart and
Garvey, 1978; Tuttle and Foote, 1990); VET (Variational Echo
Tracking) and optical flow based methods derive the storm movement
for each pixel location by determining the field of displacements that
minimize the overall ‘variation/difference’ between two successive
radar images (Bowler et al., 2004; Germann and Zawadzki, 2002;
Laroche and Zawadzki, 1994; Laroche and Zawadzki, 1995; Pierce
et al., 2012; Pierce et al., 2004).

In contrast to the field trackers, the object based tracking methods
(or cell trackers) derive motion by first detecting storm objects (or
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entities) following a particular identification process, and then, asso-
ciating similar entities on two successive images based upon specific
matching techniques. The final motion estimate is thus obtained by
computing the associated object centroid displacements. The fact that
storm entities can be identified and tracked provides this types of
methods a great potentiality to deal with the smaller high intensity
rainfall details shown in high resolution radar images (Lakshmanan
et al., 2003). One of the well-known object based tracking algorithms in
the literature is the TITAN (Thunderstorm Identification, Tracking,
Analysis and Nowcasting) algorithm (Dixon and Wiener, 1993). TITAN
was specifically built to identify, track and further forecast convective
storms and has been routinely used during the last two decades (García-
Ortega et al., 2009; Gascón et al., 2015; Goudenhoofdt and Delobbe,
2013; Han et al., 2009; Potts, 1993; Thorndahl et al., 2014; Yang et al.,
2014). Despite its good performance in general, the settings of the
original TITAN has been found unable to fully exploit the advantages
that high resolution radar data sets can provide, as further explained in
Section 3.1. For that reason, a new enhanced adapted version of the
original TITAN algorithm able to better handle high resolution data is
implemented in this work.

This paper is organized as follows. The data used for testing the new
algorithm are described in Section 2. An overview of the TITAN algo-
rithm, the deficiencies identified in its original structure and the
treatments included to tackle them are introduced in Section 3, as well
as the methodology applied to evaluate the new algorithm perfor-
mance. Results are shown and discussed in Section 4. Lastly, in Section
5, main conclusions are presented, and future expectations of this work
are proposed.

2. Data

High-resolution weather radar data provided by the Royal
Meteorological Institute of Belgium (RMI) are used to develop and to
evaluate the proposed storm tracking algorithm. Also known as the
Belgian radar composite (Reyniers, 2008), the RMI radar product, is a
composite of the Wideumont and Zaventem radar observations. Both
the Wideumont and Zaventem radars, which location is depicted in
Fig. 1, are single-polarization C-band Doppler radars that utilize 5 and 1
PPI elevation scanning strategies, respectively, to provide horizontal
reflectivity data up to a range of 240 km. After applying a number of
quality-control (QC) procedures, a pseudo-CAPPI composite reflectivity
product at a height of 1500 m is produced at 5-min temporal and 529-m
spatial resolution. For a detailed description of QC procedures that have
been applied to the Belgian composite, readers are referred to Delobbe
and Holleman (2006) and Foresti et al. (2016).

Radar reflectivity (dBZ) data from a total of 18 convective storm
events over the entire Belgium area between 2012 and 2014 were
employed in this paper. These events were selected based upon the
convective storm classification methodology developed by
Goudenhoofdt and Delobbe (2013). The selection process was focused
on choosing storm events containing clear ‘convective systems’, namely
with well-defined clustering structures with high reflectivity storm
cores (Goudenhoofdt and Delobbe, 2013). Among these selected events,
six of them (hereafter called, ‘calibration events’) were randomly
chosen to tune the key parameters of the proposed tracking algorithm,
and the rest of 12 events (hereafter, ‘evaluation events’) were used for
evaluation. The list of events is summarized in Table 1.

3. Methodology

3.1. Original TITAN scheme

In the implementation of the original TITAN algorithm, convective
storm entities are identified by defining contiguous regions that exceed
a single reflectivity threshold value (i.e. 35 dBZ). Afterwards, TITAN
employs a combinatorial method to match these identified entities

between two successive time steps, followed by an additional scheme
able to handle splitting and merging processes.

The combinatorial method is formulated as an optimization pro-
blem, of which the aim is to minimize a cost (objective) function that
indicates the similarity of storm entities. This cost function includes a
couple of geometrical and physical features of storm entities: the ve-
locity vectors (distance between entity centroids) and the difference in
volume of the storm entities under consideration. In addition, some
restrictions are imposed to narrow down and to ensure the feasibility of
the solution domain. Constraints on the velocity parameter, and over-
lapping techniques (i.e. it is assumed that, if two storm entities overlap
between two successive time steps, it is very likely that they are same
entities at different time steps) are used for such a purpose.

Finally, the Hungarian numerical method is employed to solve this
optimization (minimization) problem. Movement vectors representing
the displacements of the centroids between each pair of ‘matched’ en-
tities are eventually obtained. Afterwards, merging and splitting si-
tuations are handled using a ‘short-term’ forecast scheme. A merging
situation occurs when the centroids of two or more storm entities at
current time step are expected to be located within the same storm
entity at the next time step. In contrast, a splitting situation takes place
when a storm entity at the current time step is expected to overlap with
the centroids of two or more storm entities at the next time step.

In spite of a generally good performance in tracking convective
storm entities, a number of deficiencies can be identified in TITAN.

First, the single thresholding setting can effectively identify large
convective systems, but appears to be insufficient to well isolate small-
sized yet high-intensity storm details that can be observed in high re-
solution radar data images. In turn, single-thresholding approaches
often lead to false merging problems in the identification process (Han
et al., 2009; Handwerker, 2002), i.e. when two or more smaller in-
dependent storm entities are wrongly identified as a larger unique one.

Second, overlapping techniques may show difficulties in matching
storm entities in fast moving storm cases since it is likely that no
overlapping at all may occur (Dixon and Seed, 2014). Similarly, this
lack of overlapping may also be largely magnified if high-intensity
storm details are captured because smaller sizes are expected.

Third, the current criteria used to quantify the similarity of storm
entities at successive time steps (merely dependent on the volume dif-
ferences of storm entities) may not be able to cope with the highly
dynamic behavior of small-sized storm entities and therefore it may not
be able to provide satisfactory results when matching them.

Finally, motion estimates obtained from object centroid displace-
ment may lack accuracy due to, first, object mismatching outcomes
resulting from the use of overlapping techniques and the oversimplified
criteria of similarity and second, the random centroid displacement
problem (Han et al., 2009). This problem occurs in cases where a storm
entity changes drastically its size or shape at two successive images due
to the threshold application and it specially affects to larger size and
false merged storm entities. As a consequence of these motion estimates
inaccuracies, the algorithm may also show difficulties when handling
merging and splitting situations, since possible unreliable motion esti-
mates may be employed in the ‘short-term’ forecast scheme used to
identify splits and mergers.

In order to overcome these known deficiencies, this study applies
three main modifications to the original TITAN structure. Techniques
that benefit from the advantages of having a high resolution data set,
are incorporated. As shown in Table 2, first, a multi-threshold identi-
fication method is implemented to substitute the original single-
threshold identification approach. Second, a more sophisticated
matching scheme that avoids overlapping techniques by integrating a
field tracker to optimize the combinatorial method, is constructed. It
also makes use of a more comprehensive cost function and includes a
new approach to deal with merging/splitting situations. Third, a more
elaborated methodology to obtain motion estimates is developed.

These proposed changes aim at 1) creating an enhanced
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identification methodology capable of better capturing convective
storm details, 2) implementing a more robust matching scheme able to
improve the matching association, and 3) obtaining more accurate
motion estimates.

The implemented identification and matching schemes as well as
the methodology used to obtain motion estimates are presented below.
Right after, the methodology employed to evaluate the new tracking
algorithm performance is introduced.

3.2. Two step heuristic multi-threshold identification method

During the last years, multi-threshold approaches have proven to
provide added values to the storm identification process (Han et al.,
2009; Handwerker, 2002; Hering et al., 2004; Johnson et al., 1998;
Jung and Lee, 2015; Kyznarová and Novák, 2009; Novo et al., 2014).
These methods enable better capturing the small-sized yet high-in-
tensity storm details contained in high resolution data images. In this
work, a two-step multi-threshold method is proposed to replace the
original single-threshold method in the original TITAN. As shown in
Fig. 2, this method consists of two main steps.

In the 1st step, the original radar image is decomposed into two
different structural levels by using two different threshold values. Thus,
by identifying contiguous regions of pixels that exceed 35 dBZ and
40 dBZ, two different sets of rainfall storm entities are initially isolated.

These sets are referred hereafter as large and small structural level
entities (LSLEs, SSLEs). The selected thresholds are in accordance with
the values used in Dixon and Wiener (1993) to define ‘convective
storms’ and ‘individual convective cells’.

In the 2nd step, a multi-threshold segmentation (MTS) technique is
applied to each of the structural level entities with the purpose of, first,

Fig. 1. Location of the C-band weather radars.

Table 1
Selected events employed for calibration and evaluation.

Calibration events Period Evaluation events Period Evaluation events Period

A 10/8/2014 13:15–18:15 1 9–10/6/2014 22:30–03:45 7 10/6/2014 19:15–23:50
B 9/6/2014 13:30–19:40 2 9/6/2014 5:40–12:00 8 4/10/2014 15:30–18:20
C 27/7/2013 4:40–7:30 3 8/5/2013 14:00–22:30 9 3/10/2012 14:00–19:30
D 27/7/2013 17:50–23:30 4 10/7/2014 19:20–23:50 10 19/7/2014 16:50–20:30
E 23/9/2012 20:45–23:45 5 13/7/2014 13:00–20:00 11 20/5/2014 16:30–23:10
F 8/3/2014 13:15–20:00 6 27/6/2014 13:50–20:05 12 18/7/2014 17:30–22:40

Table 2
Main modifications applied to the original TITAN algorithm.

Original TITAN New algorithm

Identification
scheme

Single threshold method Multi-threshold method

Matching schemes Optimization method
Velocity constrains and
overlapping techniques

Field tracker integration

Cost function
Volume and distance of
storm entities

More measure indexes that
quantify the similarity between
rainfall entities

Merging/splitting method
Based upon a short-term
forecast scheme

Based upon a field tracker

Motion estimation Centroid based method Mix of centroid and field
tracker methods
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reducing the false merging problem in the LSLEs, and second, isolating
small high-intensity storm entities within the SSLEs. The technique is
implemented based on the hierarchical threshold segmentation (HTS)
method proposed by Peak and Tag (1994). This method was originally
created to isolate cloud features from satellite images by applying dif-
ferent ‘grey shade’ threshold levels to the original image in order to
obtain a hierarchy of isolated regions. These isolated regions constitute
a hierarchical tree structure, of which the nodes at a given level re-
present the isolated regions identified by a given threshold. Those
nodes sharing the same parent are smaller isolated regions that split
from a common larger region identified with a lower threshold. The
tree structure is finally pruned by using decision tree analysis, which
takes into account size and shape of the different nodes. The selected
regions, obtained from the pruning process, are eventually collected
and combined in a final segmented image. In this work, an adapted
version of the HTS method is used to implement the MTS technique. A
detailed explanation of the methodology followed is presented in
Appendix 1, where the processes to construct and to prune the different
structural level trees are described.

After applying the MTS technique, a final composite of storm enti-
ties, hereafter called large convective storms (LCSs) and small-sized
convective cores (SCCs), are respectively obtained from the LSLE and
SSLE groups.

3.3. Modified matching scheme

The original TITAN matching methodology is employed as a starting
point to develop an enhanced scheme able to properly match the final
composite of entities (LCSs and SCCs) obtained by the new identification
technique. As mentioned before, the drawbacks presented in the way
TITAN matches storm entities may be largely magnified for SCCs due to
its highly dynamic clustered nature. Furthermore, the short lifetimes
associated to SCCs may lead to less robust global results if the original
short-term forecast based scheme is used to handle mergers and splits,
since more storm entities with short history or no history at all would be
involved.

In order to tackle these deficiencies and with the intention to add

robustness when matching LCSs and SCCs, the aforementioned three
main modifications shown in Fig. 2 are implemented and incorporated
to the original TITAN matching scheme. These are described hereafter.

3.3.1. Field tracker integration
A storm field tracker, based on the optical flow technique, is applied

to the high resolution data set and employed to optimize the process of
constraining the feasible sets of solution when solving the matching
problem. Optical flow was originally developed for image and video
compression (Sadek et al., 2012) and has been largely used in the
meteorology field as a field tracker (Bowler et al., 2006; Bowler et al.,
2004; Cheung and Yeung, 2012; Wang et al., 2015). In this work, the
multi-scale variational optical flow technique proposed by Brox et al.
(2004) is used. Through comparing two successive radar images and
imposing the so-called optical flow (OF) constraint together with other
physical constraints (see Brox et al., 2004 and Wang et al., 2015 for
details), one can obtain a ‘smooth’ field of movement vectors.

This field of movement vectors is then mapped with the image of the
identified storm entities at time step t. For each entity, a single move-
ment vector can thus be obtained by averaging the mapped movement
vectors obtained from the field tracker. These averaged movement
vectors are then used to extrapolate the entities one time step in order
to provide their first guess location at time step t+ 1. The possible set
of entities at time step t+ 1 that can be considered as potential can-
didates to be match to another entity at time step t, is limited by im-
posing a simple criterion as shown in Fig. 3. That is, the distance be-
tween the extrapolated entity's centroid ( +Ct 1 , in Fig. 3) and the possible
candidate entities' centroids ( ′+ +C C,t t1 1) must be shorter than half of
the maximum of the major axis lengths of the ellipses that best fit the
entities under consideration (see R and R′ in Fig. 3). As can be seen in
Fig. 3, the distance −+ +C Ct t1 1 is shorter than R, while − ′+ +C Ct t1 1 is
larger than R′. Therefore, the entity with the centroid placed at C′t + 1 is
discarded from the set of potential matching entities of the entity at Ct.
This can effectively reduce the solution domain when solving the
matching problem.

Fig. 2. Steps of the multi-threshold method.
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3.3.2. Cost function reformulation
As compared to the original TITAN, a more complex cost (objective)

function, is proposed in this work. The cost function is based upon the
forecast verification methodology proposed by Wernli et al. (2008) and
also used in Shah et al. (2013), in which a number of measure indexes
that quantify the similarity between objects, are employed as follows.

(a) The distance component (Lc). This measure accounts for the nor-
malized distance of the centroids between the extrapolated and the
possible matching entities. It is termed:
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where +Ct 1 , Ct+1 and R are the previously defined parameters in Fig. 3.

(b) The area component (Ac). This measure normalizes the size differ-
ence of the possible matching entities as follows:
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Here, A represents the areas of the entities under consideration.

(c) The structure component (Sc). This measure normalizes the differ-
ence of the structure index values for the possible matching alter-
natives:
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The structure index, S, is obtained by scaling the total amount of
reflectivity values (Ri, j) with its maximum value (Rmax). The structure
component, Sc describes how widespread or peaked the reflectivity
spatial organization is within the area of the entity (Wernli et al., 2008).

(d) The eccentricity component (Ec). This measures represents the

eccentricity difference between the possible matching entities by:

= − +E e e| |c t t 1 (4)

where e denotes the eccentricity of the ellipses that best fit the candi-
dates to be matched.

These indexes (components) are then combined into a single cost
value between two possible matching entities:

= + + +Cost w L w A w S w E .c c c c1 2 4 4 (5)

where w1, …, w4 respectively represent weighting factors for the four
defined components. Based upon sensitivity analysis, the following
values are assigned to these weighting factors: w1 = 0.4, w2 = 0.25,
w3 = 0.25 and w4 = 0.1. Similarly to the original TITAN algorithm, the
Hungarian method is employed to solve a cost function matrix built on
the basis of all the possible entity combinations (cost values) at two
successive time steps. After the matching problem is solved, a first as-
sociation of matched entities can be obtained.

3.3.3. Merging and splitting situations handling
Special attention has been given to storm merging and splitting

processes in the meteorological field during the last decades. It is well
known, that splitting and merging processes generally occur during
extreme weather episodes and therefore play an important role in
convective dynamics (Carbunaru et al., 2013; Ćurić et al., 2009;
Spiridonov et al., 2010). For this reason, special emphasis is given in
this work on improving the handling of these phenomena.

An alternative scheme that makes use of the first movement guess
(VOF in Fig. 3), is proposed to handle merging and splitting situations as
opposed to the ‘short-term’ forecast based methodology employed in
the original TITAN. As shown in the schematic example of Fig. 4, after
solving the combinatorial matching problem defined in Section 3.3.2, a
first group of matched storm entities are associated (i.e. A → G, B→ H,
E→ J, N → S, O→ U, Q → V, R→ W). Then, in order to identify
splitting situations, entities at time step t+ 1 that have already been
matched (G, H, J, S, U, V and W) are discarded from the matching
problem. Then, the combinatorial optimization problem is again solved
and new matching entities obtained (E → K, O → T). Since one entity
may split into more than two entities (e.g. E), the matching problem is
solved iteratively, until no more splitting associations are found (E →
L). Afterwards, merging situations are handled. For storm entities that
remain unmatched at time step t (C, D, F, M and P) and those entities at
time step t+ 1 that do not take part in a splitting situation (G, H, I, S
and V), the matching problem is again solved. Similarly, the matching
problem is iteratively solved until no more merging cases are found
(C → H, P→ V, M→ S, D → H).

Similarly to the original TITAN algorithm, the above approach
handles merely merging and splitting situations, individually. In other
words, it cannot deal with the case when splitting and merging situa-
tions occurs simultaneously. To cope with these situations, an addi-
tional matching step is incorporated. In this last step, all the entities at
both time steps t and t+ 1 can be potentially associated as long as they
have not been matched together in any of the previous steps. Similarly,
the combinatorial optimization problem is solved iteratively until no
more of these ‘simultaneous’ situations are identified in such a way that,
all the splits involved in merging situations (O → S and R → V) and
merging entities that take part on splitting situations (P → U), are
eventually associated. Once the splitting and merging matching last
step completes, the remaining unmatched entities at time step t and t
+ 1 are respectively defined as ‘deadly’ entities (e.g. F), and ‘newly
born’ entities (e.g. I).

In the example of Fig. 4, after all the steps involved in the matching
scheme are finished, a total of six different storm entity matching si-
tuations are captured for both LCSs and SCCs: continuity, splitting,
merging, simultaneous splitting/merging, new born and dead matching
situations.

Fig. 3. Schematic representation of the matching criteria. Ct + 1 and C′t + 1 are the
centroids of two possible candidates to be matched with the object at Ct. VOF is the first
guess movement of the object at Ct obtained by the optical flow technique and used to
obtain the extrapolated object at ̂ +Ct 1. R is max(dtMax, dt+1

Max) / 2 and R′ is max(dtMax,
dt+1

'Max) / 2.

C. Muñoz et al. Atmospheric Research 201 (2018) 144–158

148



3.4. Motion estimation

After the matching process, it is critical to assign correct motion
estimates for each storm entity. For the LCSs, the previously defined
first guess movement (VOF), is assigned to each entity. As for SCCs,
motion is obtained by taking into account the corresponding next time
step matched entities obtained by the matching scheme. As shown in

Fig. 5, depending on the particular matching situation, different ap-
proaches are employed. A combination of centroid displacements,
weighted with the areas of the storm entities involved in the process, is
employed for continuity, splitting and merging situations (Fig. 5a, b, c)
to derive their motion vectors (i.e. VA, VC, VF and VG).

For splitting entities that also contribute in merging processes
(Fig. 5d), a different centroid displacement based approach is

Fig. 4. Different types of storm entity
matching situations handled by the new
matching scheme.

Fig. 5. Schematic representation of the motion estimation calculation for the different SCC matching situations.
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employed. First, the purely splitting/merging situations assignments
are identified ((I, J) → L; K→ (M, N)). Then, by means of accounting
for the geometric characteristics and location of the entities that ori-
ginally take part of the purely merging process (I and J), a remaining
area (L′) within the merger object (L) is defined, and a new centroid
(C′t+1 (L′)) can be derived and used to compute the final motion vector
for the split object (i.e. VK). As for the entities that originally take part
in the merging (I and J), a similar approach is utilized. A remaining area
(K′) in the split object (K) can be defined and the new centroid (C′t (K′))
is used to calculate the final motion vectors VI and VJ. Finally, when
entities involved in a merging situation take also part of a splitting
process (Fig. 5e), the same methodology accounting for proportional
contribution areas and new appearing centroids is again used to cal-
culate and assign motion vectors to each of the storm entities (VO, VP

and VQ).

3.5. Evaluation of the new tracking algorithm

The assessment is conducted by comparing the proposed tracking
algorithm against the original TITAN by using the above defined ‘eva-
luation events’ (see Table 1). The different evaluation methods em-
ployed for the comparison are presented below.

3.5.1. Visual inspection of storm entity identification
Visual inspection is one of the most commonly used approaches

when evaluating storm identification methods in literature (Fiolleau
and Roca, 2013; Han et al., 2009; Handwerker, 2002; Johnson et al.,
1998, Kober and Tafferner, 2009; Liu et al., 2014; Shah et al., 2013;
Wilson et al., 2004). In this work, visual inspection is used first, to
assess how well the new identification method handles the false mer-
ging problem (this is done, by comparing the LCSs with the storm en-
tities identified by the original TITAN), and second, to evaluate its
ability to isolate SCCs within convective systems.

3.5.2. Assessments of storm entity matching situations
Comparing the results obtained automatically from the matching

scheme with those given by visual investigation is a common approach
to assess storm entity matching performances (Handwerker, 2002;
Johnson et al., 1998; Jung and Lee, 2015; Kober and Tafferner, 2009;
Kyznarová and Novák, 2009; Shah et al., 2013; Shimizu and Uyeda,
2012). For such a purpose, a contingency table approach is employed to
quantify the ability of the new algorithm to ‘correctly’ associate the
different storm entity matching situations defined in Fig. 5.

A two-class contingency table based on a yes/no binary classifica-
tion problem is used in this work. It reflects the occurrence and non-
occurrence of what is previously defined as an ‘event’ in both the al-
gorithm results and the visual inspection observations. As seen in
Table 3, four different outcomes can be obtained from the binary
classifier (nhits, nfailure, nfalse alarm and ncorrect rejection): nhits occurs when
both the algorithm and the visual inspection equally capture an ‘event’;
nfailure is obtained when human criteria identifies an ‘event’ that the new
tracking algorithm is not able to detect; nfalse alarm is produced when the
algorithm consider an ‘event’ that is not identified as such by visual
inspection; ncorrect rejection is accounted when both the algorithm and the
observation rejects the occurrence of an ‘event’.

In this case, an ‘event’ is defined as a matching association situation.

Once the contingency table is built, categorical statistics from its ele-
ments are calculated. Probability of detection (POD) (also called hit rate
(HR)), false alarm ratio (FAR) and critical success index (CSI) scores are
computed in order to quantify the ability of the new matching scheme
to correctly match different matching association situations at two
successive time steps. Continuity, new born, dead and merging/split-
ting situations (simultaneous merging/splitting situations included) are
differentiated in the calculation of the scores. POD, FAR and CSI score
values are calculated as follows:
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+ +

=
+
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n n
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In order to evaluate the new matching scheme performance, a
comparison with the original TITAN scheme scores is carried out.

3.5.3. Statistical analysis of the overall tracking algorithm performance
In order to assess the overall performance of the proposed tracking

algorithm against the original TITAN, a deterministic persistence fore-
cast approach is employed. Hence, by neglecting growth and decay
processes, the forecast performance is expected to improve when more
accurate motion estimates are used (Germann et al., 2006). In this
approach, the storm entities obtained from the respective identification
schemes are extrapolated by using the motion vectors derived from
their corresponding matching schemes.

A schematic representation of the TITAN based forecast scheme
(TFS) and the new algorithm based forecast scheme (NFS) is illustrated
in Fig. 6. As can be seen, for the TFS case, the forecasted image is ob-
tained straightforward. On the contrary, for the NFS case, since dif-
ferent motion estimates are obtained at two different structural levels,
relative movements between SCCs and LCSs are expected. As a con-
sequence, overlapped and missing pixel values may appear in the
forecasted image. To tackle this issue, when more than one values are
obtained at the same pixel location, the maximum of them is used while
when no pixel values are assigned, inverse distance squared weighted
interpolation method is conducted to fill the missing values. The fore-
casted images, obtained from TFS and NFS respectively, are then
compared with the observed radar images to evaluate the forecast
performances from 1 to 4 time steps ahead (i.e. 5–20 lead time min-
utes). The performance measures used include:

1) (Spatial) correlation coefficients

A traditional statistical pixel by pixel verification method is applied
to compare the general performances of the forecast schemes.
Correlation coefficients are computed to measure the correspondence

Table 3
Two class binary contingency table.

Observed

Algorithm Yes No

Yes nhits nfalse alarm

No nmisses ncorrect rejection Fig. 6. Schematic representation of the TFS and NFS.
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between forecast and observed pixel values. Only pixels that belong to
the extrapolated objects are considered in the calculations.

2) ROC (Receiver Operating Characteristic) curve analysis

The new algorithm performance is evaluated at different intensity
levels by comparing the skills of the two forecast schemes (TFS and
NFS) at different reflectivity threshold levels. This is done by the ROC
(Receiver Operating Characteristic) curve analysis. This analysis in-
volves a pixel by pixel evaluation that makes use of the contingency
table approach (Table 3). The contingency table is used here to de-
termine the skills of the forecast scheme to discriminate between what
is considered as an ‘event’ and ‘no event’. In this case, an event occurs
when the reflectivity of the pixel under consideration is larger than an
established reflectivity threshold. A contingency table based on yes/no
forecasted and yes/no observed events can be then constructed. As with
correlation coefficient calculations, all the pixels belonging to fore-
casted entities are considered to calculate the final number of hits, false
alarms, misses, and correct rejections. These values, are then used to
calculate a hit rate (HR) as defined in Eq. (6) and a false alarm rate (FR)
as follows:

=
+

FR
n

n n
.false alarm

false alarm correct rejection (7)

Finally, the ROC curve is constructed by plotting against each other
all the pairs of HR and FR values obtained when the established re-
flectivity threshold changes. Reflectivity threshold values from 35 to
54 dBZ are used in this work.

4. Results and discussion

4.1. Storm entity identification

Visual inspection of the new identification scheme performance is
carried out for all the ‘evaluation events’. The results reveal that, the
way the false merging problem is handled when identifying LSSs, gives
more satisfactory results in comparison with the single threshold ap-
proach used by the original TITAN scheme. Two examples of this are
shown in Fig. 7. As can be seen, entities weakly connected and iden-
tified as a single object by TITAN are now separated forming clusters of
independent LCSs. The ability of the identification technique to separate
clusters of SCCs within LCSs, is also confirmed. Examples of how these

entities are isolated are shown in Fig. 8.

4.2. Storm entity matching situations

Matching situations captured from the 12 ‘evaluation events’, are
gathered together and used to calculate the final POD, FAR and CSI
score values. Since this is a highly time-consuming task, only hours that
show important convective activity, are taken into account. The scoring
results obtained for both the new and original TITAN algorithm are
given in Tables 4 and 5, respectively.

A first look at the results on Table 4 indicate a good fit between the
visual inspection and what the new algorithm captures for both SCSs
and LSSs. When it comes to comparing these results with those obtained
by the original TITAN algorithm, it should be noticed that the results
obtained in Table 5, can only be contrasted with the ones obtained for
LCSs, as they deal with entities of similar structural level. The increased
POD and CSI values obtained by the new matching scheme, reflect an
important enhancement in the matching performance with respect to
the original TITAN. Moreover, its lower FAR values also prove better
capability to avoid wrong entity associations. As for SCCs, although the
results cannot be directly compared with TITAN, the score values ob-
tained indicate that, despite a presumably greater difficulty when
matching SCCs, due to their higher dynamic changing nature with re-
spect to the entities identified by TITAN, a similar performance is ac-
complished and therefore good matching skills are achieved.

4.3. Tracking algorithm performance

4.3.1. Correlation coefficients
Correlation coefficients between motion estimate based forecasts

and observed pixel values are computed for the whole duration of the
‘evaluation events’ for lead times up to 20 min. Results for a lead time
of 5 min are presented in Fig. 9. Percentage change between the cor-
relation coefficient means of NFS with respect to TFS is computed for all
the leading times. Results for the 12 evaluation events are plotted in a
box plot and presented in Fig. 10. Figs. 9 and 10 show a significant
mean percentage increase (20.1%) in correlation coefficients for NFS in
comparison with TFS. This reveals that, the new tracking algorithm
performs better and therefore produces more reliable motion vectors.

4.3.2. ROC (Receiver Operating Characteristic) curve analysis
The resulting ROC curves constructed from both NFS and TFS, for

Fig. 7. TITAN Vs LSS identification results for event 1 at 23:20 pm (a) and event 10 at 18:30 pm (b).
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each of the 12 ‘evaluation events’, are obtained for the different lead
times. Fig. 11 shows an example of ROC curve for the event of 20/05/
2014 and lead time of 5 min. Then, HR and FR scores for three re-
presentative reflectivity threshold levels (37, 45 and 50 dBZ) are ex-
tracted for both NFS and TFS ROC curves.

Better forecast performances provide higher HR and lower FR
scores. A no skill forecast would lay on the diagonal line represented in
Fig. 11. The area under the ROC is used as a verification measure of the
forecast skill. An area equal to 1 indicate a perfect score whereas 0.5
implies no skills. The results of the areas and the extracted HR and FR
scores for a lead time of 5 min, are shown in Fig. 12 for the 12 ‘eva-
luation events’. Percentage change between areas under the ROC curves

Fig. 8. SCCs identification results for events on event 10 at 18:20 pm (a) and event 7 at 23:00 pm (b).

Table 4
POD, FAR and CSI scores for LCSs and SCCs.

LCS nhits nfailure nfalse alarm POD FAR CSI

Continuity 543 30 27 0.948 0.047 0.905
New 129 9 21 0.935 0.140 0.811
Dead 156 12 15 0.929 0.088 0.852
Splitting/merging 156 15 18 0.912 0.103 0.825

SCC nhits nfailure nfalse alarm POD FAR CSI

Continuity 1008 90 63 0.918 0.059 0.868
New 378 42 54 0.900 0.125 0.797
Dead 300 39 42 0.885 0.123 0.787
Splitting/merging 399 54 69 0.881 0.147 0.764

Table 5
POD, FAR and CSI scores for TITAN identified entities.

TITAN nhits nfailure nfalse alarm POD FAR CSI

Continuity 450 48 60 0.904 0.118 0.806
New 120 18 24 0.870 0.167 0.741
Dead 105 12 15 0.897 0.125 0.795
Splitting/merging 96 15 18 0.865 0.158 0.744

Fig. 9. Box plots representing correlation coefficients between motion estimates based forecasts (NFS and TFS) and observed pixel values for the 12 evaluation events and leading time of
5 min.

Fig. 10. Box plots representing the percentage increase between correlation coefficient
means of NFS with respect to TFS for 4 leading times and the 12 evaluation events.

C. Muñoz et al. Atmospheric Research 201 (2018) 144–158

152



of the NFS and TFS, as well as the percentage change between HIT and
FR scores at the three reflectivity threshold levels, are calculated for all
the lead times. Results for the 12 ‘evaluation events’ are plotted in
Fig. 13.

The higher areas under the ROC curves shown in Fig. 13a corro-
borate that the performance increases when motion vectors given by
the new algorithm are employed. Regarding the extracted HR and FR
scores (Fig. 13b and c), the mean HR percentage increases with 25.1%
(50 dBZ), 14.2% (45 dBZ) and 3.3% (37 dBZ), and the mean FR per-
centage decreases FAR values of 26% (50 dBZ), 20.9% (45 dBZ) and
9.6% (37 dBZ). These results exhibit a substantial improvement in the
HR and FR scores for high reflectivity thresholds, as well as a not
negligible enhancement at the lower reflectivity thresholds. The FR,
moreover noticeable improves for higher lead times, especially at the
highest threshold levels.

The presented results reveal, the ability of the new algorithm to
better handle and track high reflectivity storm details. It also shows the
added value of using, for LCSs, motion vectors derived from the optical
flow technique, which confirms the ability of the optical flow technique

Fig. 11. ROC curve associated to 20/5/2014 event.

Fig. 12. Areas under ROC curves (a), ROC HIT rates
(b) and FR rates (c) at 37,45, 50 dBZ thresholds for
NFS and TFS.
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to provide better global motion estimates.

5. Conclusions and future work

In this paper, an enhanced object-based storm tracking algorithm,
which can better capture convective storm details, is presented. The
proposed algorithm is developed based upon the TITAN algorithm,
which has been the basis of convective storm tracking and nowcasting
systems for many national meteorological services. However, with the
development of radar technology, higher resolution radar observations
allowing to observe more small-sized rainfall features became available.
In this regards, the original TITAN is found to be unable to satisfactorily
handle these spatial storms details. A number of modifications are
therefore proposed and implemented herein, on the basis of TITAN, to
improve its tracking capacity. The main modifications are as follows:

1. A two-step multi-threshold storm identification method is proposed
to replace the single-threshold scheme in the original TITAN. In the
new method, the spatial structure of a convective storm system is
firstly separated into large and small-structure levels of entities (i.e.
LSLEs and SSLEs, respectively). A multi-threshold segmentation
technique is then applied to each structural level to further identify
large convective storm (LCSs) and small-sized convective cores
(SCCs) entities.

2. A new matching scheme is constructed to better establish the
(temporal) association of the identified entities between two suc-
cessive time steps. In this new scheme, the following modifications
are implemented:
a. A field storm tracker, based upon a multi-scale variational optical

flow technique (OF), is incorporated. The OF field tracker is used
to conduct an initial motion estimation of storm entities to im-
prove both the efficiency and the accuracy of the matching pro-
blem.

b. The cost function used to quantify the similarity of matching
storm entities is reformulated. For such a purpose, more geo-
metric and physical features of storm entities are considered as
compared to the original cost function.

c. An alternative approach to handle storm entity merging and
splitting situations is implemented. In this approach, as opposed
to the original TITAN algorithm, cases where splitting and mer-
ging situations occurs simultaneously are included.

d. A more sophisticated methodology, which benefits from the fact
that more storm matching situations can be captured, is em-
ployed to estimate the motion vectors assigned to each identified
storm entity.

High-resolution radar data from a total of 18 convective storm
events in Belgium during the period of 2012–2014 have been employed
to test the proposed modifications. Six of these events were randomly
selected and used to conduct the analysis of the key parameters of the
proposed algorithm, and the other 12 events were used to evaluate its
performance. As compared to the original TITAN algorithm, the fol-
lowing improvements are obtained:

1. The two-step identification scheme shows a better capacity of iso-
lating and capturing small-sized yet high-intensity storm cell clus-
ters (SSCs) as well as of reducing the false merging problem for LCSs.

2. Object matching association is improved. When comparing POD,

Fig. 13. Box plots representing the percentage change of the NFS with respect to the TFS for 4 leading times and 12 evaluation events. Percentage increase between areas under ROC
curves (a). Percentage increase between HIT rates at 37, 45, 50 dBZ thresholds levels (b). The percentage decrease between FAR rates at 37, 45, 50 dBZ thresholds levels (c).
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FAR and CSI scores for LCSs matching situations with respect to
TITAN, an average percentage increase of 5.3%, 5.3% and 8.69% is
respectively obtained. For SCCs matching situations, a direct com-
parison with TITAN cannot be established. Nevertheless, and taking
into account the already assumed good performance of TITAN, the
similar scores obtained for SCCs with respect to TITAN, indicates a
good matching performance considering the highly dynamic nature
of these high intensity small entities. It should also be remarked the
ability of the new algorithm to better track splitting and merging
situations.

3. More reliable motion estimates are obtained by the new algorithm.
It is shown that by capturing SCCs movements and deriving LCSs
motion vectors by using the OF technique, better motion fields are
obtained with respect to TITAN. This is reflected when the perfor-
mance of the simple deterministic persistence forecast schemes
constructed on the basis of their respective motion fields are com-
pared. Average percentage increase of 20.1% is found when com-
paring correlation obtained from the NFS (new algorithm based
forecast scheme) with the ones from TFS (TITAN based forecast
scheme). Average HR percentage increase values of 25.1% (50 dBZ),
14.2% (45 dBZ) and 3.3% (37 dBZ), and average FR percentage
decreases values of 26% (50 dBZ), 20.9% (45 dBZ) and 9.6%
(37 dBZ) are obtained when comparing the ROC curves constructed
from the NFS with respect to the ones from the TFS. These results
also reflect that, as several authors have already pointed out, object
based tracking methods and field trackers should not be seen as
adversaries but as methods that may complement each other (Han
et al., 2009; Pierce et al., 2012; Dixon and Seed, 2014).

Despite the promising results obtained in this work, additional va-
lidation of the proposed algorithm is necessary. In order to assess the
robustness of the algorithm, its performance must be further evaluated
with more storm events and different radar data sets. In addition, the
proposed matching scheme that integrates object based tracking with a
field tracker can be further explored. More specifically, apart from

optical flow techniques, other field trackers or image matching methods
may be worth investigating. For example, some coherent structure re-
cognition methods (based upon POD and PCA techniques) that have
been widely used in computer vision (Liu et al., 2010; Verbeke and
Vincent, 2007), can be tested and compared with the optical flow field
tracker used in this work.

In terms of future applications, the proposed algorithm is intended
to be used as the basis for characterizing the spatial-temporal properties
of convective storms. This in turn can be used to improve the forecasts
of convective storms (e.g. Dixon and Wiener, 1993; Mueller et al., 2003;
Berenguer et al., 2005; Novak, 2007; Kober and Tafferner, 2009; Liang
et al., 2010; Zahraei et al., 2012), the generation of stochastic spatial-
temporal rainfall fields (e.g. Willems, 2001; McRobie et al., 2013; Niemi
et al., 2014) and the temporal interpolation of high-resolution radar
images (Nielsen et al., 2014; Wang et al., 2015).

In addition, the features of the identified convective storm entities
can be used to map or to cross compare with other atmospheric vari-
ables (e.g. temperature and soil moisture) or with those resulting from
other numerical models such as cloud resolving models (CRM) (Ćurić
and Janc, 2011a; Ćurić and Janc, 2011b). It is worth noting that, in the
past few years, CRMs have gained an increasing interest by the me-
teorological research community due to their ability to reproduce
convective cloud dynamics and to generate rainfall fields (Ćurić and
Janc, 2012; Ćurić et al., 2007; Wilhelmson and Klemp, 1978; Wu and
Li, 2008). In this regard, the enhanced tracking algorithm can be used
to evaluate given CRM's abilities to reproduce specific storm char-
acteristics and to simulate the splitting/merging processes by means of
comparing the modeled outputs with radar observations (Karacostas
et al., 2013; Caine et al., 2013). In this way, deficiencies in the model
physics might be found and changes can be proposed.
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Appendix 1

In this appendix, a description of the MTS technique introduced in Section 3.2 is presented. In order to better explain the whole methodology, and
the different settings involved in the way the MTS technique is applied at each of the two structural level groups, the two representative schematic
examples shown in Figs. A.1 (LSLE1) and A.2 (SSLE1) are used as a support.

First, the thresholds used to obtain the hierarchy of isolated regions are defined. The whole range of thresholds from 35 dBZ to 39 dBZ is applied
to the LSLEs. Meanwhile, values from 40 dBZ to the maximum reflectivity value of the considered entity are used for the SSLEs.

Second, as represented in Fig. A.1 and A.2, tree structures with nodes representing isolated regions formed by contiguous pixels (con-
nectivity = 4) that exceed the different established thresholds are obtained for each of the structural level entities. Then, all the isolated region areas
values are computed and assigned to their representative nodes. Later, these nodes are categorized. The lower reflectivity threshold level region,
placed on the top of the tree, is defined as ‘roof node’ (nodes 1L1 and 1S1 in the example). Nodes with two or more children are classified as a
‘splitting nodes’ (e.g. nodes 2L1, 8L1, 6L1, 3S1, 4S1 or 13S1). On the contrary, nodes with no children are labeled as ‘leaf nodes’ (e.g. nodes 5L1, 14L1,
18L1, 12S1, 7S1 or 26S1). The remaining ones are categorized as ‘simple nodes’ (e.g. nodes 4L1, 9L1, 6S1 or 10S1).

Finally, a heuristic methodology for pruning the tree structures, based upon the category and the area of the nodes, is implemented. A flow
diagram that reflects the whole process is shown in Fig. A.3.

As shown in Fig. A.3, the pruning method is a repetitive process that starts at each of the ‘leaf nodes’ and goes towards the upper parts of the tree
until a pruning decision is made. Whenever a node with a ‘simple node’ as a parent is found (e.g. nodes 14L1, 13L1, 5L1, 18L1, 23S1 or 16S1), one level
upwards movement is done. On the contrary, when a node, which parent is a ‘splitting node’ or the ‘roof node’, is found (e.g. nodes 9L1, 18L1, 21S1,
24S1 or 6S1) the possibility to prune the tree in that location is considered. Two conditions, with different settings for the two defined structural
levels, has to be met at the same time to perform the pruning:

1) At least two children/siblings of the considered ‘splitting or roof node’ are ‘significant nodes’. In a LSLE tree case, a node is considered as
‘significant’ when its area is larger than 10% of the correspondent ‘roof node’. As for a SSLE tree case, the area of the node has to be larger than an
established threshold and to exceed the 10% of its parent area. A threshold area of 3 km2 is chosen.

2) The sum of the areas of all the significant nodes must be larger than 50% of its parent area.

When the conditions are not met [e.g. nodes 4L1, 5L1, 11L1 or 12L1 (first condition is not met since only one of the siblings is ‘significant’ (> 10%
of ‘roof node’ area)); nodes 24S1 or 25S1 (the first condition is not met since none of the siblings are ‘significant’ (Area < 3 km2)); 11S1, 12S1
(second condition is not met, since the sum of both areas is lower than 50% of the parent area)], we keep moving levels upwards until the next node
where the pruning can be considered is found. The process is repeated until the conditions are fulfilled (e.g. nodes 2L1, 9L1, 10L1, 7L1, 7S1, 15S1, 17S1
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or 6S1) or the ‘roof node’ is reached. In the first case, if the node under consideration is ‘significant’ (e.g. nodes 2L1, 7L1, 15S1, 6S1 or 19S1), the tree is
pruned under it, unless the node is a ‘loaf node’ (e.g. nodes 12S1 or 21S1) where there is no need to prune. On the contrary, if the node is not
‘significant’ (e.g. nodes 14S1 or 7S1) the pruning is performed above it. In the second case, when the ‘roof node’ is reached, the tree is pruned under it.

Once the process is repeated for all the ‘loaf nodes’ and the whole tree is pruned, a set of selected regions is obtained (2L1, 9L1, 10L1 and 7L1 for
the LSLE1 tree and 12L1, 21L1, 22L1, 15L1, 17L1,6L1, 18L1, 19L1, 4S1 for the SSLE1). At this point, the pruning process for the SLSEs is considered
finished while for the LSLEs a third condition is imposed. In such a case, the sum of the selected regions has be larger than 75% of the ‘roof node’
area. When the condition is met, the pruning process ends. If not, which is the case for LSLE1 (the sum of initial set of selected regions (2L1, 9L1, 10L1,
7L1) is lower than 75% of the roof node) the regions at the lowest level of the tree are discarded (9L1 and 10L1) and their parent (10L1), is categorized
as a new ‘loaf node’ for which the whole pruning process is restarted. As a consequence, a new set of selected regions are obtained (2L1, 6L1 and 7L1)
and the third condition is reexamined. This is repeatedly done until the condition is met (In the example, the sum of the new set of selected regions
areas (2L1, 6L1 and 7L1) fulfill the condition) or the roof node is reached. At that moment, the pruning process is finished and the last set of obtained
regions is eventually selected. Then, as represented in Fig. A.1, a final dilation treatment, consisting of expanding these region shapes until the
borders of its roof region, is applied.

After the whole pruning process is finished for both LSLEs and SSLEs, a final composite of selected entities, large convective storms (LCSs) and
small convective cores (SCCs), are respectively obtained from for both structural level entities.

The heuristics involved in the MTS technique were established after performing a sensitivity analysis for different values within the following
intervals: For SCCs, values within 1–8 km2 and 5–20% (Condition 1), and 40–75% (Condition 2) were tested. Values within an interval of 15–30%
(Condition 1), and 30–70% (Condition 2) and 50–90% (Condition 3) were analyzed for the LCSs case. The final employed values were calibrated by
visually checking how satisfactory the identification processes results were in the calibration events (Events A to F, Table 1).

Fig. A.1. Schematic example of the MTS technique applied to a LSLE.
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Fig. A.2. Schematic example of the MTS technique applied to a SSLE.

Fig. A.3. The flowchart showing the general steps in the pruning process.
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Abstract

In Europe, floods are among the natural catastrophes that cause the largest eco-
nomic damage. This article explores the potential of two distinct types of multi-
variate flood damage models: ‘depth-damage’ models and ‘rainfall-damage’
models. We use survey data of 346 Flemish households that were victim of plu-
vial floods complemented with rainfall data from both rain gauges and weather
radars. In the econometrical analysis, a Tobit estimation technique is used to deal
with the issue of zero damage observations. The results show that in the ‘depth-
damage’ models flood depth has a significant impact on the damage. In the ‘rain-
fall-damage’ models there is a significant impact of rainfall accumulation on the
damage when using the gauge rainfall data as predictor, but not when using the
radar rainfall data. Finally, non-hazard indicators are found to be important for
explaining pluvial flood damage in both ‘depth-damage’ and ‘rainfall-damage’
models.

Introduction

In Europe floods are among the natural catastrophes that
cause the largest economic damage (European Environment
Agency, 2012). The prediction of damage is essential for
risk assessments and cost-benefit analyses to decide about
e.g. government investments in specific infrastructure or for
setting up flood warning systems. Most of the existing stud-
ies use data from floods caused by rivers overflowing (called
fluvial floods) (Messner and Meyer, 2006; Jonkman et al.,
2008). However, their generalisability to other floods is
unclear (Kellens et al., 2013). In this article, the focus is on
damage caused by a type of flood for which damage assess-
ment has been rarely conducted, i.e. floods in urban areas
that are caused by extreme rainfall events during which the
water cannot be sufficiently processed by existing urban
drainage systems (called pluvial floods). Pluvial floods come
with less damage, but occur frequently and the cumulative
damage over the years can be just as high as with fluvial
events (ten Veldhuis, 2011). Moreover, projections on the
impact of climate change indicate that in the future many
regions of the world will face more extreme weather events

in summer, such as thunderstorms and heavy rainfall,
which may increase even further the occurrence of pluvial
floods (National Climate Commission, 2010; IPCC, 2012;
Willems et al., 2012; Willems, 2013).
Researchers often combine simulated flood depths with

existing depth-damage curves to obtain damage predictions
(Ernst et al., 2008; Pistrika and Jonkman, 2009; De Moel
and Aerts, 2011). An increasing number of authors pointed
out the shortcomings of the existing models used for flood
damage estimations (Freni et al., 2010; Hurford et al., 2012;
Spekkers et al., 2013). Often these depth-damage curves do
not include any control variables and are not specific
regarding the type of damage (damage to buildings versus
damage to the content) nor the type of flood (fluvial versus
pluvial). Therefore, other studies have estimated the rela-
tionship between the depth of the flood and the monetary
damage, including a number of control variables (Freni
et al., 2010; Van Ootegem et al., 2015). This type of model
requires ex-post survey or insurance information on the
depth of the flood or the availability of simulated depths,
e.g. by hydraulic models or by probabilistic or stochastic
simulation approaches (Van Dyck and Willems, 2013).
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An alternative approach is to estimate the relationship
between the rainfall at the time of the flood and the mone-
tary damage (so called ‘rainfall-damage’ models instead of
‘depth-damage’ models). This approach does not require
ex-post information or the simulation of flood depths using
time-demanding hydraulic modelling. Instead, it derives
the direct relationship between the rainfall and the mone-
tary damage. In addition, ‘rainfall-damage’ models have the
important benefit that rainfall data are completely exoge-
nous in the regression. This is in contrast with the depth
data which are potentially endogenous meaning that there
can be correlation between the depth data and the error
term in the regression. Endogeneity can arise as a result of
an omitted variable which affects both the flood depth and
the damage. The model coefficients then visualise not only
the relation between depth and damage (what they should
be representing), but also the (unknown) effect of the omit-
ted variable. Examples of such omitted variables could be
certain characteristics of the house (e.g. wall around the
property) or socio-economic characteristics (e.g. composi-
tion of the household). A disadvantage of the ‘rainfall-
damage’ relationship is that it is less direct; the same rainfall
intensity on sewer systems with different hydraulic charac-
teristics may lead to different impacts. The sewer system
characteristics are not accounted for (paved areas, pumps,
and other hydraulic regulation structures, system configura-
tion, etc.), whereas they may cause differences in sewer
flood impacts for the same rainfall intensity.
Few authors have estimated ‘rainfall-damage’ models.

For example, Zhou et al. (2012) analysed the impact of the
rainfall on 1000 insurance claims related to pluvial floods
in Aarhus (Denmark). They concluded that the rainfall
depth does not significantly affect the cost per claim. How-
ever, the rainfall rate affects the total cost per day. Ririassa
and Hoen (2010) analysed insurance claims in the Nether-
lands, but did not find a significant relationship between
the total level of monetary damage in a province and the
hourly rainfall data. Spekkers et al. (2013) found that rain-
fall intensity has a significant impact on the monetary dam-
age. Blanc et al. (2012) estimate pluvial flood damage using
rainfall simulations to compute flood depth. However,
overall the explained variance in case of the ‘rainfall-dam-
age’ models is rather low. This shows the need to further
study these types of models and include additional explana-
tory variables such as the socio-economic characteristics of
the households that have been flooded. As illustrated in
Figure 1, the relationship described by ‘depth-damage’
models is in fact part of the ‘rainfall-damage’ relationship.
In this article, we study both ‘depth-damage’ and ‘rain-

fall-damage’ models. For the ‘depth-damage’ models, we
used survey data of 346 Flemish households that were vic-
tims of pluvial floods. We collected data on a wide range of
variables, including the reported depth of the flood (in the

basement and at the ground floor), the monetary damage
to different parts of the house (building, content, and total
damage), the prevention measures taken by households,
socio-economic characteristics such as the per capita
income of the individuals that have been flooded etc. Based
on these survey data we estimated ‘depth-damage’ models
with self-reported depth as the main independent variable
and self-reported damage as the dependent variable. In
addition, we included a number of control variables
obtained from the survey. For the ‘rainfall-damage’ models,
we combined damage data and control variables obtained
from the survey with rainfall data from two sources,
namely rain gauges and weather radars. The contribution
of our research is threefold.
First, in addition to estimating a ‘depth-damage’ model,

we also estimate a ‘rainfall-damage’ model. Estimating the
direct relationship between the rainfall and monetary damage
has – at least – two major advantages. The first is that instead
of using ex-post survey data or simulating the expected depth
of a flood based on hydraulic models, we estimate the direct
relationship between rainfall accumulation and damage. This
is an important time-saving step, which is particularly impor-
tant for the development of early-warning systems for pluvial
floods which in general have short lead times. Moreover,
hydraulic models are location-specific and do not exist for
every urban area. An additional advantage is that we are able
to exclude endogeneity problems by using exogenous data on
the rainfall intensity, (cfr. supra).
Second, by using a Tobit model estimation, we deal with

the issue of reported zero damage (Tobin, 1958). As a
result, we are able to include ‘no damage cases’ of people
who were flooded but did not suffer any damage. Those
people would not appear in insurance or disaster fund
records. Our questionnaire reveals that a certain fraction of
flood victims suffer no damage to buildings and/or content.

Flood damage models 

Rainfall

Rainfall-Damage
models

Depth of the
flood

Economic
damage

Depth-Damage
models

Figure 1 ‘Depth-damage’ versus ‘rainfall-damage’ models.
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Third, we extend the traditional bivariate depth/rainfall-
damage relations by constructing more detailed multivariate
flood damage models including a number of non-hazard
control variables. This shift to more complex multivariate
models has taken place in the literature in recent years
(Apel et al., 2009; Elmer et al., 2010; Merz et al., 2013). We
include characteristics of the buildings (type of building,
size of the dwelling), behavioural predictors related to the
behaviour of victims before and during the flood (recur-
rence, risk awareness, emergency measures) and income.
The remaining of the article is organised as follows. The

section on Data and methodology describes the data (collec-
tion) and econometrical methodology. In the section on
Discussion of the results, we discuss the results. Finally, we
provide conclusions and policy implications in the
section on Conclusions.

Data and methodology

In this article, we use a data set of 346 Flemish households
that experienced floods in the past two decades. This data
set is based on two sources. First, we collected survey data
on the damage and the depth of the floods as well as on a
number of socio-economic characteristics of the house-
holds that have been flooded. Second, we supplemented
these survey data with detailed rainfall data measured by
rain gauges and estimated by weather radars.

Survey data

In 2013 we conducted a mail survey among private house-
holds that were affected by one or more pluvial floods. The
survey was sent to 3963 addresses in Flanders (the northern
region of Belgium). The vast majority of those addresses
come from a database of the national disaster fund. Also
260 addresses were included from records of fire depart-
ments in villages and cities that were flooded recently. A
total of 973 people sent back the questionnaire, which cor-
responds to a response rate of 24.5%. First, 353 question-
naires could not be used because they never suffered
damage from floods (people moved to the address after the
event took place) or because they report damage to their
business. Second, in the remaining 620 cases, quite a large
amount of people were not capable of estimating the

damage they suffered. Another, less important, reason for
fall-out was missing data on the flood year (making it
impossible to calculate damage figures corrected for infla-
tion). Respondents were asked to self-report on the damage
and the flood depth. With some of the respondents, there
was a telephone call to check the validity and reliability of
the answers. We have performed a robustness check in
which we restricted the sample to the past 10 years since we
expect that respondents are more able to remember recent
events. That check did not affect our results significantly. In
Van Ootegem et al. (2015), the authors provide a more
detailed description of the sample and the survey
methodology.
The main variable of interest is the damage that the

households experienced because of the flood. Respondents
were asked to report about their worst flood damage experi-
ence, which implies that the damage figures may be related
to different years and hence have to be corrected for infla-
tion. For this correction, we used the Belgian Consumer
Price Index. We distinguish between three types of damage.
First, we asked the respondents to report the financial dam-
age to several parts of the building. The reported amounts
for the different parts of the building are added to construct
a total building damage variable. For damage to the content,
we asked victims to report immediately on the total damage
to their content. Finally, we aggregate the damage to the
building and to the content to get a total damage figure.
Table 1 shows the summary statistics on the damage levels:
283 respondents report a damage figure for their building,
while for content 321 respondents report a damage figure.
On average, the damage to the building is higher than the
damage to the content. Zero damage is frequently the case,
especially for the content damage. In addition, we also
asked information on the total damage that has been recov-
ered by the respondents from the disaster fund or insurance
company. The total damage recovered from the disaster
fund or insurance company is substantially lower for both
buildings and content.

Rainfall data

Rainfall data are obtained from two sources. First, we used
rainfall data from the rain gauge network of the Flemish
Environment Agency (VMM). For each pluvial flood event

Table 1 Reported damage figures and zero damages (euro corrected for inflation)

Observations Zero damage observations Mean Max damage

Total damage to 346 57 8001.7 91 657.6
Building 283 24 6262.8 77 499.3
Content 321 132 3103.5 65 576.3

Total damage recovered from the disaster fund or
insurance

175 0 2070.5 19 307.8
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in the survey, we derived the daily rainfall accumulation of
the closest rain gauge. Although sub-daily rainfall accumu-
lations are expected to be more indicative for pluvial sewer
system floods, the network of rain gauges with sub-daily
rainfall registrations is much coarser than the network with
daily registrations. Moreover, the days with the highest
sub-daily rainfall maxima most often also show the highest
daily accumulations. Based on the geographical location of
the respondents’ residence (geographical coordinates) and
information on the timing of the flood (we have asked for
the month and the year of the flood), we have computed
the maximum daily rainfall accumulation for that month.
Second, we derived rainfall data from the weather radar

as an alternative to rain gauges. This has two major advan-
tages. First, the distance between the location of the pluvial
flood and the closest rain gauge may be too large to find a
good correlation, in particular when the thunderstorms are
highly localised in space. Second, the temporal resolution
of daily rainfall accumulations may be too coarse for our
application, in particular because the typical response times
of sewer systems are often below 1 h. Weather radars are
able to provide detailed information about the spatial and
temporal distribution of rainfall at resolutions of 1 km and
5 min respectively. Therefore, there is potential to find a
better agreement between the rainfall accumulation derived
from the radar and the location of the pluvial flood. In this
study, we used rainfall rates estimated from the C-band
weather radar of the Royal Meteorological Institute (RMI)
of Belgium located at Wideumont (Ardennes). The radar
data processing chain at RMI includes a number of steps to

convert the measured reflectivity Z into rainfall rates R, in
particular to remove non-meteorological echoes (flying
objects, ground clutter, radio interferences) and to extrapo-
late the reflectivity aloft to the ground level. A detailed
description of the radar-based quantitative precipitation
estimation and its verification at RMI is presented in Gou-
denhoofdt and Delobbe (2016). Such data processing steps
are important to increase the accuracy of radar-based rain-
fall estimation, which is affected by various sources of
errors and uncertainty (Villarini and Krajewski, 2010).
Based on the geographical location of the respondents’

residence (geographical coordinates) and information on
the timing of the flood (month and year of the flood), we
have computed the maximum hourly radar rainfall accu-
mulation on each month and registered its timing of occur-
rence (see Figure 2). In order to account for the size of the
sewer system and the mismatch between the exact location
of the flood and the thunderstorm, the maximum hourly
rainfall accumulations were computed in circular radii of
1, 5, 10, and 15 km from the respondents’ residence. In the
multivariate regression (infra) we have only included the
maximum rainfall accumulation in a radius of 1 km. The
results of the multivariate regression remain stable also if
we use radii of 5, 10, or 15 km (results available upon
request from the authors).

Econometrical approach

We report on the estimation of two types of models:
‘depth-damage’ models and ‘rainfall-damage’ models which

Figure 2 Spatial distribution of the maximum hourly rainfall derived from the Wideumont weather radar (located at coordinates (0,0)
km) for the month of June 2006. The location of sewer system floods is marked with stars. The borders of the Belgian districts are dis-
played in black. (a) Maximum hourly rainfall accumulation. (b) Corresponding day of occurrence (the hour of occurrence is also available
but not shown).
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analyse the impact of the depth of the flood, respectively
the rainfall, at the time of the flood on the damage, control-
ling for a number of non-hazard indicators. For each of
these models, we distinguish between six distinct model
specifications. First, for both types of models we distinguish
between three dependent variables, namely the damage to
the content, the damage to the building and the total dam-
age. Second, we include for the ‘depth-damage’ models two
measures of flood depth, namely flood depth in the base-
ment and at the ground floor. For the ‘rainfall-damage’
models, we include the rain gauge data and radar data as
the main independent rainfall variable of interest. The
damage data are skewed to the left as the majority of the
households report relative low levels of damage, while few
of them report high levels of damage. In order to obtain a
less skewed distribution, we did a log-transformation of the
damage data, which allows us to estimate a linear relation
between damage and depth.
In a first step, we estimate a simple ordinary least squares

(OLS) model. The model specification and results of the
OLS are discussed in the appendix. However, given that a
substantial number of respondents reported zero damage,
especially for content damage, OLS estimates may become
biased and inefficient depending on the number of zeros in
relation to the number of observations in the data set. One
solution is simply to delete the zero values, i.e. truncating
the sample. However, this would mean ignoring relevant
information and therefore would also lead to inconsistent
estimations of the parameters (Wooldridge, 2010).
Therefore, in a second step, we used a Tobit model,

developed by James Tobin to deal with the problem of the
many zero values. The model was originally used to explain
purchases of luxury goods. Because of income restraints,
many survey respondents would report zero purchases of a
luxury good, leading to problems when using OLS to iden-
tify the factors that explain the purchase of those goods
(Tobin, 1958). The methodology is widely applicable for
any situation where observations are ‘censored’ above or
below a certain border value c. the Tobit model is therefore
also known as a specific type of ‘censored regression model’
(Wooldridge, 2010) and is widely used for analysing diverse
micro-economic topics such as e.g. the hours worked by
different socio-economic groups (see McDonald and Mof-
fitt, 1980) or explaining charity donations.
The Tobit model is based on the assumption that there is

a latent (i.e. unobservable) outcome variable Damage*i for a
household i. This variable linearly depends on the main
variable of interest (MainVari) and a vector of n control
variables Xi via a parameter (vector) which determines the
relationship between the explanatory variables and the
latent variable Damage*i . In addition, the model includes a
normally distributed error term εi to capture random influ-
ences on this relationship. The observable variable Damagei

is defined to be equal to the latent variable whenever the
latent variable is above c and zero otherwise. The model
looks as follows:

Damagei =
Damage*i if Damage*i > c

0 if Damage*i ≤ c

�
ð1Þ

Damage*i = α0 + α1MainVari +
Xn
j= 2

αjXi, j + εi ð2Þ

where MainVari = {Depthi – depth of the flood (in the
basement or at the ground floor) for ‘depth-damage’ mod-
els and Rainfalli – rainfall (gauge or radar data) for ‘rain-
fall-damage’ models}; Xi,j represents a vector of n control
variables discussed in Table 2 and εi the error term.
The censoring could be seen as follows: in case of very

low damage figures, individuals may not report on the
actual damage, but rather indicate that the damage equals
zero. For example, in case the damage corresponds to mop-
ping the floor, zero damage may be reported. However,
when the damage exceeds a specific damage level c, it is
expected that the actual level of damage has been reported.
Hence, it is expected that several damage levels below c are
observed as zero damage, but when the damage exceeds the
level c, the damage reports match better the actual ones.
A necessary condition to use the Tobit model is the

assumption that the data generating process that determines
the censoring is the same process that determines the out-
come (see for example Wooldridge, 2010). In our application
to flood damage, it seems reasonable to claim that factors
such as flood depth, flood duration, building characteristics,
behavioural predictors (such as emergency measures) and
socio-economic indicators all have similar contributions to
the amount of damage on the one hand and to whether or
not there is any damage reported on the other hand.

Discussion of the results

Depth-damage model

Table 2 presents summary statistics on the variables
included in the different model specifications. Table 3 pre-
sents the marginal effects of the estimated Tobit model
(Eqn (2) with depth as the main variable of interest).1 The

1Note that the Tobit coefficients refer to the latent variable, and this is

not the effect we are interested in. We do want to take into account the

zero values in the estimations, but in the end we only want to know the

effect of the independent variables on the actual observed damage

(comparable to the interpretation of an OLS coefficient). Therefore, we

calculate the average marginal effects of the hazard and non-hazard

indicators on the observed (or censored) damage (Bartus, 2005; Collis

et al., 2010).
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reported standard errors are obtained by bootstrapping.
The goodness of fit of the model is given by the squared
correlation between the predicted damage levels based on
the Tobit model and the observed values in the data set.
Depending on the model specification, the predicted values
share between 13% and 21% of their variance with the
observed damage levels. There are five key findings.
First, the depth of the flood has an important impact

on the damage, independently on the type of damage

(to the building, content, or total damage). For the base-
ment models, we find that for each extra centimetre of
water depth, there is an increase of 1.25% in building
damage, 1.21% in content damage, and 1.05% in total
damage.2 The depth coefficients are higher in the ground

Table 2 Dependent and independent variables included in the ‘depth-damage’ model and the ‘rainfall-damage’ model

Description Mean Std. dev.

Damage variables
Damage to building Natural logarithm of the monetary damage to the households’ building increased by

1 euro,* corrected for inflation (in euros)
7.28 2.62

Damage to content Natural logarithm of the monetary damage to the households’ content increased by
1 euro, corrected for inflation (in euros)

4.53 3.95

Total damage Natural logarithm of the monetary damage to the households’ building and content
increased by 1 euro, corrected for inflation (in euros)

Depth variables
Depth: basement Depth of the flood in the basement (in cm) 87.53 67.20
Depth: ground floor Depth of the flood at the ground floor (in cm) 14.77 21.24

Rainfall variables
Rainfall: gauge Monthly maximum daily rainfall accumulation at the closest rain gauge (in mm/day) 53.66 34.58
Rainfall: radar Monthly maximum hourly rainfall accumulation in a radius of 1 km from the

households’ building location (in mm/h)
17.91 8.94

Control variables
Flood characteristics
Topography† Relative height of the property measured as the percentage change in the height of

the property as compared to the mean height in a concentric circle of 1 km
−5.69 11.77

Part of building affected Dummy variable that takes a value of one if the basement was flooded and zero
otherwise

0.79 0.40

Dummy variable that takes a value of one if the ground floor was flooded and zero
otherwise

0.71 0.46

Dummy variable that takes a value of one if the garage was flooded and zero
otherwise

0.59 0.49

Characteristics of the house
Type of building‡ Categorical variable distinguishing between three types of buildings: (1) detached;

(2) semi-detached; and (3) terraced
– –

Size of dwelling Size of the dwelling (in squared metres) 131.64 163.01

Behavioural and socio-economic characteristics
Recurrence Number of times that the household has been flooded (times) 3.27 3.67
Risk awareness Dummy variable that takes a value of one if the household was aware of their house

being at risk just before the water entered the building; zero otherwise
0.38 0.49

Precautionary measures Index composed of six precautionary measures created by PCA analysis§ 0.68 1.18
Income Categorical variable distinguishing between five per capita income categories:

(1) below 1000 euros; (2) between 1000 and 1499 euros; (3) between 1500 and
1999 euros; (4) between 2000 and 2499 euros; and (5) above 2500 euros

– –

*In order to include the observations where zero damage was reported, we increased the level of damage by 1 euro before taking the natural logarithm.
†This variable is only included in the ‘rainfall-damage’ models.
‡This variable is not included in the models that use the damage to the content as the independent variable of interest.
§Based on a Principal Component Analysis (PCA) of six precautionary measures we have calculated a ‘precautionary index’. The precautionary measures

included are (1) moving content to a higher floor; (2) moving content to a higher area; (3) putting sandbags or similar to reduce the inflow of water; (4) pur-

chase of pumping equipment; (5) moving vehicles; and (6) other.

2Note that in case of a logarithmic transformation of the dependent

variable y, coefficients β should be recalculated by the following formula to

obtain the effects in percent changes: %Δy = 100 × (eβ − 1).
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floor flood models, with an increase in damage to the
building of 3.12%, to content of 5.37%, and to total dam-
age of 3.82% for each additional centimetre of water
depth. It is no surprise that the same increase in the
depth level causes more severe damage (to buildings and
content) in case of ground floor floods compared to base-
ment floods. On the ground floor, the content is likely to
be more valuable and more valuable building elements
can be damaged.

Second, also other flood characteristics such as the part
of the house that has been flooded affect the damage in
some model specifications. The results show that in case
more parts of the house are flooded, there is more damage.
For ground floor floods, we find that in case the basement
was also flooded, the damage to the content increases on
average by 362%. For basement floods, we find that the
damage to the content increases on average by 182% in case
the garage was also flooded.

Table 3 Tobit models, based on average marginal effects, using depth data as main variable

Variables Damage to building Damage to content Total damage

Flood characteristics
Depth basement 0.012***

(0.00298)
0.011***
(0.00394)

0.013***
(0.00378)

Depth ground floor 0.031***
(0.00871)

0.052***
(0.0115)

0.040***
(0.0102)

Part: basement −0.190
(0.398)

1.511**
(0.678)

1.095**
(0.550)

Part: ground floor 0.415
(0.439)

0.381
(0.586)

0.171
(0.519)

Part: garage 0.396
(0.416)

0.393
(0.401)

1.140*
(0.584)

−0.133
(0.660)

0.505
(0.506)

0.00501
(0.568)

Characteristics of the house
Type: semi-detached 0.649

(0.475)
0.703*
(0.410)

1.353**
(0.537)

0.869*
(0.513)

Type: terraced −0.406
(0.514)

−1.106*
(0.591)

−0.335
(0.572)

−1.486**
(0.697)

Size of the dwelling 0.002
(0.00167)

0.002
(0.00134)

0.002
(0.00222)

0.003**
(0.00124)

0.002
(0.00239)

0.002*
(0.00104)

Behavioural and socio-economic characteristics
Reoccurrence 0.027

(0.0564)
−0.081
(0.0844)

−0.192**
(0.0842)

−0.085
(0.120)

−0.043
(0.0757)

−0.088
(0.0919)

Risk awareness −0.390
(0.630)

−1.077
(0.679)

−2.379***
(0.842)

−1.423
(0.908)

−0.899
(0.811)

−1.140
(0.810)

Precautionary measures 0.295*
(0.179)

0.372*
(0.206)

0.685**
(0.346)

0.317
(0.377)

0.401
(0.258)

0.132
(0.320)

Income: 1000–1499 −1.217*
(0.660)

−0.672
(0.665)

0.925
(1.321)

0.493
(1.556)

0.943
(1.107)

1.889
(1.435)

Income: 1500–1999 −0.969*
(0.557)

−0.506
(0.549)

1.418
(1.276)

2.524*
(1.474)

0.738
(1.035)

2.450*
(1.366)

Income: 2000–2499 −0.782
(0.615)

−0.207
(0.666)

2.704**
(1.310)

2.152
(1.503)

1.486
(1.104)

2.333
(1.435)

Income: 2500+ −1.108*
(0.600)

−0.250
(0.629)

0.661
(1.379)

1.180
(1.513)

0.913
(1.038)

2.426*
(1.451)

Observations 220 199 247 221 265 235
Censored observations 21 14 100 85 21 24
Uncensored observations 199 185 146 136 193 218

Log likelihood −511.52 −444.60 −537.44 −495.12 −506.65 −575.75
Prob > χ2 0.00 0.00 0.00 0.00 0.00 0.00
Corr
(yey)2 0.1615 0.2110 0.159 0.169 0.184 0.128

Standard errors in parentheses.

***P < 0.01.

**P < 0.05.

*P < 0.1.

J Flood Risk Management (2016) © 2016 The Chartered Institution of Water and Environmental Management (CIWEM) and John Wiley & Sons Ltd

7Exploring the potential of multivariate flood damage models



Third, in terms of the characteristics of the house we find
that the type of the house affects the damage to the build-
ing and the total damage. The reference category of
detached houses is compared to semi-detached houses and
terraced buildings. For ground floor floods, the building
damage for terraced houses is on average 67% lower than
the damage to detached houses. For semi-detached houses
the damage to the building is found to be 102% higher
compared to detached houses. For the total damage, we
find that on average the damage to terraced houses is 78%
lower as compared to detached houses. Finally, we also find
in some model specifications a significant impact of the size
of the house: an increase of 1 m2 of the size of the house is
expected to lead to an increase of the monetary damage of
0.30% with respect to the damage to the content.
Fourth, we find that the attitude of individuals before

and during the flood also affects the damage caused by the
flood. First, we find that individuals learn from their experi-
ences (reoccurrence): in case of basement floods the dam-
age to the content decreases on average by 21% for each
new flood experience. Second, we find that individuals that
were aware of the flood risk experience less damage. For
ground floor floods we find that being aware of the flooding
risk reduces the damage to the building on average by 66%,
while for basement floods we find that risk awareness
reduce the damage to the content by 87%. Finally, we iden-
tified five possible precautionary measures and asked
respondents to indicate whether they took those specific
actions: moving (a part of ) the contents to another floor,
elevating (a part of ) the contents at the same floor, placing
sandbags or limiting in any other way the water inflow,
purchasing a pump and/or preparing it for functioning,
moving vehicles to a safer place. We find that taking addi-
tional precautionary measures increases the monetary dam-
age: an increase of one in the precautionary measures index
leads to an increase which ranges between 45% for the
damage to the building caused by basement floods and 86%
for the damage to the content caused by basement floods.
While this finding may seem contradictory at first sight, it
may reflect that, in case people are confronted with very
severe floods, they desperately try to protect their belong-
ings by moving them to a higher floor or placing sandbags.
However, it could be that they act too late, especially since
pluvial floods take place unexpectedly and quickly.
Finally, we analysed the impact of an increase in income,

which is likely to be correlated with the level of education
and with the labour market situation. The reference cate-
gory here is respondents with a net monthly income lower
than 1000 euro. The findings on the income variable differ
depending on the type of damage. In case of damage to the
building, we find that the individuals with high income
experience less damage than the individuals in the reference
category. This is different in case of damage to the content

or total damage, where we find that individuals being rich
experience on average more damage than individuals in the
reference category.

Rainfall-damage model

Table 4 presents the marginal effects of the estimated Tobit
model (Eqn (2) with rainfall as the main variable of inter-
est). There are six key findings.
First, as compared to the ‘depth-damage’ models, the

‘rainfall-damage’ models explain in general a smaller frac-
tion of the variation in the data. Depending on the model
specification, the predicted values of the damage levels
share between 9% and 19% of their variance with the
observed values in the data set. In particular, the models
which include the damage to the content and the total
damage are found to explain only a small fraction of the
variation in the data. This confirms previous results by
Spekkers et al. (2013).
Second, the rain gauge data are significantly correlated

with the damage to the building and the content. An
increase of 1 mm in rainfall daily accumulation leads to an
increase of 1.4% in building damage and 1.8% in content
damage. There is no significant impact of rainfall measured
by the radar on the damage. Overall, the correlation
between the rainfall data and damage is smaller than for
the depth. This finding could relate to the fact that a signifi-
cant number of pluvial floods may be caused by blockages
of inlets and sewer pipes as suggested by ten Veldhuis
(2011). In these cases the observed damage is not necessar-
ily related to heavy rainfall. The poor correlation between
the rainfall measured by the radar and the damage may also
relate to the lower accuracy of radar measurements with
respect to rain gauges and the use of hourly instead of daily
accumulations. Although the shorter term, sub-daily, rain-
fall accumulations are expected to be more indicative for
pluvial flooding, because of the quick response times of
sewer systems to rainfall, the differences in accuracy and
statistical variability in hourly versus daily rainfall accumu-
lations play a role as well. The spatial variability of hourly
rainfall accumulations derived from the radar is expected
to be higher than the one of the smoother daily rain gauge
accumulations, which affects the computation of the corre-
lation in the multivariate regression. Therefore, concluding
that radar measurements do not have potential for building
rainfall-damage models could be misleading. Further inves-
tigation could prove them to be useful.
Third, for the models that include the damage to the

building as an explanatory variable we find that the topog-
raphy has a significant impact on the damage and a house
that is located higher than the other houses in the neigh-
bourhood is likely to experience less damage. A one per-
centage point increase in the altitude of the property as
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compared to the mean altitude in the neighbourhood
decreases the damage to the building by 3.13%.
Fourth, also the part of the house that has been flooded

affects the damage. As in the ‘depth-damage’ models dam-
age to the content increases in case the garage was also
flooded. Further, we find that also the type of the house

affects the damage to the building and the total damage.
For terraced houses the damage to the building is on aver-
age 66% lower than the damage to detached houses (the
reference category), while the total damage on terraced
houses is on average 64% lower than the damage to
detached houses. Finally, we find that in some model

Table 4 Tobit models, based on average marginal effects, using rainfall data as main variable

Variables Damage to building Damage to content Total damage

Rainfall, topography, and flood characteristics
Rainfall: gauge data 0.014***

(0.00508)
0.018**
(0.00836)

0.008
(0.00528)

Rainfall: radar data 0.026
(0.0193)

−0.013
(0.0364)

−0.006
(0.0227)

Topography −0.032**
(0.0153)

−0.032**
(0.0159)

0.008
(0.0261)

0.004
(0.0260)

−0.017
(0.0168)

−0.017
(0.0170)

Part: basement −0.886**
(0.384)

−0.846**
(0.373)

0.587
(0.794)

0.688
(0.826)

0.0733
(0.532)

0.126
(0.533)

Part: ground floor 0.384
(0.466)

0.366
(0.509)

0.365
(0.678)

0.504
(0.684)

0.315
(0.472)

0.374
(0.497)

Part: garage 0.304
(0.383)

0.300
(0.377)

1.589***
(0.595)

1.584***
(0.582)

0.487
(0.455)

0.455
(0.444)

Characteristics of the house
Type: semi-detached 0.371

(0.392)
0.350
(0.411)

0.508
(0.465)

0.461
(0.491)

Type: terraced −1.067**
(0.500)

−1.181**
(0.478)

−1.045**
(0.526)

−1.174**
(0.511)

Size of the dwelling 0.001
(0.000950)

0.001
(0.00104)

0.003**
(0.00143)

0.003*
(0.00175)

0.002*
(0.00106)

0.002
(0.00104)

Behavioural and socio-economic characteristics
Reoccurrence 0.049

(0.0486)
0.043
(0.0517)

−0.118
(0.0887)

−0.125
(0.0889)

0.026
(0.0534)

0.018
(0.0492)

Risk awareness −0.395
(0.512)

−0.387
(0.527)

−1.876**
(0.884)

−1.907**
(0.907)

−0.366
(0.640)

−0.349
(0.584)

Precautionary measures 0.138
(0.167)

0.128
(0.178)

0.342
(0.387)

0.399
(0.374)

−0.196
(0.273)

−0.179
(0.252)

Income 1000–1499 −1.541***
(0.581)

−1.236**
(0.564)

0.510
(1.972)

0.817
(1.462)

0.00657
(0.981)

0.145
(0.982)

Income 1500–1999 −1.666***
(0.565)

−1.539***
(0.536)

1.094
(1.915)

1.312
(1.416)

−0.220
(0.984)

−0.141
(0.956)

Income 2000–2499 −1.297**
(0.635)

−1.180**
(0.561)

1.450
(1.928)

1.752
(1.487)

0.0198
(1.036)

0.126
(1.012)

Income 2500+ −1.200**
(0.547)

−1.188**
(0.570)

−0.185
(1.907)

0.0752
(1.529)

−0.126
(1.045)

−0.0372
(1.025)

Observations 218 218 236 236 253 253
Censored observations 15 15 83 83 25 25
Uncensored
observations

203 203 153 153 228 228

Log likelihood −485.55 −488.61 −546.80 −549.27 −607.10 −608.22
Prob > χ2 0.03 0.04 0.00 0.07 0.06 0.11
Corr
(yey)2 0.1867 0.1621 0.1119 0.0887 0.0955 0.0859

Standard errors in parentheses.

***P < 0.01.

**P < 0.05.

*P < 0.1.
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specifications there is a significant impact of the size of the
house and an increase of 1 m2 of the size of the house is
expected to lead to an increase of up to 0.31% with respect
to the damage to the content.
Fifth, with respect to the behavioural and socio-economic

characteristics, the results are similar to the ‘depth-damage’
models: being aware of the flood risk reduces damage. Risk
awareness is found to decrease the content damage by 85%
in case rain gauge data are used.
Finally, we analysed the impact of an increase in income.

As in the ‘depth-damage’models the findings on the income
variable differ depending on the type of damage. In case of
damage to the building the individuals with high income
experience less damage while for damage to the content
richer individuals experience on average more damage.

Limitations and scope for future research

This study is innovative as it is the first to estimate and
compare multivariate ‘depth-damage’ and ‘rainfall-damage’
models using the same data set, next to the focus on pluvial
floods. However, there are some limitations to the study as
well as there is a scope for future research.
First, this study is limited to estimating the impact of the

depth of the flood and the rainfall at the time of the flood
on the monetary damage to residential property caused by
pluvial floods. It is important to note that this reflects only
a part of the total damage caused by floods and that addi-
tional information is required to be incorporated in any
cost–benefit analysis on flood management. Other authors
have pointed to the damage to commercial and public
property (Kreibich et al., 2010) and damage caused by
other types of floods, such as ground water floods (Kreibich
and Thieken, 2008). Also, pluvial floods can have a large
impact on non-monetary damage as they may have a sig-
nificant impact on the health of those individuals that have
been flooded. In addition to a physical non-monetary
impact, pluvial floods can also affect the well-being of indi-
viduals. In Van Ootegem and Verhofstadt (2016), the
impact of pluvial floods on subjective well-being is studied.
Second, the models that we use explain between 13% and

21% (for the ‘depth-damage’ Tobit models) and between
9% and 19% (for the ‘rainfall-damage’ Tobit models) of the
variation in the damage caused by the flood. The explana-
tory power of the model could be further improved by
including additional control variables that could explain
the flood damage, such as variables related to the character-
istics of the flood (e.g. velocity or the level of sediment of
the water that entered the property) or variables related to
the socio-economic characteristics of the households
affected by the flood (e.g. total value of the building or con-
tent owned or rented by the household or detailed data on
the wealth of households instead of income data).

Third, the data have been collected based on recall from
an event that may have happened more than 10 years ago.
This may raise problems regarding the accuracy of some of
the variables. It is unclear to what extent respondents are
able to remember in detail the amount of the damage, the
depth of the flood or the month in which the flood took
place. In order to test for the robustness of our results, we
restricted the sample to the past 10 years (period
2002–2012) since we expect that respondents are more able
to remember recent events. This did not change the results
significantly (results are available from the authors upon
request).
Fourth, the sample includes only households that experi-

enced a flood in the past two decades. As result, it is possi-
ble that the results cannot be generalised to all Flemish
households, but only to the Flemish households that live in
regions that are prone to pluvial floods. In future research,
we may also include households that have not been flooded
in order to make the results generalisable for the entire of
Flanders.

Conclusions

In this article we explore the potential of two distinct types
of multivariate flood damage models used to estimate the
impact of different drivers for pluvial floods, namely multi-
variate ‘depth-damage’ models and ‘rainfall-damage’ mod-
els. In a first step, we estimate multivariate ‘depth-damage’
models in which we include a number of control variables
such as building characteristics, behavioural predictors and
income. Up to now; most studies estimating flood damage
models have focused on estimating bivariate depth-damage
curves and only few have estimated multivariate ‘depth-
damage’ models, including a number of control variables
(Freni et al., 2010; Van Ootegem et al., 2015). In a second
step, we estimate a ‘rainfall-damage’ model. The potential
of ‘rainfall-damage’ models is even less explored with as
notable exceptions the studies by Ririassa and Hoen (2010),
Zhou et al. (2012), and Spekkers et al. (2013). Estimating
the direct relationship between the rainfall and monetary
damage has – at least – two major advantages. First, instead
of using ex-post survey data or simulating the expected
depth of a flood based on hydraulic models, which are time
and labour intensive techniques, we can investigate the
direct relationship between the rainfall accumulation and
the damage. Second, by using exogenous data on the rain-
fall accumulation, we are able to exclude potential endo-
geneity problems related to a self-reported depth variable.
We used survey data of 346 Flemish households that

were victims of pluvial floods. We collected data on a wide
range of variables, including the depth of the flood (in the
basement and at the ground floor), the monetary damage
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to different parts of the house (building, content, and total
damage), the prevention measures taken by the households,
socio-economic characteristics such as the income of the
individuals that have been flooded, etc. In addition, we
included rainfall data from two sources, namely the rain
gauge network of the Flemish Environment Agency and
radar rainfall data of the RMI. We applied an OLS estima-
tion and a Tobit estimation. The latter is specifically
designed to deal with the issue of many zero damage
observations.
For the ‘depth-damage’ models, we find that the depth of

the flood has a significant impact on the damage. For the
basement models, we find that for an extra centimetre of
water depth, there is an increase in damage that ranges
between 1.05% and 1.25%, depending on the type of dam-
age (building, content, or total). The depth coefficients are
higher in the ground floor flood models and an increase of
1 cm in the depth of the flood at the ground floor is
expected to lead to an increase in the damage which ranges
between 3.12% and 5.37%. This difference can be attributed
to the fact that more valuable content and building ele-
ments can be damaged at the ground floor.
For the ‘rainfall-damage’ models, we find a different

impact of rainfall accumulation depending on the source of
the data. We distinguish between rainfall gauge data and
radar data. For the rainfall gauge data, we find that an
increase of 1 mm in rainfall daily accumulation leads to an
increase which ranges between 1.4% to 1.8%, depending on
the type of damage (building or content). For the rainfall
radar data, we find no significant effect. This finding could
relate to the lower accuracy of radar measurements with
respect to rain gauges, the use of hourly instead of daily
accumulations and the higher spatial variability of hourly
rainfall accumulations derived from the radar compared to
the smoother daily rain gauge accumulations. The overall
lower correlation between the rainfall and the damage fig-
ures may also relate to the fact that a significant number of
pluvial floods may be caused by blockages of inlets and
sewer pipes. In these cases the observed damage is not nec-
essarily related to heavy rainfall. Finally, for both the
‘depth-damage’ and the ‘rainfall-damage’ models we find
that also non-hazard indicators are important for explain-
ing pluvial flood damage and are therefore interesting to be
included in future flood damage research. The information
obtained from these models can also help to design early-
warning systems and target the early-warning systems to
specific groups in the society.
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Appendix

In a first step, we estimated a simple Ordinary Least
Squares (OLS) model, considering a number of socio-
economic characteristics. The OLS model analysed the
impact of the main variable of interest (MainVari), which is
the depth of the flood for ‘depth-damage’ models and the
rainfall at the time of the flood for the ‘rainfall-damage’
models, on the reported damage expressed as a natural log-
arithm of the monetary damage (to the building, content,
or total damage) for a household i. This variable linearly
depends on depth and a vector of n control variables Xi.
Hence, we estimated the following model:

Damagei = α0 + α1MainVari +
Xn
j = 2

αjXi, j + εi ðA1Þ

where MainVari = {Depthi – depth of the flood (in the base-
ment or at the ground floor) for ‘depth-damage’ models and

Rainfalli – rainfall intensity (gauge or radar data) for ‘rain-
fall-damage’ models}; Xi,j represents a vector of n control
variables discussed in Table 2 and εi the error term. Table A1
presents the marginal effects of the estimated OLS estimation
(Eqn (A1) with depth as the main variable of interest).
Table A2 marginal effects of the estimated OLS model (Eqn
(A1) with rainfall as the main variable of interest). The
reported standard errors are bootstrapped.
The results show that there are differences in the

results of the OLS and Tobit models, in particular with
respect to the magnitude of the effect for some of the
control variables. However, overall the main findings
remain consistent across the different econometrical
specifications.
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Table A1 Ordinary Least Squares estimations for the ‘depth-damage’ model, based on average marginal effects, using depth data as
main variable

Variables Damage to building Damage to content Total damage

Flood characteristics
Depth basement 0.012***

(0.00260)
0.011***
(0.00336)

0.010***
(0.00283)

Depth ground floor 0.030***
(0.00797)

0.052***
(0.0111)

0.036***
(0.00797)

Part: basement −0.189
(0.374)

1.318**
(0.594)

0.588
(0.429)

Part: ground floor 0.393
(0.378)

0.303
(0.510)

0.196
(0.417)

Part: garage 0.372
(0.363)

0.366
(0.382)

1.074**
(0.471)

0.0225
(0.539)

0.387
(0.353)

−0.0430
(0.420)

Characteristics of the house
Type: semi-detached 0.603

(0.456)
0.671*
(0.356)

0.542
(0.446)

0.631
(0.408)

Type: terraced −0.379
(0.494)

−1.039*
(0.537)

−0.442
(0.445)

−1.396***
(0.511)

Size of the dwelling 0.002
(0.00164)

0.001
(0.000972)

0.002
(0.00178)

0.003**
(0.00128)

0.002
(0.00150)

0.002
(0.00108)

Behavioural and socio-economic characteristics
Recurrence 0.024

(0.0505)
−0.078
(0.0734)

−0.130***
(0.0479)

−0.071
(0.0872)

−0.029
(0.0548)

−0.099
(0.0784)

Risk awareness −0.383
(0.611)

−1.021*
(0.590)

−2.211***
(0.774)

−1.222
(0.752)

−0.554
(0.601)

−0.495
(0.613)

Precautionary measures 0.278
(0.185)

0.349**
(0.178)

0.567**
(0.289)

0.249
(0.313)

0.210
(0.195)

−0.0605
(0.260)

Income: 1000–1499 −1.097*
(0.648)

−0.627
(0.610)

0.977
(1.125)

0.431
(1.470)

−0.436
(0.772)

0.191
(1.113)

Income: 1500–1999 −0.884
(0.541)

−0.468
(0.519)

1.232
(1.102)

2.190
(1.351)

−0.352
(0.685)

0.634
(1.038)

Income: 2000–2499 −0.690
(0.572)

−0.152
(0.596)

2.479**
(1.150)

1.968
(1.423)

0.358
(0.724)

1.161
(1.113)

Income: 2500+ −1.031*
(0.568)

−0.210
(0.587)

0.506
(1.166)

0.991
(1.417)

−0.443
(0.695)

0.614
(1.090)

Constant 5.982***
(0.729)

7.459***
(0.648)

2.276**
(1.096)

1.858
(1.374)

6.371***
(0.857)

6.620***
(1.163)

Observations 220 199 247 221 242 214
R2 0.162 0.211 0.162 0.171 0.128 0.184

Bootstrapped robust standard errors in parentheses.

***P < 0.01.

**P < 0.05.

*P < 0.1.
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Table A2 Ordinary Least Squares estimations for the ‘depth-damage’ model, based on average marginal effects, using rainfall data as
main variable

Variables Damage to building Damage to content Total damage

Rainfall, topography, and flood characteristics
Rainfall: gauge data 0.013***

(0.00502)
0.017**
(0.00685)

0.008*
(0.00492)

Rainfall: radar data 0.024
(0.0181)

0.001
(0.000850)

−0.005
(0.0206)

Topography −0.029**
(0.0139)

−0.029**
(0.0144)

0.004
(0.0211)

0.004
(0.0202)

−0.015
(0.0154)

−0.015
(0.0144)

Part: basement −0.858**
(0.339)

−0.816**
(0.353)

0.515
(0.697)

0.931
(0.569)

0.0357
(0.481)

0.0823
(0.481)

Part: ground floor 0.356
(0.473)

0.343
(0.443)

0.268
(0.593)

0.824
(0.519)

0.299
(0.440)

0.350
(0.433)

Part: garage 0.281
(0.357)

0.278
(0.357)

1.470***
(0.523)

0.882*
(0.505)

0.469
(0.398)

0.439
(0.412)

Characteristics of the house
Type: semi-detached 0.347

(0.376)
0.326
(0.370)

0.446
(0.408)

0.401
(0.429)

Type: terraced −1.005**
(0.448)

−1.115**
(0.433)

−0.983**
(0.468)

−1.108
(0.497)

Size of the dwelling 0.00103
(0.00102)

0.000861
(0.000845)

0.00301**
(0.00146)

0.00207**
(0.000854)

0.00171**
(0.000867)

0.00157
(0.000996)

Behavioural and socio-economic characteristics
Reoccurrence 0.045

(0.0501)
0.039
(0.0474)

−0.089
(0.0640)

−0.096*
(0.0531)

0.022
(0.0464)

0.015
(0.0540)

Risk awareness −0.393
(0.474)

−0.383
(0.498)

−1.682**
(0.795)

−1.379**
(0.690)

−0.367
(0.529)

−0.349
(0.540)

Precautionary measures 0.139
(0.149)

0.130
(0.153)

0.285
(0.317)

0.376
(0.289)

−0.170
(0.230)

−0.153
(0.222)

Income 1000–1499 −1.464***
(0.542)

−1.172**
(0.530)

0.488
(1.342)

0.470
(1.232)

−0.0345
(0.877)

0.0991
(0.929)

Income 1500–1999 −1.578***
(0.500)

−1.455***
(0.513)

0.913
(1.339)

0.949
(1.233)

−0.229
(0.868)

−0.154
(0.929)

Income 2000–2499 −1.228**
(0.542)

−1.111**
(0.520)

1.282
(1.343)

1.234
(1.261)

−0.00279
(0.936)

0.0994
(0.971)

Income 2500+ −1.131**
(0.499)

−1.114**
(0.511)

−0.291
(1.361)

−0.149
(1.277)

−0.178
(0.872)

−0.0942
(0.882)

Constant 8.040***
(0.682)

8.226***
(0.653)

2.345
(1.557)

2.693*
(1.383)

6.737***
(1.104)

7.188
(1.155)

Observations 218 218 236 278 253 253
R2 0.187 0.162 0.113 0.086 0.096 0.086

Bootstrapped robust standard errors in parentheses.

***P < 0.01.

**P < 0.05.

*P < 0.1.
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Abstract 

Due to urbanization trends and climate change effects, there is an increasing need for urban flood 

simulation, forecasting, warning and control systems. One- or two-dimensional (1D-2D) hydraulic 

models form the core of such systems. Their success strongly depends on their detail and accuracy, 

and - for real time forecasting and control applications - also on the computational time. Because 

these needs are conflicting, in this study an efficient coupled 1D-2D hydraulic modelling approach has 

been tested, linking the underground sewer system with the overland surface for an urban catchment 

in Gent (Belgium). For the surface flow modelling, different approaches with various complexities 

were compared, while searching for a compromise between precision and simulation time. Results 

emphasize the importance of finding an optimal mesh resolution for urban inundation modelling, 

taking infiltration in green areas into account, and the importance of the dynamic interaction between 

the sewer network and the river system. 

Keywords: urban drainage, urban flooding, flood modelling, pluvial flooding, surface flooding
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1 Introduction 1 

It has become more apparent that increased urbanization and upward climate trends are exacerbating 2 

pressure on stormwater management systems leading to negative social-economic and 3 

environmental effects (Lehmann et al., 2015; Willems et al., 2012). There is indeed an increased risk 4 

of urban flooding due to a convergence of factors related to increased percentage of impervious 5 

surfaces due to urbanization (Chen et al., 2015; Marshall, 2007), an increased frequency of intense 6 

rainfall events (Arnbjerg-Nielsen, 2013; Kunkel et al., 2013; Mallakpour and Villarini, 2015; Ntegeka 7 

and Willems, 2008) and aging drainage systems. The increased concentration of population and 8 

property explains why urban regions tend to have more pronounced damages under flooding 9 

conditions (Crompton and McAneney, 2008; Priest et al., 2011). Enhanced flood damages in cities have 10 

raised concerns about the effectiveness of flood proof measures. There hence is a need to better apply 11 

the insights gained from urban drainage models (Dawson et al., 2008; Wright, 2014). In this context, 12 

the use of dynamic models is increasingly tenable because of faster numerical algorithms (Casulli and 13 

Stelling, 2013; Ghimire et al., 2013; Smith et al., 2015), access to Geographical Information System 14 

(GIS) tools, availability of high-resolution terrain data, availability (Thorndahl et al., 2014) of new data 15 

collection sensors and advancements in computing technologies (Glenis et al., 2013). Dynamic models, 16 

solving the appropriate approximation of mass and momentum conservation shallow water 17 

equations, integrate detailed process descriptions covering a wide range of flow patterns (Hunter et 18 

al., 2008; Néelz and Pender, 2013). The application of dynamic models for urban flooding, however, 19 

remains a challenging problem in practice. Computational times remain prohibitive and the availability 20 

of data to calibrate the models is a consistent problem. Nonetheless, recent studies have shown that 21 

optimal approaches that account for modelling objectives, different sources of in-situ data, catchment 22 

characteristics and computational demands are complementary guides for solving urban drainage 23 

challenges. 24 
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Traditionally, urban drainage models only describe the underground system, by solving the one-25 

dimensional (1D) full St Venant equations. Urban flood modelling, however, requires such models to 26 

be extended or linked to a surface inundation model. This allows the storm water drainage to be 27 

described both in the underground system and the surface system. That is why this modelling 28 

approach is also called dual drainage method. The surface system model in this method can be zero-29 

dimensional (0D), 1D or two-dimensional (2D). This leads to several concepts ranging from 1D-0D, 30 

coupled 1D-1D, full 2D and the more sophisticated coupled 1D-2D approaches. 1D-0D modelling was 31 

the first concept adopted for modelling sewer floods. In this concept, the sewer pipe system is 32 

discretized as a set of nodes (0D) connected by links (1D) without interaction between the sewer 33 

underground system and the overland flow. Overflows that overwhelm the sewer system are either 34 

assumed lost or stored in virtual reservoirs above the nodes. These virtual reservoirs are also called 35 

flood cones. Because there is no direct interaction considered between these flood cones, no surface 36 

water movement is considered. The surcharged water that leads to surface inundations remains in the 37 

localized flood cones. This approach can be improved by transforming the 0D surface inundation 38 

model to a 1D model. The 1D-1D approach involves the coupling of the 1D underground network with 39 

the surface system, schematized by a 1D network. This implies that urban overland flow processes are 40 

conceptualized as a set of storage areas connected by links which are then connected to nodes of the 41 

1D sewer system (Djordjević et al., 2005; Lhomme et al., 2004). The storage areas represent the lower 42 

lying areas at the surface, where water can be ponded, and the links are the higher elevations 43 

pathways, schematized by overflow units, in between the storage areas. The predefinition of overland 44 

flow paths in such 1D surface model poses a problem for cases where flood flow paths could vary such 45 

as in areas of large flood depth and in flow separation and recirculation areas (Ghostine et al., 2014). 46 

Moreover, the simplification of the overland surface by a 1D model introduces additional uncertainties 47 

(Leandro et al., 2009) and potentially increases the model setup time. A further advancement of the 48 

surface model into a 2D model is necessary for a better representation of surface geometries. 1D-2D 49 

approaches involve the coupling of the 1D underground models with a full 2D model for the overland 50 
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flow (Seyoum et al., 2012; Simões et al., 2011; Pina et al., 2016; Yu et al., 2016). They are considered 51 

more physically based especially regarding the way flow conditions on the surface are conceptualized. 52 

This concept is widely applied as evidenced from various software packages that have incorporated 53 

the methodology, e.g. InfoWorks ICM (Innovyze, 2014), SOBEK, MIKE URBAN. However, the 54 

computational demands of 1D-2D models are still prohibitive for some applications such as 55 

operational forecasting of floods where 1D approaches are preferred.  56 

The purpose of this study was to evaluate different options for the 1D-2D dual drainage approach 57 

based on the two criteria that relate to the needs discussed above, but which are often conflicting: 58 

accuracy and computational time. This involved setting up and testing the model performance based 59 

on available data from diverse sources. Different resolutions were tested for the surface system 60 

model, from 0D to 2D, and different mesh sizes for the 2D approach. The optimal resolution was 61 

determined with the goal of achieving sufficient accuracy while maintaining reasonable runtimes. To 62 

reach this goal, the mesh sizes were not kept constant, but were varied depending on the area (2D 63 

meshes with different resolutions for different types of areas). Evaluation of the accuracy of the 64 

models in simulating urban floods is, however, very challenging. This is because of the typical lack of 65 

observations on such floods, mainly due to their short duration and local nature. This study was 66 

applied to an urban catchment in Belgium, where data typically available from diverse sources had to 67 

be combined. It includes rainfall data from rain gauges and radar, water level observations from 68 

monitoring points in the sewer network, information on reported floods by the city authorities and 69 

from social media. The different modelling approaches were implemented using the Info Works ICM 70 

software (Innovyze, 2014).  71 

To achieve these objectives, the following steps were carried out: (1) identification of the flood risk 72 

areas; (2) 2D surface mesh sensitivity analysis and identification of the optimal resolution for the 2D 73 

surface flow model; (3) performance testing of the final coupled 1D-2D model. The few records of 74 

urban floods necessitated the need for sensitivity analysis to evaluate the importance of the model 75 
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structure and parameters. Additionally, measures were taken to constrain data input uncertainty to 76 

allow for a more clear identification of model imperfections. Rainfall data at the small spatial and 77 

temporal resolutions required for urban drainage modelling indeed is often more lacking and/or 78 

subjected to higher uncertainty (Berne et al., 2004; Bruni et al., 2015; Ochoa-Rodriguez et al., 2015) 79 

than is the case for river flood applications.  80 

 81 

2 Materials and methods 82 

2.1 Case study 83 

The selected study area is the urban drainage system of the villages of Oostakker and Sint 84 

Amandsberg, two districts of the city of Gent, Belgium (Fig. 1). This area is mainly constituted by a 85 

residential domain covering about 2747ha, and a population density of 15.8 inhabitants/ha. Its sewer 86 

system design is essentially combined, meaning that waste and storm water are transported through 87 

the same pipe network. The ground is predominantly pervious and its surface topography flat with an 88 

average slope of 0.0035m/m. 89 

2.2 Preliminary set up 90 

Prior to the model development, a preliminary setup and standardization of the required data was 91 

performed. At first, a set of topographical data was required for the development of the urban surface 92 

approach including a Digital Terrain Model (DTM) of 0.5m horizontal resolution and a vertical accuracy 93 

of 0.05m (AGIV, 2015), which was provided by the Flemish Agency for Geographical Information (AGIV) 94 

as well as building features, streets and land use polygons. Building data were used to accurately 95 

represent no flow zones onto the surface. In order to reduce unnecessary detail, a two-step 96 

simplification and improvement was applied. First, adjacent building polygons with overlapping sides 97 

were joined to reduce the amount of information to be processed. Then, complex shapes were 98 

simplified with a minimum area of 10m2 and a simplification tolerance of 2m. The simplification was 99 
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attained by joining adjacent street polygons, filling in holes smaller than 10m2 size and closing residual 100 

gaps between street and building polygons. Land use mapping was needed to help identifying the 101 

proper surface cover types. Its properties were obtained from two sources: AGIV provided surface 102 

boundaries covered by vegetation within the study area, Open Street Maps (Haklay and Weber, 2008; 103 

Leandro et al., 2016) provided a variety of further reclassified information of impervious, pervious 104 

areas, infiltration and roughness zones.  105 

Fig. 1. Here 106 

2.3 Precipitation and pumping chamber data 107 

Four synthetic rainfall design storms, the so-called composite storms developed following the Chicago 108 

storm design concept (Keifer and Chu, 1957), with return periods of 2, 5, 10 and 20 years were used 109 

for the analysis (Fig. 2). These storms are based on rainfall intensity-duration-frequency (IDF) curves 110 

for Belgium and are commonly applied for the design of urban drainage systems in the region 111 

(Willems, 2013). Each composite storm had a time step of five minutes and a duration of two days. 112 

The four events were used for generating flood hazard zones through simulation in the 1D sewer 113 

network and for comparison of model simulations results.  114 

 115 

Fig. 2. Here 116 

In addition, local rainfall data were considered for three historical events. They were selected from 117 

five rain gauges, installed since March 2016. The most severe event, on 30 May 2016, had rainfall 118 

return periods in the range that is typical for sewer design: from about 2 years to about 10 years, 119 

depending on the location. The other two selected events, on 15 June 2016, and on 22 May 2016, 120 

have rainfall return periods less than 2 years. The event on 22 May 2016 was selected for evaluating 121 

the urban inundation results as data on that that were provided by the city authorities regarding 122 

locations of reported flooding. The model rainfall input was based on 5-minutes C-band radar data 123 
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with a resolution of 539m from the Royal Meteorological Institute of Belgium (Goudenhoofdt and 124 

Delobbe, 2016) merged with the 1-minute rainfall intensity observations from the five rain gauges 125 

using a simple mean field bias correction. 126 

Water level observations in pumping chambers, routinely recorded for monitoring purposes, were 127 

considered for the pumping locations at Bredestraat (P1) and Koutergoedstraat (P2), of which the 128 

locations are shown in Fig. 1. They have a combined upstream drainage area of 416 and 16 ha 129 

respectively.  130 

2.4 1D-0D model 131 

A 1D-0D full hydrodynamic model of the sewer network was implemented in Info Works ICM 132 

(Innovyze, 2014) based on detailed physical information on the location of the sewer network, the 133 

geometrical and material properties of the sewer pipes and the location and regulation of pumps and 134 

structures. The model, governed by the full St Venant equations, is composed of approximately 7400 135 

nodes, 4500 subcatchments (38% impervious areas) and 13700 pipes spread over a total length of 136 

290km. Around 84% of the system was configured as a combined system, 15% was storm type and the 137 

rest conveyed sanitary water type. 138 

In this 1D-0D approach, flood storage above each manhole was initially defined in the form of a double 139 

flood cone. The first flood compartment starts from the manhole to a height of 1m above the ground 140 

level with top cross sectional area of 10% of sub catchment area. The second compartment follows to 141 

a height of 5m above the ground level with top cross sectional area of 100% of the sub catchment 142 

area. The heights of the cones can be modified to better represent the volume area relationship based 143 

on the DTM for each potentially flooded zone. While such adjustments can be made for the cone 144 

dimensions, instabilities can be introduced; for instance, for flat cones, a small height difference can 145 

change the flood volume significantly. Besides, flood cones do not allow for routing of surface water 146 

because connectivity between cones is nonexistent. Because of such limitations, flood volumes and 147 
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depths simulated by the flood cone approach are often biased. For this reason, flood cones are used 148 

in this study for identifying flood prone locations and for comparison the results of the 1D-2D 149 

approach.  150 

The flood prone locations were identified by simulating the composite storms for the different return 151 

periods in the 1D-0D model. This was done through analysis of the flooded nodes and their 152 

corresponding flood volumes. After comparing with historically flooded streets, a threshold of 10 m3 153 

was selected as the volume in the flood cone above which flooding typically starts. Flood sensitive 154 

areas were then selected whose 20-year storm flood peak volume exceeds the flooding threshold (Fig. 155 

3). The aim was to generate a primary map of the high flood hazard areas along the sewer system 156 

network. In tandem with land use information on the location of the buildings, these areas were 157 

classified as high risk zones.  158 

Fig. 3. Here 159 

2.5 1D-2D model 160 

After the identification of the high flood risk areas, the 1D-2D model was setup. The link between the 161 

1D conduits and the 2D surface was through 2D manholes. A 2D manhole is represented as a weir with 162 

a crest level taken as the ground level and a crest length equal to the shaft circumference of the node. 163 

A discharge coefficient of 0.5 was applied to all manholes of type 2D. In this way, water is exchanged 164 

to the 2D surface when the pressure head at the manhole exceeds the ground level. 165 

After surcharge flooding, the 2D surface model is activated. The 2D calculations are based on a 166 

procedure described by Alcrudo and Mulet (2005). The shallow water equations (SWE) for the depth 167 

averaged version of the Navier-Stokes equation are used for the mathematical representation of the 168 

2D flow. Roughness zones are defined to represent varying roughness for streets, green zones and 169 

other surfaces. The 2D surface is represented as a network of unstructured grids that allow for a better 170 

flow path connectivity especially around builds which are considered as void regions. However, the 171 
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generation of the 2D grid is not trivial. It is important that the generated mesh is hydraulically 172 

appropriate with acceptable calculation times and accuracy. A very fine grid discretization may 173 

theoretically be more accurate but calculation times are burdensome. It is not clear how mesh sizes 174 

can influence the flooding extent as the flow paths can change based on site conditions. Thus based 175 

on a sensitivity approach, various mesh resolutions were tested with the purpose of establishing a 176 

compromise between resolution and calculation time. 177 

2.5.1 Meshing for 2D surface flood modelling 178 

As recommended by Innovyze (2014), a minimum and maximum element size ratio of 1:4 was applied 179 

in all areas in order to ensure good consistency of the mesh. Next, in areas with large height variation, 180 

terrain sensitive meshing was implemented to increase the resolution. This consisted in a more 181 

detailed triangle mesh creation in areas where the terrain changes the most. To study the model 182 

stability that is linked to the mesh resolution and the calculation time step, the mass balance error 183 

was considered. This error was computed by subtracting from the net runoff inflow in the 1D sewer 184 

network, the combined surface runoff and the losses that include evaporation and infiltration. For 185 

accuracy, the mass balance error (%) should be close to 0. 186 

The aim of the meshing analysis was to set lower mesh resolutions for low flood risk areas, which do 187 

not need as much detail as the other areas, in order to increase the simulation speed without 188 

adversely affecting the accuracy of the results. Three approaches were tested: (1) 2D mesh without 189 

mesh zone delineation; (2) 2D mesh with mesh zone delineation for streets and flood risk zones; (3) 190 

2D mesh with mesh zone delineation of streets and infiltration 2D zones (Fig. 4 a, b, c). For the low 191 

detail 2D mesh approach (Figure 5a), there was no infiltration considered thus assuming the whole 192 

surface area as impervious with buildings used as no mesh zones (voids). In the second approach (Fig. 193 

4b), preference was given to the streets with detailed mesh zones of 3.75m2 - 15m2 element size and 194 

flood risk areas with 12.5m2 - 50m2 resolution and varying mesh over the remaining 2D surface, which 195 

was kept to a coarser resolution. This street range was chosen based on the typical maximum street 196 
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width within the study area. As in the first approach, no infiltration was considered here. The third 197 

approach (Fig. 4c) was similar to the second but with the addition of infiltration for the mesh elements 198 

covering green areas. These could overlap any portion of the surface with the exception of streets, 199 

considered fully impervious, and building polygons that were considered as no flow zones. For each 200 

of the three approaches, eight mesh resolutions were implemented for the low flood risk areas 201 

(125m2-500 m2; 100m2-400m2; 75m2-300m2; 50m2-200m2; 37.5m2-150m2; 25m2-100m2; 18.75m2-202 

75m2 and 12.5m2-50m2) and further analyzed. For approaches 2 and 3, mesh resolutions were fixed 203 

for the high flood risk and street areas to preserve accuracy of flood results for these areas. The aim 204 

of the meshing analysis was to set lower mesh resolutions for the low flood risk areas, which do not 205 

need as much detail as the other areas, in order to increase the simulation speed without adversely 206 

affecting the accuracy of the results. 207 

 208 

Fig. 4. Here 209 

2.5.2 Infiltration zones 210 

Infiltration zones were defined for regions where infiltration effects are significant such as green 211 

zones. It is worth noting that infiltration is implicitly applied in the runoff generation process for the 212 

urban runoff subcatchments albeit not explicitly as the infiltration on the 2D surface. As the runoff 213 

volume generation is based on a lumped approach per subcatchment (see section 2.7), infiltration is 214 

considered as part of the losses implicit in the runoff coefficients applied for the subcatchments. 215 

However, a 2D infiltration model is implemented when excess volumes are released from the 1D 216 

sewer nodes onto the 2D mesh after which infiltration is estimated for the mesh elements covering 217 

the green zones. In other words, infiltration during the runoff process is based on a lumped approach 218 

while infiltration during flooding is based on a distributed approach.  219 
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Infiltration along the 2D mesh is modelled using a widely applied variant of the Horton infiltration 220 

equation (Akan, 1992). In this variant, the actual amount of water infiltrated from the start of the 221 

infiltration is incorporated in the equation, which implies that the infiltration at a given time is not just 222 

a variable with time as is assumed in the original equation. Moreover, it allows for infiltration to occur 223 

without rainfall. A sensitivity analysis was carried out where the infiltration conditions were tested for 224 

three soil groups (US Soil Conservation Service (SCS) groups A, B and C) to study the impact that 225 

infiltration can have on surface flood modelling results.  226 

2.6 Runoff generation model 227 

Prior to both types of hydraulic urban inundation models considered (1D-0D and 1D-2D), a runoff 228 

generation model transforms rainfall intensities in runoff volumes that enter the sewer manholes. This 229 

model first accounts for the initial losses from small depressions on the land surface by means of a 230 

depression storage model. The depression storage capacity is estimated using subcatchment slope, 231 

surface perviousness and porosity (Innovyze, 2014). 232 

After removing the depression storage from the rainfall, a percentage of the net rainfall was 233 

transformed to runoff. Runoff volumes from subcatchments were generated using runoff coefficients 234 

for different land use surfaces. Four types of surfaces were assumed to represent the overall land use 235 

types within each subcatchment unit. They consisted of paved surfaces and roof areas, unpaved 236 

surfaces with negligible runoff and paved surfaces with minimal runoff. Suggested first guess 237 

coefficients for impermeable surfaces are 80% for roads and roofs and between 0% and 10% for 238 

permeable areas (Innovyze, 2014). For this study, permeable surfaces were assigned a runoff 239 

coefficient of 8%. However, runoff coefficients for the impermeable surfaces were calibrated based 240 

on collected rainfall and runoff-related data. 241 

Following the Wallingford routing model (Innovyze, 2014), the resulting runoff volume is routed to the 242 

sewer manholes from the centroid of each sub catchment. This volume is the total runoff after 243 
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accumulating the runoff volumes from the pervious and impervious surfaces. The time delay is 244 

accounted for by a routing model based on two linear reservoirs in series. The reservoir coefficients 245 

are derived from catchment characteristics of slope, area and rainfall intensity. All catchment runoff 246 

is transferred to the sewer manholes. As there was not sufficient gully inlet data, this approach was 247 

adopted. As such, the flooding mechanism is mainly surcharge based. Surface ponding generated from 248 

the limited capacity of the inlets is not modelled, albeit the latter may have an important effect (Pina 249 

et al., 2016).  250 

3 Results and discussions 251 

3.1 Sensitivity analysis  252 

Fig. 5 shows the obtained mesh sensitivity results. Approach 2 generally shows the largest flooding 253 

volumes and extents. Approach 1 also exhibits large flood areas although lower when compared with 254 

approach 2. The differences between approaches 1 and 2 are attributed to the discretization of the 255 

streets and flood risk zones. As approach 1 does not apply a specific meshing zone for these areas, the 256 

resulting mesh configuration discretizes less flow pathways. When using meshing zones for approach 257 

2, the mesh elements are higher in number and usually decrease in size during meshing as algorithm 258 

uses smaller elements to accurately map the polygon boundary. In addition, as streets are also meshed 259 

at a finer resolution, the number of potential flow path ways captured increases. Moreover, the 260 

streets contain nodes where surcharged excess volumes are discharged. In flat areas, high resolution 261 

street discretization (more flow paths) leads to higher flood extents due to more spreading. At a 262 

coarser resolution, there is a loss of flow paths, which means that the diffusion of water is limited.  263 

However, in Fig. 5, the changes of the flood volume with mesh resolution for approach 1 and 2 do not 264 

follow a clear pattern. For instance, while volumes converge at coarser resolutions for the 5-year 265 

return period, the volumes diverge for a 20-year return period for coarser resolutions. For the 2- and 266 

10-year return periods, the relationship between mesh size and flood volume does not follow a clear 267 

pattern. As volumes are aggregated for the entire region, it is not straightforward to determine the 268 
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reasons for the variation of volumes with mesh sizes. For a more in-depth analysis, three regions were 269 

investigated for maximum flood volume differences. The first region (region a) is characterized by the 270 

distribution of flood volumes along the straight street with a slope of 2.38%. The second region (area 271 

b) is characterized with flood volumes distributed in a branched street network with average slope of 272 

1.92%. In the third region (area c), the flood volume is distributed in a cross shaped street network 273 

with an average slope of 2.05%. For all the areas, the proximity of the buildings to the streets restricts 274 

the flood extent along the streets until an opening is created for another street. This is especially 275 

important for high return periods where new paths potentially extend the flood volumes. A 276 

comparison was made between the highest (12.5m2-50m2) and lowest (125m2-500 m2) resolutions for 277 

both approach 1 (mesh) and approach 2 (mesh zones). The ratio of flood volumes for approach 2 to 278 

approach 1 was used to quantify the differences. Results in Fig. 6 show that for return periods less 279 

than 5 years, the steeper areas (regions a and c) show higher differences for high resolutions. For the 280 

higher return periods the differences are again higher for high resolution settings compared to coarse 281 

resolution settings. This is especially apparent for regions with more complex street geometry (b and 282 

c). It is notable that region c has more pronounced differences between approach 1 and approach 2. 283 

This is observed for all return periods indicating that the dynamics of flooding involve more complex 284 

flow pathways that are better represented using higher resolutions. The inherent assumption is that 285 

higher resolutions are better suited for discretizing flow paths in complex geometry. The importance 286 

of defining higher resolutions for high flood risk areas is demonstrated based on a comparison of the 287 

high resolution settings for approach 1 and 2. Since approach 1 does not involve a specific delineation 288 

of flood prone areas, it is likely that some of these flood prone regions are not discretized using finer 289 

resolutions which leads to lower flood volumes compared to approach 1. This leads to 290 

underestimation of flood volumes. In other words, approach 1 is influenced by topography while 291 

approach 2 is influenced by the sewer system drainage network as well as the topography. 292 

Approach 3, which considers infiltration, shows the lowest flood volumes and extents. It is apparent 293 

that infiltration reduces calculation times as less mesh elements are wet. Due to the non-linear sewer 294 
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system response to rainfall, the reduction in volumes is more important for the lower return periods. 295 

Comparing approach 2 and 3, it is noticeable that simulation times are reduced when infiltration is 296 

incorporated. This is explained by the fewer calculations for the 2D surface inundation model due to 297 

the presence of fewer wet mesh elements. Thus, the inclusion of infiltration will not only make the 298 

simulation more representative; it also reduces the calculation time. Approach 1 shows the lowest 299 

calculation times as the number of 2D elements are lower and it does not include infiltration 300 

calculations. Thus, approach 1 would be useful as a first attempt for identifying flooded areas. Results 301 

shown in Fig. 7 indicate that infiltration has an important impact on flood volumes and extents for the 302 

study area. The highest impact of infiltration was found for the 2-year return period event for the 303 

flood volumes and extents.  304 

 305 

Fig. 5. Here 306 

Fig. 6. Here 307 

Fig. 7. Here 308 

 309 

 310 

3.2 Identification of optimal model resolution and configuration 311 

With the aim to develop an optimal model setup, a reasonable compromise between simulation time 312 

and accuracy was established. Mesh sizes in the range 75m2 – 300m2 (average size of around 80m2 in 313 

Fig. 5 from approach 3 results) were chosen for low flood risk areas. Considering approach 3, this range 314 

of mesh sizes, is optimal considering calculation times as other factors such as flood volumes tend to 315 

be similar for other mesh size ranges. Compared to the highest resolution range (12.5m2 – 50m2), the 316 

overall flood extents using the selected range would be underestimated by 7% for the 20 year return 317 

periods.  318 
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 Hence, the final 2D surface model consists of mesh zones with sizes in the range of 3.75m2 – 15m2 for 319 

the streets, 12.5m2 – 50m2 for the high flood risk areas, and 75m2 – 300m2 for the low risk areas. The 320 

final model also includes the Horton infiltration model for permeable 2D areas. It is worth pointing 321 

out the importance of the time step used for linking the 1D hydraulic model with the 2D surface model. 322 

The timestep for 1D-2D linking is not the same timestep for stability in either 1D or 2D systems. The 323 

timestep for each of the systems is adjusted for accuracy and efficiency during simulation based on 324 

stability criteria. The timestep for linking is applied as an initial estimate of the calculations for the 1D 325 

system after which tolerance criteria are used to estimate appropriate timesteps. But the 2D engine 326 

timestep for stability is calculated based on the Courant-Friedrichs-Lewy condition (Innovyze, 2014) 327 

related to the 2D element mesh size. It is recommended to select a linking timestep for which the 328 

mass balance errors are low. A linking timestep of 5 seconds was sufficient for keeping the mass 329 

balance errors below 5 percent.  330 

 331 

3.3 Comparing 1D-0D to 1D-2D 332 

Flood characteristics between the 1D-0D sewer model with flood cones and the 1D-2D model were 333 

compared. Table 1 shows the magnitude factor difference between the peak volumes, at the time 334 

instant of the maximum flood extent, for the two approaches. The factor is based on peaks whose 335 

time of occurrence is different for the two models. For comparison, three locations (Fig. 8) were 336 

selected. The flood volumes for the flood cone approach were calculated from the cones within the 337 

flooded street sections. It is apparent that the 1D-0D approach has lower flood volumes. This is most 338 

significant for location c. It is discernable from Fig. 8 that the distance to the sewer outfalls for location 339 

c is the shortest out of the three locations. This means that for this location the flood cones contain 340 

less flood volumes because  the sewer system has higher capacity as a result of being emptied at a 341 

faster rate. This is consistent with the 1D-0D approach where the stored flood volume depends on the 342 

available underground storage capacity. Infiltration losses during flooding are less significant for 343 
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locations b and c as green zone areas are not present within the vicinity of the flooded streets. The 344 

fact that flood cones are leading to lower flood volumes for all three locations indicates that infiltration 345 

losses have a low impact on the surface volumes in the 1D-2D surface model hence leading to higher 346 

surface volumes. Additionally, the volume in the overland surface of the  1D-2D model is increased by 347 

the presence of surface depressions which store more flood volumes that do not immediately return 348 

to the sewer network. However, this does not mean that the 1D-0D model always leads to lower flood 349 

volumes. For instance, for steeper catchments the 1D-0D model could have higher flood volumes in 350 

the upstream locations. The shape of the flood cones also has an important impact on the stored flood 351 

volumes with flatter cones storing more flood volumes. As such, the shape of the flood cones can be 352 

adjusted to give a better representation of the flood volumes. 353 

Table 1. Here 354 

Fig. 8. Here 355 

3.4 Estimation of runoff coefficients  356 

The urban runoff model requires an estimate of the runoff coefficient based on the types of runoff 357 

surfaces. This estimation was combined with the model performance evaluation based on field 358 

observations of water levels. Of particular interest is the runoff coefficient from impervious surfaces, 359 

which were classified as paved surfaces and roof surfaces. The recommended range for poor to high 360 

quality paved roads is 0.8-0.9. Because flow meters were not present, a comparison of observed with 361 

simulated water levels was made assuming that range of coefficients. Fig. 9 shows the water levels for 362 

two events and two locations. These are water levels in pumping chambers. Because pump operations 363 

in the field are unpredictable, hence may differ from the implementation in the model, it is not logical 364 

to compare the entire time series of levels. Instead, peak water levels are of interest. The average 365 

absolute peak differences were 0.16m and 0.20m for 0.8 and 0.9 respectively. The runoff coefficient 366 

was henceforth set to 0.8.  367 
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 368 

Fig. 9. Here 369 

3.5 Evaluation of 2D flooding  370 

To better understand the performance of the model in simulating surface flooding, a model simulation 371 

with an extreme event was made. Detailed surface flooding evidence is often unavailable for such 372 

evaluation. In this study, flood event measurements on inundation depths and extent were not 373 

available. Instead, photographic and video data from different sources were collected. Information 374 

regarding flooding locations was provided by the city authorities. It is reasonable to assume that some 375 

locations were reported as flooded because the depth was high enough to cause some significant 376 

interruptions. Nonetheless, important insights can be gleaned from this type of information regarding 377 

the consistency with the flooded streets in the model. They were available for the recent flood event 378 

of 30 May 2016. In addition, water level measurements available for the same event at two monitoring 379 

locations show that the model results are close to the observations. Fig. 10 shows flooding at 380 

Bredestraat location and high but non flooding conditions at Koutergoedstraat. This finding was 381 

consistent with reported flooded locations in Fig. 11. 382 

Fig. 10. Here 383 

Furthermore, results are examined for three locations identified as flood prone based on previous 384 

composite storm analysis. Fig. 11 shows the simulated flood extents for the areas around these three 385 

locations along with the flooded locations as simulated in the models. Reported flood locations appear 386 

to mostly match the flooded streets (depth greater than 10 cm) in the model. The northern part of the 387 

area experienced the highest flood impact with most of the flooding resulting from overflowing of the 388 

channel banks. It is interesting to note the consistency between the evidence for the inundations at 389 

the locations (a) and (c). Flooding at location (b) was minor and this could explain why no reported 390 

floods were recorded at this location. The extent of the flooding at location (c) is found 391 

underestimated by the model (Fig. 11), given the flood evidence in Fig. 12 in images P1 and P2. 392 
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Investigation on the possible explanation for this discrepancy revealed two potential explanations. 393 

First, backwater effects resulting from high river water levels at the sewer outfalls were found to have 394 

important effects on the street flooding. Although water level measurements were not available for 395 

the sewer outfall near location (c), reports by the Flemish river authorities provide evidence that 396 

before the event, water levels in rivers were higher than normal.  These normal levels are defined as 397 

the long term average water levels. To investigate the influence of these river levels, the level at the 398 

outfall near location (c) was raised with 20, 50 and 80 mm. Fig. 13 shows that this increase has an 399 

important impact on the urban flooding at location (c). This indicates the importance of a dynamic 400 

interaction between the river and sewer systems. By coupling a hydrodynamic model for the river with 401 

the sewer model, the effects of backwater interaction would be better simulated (Kandori and 402 

Willems, 2008). The other possible explanation considered, is the urban sewer flood model 403 

conceptualization which assumes that all runoff volumes are transferred directly to the sewer system 404 

without any surface ponding resulting from limited capacity of inlets. Therefore flooding only occurs 405 

from sewer surcharge which implies that surface flooding is limited for an area with sufficient 406 

underground storage and/or drainage. This is consistent with location (c) where the outfall location is 407 

close to the flooded street and the drainage network allows for a larger sewer system storage and 408 

downstream throughflow, which reduces the potential for surcharged flooding.  409 

For location (a), evaluation of the model result for the flooded street was done based on the 410 

timestamp  the image (Fig. 12 P3) was taken. Based on visual inspection in this image of the inundation 411 

depth and the approximate inundation area, they are found consistent with the average inundation 412 

depth of 0.2 m as simulated by the model.  413 

For the same event and based on the same flood information, sensitivity analysis was conducted on 414 

the soil infiltration rates. These rates were varied using two different soil types representing higher 415 

and lower infiltration rates than the assumed soil type. Fig. 14 shows that infiltration has an important 416 

influence on the extent of the inundation. The magnitude of the reduction in flood extent hence 417 
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largely depends on the soil type. Compared to a case of no infiltration, a higher infiltration rate (soil 418 

A) leads to a reduction of 12 percent, medium infiltration rate (soil B) leads to a 10 percent reduction 419 

and a low infiltration rate (soil C) leads to a reduction of 7 percent in flood extent. This demonstrates 420 

the benefits of increased infiltration and the important flood mitigation effect if infiltration is impeded. 421 

However, it is hard to conclude which soil type leads to the most accurate flood extent as the 422 

information to be obtained from the available image is not that precise. Nonetheless, it is reasonable 423 

to assume that soil type B would be representative of the flood extent and volume based on the 424 

existing soil maps. The predominant type of soil in the region is sandy loam. 425 

Fig. 11. Here 426 

Fig. 12. Here 427 

Fig. 13. Here 428 

Fig. 14. Here 429 

4 Conclusion 430 

This study has explored the process of developing a 1D-2D model for urban flood modelling. Through 431 

a three step process, an optimal model setup has been determined. The first step involved the use of 432 

1D-0D model setup to identify flood prone zones that are consequently given higher resolutions in the 433 

second step. The second step was concerned with the sensitivity analysis of 2D meshing which is a 434 

major concern for 2D models especially regarding model run time. A fine resolution mesh offers 435 

benefits of accuracy at the expense of calculation time while simulation times are less prohibitive with 436 

coarse resolutions but with a loss of accuracy. Sensitivity analysis allows for establishing optimal model 437 

settings. The third step focused on validation and evaluation of the 1D-2D model.  438 

Using synthetic design composite storms, different mesh size resolutions were tested. An optimal 439 

resolution with mesh sizes in the range of 75m2—300m2 was selected considering mass balance errors 440 

(below 5%), flood extent and volume variability as well as calculation time. Infiltration areas were 441 

included using a Horton infiltration model, because sensitivity analysis showed that infiltration has a 442 
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large impact on the flood characteristics. Moreover, it was found that flood extents increase with finer 443 

mesh sizes. However, this finding cannot be generalized for other study areas since flow pathways 444 

may change after meshing based on site conditions such as topography and street geometry. For this 445 

study area, which is characterized by flat topography, coarse mesh resolutions led to a loss of flow 446 

paths during averaging; finer mesh sizes were more effective in capturing the diverging flow paths 447 

which tend to occur in flat topography. Furthermore, street boundaries defined by building voids, 448 

confine the flood extent that would otherwise be higher for coarser mesh sizes. Furthermore, model 449 

runs with delineated street and flood risk zones showed higher flood extents compared to model runs 450 

without delineated mesh zones. This was consistent with increased flow pathways in the delineated 451 

zones. The reduction of flood extent and flood volumes with infiltration was more pronounced for low 452 

return periods indicating the importance of infiltration for low intensity events.  453 

With the identified optimal resolution, flood 1D-2D flood characteristics were compared with the 1D-454 

0D model based on flood cones. This comparison helped to better understand the effect of model 455 

conceptualization on flood volumes. By analyzing three areas, it was established that the flood cone 456 

approach leads to lower flood volumes. This was more apparent at locations close to outfalls where 457 

the differences are more pronounced. At these locations, the downstream throughflow to receiving 458 

rivers allows for a larger sewer system storage capacity which reduces the flood volumes.  459 

Due to the lack of extensive measurements, literature based parameters as suggested by Innovyze 460 

(2014) were implemented for some model parameters such as roughness coefficients. However, 461 

coefficients for the fixed runoff model were verified using recorded water levels at two pump well 462 

locations using rainfall events with similar patterns to water level measurements. A coefficient of 0.8 463 

was found to be reasonable.  464 

From photographic evidence, water depths and extents were investigated for one extreme event. 465 

Because both rain gauge and radar data were available for this event, and at high temporal and spatial 466 

resolutions, it was an important event to validate the flood modelling results. The model showed 467 
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consistent results with the flooding locations reported by the regional authorities. However, results 468 

from three regions revealed the importance of the dynamic interaction between the sewer network 469 

and the receiving river system. Higher river water levels were found to explain the flood extent in the 470 

region close to an outfall to the river. Higher river levels were reported by the water authorities but 471 

the model simulation assumed normal river boundary conditions at the outfalls. For locations less 472 

affected by the downstream river conditions, the model performance in terms of flood characteristics 473 

was found to be consistent with the observations. 474 

It is clear that the increased use of 1D-2D models will be fostered by the availability of data that is 475 

often limited. This study relied on different data sources from meteorological services, water 476 

authorities, social media and monitoring campaigns. Data availability at high temporal and spatial 477 

resolution made it possible to identify improvements in the dynamics of the model. The consistency 478 

between the 1D-2D approach and observations increased confidence in the use of such models for 479 

urban flood management.  480 
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Table 1. Peak volume ratio (1D-2D vs 1D-0D) 586 

 Return period [years]: 

 Location: 2 5 10 20 

a 1.69 1.45 1.46 1.56 

b 1.92 1.69 1.73 1.71 

c - 7.82 3.54 2.99 

 587 
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Fig. 1. Study area water level monitoring pumping stations P1 and P2 and rain gauge locations at 622 

Wittwalle (R1), Eksaarderijweg (R2), Louise Derachestraat (R3), Grondwetlaan (R4), and Adolf 623 

Baeyensstraat (R5) (left). Elevation map (right).  624 
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Fig. 2. Composite storms for return periods of 2, 5, 10 and 20 years. Only 90 minutes centered at the 627 

peak of the two day duration storm are shown to emphasize the differences. 628 
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Fig. 3. Flood risk zones identified based on the composite storm event for return period of 20 years. 631 
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 634 

Fig. 4. Meshing approaches. Approach 1 without street and flood risk mesh zoning. Approach 2 with 635 

streets and flood risk mesh zoning. Approach 3 with streets and flood risk mesh zoning including 2D 636 

infiltration zoning. 637 

  638 



  
 

34 
 

 639 

 640 

Fig. 5. Mesh zone sensitivity analysis for composite storms with return periods of 2, 5, 10 and 20 years. 641 

Approach 1 (Mesh), Approach 2 (MeshZones) and Approach 3 (Infil-MeshZones). Simulations were run 642 

on a computer with a 64-bit intel core i7-2600 at 3.40GHz and 16 gb of RAM. 643 
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Fig. 6. Comparing approaches 1 and 2 at locations a,b,c(left). Volume ratio of approach 2 to approach 647 

1 for high resolutions (grey) and low resolutions (white). 648 
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Fig. 7. Flooded area (left) and flooded volume (right) factor difference for model without infiltration 652 

(InfilOff) against model with infiltration (Infl). 653 
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 657 

Fig. 8. Flood depth and extent at three locations a,b,c for return period of 20 years. 658 
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 662 

Fig. 9. Simulated and observed water levels at Bredestraat and Koutergoedstraat locations. Pump 663 

chamber roof, switch on and switch off levels are shown as grey horizontal lines. 664 
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 666 

 667 

Fig. 10. Water levels simulated and observed for 30 May 2016 at Bredestraat and Koutergoedstraat. 668 

Pump chamber roof, switch on and switch off levels are shown as grey horizontal lines. 669 
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 671 

Fig. 11. Flood depth and extent at locations a,b,c for 30 May 2016 . P1 , P2 and P3 are view points from 672 

which images shown in Fig. 12 were taken. For visibility of flooded streets (right side), a buffer of 10m 673 

was added to flooded streets. 674 
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 677 

Fig. 12. Observed flood evidence for two flooded locations a and c for 30 May 2016. Sint-678 

Bernadettestraat street closed to traffic (P2). 679 
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Fig. 13. Flood depth and extent for normal river levels (a) and normal river levels increased by 20mm 683 

(b), 50mm (c) and 80mm (d) at the sewer outfall for 30 May 2016. 684 
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Fig. 14. Flood extent at flood peak time for soil types A, B and C for 30 May 2016 event at location a. 688 
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Summary 

Detailed full hydrodynamic 1D-2D dual drainage models are a well-established approach to simulate urban 

pluvial floods. However, despite modelling advances and increasing computational power, this approach 

remains unsuitable for many real time applications. We propose and test two computationally efficient 

surrogate models. The first approach links a detailed 1D sewer model to a GIS-based overland flood network. 

For the second approach, we developed a conceptual sewer and flood model using data-driven and physically 

based structures, and coupled the model to pre-simulated flood maps. The city of Ghent (Belgium) is used as 

a test case. Both surrogate models can provide comparable results to the original model in terms of peak 

surface flood volumes and maximum flood extent and depth maps, with a significant reduction in computing 

time. 

1. Introduction 

Full hydrodynamic 1D-2D dual drainage models are a well-established approach to simulate urban pluvial 

flooding, which can provide a realistic description of flood conditions. They simulate the coupling between the 

sewer network, represented by a detailed 1D model, and the surface flow, computed using a 2D hydrodynamic 

model. This approach is now available in commercial software packages such as SOBEK [Deltares, 2017], XP-

SWMM 2D [XP Solutions, 2014], MIKE FLOOD [DHI, 2012] or InfoWorks ICM [Innovyze, 2015], and is commonly 

applied in urban flood studies [Schmitt et al., 2004; Carr and Smith, 2006; Jahanbazi and Egger, 2014]. 

However, such set up is generally too computationally intensive for real-time applications such as urban pluvial 

flood forecasting or for probabilistic approaches that require multiple simulations, even with the aid of high 

performance computing [Lacasta et al., 2015]. 

Therefore, there remains a need for developing computationally more efficient surrogates of these models. 

Two broad families of surrogate models can be considered: lower-fidelity models, which are simplified 

physically based models preserving the main body of processes modeled in the original system, and data-

driven models which emulate the original model responses without analyzing the physical processes involved 

[Razavi et al., 2012]. In the context of 1D-2D dual drainage models, lower fidelity approaches can be developed 

for the underground sewer model, the surface model, or both. However, given that the 2D surface flow model 

is generally more computationally expensive than the 1D sewer model, the approaches that rely solely on 

simplified representations of the sewer system do not necessarily result in a reduction of computation times. 

Therefore, most often lower fidelity approaches apply simplifications in both the sewer and the surface 

system. Different simplified representations can be used, but only the most popular ones, widely used in 

practice and research, are mentioned here. 

The sewer system can be represented in the simplest approaches by subtracting a constant rate of rainfall 

[Environment Agency, 2013; van Dijk et al., 2014] or by using a constant infiltration rate [Chen et al., 2009a] 

that reflects the draining and storage capacity of the sewer. These approaches can be interesting if the 

underground drainage does not have much influence on the studied flood phenomenon or if network data are 



missing [Henonin et al., 2013]. More complicated yet popular approach is skeletonisation [Leitão et al., 2010; 

Simões et al., 2010], in which secondary elements of the network model are removed or changed. 

On the other hand, the urban surface system can be represented in the simplest approaches by virtual 

reservoirs, located on top of the manholes, which store the overflow volumes. This approach alone cannot be 

used for a realistic assessment of flood dynamics, but can give an estimation of potential overflow locations 

[Maksimovic and Prodanovic, 2001]. On the other hand, the urban surface can be represented by a network 

of open channels and ponds, forming a so-called 1D-1D dual drainage model when combined with a 1D sewer 

model [Maksimović et al., 2009]. This approach can provide accurate results if the surface flow is well 

channeled and the lateral dispersion of the flood wave is not significant [Mark et al., 2004; Lhomme et al., 

2006; Leandro et al., 2009]. If this is not the case (e.g. flat areas with multidirectional flow paths), a two-

dimensional treatment of the surface flow hydraulics is required to resolve the complex flow paths. Model 

complexity can then be reduced by solving simplified forms of the 2D shallow water equations, typically the 

local inertial approximation or the diffusive wave approximation [Neal et al., 2012], applying grid coarsening 

methods with a subgrid treatment to account for the topographic variability that is too small to resolve with 

the computational mesh [Schubert and Sanders, 2012], or using nested grids in studies that require a large 

computational domain [Bermudez et al., 2017]. However, these models may still not fully satisfy the needs of 

city emergency management due to model complexity, setup data requirements and computing times. 

Further simplifications have thus been proposed in recent years, such as urban inundation models based on 

geographic information systems [Chen et al., 2009b; Jahanbazi and Egger, 2014; Zhang and Pan, 2014] or on 

a cellular automata approach [Ghimire et al., 2013; Liu et al., 2015].  

The physically-based models described above are being more and more complemented by data-driven models 

[Solomatine and Ostfeld, 2008], which use machine learning methods to approximate the response of the 

original model given explanatory variables. In the water resources field, artificial neural networks (ANN) are a 

popular function approximation technique [Razavi et al., 2012] which can capture complex input/output 

relationships. They have been widely and successfully applied for modelling rainfall-runoff processes, 

forecasting streamflow [Yaseen et al., 2015] and approximating rating curves [Wolfs and Willems, 2014], but 

applications to urban hydraulics and hydrology are still scarce [Li et al., 2010]. ANN models have been applied 

to predict flooding at the nodes of a sewer network based on rainfall input [Duncan et al., 2011, 2013], or to 

emulate Combined Sewer Overflow (CSO) dynamics and water quality variables [Keupers and Willems, 2015], 

relating rainfall and depth of flow in the CSO chamber [Mounce et al., 2014]. [Wolfs and Willems, 2016] 

recently developed a conceptual sewer modelling approach which divides the sewer system into 

interconnected cells and uses ANN models to estimate flows between them. All the above studies have 

reported significant speed gains over conventional hydrodynamic models with an acceptable loss of accuracy 

for most intended applications, which highlights the potential of this approach for predicting urban flooding 

in real-time. The generalization ability beyond the training data is nevertheless a concern when applying this 

type of models. 

In this study we propose and test two surrogate models of a 1D-2D dual drainage model. The first model relies 

on lower fidelity simplifications to represent the surface system. The second model combines both physically-

based and data driven modelling approaches to develop a conceptual sewer and flood model. The capabilities 

of these two models for pluvial flood inundation mapping are evaluated and compared. 

 

2. Methodology 



2.1. Case study 

The city of Ghent in Belgium was used as a test case. The studied area covers 27.5 km2 of flat terrain and is 

highly urbanized, with a population equivalent of 43,626. Four regions of the study area, with sizes around 0.3 

km2, were defined to develop the surrogate models (Figure 1). Model performance was evaluated considering 

4 rainfall events: 2 historical events, occurred on 28th July 2013 and 30th May 2016, and 2 events obtained 

with a stochastic rainfall generator [Muñoz et al., 2015]. To set up surrogate model 2 (see §2.4), a total of 120 

storms based on the rainfall data of the meteorological station of the Royal Meteorological Institute of Belgium 

at Uccle were created and employed. This additional data enhances the generalization capabilities of the data-

driven modelling approach, and can increase its accuracy. The 120 storms are based on different historical 

storms with large rainfall intensities and/or cumulative volumes. Out of the 120 storms, 15 were created by 

merging 2 separate storms, leading to events with two consecutive peaks. Such succession of peaks can have 

a major impact of urban flooding, as storages (in the sewer and on the surface) can already be filled after the 

first peak. Also, the rainfall intensities of most storms were artificially increased to cause flooding, and thus 

create additional flood calibration data for surrogate model 2. Additionally, 8 synthetic storms with return 

periods from 2 to 100 years are used to derive pre-simulated flood maps.  

 

Figure 1. Definition of the sewer network in the 1D-2D original model. The four regions analyzed are marked in 

yellow. 

2.2. 1D-2D dual drainage model 



A detailed 1D-2D full hydrodynamic model of the sewer network and the surface of the city was implemented 

in InfoWorks ICM (Figure 1). The model covers an area of 27.5 km2 and is comprised of 6025 conduits, 182 

hydraulic structures and 5855 manholes. The resolution of the surface triangular mesh ranged from 3.75 m2 

up to 50 m2 in the flood prone areas. The interaction between the 1D underground sewer conduits and the 

2D surface was through the manholes, conceptualized as weirs. The double linear reservoir model (or 

Wallingford model) was used to route the flow from the surface to the manholes based on the input rainfall.  

2.3. Surrogate model 1 

Two different surrogate models of the above model were developed in this work. A schematic diagram of the 

two models is shown in Figure 2. The first surrogate model consists of a 1D representation of the sewer 

network in which the flood volumes are stored in virtual reservoirs on top of the manholes. A conical flood 

storage volume was defined for each manhole, specifying a cross-sectional area versus height relation. Two 

alternative definitions were implemented and tested: a default definition based on the size of the contributing 

areas draining to each node and an arbitrary total height of 100 m (named surrogate model 1A), and an 

enhanced definition based on the floodable areas estimated from the surface topography (named surrogate 

model 1B).  

 

Figure 2. Schematic overview of the different sub-models that comprise the two surrogate models and their 

main input and output data: the runoff inflows Qin, the volumes in the sewer V and the flooded volumes Vflood. 

The GIS mapping (Figure 2, Surrogate model 1) consists of a flood volume spreading algorithm that translates 

the maximum flood volume from surcharged manholes into a flood depth map. The method is based on an 

iterative algorithm that moves flood volumes over the terrain from grid cell to grid cell of the raster digital 

elevation model (DEM), and is similar to the procedure applied in [Shapiro and Westervelt, 1992; Shook et al., 

2013]. This approach does not require topographical pre-processing to define or remove depressions. It aims 

to move water over the landscape. When flood volumes are spread in this way, water moves into and out of 

depressions dynamically. The approach assumes that the drainage connectivity depends on the DEM. Thus, 

efforts must be made to minimize the potential connectivity inaccuracies such as areas with culvert or bridge 

crossings. 

The flood volume spreading algorithm operates as follows. At each time step, a fraction of the depth in a grid 

cell is drained to the eight neighbouring grid cells. Each iteration therefore requires selecting an individual grid 

cell and a distribution of the volume for the neighbouring grid cells, after which the calculation is repeated for 

all grid cells within the flood zone. Specifically, a height difference is calculated between the selected grid cell 



and its neighbouring grid cells. The height is calculated as the summation of the water depth and the ground 

elevation. If the neighbouring grid cell’s height is greater than the selected grid cell’s height, the selected grid 

cell receives a portion of the height difference, otherwise the neighbouring grid cell receives a fraction of the 

difference. Since such calculations are computationally expensive, the distribution of the volumes can be 

implemented using parallel computing. To allow for this, grid cells are grouped to avoid overlapping 

calculations. A total of 9 group simulations can be run concurrently to allow for a faster calculation of the flood 

extent. Figure 3 shows a group of grid cells that meet the non-overlapping criteria. 

After each iteration, it is important to verify that the change in water depth to the previous iteration is within 

a tolerance limit. After thousands of iterations, the water surface depth approaches a realistic representation 

of the final water depth. When the maximum change in water depth at any location within the study area is 

smaller than the tolerance limit, the final water depth profile is achieved. It is worth noting that a 100-year 

flood plain was used for selecting the grid cells over which calculations were made. This was necessary to 

reduce limit the iterative procedure to those grids that would potentially be flooded.  

Figure 4 illustrates the flood spreading procedure. For this study, an initial water depth map is required as a 

starting point for the flood spreading. This initial water depth map was calculated by estimating the flood 

depth at the manhole locations. Given the grid size, we can estimate the flood depth for a grid area. For 

manhole locations that are close to each other (within 2 meters), the volumes are combined and then spread 

on the grid cells close to the flooded grid cells (as shown in area 3 in Figure 3). Initial depths are usually high 

but after several iterations, the volume is spread over the terrain and realistic flood depths are achieved. The 

threshold for convergence was set at 10mm.  

 

Figure 3. Flood volume spreading for selected non overlapping grid cells of group 6 (centre cell in grey), and 

neighbouring cells (shown with black arrows).  



 

Figure 4. Flood volume spreading at three time moments. Initial flood depth (top panel), intermediate flood 

depth (middle panel) and final depth (bottom panel). For simplicity topography is shown as a flat surface. In 

practice the grey cells have different elevations based on the DEM.  

2.4. Surrogate model 2 

The second surrogate model combines a conceptual lumped hydraulic sewer model and a simplified flood 

model, using both data-driven and physically based model structures. Given rainfall and nearby river level 

series, the model yields volumes and maps at different locations in the city. The surrogate model was 

calibrated using simulation results of the detailed full hydrodynamic 1D-2D InfoWorks ICM model. The same 

rainfall runoff routing was used as in surrogate model 1. If such detailed 1D-2D model is unavailable, one could 

also calibrate this model to measurements. However, the level of model detail and its accuracy will depend 

on the availability and reliability of such measurements. 

The underground system is emulated using the conceptual modelling approach described in [Wolfs and 

Willems, 2016]. First, the sewer network is divided into interconnected storage cells, each representing 

different parts of the sewer system. The conceptual model topology was chosen which minimizes flows 

between cells, which finally resulted in a model consisting of 13 storage cells (Figure 5). Experiments also 

showed that lumping processes further and creating fewer cells could lead to inaccurate model predictions. 

Next, the flows between the storage cells were emulated using a variety of model structures, including neural 

networks, transfer functions and piecewise linear relationships (see [Wolfs and Willems, 2016] for further 

information on the model structures and calibration algorithms). For each flow path, the most appropriate 

model structure was chosen based on the dynamics of the system. The model outcomes are volumes in each 

storage cell, and discharges at several locations. 



 

Figure 5. Division of the entire area in storage cells (SCs) for the underground sewer hydraulic model. 

The flood model estimates surface flood volumes, aggregated in the pre-defined regions of the study area 

(Figure 1), using a serial connection of two artificial neural networks (ANNs). The first is a neural classification 

network that can identify when flooding from the underground system emerges. This network holds 10 hidden 

neurons arranged in one layer, and was trained using the scaled conjugate gradient approach minimizing 

cross-entropy. Next, an ensemble of five feedforward neural networks quantifies the magnitude of the flood. 

Using such ensemble reduces the risk of overfitting and increases the generalization capabilities. These ANNs 

have between 15 and 25 hidden neurons configured in one hidden layer. The flood model distinguishes flood 

volumes which are connected directly to the sewer system and thus can drain quickly, and flood volumes 

stored in local depressions which can only be emptied slowly via infiltration and evaporation. Only the former 

volumes are predicted directly via the ANN ensemble, which can be used to deduce the other volumes via GIS 

processing. By using such division, the slow decrease of the flood volume due ponding and infiltration, and 

events with two consecutive peaks, can also be simulated accurately by using a separate 

infiltration/evaporation module. Both ANNs use the same three inputs, which are the rainfall runoff volumes 

aggregated over 10 and 30 minutes windows, and the volume in the underground system of the closest storage 

cell. 

In the final step of the modelling cascade, the predicted flood volumes are translated into flood depth maps 

(Figure 2). Pre-simulated scenarios, corresponding to synthetic storms with return periods from 2 to 100 years, 

are used to predict the spatial distribution of flooding within each region. The method uses the flood volume 

predicted by the surrogate model as input for scenario selection. 

 



3. Results  

The performance of the surrogate models is compared to that of the original 1D-2D model, first in terms of 

computational cost. The simulation times of the three models differ significantly. The 1D-2D dual drainage 

model takes approximately 408 CPU minutes to simulate a 6-hour event on an i7 processor at 3.40 GHz and 

16 GB RAM. Surrogate model 1 takes around 91 CPU minutes, whereas the surrogate model 2 requires less 

than a second. This vast speed gains would enable numerous applications that require a large number of real 

time simulations, provided that the loss of accuracy is acceptable. This aspect is evaluated in the following.  

The results of the surrogate models are compared with those obtained with the 1D-2D dual drainage model. 

Given the limited field data available, the 1D-2D dual drainage model is considered to provide the more 

accurate representation of the system behavior. The comparison is performed for each pre-defined region in 

terms of: (1) evolution of total flood volume in the surface, (2) flood inundation and depth maps corresponding 

to the maximum surface flood volume.  

3.1. Flood volume prediction 

The results show that the first surrogate model is sensitive to the definition of the virtual storage reservoirs in 

the sewer model (Figure 6). With the default definition (model 1A), the surface flood volumes are significantly 

underestimated, being the peak flood volumes between 30% and 67% lower than those obtained with the 1D-

2D dual drainage model (Table 1). When the definition of the virtual storage is based on the floodable areas 

estimated from the surface topography (model 1B), the maximum flood volumes are better estimated. The 

maximum underestimation of peak flood volumes is 27 % (Table 1).  

Table 1. Nash-Sutcliffe efficiencies (NSE) indicating the fit of the surface volumes calculated with the surrogate 

models to the results of the 1D-2D dual drainage model. Differences in peak surface volumes (Δvol) in absolute 

and relative terms. Surface volumes are spatially aggregated in regions (R1 to R4 as indicated in Figure 1). 

  Model 1A Model 1B Model 2 

Event Metrics R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 

 NSE -0.52 0.67 -2.47 -1.33 0.66 0.80 -2.06 -0.63 0.98 0.97 -1.17 0.80 

May 2016 Δvol (m3) -539 -597 -57 -46 -239 -32 -31 -15 29 -157 136 12 

 Δvol (%) -60 -38 -30 -65 -27 -2 -16 -21 3 -10 71 17 

 NSE -0.16 0.54 -0.57 -0.25 0.61 0.97 -0.37 0.42 0.96 0.94 0.61 0.94 

July 2013 Δvol (m3) -198 -234 -45 -80 -80 -82 -23 -26 -39 -87 39 -1 

 Δvol (%) -52 -40 -43 -67 -21 -14 -23 -22 -10 -15 37 -1 

 NSE -0.13 0.52 0.32 - 0.42 0.96 0.68 - 0.89 0.94 0.88 - 

Event A Δvol (m3) -197 -576 -627 0 -107 -175 72 0 -82 -116 -91 0 

 Δvol (%) -48 -40 -28 - -26 -12 3 - -20 -8 -4 - 

 NSE -0.26 0.29 -2.72 0.10 0.55 0.92 -2.66 0.30 0.94 0.90 -0.32 0.79 

Event B Δvol (m3) -406 -264 -2 -135 -152 -70 0 33 -140 -17 14 -136 

 Δvol (%) -43 -35 -18 -19 -16 -9 -3 5 -15 -2 104 -19 

 

Surrogate model 1 can predict the start of the flood event, but is however unable to emulate the behavior of 

the surface flow, as shown by the low values of the Nash-Sutcliffe efficiencies in Table 1. The surcharged 

volumes return to the sewer system more quickly than with the 1D-2D dual drainage model, resulting in lower 

flood durations (as in R4 in Figure 6) and underestimation of peak flood volumes in multiple peak events (as 



in R3 in Figure 6). The straightforward explanation is that this model does not replicate storage in local 

depressions that can only slowly infiltrate or evaporate, and thus cannot be used to predict the evolution of 

the volumes in the surface.  

Surrogate model 2 emulates the results of the 1D-2D dual drainage model accurately, in terms of flood 

volumes, in regions 1, 2 and 4. The differences in peak flood volumes with respect to the predictions of the 

1D-2D model are below 20 % in these regions. The model can provide accurate estimations not only of the 

maximum volume, but also of its evolution during the flood event, as reflected in the Nash-Sutcliffe efficiency 

coefficients obtained (above 0.79 in these regions, Table 1). In region 3, although the model can correctly 

identify the occurrence of a flood event, the flood volume predictions are poor. The surrogate model succeeds 

in predicting the moment of inundation correctly, but overestimates the maximum flood volume for events 

May 2016, July 2013 and event B. Performance can be increased by using more advanced neural networks 

(e.g. a higher number of neurons) and including more training data. In any case, the flood duration is emulated 

more accurately by the surrogate model 2 than with the surrogate model 1. It is clear that the simulation of 

the receding flood volume is more realistic with the surrogate model 2.   

 

Figure 6. Surface flood volumes predicted by the 1D-2D dual drainage model and the surrogate models for the 

May-2016 rainfall event. Surface volumes are spatially aggregated in regions (R1 to R4 as indicated in Figure 

1). 

3.2. Flood inundation mapping  

In order to compare the predictions of inundation extent obtained with the surrogate models and the 1D-2D 

dual drainage model, we employ the precision (p), the recall (r) and the F1 score as performance measures, 

defined as follows:   



A
p=

B
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C

p r
F1 2

p r





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where A is the area correctly predicted as flooded by the surrogate model, B is the total area predicted as 

flooded by the surrogate model and C is total area predicted as flooded by the 1D-2D dual drainage model. A 

wet-dry threshold of 0.01 m is considered to delineate the flooded areas. A high precision p means that most 

of the area that the surrogate model predicts as flooded is also predicted as such by the 1D-2D dual drainage 

model. A high recall r means that most of the flooded area predicted by the 1D-2D-dual drainage model is well 

captured by the surrogate model. The lower and upper bounds of precision and recall are 0 and 1 respectively. 

In the context of early warning flood forecasting systems, a high recall ensures that the authorities are alerted 

to take action in most of the actual flooded areas, whereas a high precision avoids unnecessary actions and 

preparations in non-flooded areas. F1 is the harmonic mean of precision and recall, and is equal to 1 when the 

flooded areas predicted by the surrogate and the 1D-2D dual drainage model coincide exactly. 

In order to evaluate the quality of water depth predictions of the surrogate models, the mean absolute error 

(MAE) of the flood depth predictions was computed. With this metric, the flood depth predictions obtained 

using the surrogate models were compared with the results of the original 1D-2D dual drainage model. The 

lower the MAE value, the better the agreement between the predictions of the two models. All the above 

metrics are commonly used for evaluating flood inundation models [Aronica et al., 2002; Pappenberger et al., 

2007; Liu and Pender, 2013; Stephens et al., 2014]. 

The surrogate models developed in this work use the peak flood volume as input for flood mapping (Figure 2 

and Figure 7). Given the poor predictions of peak volumes obtained with model 1A, only model 1B and model 

2 are compared at this stage. Table 2 shows the performance metrics obtained with both models. The 

surrogate models’ predictions show a good overall agreement with the maps calculated with the 1D-2D dual 

drainage model. It should be noted that for certain events, surface flood volumes can be very low in some 

regions, and hence the derivation of a flood map is irrelevant (these cases are marked in italics in table 2). For 

event A and region 4, the 1D-2D model predicts no flooding for that location, and both surrogate models 

correctly produce a zero flood depth map. In the remaining cases, surrogate model 2 shows a slightly better 

performance than surrogate model 1, due to the underestimation of peak flood volumes in the latter. Most of 

the area that the surrogate model 1 predicts as flooded is also predicted as such by the 1D-2D dual drainage 

model, but the 1D-2D dual drainage model is mapping a larger flood extent (as in R1 in Figure 7). This results 

in higher precision than recall (Table 2). Surrogate model 2 presents high precision and recall, with F1 scores 

above 0.81 and MAE of around 0.02 m. The use of pre-simulated maps based on surface flood volumes can 

thus provide a reasonable characterization of the flood depth field at the street level. 

 

 

 

 



Table 2. Performance of the surrogate models based on the predicted flood inundation and depth maps: 

precision (p), recall (r), F1 score and mean absolute depth error (MAE).  Results corresponding to maps with 

surface flood volumes < 200 m3 are marked with an asterisk (*). 

  Model 1B Model 2 

Event Metrics R1 R2 R3 R4 R1 R2 R3 R4 

 p 0.75 0.82 0.38* 0.57* 0.93 0.78 0.47* 0.93* 

May 2016 r 0.47 0.78 0.29* 0.45* 0.92 0.90 0.67* 0.87* 

 F1 0.58 0.80 0.33* 0.50* 0.92 0.84 0.55* 0.90* 

 MAE (m) 0.06 0.04 0.04* 0.03* 0.02 0.03 0.03* 0.01* 

 p 0.73 0.80 0.57* 0.71* 0.91 0.91 0.57* 0.96* 

July 2013 r 0.52 0.59 0.41* 0.53* 0.89 0.91 0.40* 0.58* 

 F1 0.61 0.68 0.48* 0.60* 0.90 0.91 0.47* 0.72* 

 MAE (m) 0.05 0.05 0.03* 0.04* 0.02 0.01 0.02* 0.02* 

 p 0.72 0.77 0.78 - 0.93 0.94 0.83 - 

Event A r 0.54 0.66 0.63 - 0.87 0.86 0.67 - 

 F1 0.62 0.71 0.70 - 0.90 0.90 0.74 - 

 MAE (m) 0.05 0.04 0.06 - 0.02 0.02 0.04 - 

 p 0.77 0.70 0.45* 0.77 0.92 0.94 0.19* 0.97 

Event B r 0.60 0.61 0.36* 0.59 0.83 0.71 0.99* 0.71 

 F1 0.67 0.65 0.40* 0.67 0.87 0.81 0.32* 0.82 

 MAE (m) 0.06 0.04 0.03* 0.04 0.02 0.02 0.02* 0.02 

 

 

 



 

Figure 7. Flood depth maps obtained with the surrogate model 1 (left), the 1D-2D dual drainage model (middle) 

and the surrogate model 2 (right) for May-2016 flood event. Regions R1 to R4 (up to down). 

4. Discussion 

In the context of urban flood applications, the choice of a modeling strategy is mainly influenced by data 

availability and flood context (flood type, aimed application, etc.), and involves balancing accuracy, 

computation time, data needs and communication possibilities [Henonin et al., 2013; van Dijk et al., 2014]. 

Therefore, the proposed modelling approaches are compared on these topics.  



Table 3 summarizes the capabilities and applicability of the two surrogate modelling approaches proposed 

and tested in this paper. Both models can identify the occurrence of a flood and predict the moment of 

inundation correctly as evidenced by Table 1 and Figure 6. Surrogate model 1 is not well suited to simulate 

flood evolution and durations accurately, whereas surrogate model 2 can reproduce flood dynamics more 

precisely (see Figure 6). Regarding the spatial flood prediction, surrogate model 1 can identify which manholes 

are surcharged under the existing flow conditions. On the contrary, surrogate model 2 predicts the surface 

flood volumes lumped in pre-defined regions, so it is not possible to identify the precise overflow locations.  

Table 3. Model capabilities and applicability. If both approaches are suitable but their performance differs, the 

preferred option in terms of accuracy is marked in italics. 

  Model 1 Model 2 

Flood identification (yes/no) Yes Yes 

Flood magnitude (peak flood volume) Yes Yes 

Spatial flood prediction Overflow location (manholes) Yes No  

 Maximum flood extent Yes Yes 

 Maximum flood depth Yes Yes  

Flood dynamics Flood start time Yes Yes 

 Flood duration No Yes 

 Flood evolution No Yes 

Computational time (speed gain) ~5 ~104 

 

The flood maps predicted by the 1D-2D dual drainage model and the surrogate models compare well in terms 

of flood extent and flood depth. Both surrogate models use the peak flood volume as input for flood mapping. 

The flood maps thus reflect the errors in the prediction of peak flood volumes, which are higher with surrogate 

model 1 than with surrogate model 2. In surrogate model 1, the parameterization of the virtual reservoirs for 

each manhole has a significant impact on the simulated flood volumes, and the default parameterization 

underestimates flood volumes significantly at all locations. However, reasonably accurate flood maps can be 

produced with both mapping approaches (i.e., the flood volume spreading algorithm in surrogate model 1 and 

the pre-simulated maps in surrogate model 2) provided that good estimates of peak flood volumes are used. 

The mapping approaches proposed in this paper have a very simple setup and require few modelling choices. 

Almost all of the model configuration steps in both proposed approaches can be fully automated (if a detailed 

1D/2D model is available), including the calibration of the flood module in surrogate model 2. The lack of 

required modelling choices in the proposed approaches constitutes an advantage over other methods such as 

the 1D representation of the urban surface, which requires pre-defining a network of flow paths and ponds. 

The latter is not straightforward and is subject to a high degree of uncertainty in very flat areas like the one 

studied here. However, the flood mapping approaches implemented in this study are not without limitations. 

The flood spreading approach assumes that flood volumes are distributed over the terrain without explicit 

consideration of physical processes. Thus unlike the physics-based hydrodynamic models that take into 

account the detailed processes by solving  the Shallow Water Equations, the flood spreading approach uses 

simple water-elevation rules that rely on the geographic information system of neighbouring cells. Hence, 

flood velocity and flood volume losses which may occur as flood volume spreads over the surface are not 

included. Thus, if flooded locations are in a green zone, infiltration has an important impact on the flood 

volumes and depths. Improvements can be made by incorporating some physical processes within the 



methodology. For instance, the effects of infiltration losses can be accounted for by including a loss factor. 

Nevertheless, the simplified flood spreading approach allows for a diagnostic assessment of flood prone areas 

as well as identifying flow path connectivity. For cases where flood hazard information is required in a 

relatively short time, such as emergency management, simplified flood volume spreading is of critical 

importance. It is important to note, however, that the accuracy of the results critically depends on the 

resolution and quality of the DEM. A better land surface representation helps to capture relevant features 

which minimizes anomalies in flood extents.   

Table 3 shows the speed gains obtained, which are simply the ratio between the computational time of the 

1D-2D dual drainage model and the surrogate models. The speed gains achieved, in particular with the 

surrogate model 2, would enable numerous applications that require results in a very short time (e.g., real-

time applications) or a large number of model simulations (e.g., optimization problems or uncertainty 

assessments).  

Finally, the surrogate models presented here are comprised of several components or modules, as shown in 

Figure 2. As such, they can be interchanged or combined to define new modelling approaches. For example, 

the 1D representation of the sewer network with virtual reservoirs (as in surrogate model 1) can be coupled 

with pre-simulated flood maps (as in surrogate model 2). Similarly, components which are deemed 

unnecessary for a particular application can be removed. An example of the latter could be the definition of 

an urban flood warning system based only on the 1D the sewer network model with virtual reservoirs (as in 

surrogate model 1), without a flood mapping component.  

5. Conclusions 

Two surrogate modelling approaches of a highly detailed 1D-2D dual drainage model were developed and 

compared to simulate pluvial flooding on an urban area in Belgium. Surrogate model 1 is based on a 1D sewer 

network model, in which flood volumes are stored in virtual reservoirs on top of the manholes. Flood mapping 

is performed by means of a GIS volume spreading algorithm. Surrogate 2 combines a conceptual lumped 

hydraulic sewer model with a simplified flood model, using both data-driven and physically based structures. 

Flood mapping is based on pre-simulated scenarios. 

The first surrogate model can identify overflow locations and give an estimation of the maximum flood 

volume, provided that the parameterization of the virtual reservoirs reflects the urban surface topography. 

These data can then be used to derive a reasonably accurate maximum flood depth map based on the surface 

topography. The second surrogate model can emulate the evolution of the flood volumes accurately and can 

thus be used to predict the dynamics of the flood event. Pre-simulated maps show a good agreement with the 

flood maps predicted by the 1D-2D dual drainage model, in terms of flood extent and depth. Both surrogate 

models require shorter calculation times, surrogate model 2 showing clearly superior performance in this 

aspect, with speed gains above 104. This vast speed gain and the reduced loss of accuracy demonstrate the 

great potential of the developed surrogate modelling approach for real-time use. 
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Implementation of the Short-Term Ensemble Prediction System (STEPS)
in Belgium and verification of case studies
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The Short-Term Ensemble Prediction System (STEPS) is a probabilistic precipitation nowcasting scheme
developed at the Australian Bureau of Meteorology in collaboration with the UK Met Office. In order to account
for the multiscaling nature of rainfall structures, the radar field is decomposed into an 8 levels multiplicative
cascade using a Fast Fourier Transform. The cascade is advected using the velocity field estimated with optical
flow and evolves stochastically according to a hierarchy of auto-regressive processes. This allows reproducing
the empirical observation that the rate of temporal evolution of the small scales is faster than the large scales.
The uncertainty in radar rainfall measurement and the unknown future development of the velocity field are also
considered by stochastic modelling in order to reflect their typical spatial and temporal variability.

Recently, a 4 years national research program has been initiated by the University of Leuven, the Royal
Meteorological Institute (RMI) of Belgium and 3 other partners: PLURISK (“forecasting and management of
extreme rainfall induced risks in the urban environment”). The project deals with the nowcasting of rainfall
and subsequent urban inundations, as well as socio-economic risk quantification, communication, warning and
prevention. At the urban scale it is widely recognized that the uncertainty of hydrological and hydraulic models
is largely driven by the input rainfall estimation and forecast uncertainty. In support to the PLURISK project the
RMI aims at integrating STEPS in the current operational deterministic precipitation nowcasting system INCA-BE
(Integrated Nowcasting through Comprehensive Analysis).

This contribution will illustrate examples of STEPS ensemble and probabilistic nowcasts for a few selected
case studies of stratiform and convective rain in Belgium. The paper focuses on the development of STEPS
products for potential hydrological users and a preliminary verification of the nowcasts, especially to analyze the
spatial distribution of forecast errors. The analysis of nowcast biases reveals the locations where the convective
initiation, rainfall growth and decay processes significantly reduce the forecast accuracy, but also points out the
need for improving the radar-based quantitative precipitation estimation product that is used both to generate
and verify the nowcasts. The collection of fields of verification statistics is implemented using an online update
strategy, which potentially enables the system to learn from forecast errors as the archive of nowcasts grows.
The study of the spatial or temporal distribution of nowcast errors is a key step to convey to the users an overall
estimation of the nowcast accuracy and to drive future model developments.
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Abstract Gauge-based radar rainfall adjustment techniques have been largely-used to improve the 
applicability of radar rainfall estimates to large-scale hydrological modelling. Their applicability to urban 
hydrology is however insufficient since these techniques were mostly developed based upon the Gaussian 
approximations and therefore smoothed off the so-called ‘singularity’ (or non-normality) that can be 
observed in the fine-scale rainfall structure. Overlooking the singularities could be critical because their 
distribution is highly consistent with that of local extreme magnitudes. This deficiency may cause 
tremendous errors in the subsequent urban hydrological modelling. In this paper, a methodology is proposed 
to incorporate an existing gauge-based radar rainfall adjustment technique with the local singularity analysis, 
aiming for improving the applicability of existing adjustment techniques at urban scales. Three historical 
storm events recorded by a flow survey campaign in 2011 in Edinburgh (UK) were selected as case study to 
evaluate the proposed methodology. The result suggests that the proposed ‘singularity-sensitive’ 
methodology can in general better re-construct the non-normality in local rainfall structure and at the same 
time preserve the advantage of the original adjustment techniques of generating unbiased estimates.  
Key words Gauge-based adjustment; urban rain; singularity; fractals 

 
INTRODUCTION 

Traditionally, urban hydrological applications relied mainly upon rain gauge data as input as these 
provide accurate point rainfall estimates near the ground surface. However, they cannot capture the 
spatial variability of rainfall, which has a significant impact on the urban hydrological system and 
thus on the modelling of urban pluvial flooding. Thanks to the development of radar technology, 
weather radar has been playing an increasingly important role in urban hydrology. Radars can 
survey large areas and better capture the spatial variability of the rainfall, thus improving the short 
term predictability of rainfall and flooding. However, the accuracy of radar measurements is in 
general insufficient, particularly in the case of extreme rainfall magnitudes. This has a tremendous 
effect on the subsequent hydraulic model outputs. 

In order to improve the accuracy of radar rainfall estimates while preserving their spatial 
description of rainfall fields, it is possible to dynamically adjust them based on rain gauge 
measurements. Studies on this subject have been carried out over the last few years, though most 
of them focus on the hydrological applications at large scales. A couple of recent research works 
have examined the applicability of these adjustment techniques to urban-scale hydrological 
applications and concluded that these techniques can effectively reduce rainfall bias, thus leading 
to improvements in the reproduction of hydraulic outputs (Wang et al., 2013). However, 
underestimation of storm peaks can still be seen after adjustment and this is particularly significant 
in the case of small drainage areas and for extreme rainfall magnitudes. This may be due to the fact 
that the underlying adjustment techniques, mainly based upon 1st or 2nd order (statistical-) 
moment approximations, cannot properly cope with the non-normality observed in urban scale 
applications. In fact, it is often the case that the radar image captures striking local extremes (albeit 
the actual rainfall depths may be inaccurate), but these structures are lost or smoothened through 
the merging process. These striking local extremes correspond to singularity points within the 
rainfall field and can be identified through a local singularity analysis (Cheng et al., 1994; 
Schertzer and Lovejoy, 1987).  

With the purpose of improving this aspect, a methodology has been developed which identifies the 
local extremes or ‘singularities’ of radar rainfall fields and preserves them throughout the merging 
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process. A preliminary test of this methodology in an urban area in London (Wang and Onof, 
2013a, 2013b) has demonstrated that the original Bayesian data merging technique (Todini, 2001) 
could be effectively improved by incorporating this singularity analysis. In this work, this 
incorporation has been further used to reconstruct a number of storm events observed in an urban 
catchment in Edinburgh during the Summer of 2011 and for which high density rainfall and flow 
data are available. 

EXPERIMENTAL SITE AND DATA SET 

As aforementioned, the proposed methodology was originally developed using the radar and 
raingauge data over the Maida Vale catchment (London) in June 2009. However, due to the 
confidential reason and lack of flow measurements, its impact on urban hydrological modelling 
could not be evaluated in this catchment. Therefore, in the context of this paper, the dataset of the 
Maida Vale catchment will be used merely for demonstrating the intermediate results in the 
development of the methodology, and the description of the catchment and the dataset used will 
not be given in this paper. For readers who are interested in the details, please find the link in 
(Wang and Onof, 2013b). 

An alternative catchment in Portobello (Edinburgh area) was used in this paper as case study due 
to the completeness of rainfall and flow data. A full-scale test of rainfall estimation and the 
subsequent hydrological modelling was carried out in this catchment. A description of the 
catchment and the local monitoring data (including raingauge, flow and depth data) available and 
used in this study is next provided.  

In addition to the local monitoring data, the experimental catchment is within the coverage of C-
band radars operated by the UK Met Office. Radar rainfall estimates are available through the 
British Atmospheric Data Centre (BADC) with spatial and temporal resolutions of 1 km and 5 min, 
respectively. These estimates correspond to a quality controlled and multi-radar composite product 
generated with the UK Met Office Nimrod system, which includes corrections for the different 
errors inherent to radar rainfall measurements (Golding, 1998; Harrison et al., 2000). 

Portobello catchment (Edinburgh, UK) 

Catchment description: Portobello is a beach town located 5 km to the east of the city centre of 
Edinburgh, along the coast of the Firth of Forth, in Scotland (Figure 1a). The catchment is 
predominantly urban and has a drainage area of approximately 53 km2. The storm water drainage 
system is mainly separate and drains from the south-west to the north-east (towards the sea). 

Hydraulic model: The model of the sewer system of the Portobello catchment (Figure 1b) is setup 
in InfoWorks CS and was verified in 2011 based on the medium term flow survey data described 
below (using solely raingauge data as input). It comprises 2,916 nodes and 2,906 conduits. 
Rainfall is applied to the model through subcatchments and runoff is estimated using the NewUK 
model. 

Local monitoring data available for this catchment: The only local monitoring data available 
for this catchment is that of the medium term flow survey used for the verification of the model. 
The flow survey was carried out between April and June 2011 and comprises data from 12 
raingauges and 28 flow gauges (Figure 1b). Radar rainfall estimates (at 1 km and 5 min resolution) 
for the same period of the flow survey were obtained from the BADC. 

Selected storm events  

During the flow survey monitoring period, three relatively large storms were recorded and were 
used for the verification of the model. The same three storm events were used in this study to test 
the gauge based adjustment methods. The dates and main characteristics of these events are 
summarised in Table 1. 
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called mean-field bias correction (MFB), were also included in the comparison because it has been 
a widely-used correction procedure used by many meteorological services (Goudenhoofdt and 
Delobbe, 2009; Harrison et al., 2000). This adjustment is implemented by comparing the 
summations of the RG and the co-located RD grid rainfall estimates over a specific area (i.e. the 
Portobello catchment area in this paper) and duration (i.e. one hour) to obtain a sample bias ratio 
(i.e. B = ΣRG/ΣRD). This ratio is then multiplied back to each radar grid estimate to ensure that 
the mean of RD rainfall estimates is the same as (or similar to) that of the RG measurements.    

In the following, features of the rainfall estimates resulting from different interpolation and 
adjustment techniques are firstly presented and discussed. Then, the hydraulic outputs resulting 
from each rainfall input are presented, inter compared and discussed. Due to space constraints, 
only the results for Storm 1 are presented and discussed in detail. At the end of this section the 
results obtained for Storms 2 and 3 are briefly discussed and general conclusions are formulated. 
Results from Storm 1 were chosen as it is the most intense storm analysed for this catchment and, 
as such, it is the most relevant from an urban pluvial flood modelling perspective. 

Rainfall estimates 

The features of the rainfall estimates generated by different techniques were characterised by 
comparing them with the local RG measurements, in terms of areal average and individual-site 
time series. In Figure 4 (left), the result is presented of a direct comparison of areal average RG 
intensities versus areal average BK, RD and adjusted estimates’ intensities at each time step 
throughout the whole Storm 1 period. As expected, BK estimates are in good agreement with RG 
estimates. With regards to RD estimates, it can be seen that they tend to overestimate small rainfall 
rates and underestimate the peak intensities. This tendency can be explained by the fact that the Z-
R conversion that is used to convert radar reflectivity to rainfall rate has to statistically 
compromise to the range of rainfall rates that frequently occur (whereas the occurrence of very 
small and large intensities is relatively rare). It can be seen that both sources of error in RD 
estimates can be largely improved through adjustment techniques. Promising results are obtained 
from the BAY and, in particular, from the SIN merging methods, which are able to well reproduce 
low as well as high rainfall rates. As compared to the RD estimates, the MFB method does not 
seem to provide significant improvements in this respect and its performance is especially poor at 
higher intensities (which are of outmost importance in the modelling and forecasting of urban 
pluvial flooding). 

Similar comparisons were conducted at each RG location, and the associated statistics are 
summarised in Figure 4 (middle) and (right). The simple linear regression analysis was applied to 
each pair of RG measurements and the co-located grid estimates obtained from different gauge-
based interpolation and adjustment techniques. The result of these regression analyses can be 
evaluated in terms of β (regression coefficient) an R2 (coefficient of determination). These two 
statistics provide the measures of how well RG observations are replicated by the RD/BK/merged 
rainfall estimates at each gauging station. The R2 measure ranges from 0 to 1, describing how 
much of the observed dispersion is explained by the modelled one. However, the systematic bias 
(under- or over-estimation) of the modelled estimates cannot be reflected by this measure. The 
slope of the simple linear regression analysis (i.e. β) was therefore employed to provide additional 
information to cope with the drawback of R2 measures. 

As expected, the BK estimates in general possess the highest R2 values since the RD information 
was not taken into account (Figure 4 (right)). However, from the distribution of β values of the BK 
estimates, one can find that the whole box and the whiskers are below the axis of unity (Figure 4 
(middle)). A similar result can be found in the BAY estimates, where high R2 values are observed 
and most of the β values are below one. This indicates that both BK and BAY estimates tend to 
systematically underestimate the RG rainfall intensities at each gauging site. This may be caused 
by the underlying Gaussian approximation, which tends to smooth off some local extreme 
magnitudes. 
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higher) for Storm 1 (Table 1) , the RD associated hydraulic outputs consistently underestimate 
flow and depth peaks, with the degree of underestimation changing from location to location and 
possibly increasing in the direction of flows within the catchment (i.e. larger underestimations are 
observed in gauging locations further downstream, as compared to upstream locations). The 
underestimation in hydraulic outputs, in spite of the small difference of the RG and RD totals, can 
be explained by the fact that the RD estimates cannot well reproduce high rainfall rates (Figure 4). 
This suggests that not only is it important to get the areal total rainfall accumulations right, but 
accurately capturing the peak rainfall intensities is also of outmost importance in order to 
appropriately reproduce the dynamic behaviour of the hydrological system and, in particular, the 
flow and depth peaks.  

The MFB adjustment was found to provide some improvement over the original RD estimates; 
however, it is still insufficient to effectively reproduce peak rainfall intensities (Figure 4) and the 
associated flow and depth peaks (Figure 5 (left)). This confirms the fact that more dynamic 
adjustment radar rainfall adjustment methods which can better account for the spatial variability in 
the rainfall fields are required for urban-scales applications (rather than simple mean-field bias 
adjustments).  

In general and as would be expected, the hydraulic outputs obtained with the BK estimates are 
very similar to the RG ones, with BK outputs sometimes performing better than the original RG 
ones. A striking difference between BK and RG hydraulic outputs and which is worth analysing 
can be observed in the hydrographs of gauging station 23 (Figure 5 (left, bottom)): it can be seen 
that the RG outputs largely overestimate the observed peak depth, while the simply interpolated 
BK rainfall input already leads to much more sound hydraulic results which are in better 
agreement with the observations. This confirms that accounting for the spatial variability of 
rainfall fields, even through simple kriging interpolation, could lead to significant benefits in the 
modelling.   

The BAY and SIN outputs appear to be similar to the BK ones (and better than the original RD 
outputs), with the former (i.e. BAY and SIN) showing slightly more dynamic and realistic flow 
and depth patterns and with the SIN outputs performing better overall in terms of effectively 
reproducing peak depths and flows. The better performance of the SIN hydraulic outputs in this 
respect is clearly illustrated by the RE boxplots (Figure 5 (right, bottom)), where the median of the 
SIN associated RE for peak depths and flows is closer to zero and the dispersion of the results is 
smaller as compared to that of other hydraulic outputs, including the RG ones. An interesting 
example which also illustrates the potential benefits of the SIN method in terms of better capturing 
storm extremes can be found in gauging station 1: at this location the SIN methodology is the only 
one capable of generating a higher flow depth peak which is in better agreement with the 
observations (Figure 5 (left, top)).  

From the results of Storm 1 it can be concluded that all adjustment methods can improve the 
applicability of the original RD rainfall estimates to urban hydrological applications, although the 
degree of improvement provided by each adjustment method is different. Overall, the BAY and 
SIN rainfall estimates lead to significantly better simulation results than the MFB adjusted 
estimates, with the SIN estimates performing particularly well at reproducing peak depths and 
flows.  

In general, the results obtained for Storm 3 are in good agreement with those obtained for Storm 1. 
However, the results of Storm 2 are somehow different: in this event the RD accumulations were 
larger than the RG ones (see Table 1) and the RD peak rainfall intensity was very similar to the 
RG one (though this was a mild storm event with maximum observed rainfall rates in general low). 
This led to unusual results in which at many gauge stations the RD estimates resulted in better 
hydraulic outputs (i.e. closer to the observations) than the original RG ones. For this event the 
benefits of the merged rainfall estimates as compared to the original RD estimates in terms of 
hydraulic outputs are not evident (some improvements are achieved in NSE, but these are rather 
minor). Nonetheless, in this as well as in the other storms, there are many sources of uncertainty 
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Singularity-sensitive merging of radar and raingauge rainfall data
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environmental Engineering, Imperial College London, London, United Kingdom

Traditionally, urban hydrological applications relied mainly upon rain gauge data as input as these provide
accurate point rainfall estimates near the ground surface. However, they cannot capture the spatial variability of
rainfall, which has a significant impact on the urban hydrological system and thus on the modelling of urban
pluvial flooding. Thanks to the development of radar technology, weather radar has been playing an increasingly
important role in urban hydrology. Radars can survey large areas and better capture the spatial variability of
the rainfall, thus improving the short term predictability of rainfall and flooding. However, the accuracy of
radar measurements is in general insufficient, particularly in the case of extreme rainfall magnitudes. This has a
tremendous effect on the subsequent hydraulic model outputs.
In order to improve the accuracy of radar rainfall estimates while preserving their spatial description of rainfall
fields, it is possible to dynamically adjust them based on rain gauge measurements. Studies on this subject have
been carried out over the last few years, though most of them focus on the hydrological applications at large
scales. A couple of recent research works have examined the applicability of these adjustment techniques to
urban-scale hydrological applications and concluded that these techniques can effectively reduce rainfall bias, thus
leading to improvements in the reproduction of hydraulic outputs (Wang et al., 2013). However, underestimation
of storm peaks can still be seen after adjustment and this is particularly significant in the case of small drainage
areas and for extreme rainfall magnitudes. This may be due to the fact that the underlying adjustment techniques,
mainly based upon Gaussian approximations, cannot properly cope with the non-normality observed in urban
scale applications.
With the purpose of improving this aspect, a methodology has been developed which identifies the local extremes
or ‘singularities’ of radar rainfall fields and preserves them throughout the merging process (Wang and Onof,
2013). Singularities are defined through the fact that the areal average rainfall increases as a power function when
the area decreases (Cheng et al., 1994). In the proposed methodology singularities are first identified and extracted
from the radar rainfall field. The resulting non-singular radar field is then used in the merging process and the
singularities are subsequently and proportionally added back to the final reconstructed rainfall field. A full-scale
testing of this methodology in an urban area in the UK has been conducted and the result suggests that the original
Bayesian data merging technique (Todini, 2001) could be effectively improved by incorporating this singularity
analysis.
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Multi-storm, multi-catchment investigation of rainfall spatial resolution
requirements for urban hydrological applications
Susana Ochoa Rodriguez (1), Marie-Claire ten Veldhuis (2), Guendalina Bruni (2), Auguste Gires (3), Johan van
Assel (4), Lipen Wang (5), Ricardo Reinoso-Rodinel (2), Abdellah Ichiba (3), Stefan Kroll (4), Daniel Schertzer
(3), Christian Onof (1), and Patrick Willems (5)
(1) Imperial College London, London, United Kingdom, (2) Delft University of Technology, Delft, The Netherlands, (3) Ecole
des Ponts ParisTech, LEESU, Paris, France, (4) Aquafin, Leuven, Belgium, (5) KU Leuven, Leuven, Belgium

Rainfall estimates of the highest possible resolution are required for urban hydrological applications, given the
small size and fast response which characterise urban catchments. While significant progress has been made over
the last few decades in high resolution measurement of rainfall at urban scales and in the modelling of urban runoff
processes, a number of questions as to the actual resolution requirements for input data and models remain to be
answered. With the aim of answering some of these questions, this work investigates the impact of rainfall esti-
mates of different spatial resolutions and structures on the hydraulic outputs of models of several urban catchments
with different characteristics. For this purpose multiple storm events, including convective and stratiform ones,
measured by a polarimetric X-band radar located in Cabauw (NL) were selected for analysis. The original radar
estimates, at 100 m and 1 min resolutions, were aggregated to coarser spatial resolutions of up to 1000 m. These
estimates were then applied to the high-resolution semi distributed hydraulic models of four urban catchments
of similar size (approx. 7 km2), but different morphological and land use characteristics; these are: the Herent
catchment (Belgium), the Cranbrook catchment (UK), the Morée Sausset catchment (France) and the Kralingen
District of Rotterdam (The Netherlands). When doing so, methodologies for standardising rainfall inputs and mak-
ing results comparable were implemented. Moreover, the results were analysed considering different points at each
catchment, while also taking into account the particular storm and catchment characteristics.
The results obtained for the storms used in this study show that flat and less compact catchments (e.g. polder areas)
may be more sensitive to the spatial resolution of rainfall estimates, as compared to catchments with higher slopes
and compactness, which in general show little sensitivity to changes in spatial resolution. While this study pro-
vides interesting insights, further investigation is still required in order to obtain a more complete answer regarding
rainfall resolution requirements for urban hydrological applications. Future work should include testing on higher
resolution fully distributed hydro models, as well as the analysis of many more storm events.
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Nested 1D-2D approach for urban surface flood modeling
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Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of
trends in urbanization (increased population density and impermeability of the surface) and climate change.
Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is
still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation
by many river authorities in support of flood management along rivers, this is not yet the case in urban water
management. Reasons include the small scale of the urban inundation processes, the need to have very high
resolution topographical information available, and the huge computational demands.

Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network
to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D
surface flood modeling approaches have been developed and applied in some case studies. In this research,
a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium),
linking the underground sewer (minor system) with the overland surface (major system). For the overland
surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are
advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the
effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh
resolutions was identified; based on a compromise between precision and simulation time for further real-time
flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void
regions constitute one of these mesh resolution (3.75m2 – 15m2); they have been included since they channel
most of the flood water from the manholes and they improve the accuracy of interactions within the 1D sewer
network. Other areas that recorded flooding outside the main streets have been also included with the second mesh
resolution for an accurate determination of flood maps (12.5m2 – 50m2). Permeable areas have been identified
and used as infiltration zones using the Horton infiltration model. A mesh sensitivity analysis has been performed
for the low flood risk areas for a proper model optimization. As outcome of that analysis, the third mesh resolution
has been chosen (75m2 – 300m2). Performance tests have been applied for several synthetic design storms as well
as historical storm events displaying satisfactory results upon comparing the flood mapping outcomes produced
by the different approaches. Accounting for the infiltration in the green city spaces reduces the flood extents in the
range 39% - 68%, while the average reduction in flood volume equals 86%.
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Radar rainfall estimates are playing an increasingly important role in urban hydrological applications due to their
better description of the spatial and temporal characteristics of rainfall. However, the operational radar rainfall
products provided by national weather services (typically at 1 km / 5 min resolution) still fail to meet the stringent
resolution requirements of urban hydrological applications. While the spatial and temporal resolution of rainfall
inputs are strongly related, recent studies suggest that the latter generally constitutes a more critical factor and
that temporal resolutions of ∼1-2 min (i.e. below those currently available) are required for urban hydrological
applications, while spatial resolutions of ∼1 km (i.e. close to those currently available) appear to be sufficient.
Traditional strategies for obtaining higher temporal resolution radar rainfall estimates include changes in radar
scanning strategies and stochastic downscaling. However, the former is not always possible, due to hardware lim-
itations, and the latter results in large ensembles members which hinder practical use. In this work a temporal
interpolation method, based upon the multi-scale variational optical flow technique, is proposed to generate high
temporal-resolution (i.e. 1-2 min) radar rainfall estimates. The proposed method has been successfully applied to
obtain radar rainfall estimates at 1 and 2 min temporal resolutions from UK Met Office C-band radar products
originally at 5 and 10 min temporal resolution and varying spatial resolutions of 1 km, 500 m and 100 m. The
performance of the higher temporal-resolution radar rainfall estimates was assessed through comparison against
local rain gauge records collected at a pilot urban catchment (size ∼ 865 ha) in North-East London. A further
evaluation was conducted by applying the different rainfall products as input to the hydraulic model of the pilot
catchment and comparing the hydraulic outputs against available flow and depth records. The results show that
the temporally-interpolated rainfall estimates can better reproduce the small-scale dynamics of the storm events,
leading to better reproduction of urban runoff.
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Spatial-temporal rainfall input resolution requirements for urban
drainage modelling: a multi-storm, multi-catchment investigation
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Urban hydrological applications require high resolution precipitation and catchment information in order to well
represent the spatial variability, fast runoff processes and short response times of urban catchments. Although
fast progress has been made over the last few decades in high resolution measurement of rainfall at urban scales,
including increasing use of weather radars, the resolution of the currently available rainfall estimates (typically 1 x
1 km2 in space and 5 min in time) may still be too coarse to meet the stringent spatial-temporal scales characteristic
of urban catchments. In addition, current evidence is still insufficient to provide a concrete answer regarding rainfall
input resolution requirements of urban hydrological applications. With the aim of providing further evidence in
this regard, in the framework of the EU Interreg RainGain project a collaborative study was conducted which
investigated the impact of rainfall estimates for a range of spatial and temporal resolution combinations on the
outputs of operational semi distributed models of seven urban catchments in North-West Europe. Nine storm events
measured by a dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric
Research (CESAR) of the Netherlands, were selected for analysis. Based on the original radar estimates, at 100 m
and 1 min resolutions, 15 different combinations of coarser spatial and temporal resolutions, up to 3000 m and 10
min, were generated. These estimates were applied to the hydraulic models of the urban catchments, all of which
have similar size (between 3 and 8 km2), but different morphological, hydrological and hydraulic characteristics.
When doing so, methodologies for standardising model outputs and making results comparable were implemented.
Results were analysed in the light of storm and catchment characteristics. Three main features were observed in the
results: (1) the impact of rainfall input resolution decreases as catchment drainage area increases; (2) in general, the
variation in temporal resolution of rainfall inputs affects hydrodynamic model results more strongly than variations
in spatial resolution; (3) there is a strong interaction between the spatial and temporal resolution of rainfall input
estimates and in order to avoid losing relevant information from the rainfall fields, the two resolutions must be in
agreement with each other. Based on these results, initial models to quantify the impact of rainfall input resolution
as a function of catchment size and spatial-temporal characteristics of storms are proposed and discussed.
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Abstract 
 
Traditionally, urban hydrological applications rely on spatially-uniform rainfall estimates derived 
from point measurements. However, several studies indicated that the performance of urban runoff 
and drainage simulations may largely depend upon the spatial and temporal variability of the rain-
fall input and that, therefore, rainfall input at high spatial and temporal resolutions is required. His-
torical data with such resolutions are, however, short in time. For this reason, long-term synthetic 
rainfall data generated by a stochastic model, accurately representing the real spatial-temporal 
rainfall properties, would be very beneficial. Such generated data is not constrained by the length 
of available historical data, hence would provide a better basis for urban-scale applications, such 
as urban pluvial flood risk analysis and urban drainage design. For this purpose, the early stages 
towards a development of a stochastic spatial-temporal rainfall generator for urban hydrological 
applications are presented in this work. The spatial stochastic generator for small spatial scales 
presented by Willems (2001) is employed as the starting point. 
 
The core of Willems’ generator is a conceptual rain storm model that aims to characterise rain 
storms with a number of physically-meaningful features (e.g. storm direction and velocity, rain cell 
extent, peak intensity and so on), and then to describe the statistical properties of each of them 
with a specific probability distribution. Based upon this, design rainfall with spatial variability can be 
simulated by firstly sampling a number of rain cell clusters over a ‘simulation area’, and then by 
moving the overall simulation area across the ‘catchment’ area with a given speed and direction. 
However, three main aspects where the model could be potentially improved were identified: 
 
• The parameters of Willems’ model were primarily calibrated based upon point rain gauge data, 

which could be insufficient to capture the real structure of rain storms and cells. 
• The rain cells were conceptualised using bi-variate Gaussian model, which might oversimplify 

the real structures of small-scale rain cells and consequently smooth off the rain cell peaks. 
• The temporal variability of the rain field was due to merely (stationary) field advection, so the 

temporal evolution of the field itself was not taken into account in Willems’ model. This will lead 
to the ‘unrealistic’ isotropy in the spatial and temporal scaling behaviours of simulated storms 
(Seed et al. 1999). 

 
To start tackling these deficiencies, the following strategies have been implemented: 
 
• High-resolution radar images (provided by the Royal Meteorological Institute of Belgium) were 

used to better capture the spatial and temporal characteristics of rainfall fields. However, the 
use of radar images made the storm cell identification and tracking more challenging, in par-
ticular for small-scale rainfall details. To cope with this, two main algorithms were developed. 
First, a multi-threshold identification algorithm based upon the hierarchical threshold segmenta-
tion (HTS) method (Peak and Tag, 1994) was created. With this technique, adjacent storm cell 
clusters at small scales could be better identified and isolated. Secondly, an enhanced version 
of the TITAN algorithm (Dixon et al., 1993) by means of integrating optical flow techniques, was 
also developed. The performance of the enhanced TITAN tracking algorithm was evaluated by 
the ROC (Receiver Operating Curve) analysis (Fig. 1). 
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Fig 1: ROC plots for different threshold levels and catchment extents. The lower curve shows TI-
TAN performance. Multi-threshold method inclusion improves the performance while optical flow 
integration gives the best results (Upper curve). 
 
• A multi-layer conceptual model based upon the superposition of different rainfall entities (in-

cluding high intensity peaks, rainfall cells, and small and large storm scales areas) was 
adopted.  By making use of the improved TITAN algorithm, the rainfall fields were built by over-
lapping high intensity peaks within rain cells, which, in turn, were embedded in small 
mesoscales areas (Fig 2). Rain cells were still modelled using a bivariate Gaussian model. 
Small mesoscales areas were fitted as ellipses with constant intensity.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2: The original radar rainfall image (left) and the conceptualised rainfall image (right). 
 
Results show that the integration of optical flow with a multi-threshold identification method consid-
erably improved the performance of the original TITAN method. Furthermore, the conceptual 
model shows great potential to mimic the spatial distribution of rainfall intensities in convective rain-
fall fields. Therefore, the methods presented in this work enable better capturing the behaviour of 
small-scale and high-intensity storm cells, and suggest a great potential to provide added values to 
the implementation of Willems’ rainfall generator. 
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Abstract 
 
Radar quantitative precipitation estimates (QPEs) are playing an increasingly important role in ur-
ban hydrology due to their better description of the spatial and temporal characteristics of rainfall. 
However, the operational radar QPE products provided by national weather services (typically at 1 
km / 5-10 min resolution) still fail to meet the stringent resolution requirements of urban hydrologi-
cal applications. While the spatial and temporal resolution of rainfall inputs are strongly related, 
recent studies suggest that the latter generally constitutes a more critical factor and that temporal 
resolutions of ~1-2 min are required for urban hydrological applications, while spatial resolutions of 
~1 km appear to be sufficient (Ochoa-Rodríguez et al., 2015).  
 
Traditional strategies for obtaining higher temporal-resolution radar QPEs include changes in radar 
scanning strategies and stochastic downscaling. However, the former is not always possible, due 
to hardware limitations, and the latter results in impractical large ensembles. In this work, an ad-
vection-based temporal interpolation method, based upon the multi-scale variational optical flow 
technique, is proposed to generate high temporal-resolution radar QPEs (Brox et al., 2004; Wang 
et al., 2015). The proposed method was used to generate radar QPEs at 1-min temporal resolu-
tions from UK Met Office C-band radar QPEs originally at 5-min temporal resolution and varying 
spatial resolutions of 1 km, 500 m and 100 m (the former two are generated with C-band radar 
operating in ‘long-pulse’ mode, whereas the latter is generated with ‘short-pulse’ mode). 
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Fig 1: Snapshot images of the observed (images with red borders) and the temporally-interpolated 
radar rainfall fields across multiple spatial scales (from top to bottom: 1 km, 500 m and 100 m) dur-
ing the peak intensity period of the event on 19th September 2014.  
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The performance of the temporally-interpolated radar QPEs, across a range of spatial resolutions, 
was assessed through comparison against local rain gauge records and through hydrological veri-
fication using as case study 3 storm events observed in a small urban catchment (~865 ha) in 
London for which dense rain gauge and sewer flow records, as well as a recently-calibrated high-
resolution urban drainage model were available. Fig 1 shows the snapshot images of the observed 
and the interpolated radar images at different spatial resolutions (from top to bottom: 1 km, 500 m 
and 100 m) during the peak period of an event on 19th Sep 2014. As can be seen, the impact and 
added value of temporal interpolation is in particular evident for the radar images at higher spatial 
resolution. This is also confirmed by the comparison with local rain gauge records (Fig 2). Prelimi-
nary hydraulic results (which are not shown here) suggest that the temporally-interpolated rainfall 
estimates can better reproduce the small-scale dynamics of the storm events, leading to improved 
reproduction of urban runoff.  
 

 
 
Fig 2: Comparison of rain gauge records (dark solid and dashed lines) against coincidental radar 
rainfall estimates at different spatial (1 km: blue lines, 500 m: green lines, 100m: orange lines) and 
temporal (5 min and 1 min) resolutions for the 19th September 2014 event. 
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Abstract 
 
A probabilistic model has been set up and evaluated for the nowcasting (short-term forecasting) of 
urban inundations. It consists of the following components: 
• A rainfall nowcasting model based on the Short Term Ensemble Prediction System (STEPS), 

originally co-developed by the UK Met Office and Australian Bureau of Meteorology, but further 
customised for urban applications in Belgium (denoted STEPS-BE). It provides high-resolution 
(1 km / 5 min) rainfall nowcast ensembles with a 2-hour lead time. 

• A hydraulic model that consists of the 1D sewer network and an innovative ‘nested’ 2D surface 
model to model 2D urban surface inundations at high resolution. The surface components are 
categorised into three groups and each group is modelled using triangular meshes at different 
resolutions; these include streets (3.75 – 15 m2), high flood hazard areas (12.5 – 50 m2) and 
low flood hazard areas (75 – 300 m2). 

• Functions describing urban flood damage and social consequences in relation to inundation 
depth. These functions were empirically derived based on questionnaires to people in the 
region that were recently affected by sewer floods. 

• Statistical post-processing methods in order to produce probabilistic urban flood risk maps: 
spatial maps representing the probability of flooding.   

  
The method has been implemented and tested for the villages Oostakker and Sint-Amandsberg, 
which are part of the larger city of Gent, Belgium. After each of the different above-mentioned 
components were evaluated, they were combined and tested for five recent historical flood events. 
The rainfall nowcasting, hydraulic sewer and 2D inundation modelling and socio-economical flood 
risk results each could be partly evaluated: the rainfall nowcasting results based on radar data and 
two rain gauges; the hydraulic sewer model results based on water level and discharge data at 
pumping stations; the 2D inundation modelling results based on limited data on some recent flood 
locations and inundation depths; the results for the socio-economical flood consequences of the 
most extreme events based on claims in the database of the national disaster agency. Different 
methods for visualisation of the probabilistic inundation results are proposed and tested. 
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Abstract 
 
Urban hydrological applications require high resolution precipitation and catchment information in 
order to well represent the spatial variability, fast runoff processes and short response times of 
urban catchments (Berne et al., 2004). Although fast progress has been made over the last few 
decades in high resolution measurement of rainfall at urban scales, including increasing use of 
weather radars, recent studies suggest that the resolution of the currently available rainfall esti-
mates (typically 1 x 1 km2 in space and 5 min in time) may still be too coarse to meet the stringent 
requirements of urban hydrology (Gires et al., 2012). What is more, current evidence is still insuffi-
cient to provide a concrete answer regarding the added value of higher resolution rainfall estimates 
and actual rainfall input resolution requirements for urban hydrological applications. With the aim of 
providing further evidence in this regard, a collaborative study was conducted which investigated 
the impact of rainfall input resolutions on the outputs of the operational urban drainage models of 
four urban catchments in the UK and Belgium (Figure 1).  
 

 
 
Fig 1: Boundary and sewer layout of the pilot urban catchments. 
 
Nine storm events measured by a dual polarimetric X-band weather radar, located in the Cabauw 
Experimental Site for Atmospheric Research (CESAR) of the Netherlands, were selected for 
analysis. Based on the original radar estimates, at 100 m and 1 min resolutions, 15 different com-
binations of coarser spatial and temporal resolutions, up to 3000 m and 10 min, were generated. 
Coarser spatial resolutions were generated by averaging in space, whereas coarser temporal reso-
lutions were generated through two different strategies: (1) by sampling radar images at the de-
sired temporal resolution, thus replicating radar scanning strategies; (2) by averaging in time. The 
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resulting rainfall estimates were applied as input to the operational semi-distributed models of the 
urban catchments, all of which have similar size (between 5 and 8 km2), but different morphological, 
hydrological and hydraulic characteristics (Figure 1). When doing so, methodologies for standardis-
ing model outputs and making results comparable were implemented. Hydrodynamic response 
behaviour was summarised using dimensionless performance statistics and was analysed in the 
light of drainage area and critical spatial temporal resolutions computed for each of the storm 
events. The main features observed in the results are the following (Figure 2): 
 
• The impact of rainfall input resolution decreases rapidly as catchment drainage area increases. 
• In general, the coarsening of temporal resolution of rainfall inputs affects hydrodynamic model 

results more strongly than the coarsening of spatial resolution. This is particularly the case 
when coarser temporal resolution rainfall estimates are generated through sampling of radar 
images; however, in the case of averaging in time, temporal resolution still shows a dominant 
effect over spatial resolution.  

• There is a strong interaction between the spatial and temporal resolution of rainfall input esti-
mates and in order to avoid losing relevant information from the rainfall fields, the two resolu-
tions must be in agreement with each other. 

• For the storms, models and drainage areas under consideration, temporal resolutions below 
5 min appear to be required for urban hydrological applications, whereas spatial resolutions of 
the order of 1 km appear to be sufficient.  

 
Based on these results, initial models to quantify the impact of rainfall input resolution as a function 
of catchment size and spatial-temporal characteristics of storms are proposed and discussed. 
 

 
 
Fig 2: Logarithmic functions fitted to performance statistics of hydraulic outputs (relative error in 
maximum flow peak, coefficient of determination (R2) and regression coefficient (β)) as a function 
of drainage area size, for different space-time resolution combinations. Line type denotes different 
temporal resolutions (1 min = solid; 3 min = dash-dot; 5 min = dashed; 10 min = dotted) and colour 
range denotes different spatial resolutions (100 m = green; 500 m = blue; 1000 m = purple; 3000 m 
= orange). 
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Abstract 
 
Rainfall estimates of very high accuracy and resolution are required for urban hydrological applica-
tions, given the high impermeability, small size and fast response which characterise urban catch-
ments. Traditionally, urban drainage modelling applications have relied mainly upon rain gauge 
data as input, given that these sensors provide relatively accurate point rainfall estimates near the 
ground. However, they cannot capture the spatial variability of rainfall, which has a significant im-
pact on the urban hydrological system and thus on the modelling of urban runoff. With the advent 
of weather radars, radar quantitative precipitation estimates (QPEs) with higher temporal and spa-
tial resolution have become increasingly available and have started to be used operationally for 
urban storm-water modelling. Nonetheless, the insufficient accuracy of radar QPEs, arising from 
the indirect measurement of rainfall -often significantly high above ground-, has proven problematic 
and has hindered its widespread practical use (Schellart et al., 2012). In order to improve the accu-
racy of radar rainfall estimates while preserving their spatial description of rainfall fields, it is possi-
ble to dynamically adjust them based on rain gauge measurements. Gauge-based adjustment of 
radar QPEs, also referred to as radar-rain gauge combination or merging, has been an active topic 
of research over the last few decades and has proven effective to improve the accuracy of radar 
QPEs, thus improving their applicability for hydrological applications. However, most gauge-based 
adjustment methods have been tested and applied at large spatial and temporal scales -of the or-
der of thousands of square kilometres and at temporal resolutions ≥ 1 h - (e.g. (Goudenhoofdt & 
Delobbe, 2009)), and their suitability for small-scale urban hydrology is seldom explored.  
 
In this work we evaluate the performance of several radar-rain gauge merging techniques of vari-
ous degrees of complexity at urban scales. The techniques under investigation were selected on 
the grounds of their widespread use and/or their relative performance against other existing tech-
niques, as reported in previous studies (Goudenhoofdt & Delobbe, 2009; Wang et al., 2013; Jewell 
& Gaussiat, 2015). The tested techniques include the simple mean field bias (MFB) correction, the 
Kriging with external drift (KED), and the more advanced Bayesian (BAY) merging (Todini, 2001) 
and singularity-sensitive Bayesian (SIN) merging (Wang et al., 2015). The study area is a sub-
catchment of Birmingham (drainage area ~ 67 km2), UK, for which Met Office C-band radar QPEs 
(at 1 km / 5 min resolution), as well as records from 20 rain gauges (at 2 min resolution) and 41 
flow gauges (at 2 min resolution) over a 6 month period are available. The relative performance of 
the different merging methods is first assessed on an event basis through comparison against rain 
gauge records and through hydrological verification (Figure 1). Moreover, the effect of rain gauge 
density on the performance of the merging methods is investigated. For this purpose, a simple ap-
proach of removing gauges from an initially dense network of rain gauges was applied; the se-
lected approach ensures realistic configuration of rain gauge networks of different densities. The 
initial conclusions of this study are the following: 
• All adjustment methods improve the applicability of the original radar and rain gauge QPEs 

estimates to urban hydrological applications (Figure 1); however, the degree of improvement 
varies for each method. 
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• In general, MFB is insufficient for satisfactorily correcting the errors in radar QPEs (Figure 1 (a, 
b)) and this is evident in the associated hydraulic outputs, which fail to properly reproduce peak 
depths and flows. This suggests that more dynamic and spatially-varying adjustment methods 
are required for urban hydrological applications.  

• At high rain gauge densities (~1 rain gauge every 3 km2), KED, BAY and SIN rainfall estimates 
show very good quantitative performance, both in terms of comparison against rain gauge re-
cords and in terms of their ability to reproduce observed urban runoff (Fig. 1). The SIN QPEs 
perform particularly well at reproducing peak rainfall intensities and associated depths & flows. 

• At low rain gauge densities (~ 1 rain gauge per 16 km2) KED, which is one of the most popular 
methods (Goudenhoofdt & Delobbe, 2009; Jewell & Gaussiat, 2015), performs poorly, and the 
advantage of the BAY and in particular the SIN method becomes more evident (Fig. 2).  

 

 
 

 

Fig 1: Quantitative performance of different 
merged QPEs – Storm 1: (a) Areal average total 

rainfall accumulations; (b) Areal average rain 
gauge vs. radar/ merged QPEs instantaneous 
rain rates; (c) Observed vs. simulated flows. 

Fig 2: Impact of rain gauge density on the rain 
gauge interpolated (BK: block-kriging) and ra-

dar-rain gauge merged QPEs. 
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Abstract 

Cities are particularly vulnerable to rainfall-generated floods that are typically characterised 

by their rapid onset and localised nature. This implies that precipitation and catchment 

information need to be available at high resolution to reliably predict hydrological response 

and potential flooding. On the contrary, urban areas constitute a major knowledge gap as most 

flood risk studies have concentrated on natural basins and records of rain gauges and water 

level gauges in cities are scarce. While increase in intense precipitation as a result of climate 

change is expected in many areas around the world, it is at present not possible to assess how 

this will affect urban pluvial flood risk. Collection of reliable, high resolution data in cities 

needs to start urgently to build up datasets in support of urban flood risk assessment and to 

enable detection of changes in flood risk whether these are induced by climate change, 

urbanisation or other future developments. This study shows how implementation of 

polarimetric X-band radar can contribute to filling the knowledge gap of flood risk 

quantification in cities.  

1 Introduction 

Cities are particularly sensitive to flooding induced by short-duration, high-intensity 

precipitation, due to their high degree of imperviousness, resulting in fast runoff processes 
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and lack of available water storage. Moreover, the high density of population and economic 

assets in urban areas results in high vulnerability to flooding. Ongoing urbanisation and urban 

densification further contribute to exacerbating flood vulnerability, thus increasing urban 

pluvial flood risk.  

Based on climate models, increases in the frequency and intensity of heavy precipitation are 

projected for the 21st century in several regions of the world. It is “likely that the frequency of 

heavy precipitation will increase in the 21st century, particularly in the case of high latitudes 

and tropical regions and in winter in the northern mid-latitudes” (Kundzewicz, 2014).  

Increase in heavy precipitation could in turn be expected to contribute to increases in 

precipitation-generated flood risk; however, insufficient evidence is currently available on 

both flood frequency and magnitudes as well as on flood losses to assess climate-driven 

changes (Kundzewicz, 2014). Urban areas in particular represent a major knowledge gap, 

since most flood risk studies refer to “natural” basins and records of rain gauges and water 

level gauges in cities are scarce and essentially insufficient to represent the fine-scale urban 

hydro-meteorological variability (Schellart et al., 2012, Jensen and Pedersen, 2005).  

The focus of this paper is on risks associated with urban, rainfall-generated flooding. It 

introduces new approaches and technologies to characterise high resolution temporal and 

spatial characteristics of rainfall, hydrological response and flood vulnerability in urban 

catchments. Information on these characteristics is crucial to be able to reliably quantify urban 

flood risk. This is in turn a first requirement to be able to build up the datasets required to 

assess potential changes in rainfall-generated flood risk in cities. The final challenge will be 

to identify drivers from the complex interactions of rainfall, urban development, 

concentration of asset value and development of man-made drainage infrastructure in cities.  

High resolution data at urban scales 

The spatial-temporal characteristics of urban catchments and stormwater drainage systems are 

generally small, often of the order of 1-10 km2 and a few minutes, respectively (Arnbjerg-

Nielsen et al., 2013; Ochoa-Rodriguez et al., submitted). Cities typically display high spatial 

variability in land-use, small catchment areas and a high degree of imperviousness. 

Stormwater drainage systems are predominantly man-made and consist of complex networks 

of channel and pipe networks. For the hazard component of flood risk assessment this implies 

that precipitation information needs to be available at high resolution to reliably predict 

hydrological response and potential flooding. With respect to flood vulnerability, cities 
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typically comprise a high concentration of assets (infrastructure, buildings), economic value 

and, most importantly, people. Unlike river and coastal flooding, potential locations of 

rainfall-generated flooding are not concentrated along line-elements like coasts of river banks, 

as localised storms can occur anywhere in a catchment. Moreover, artificial drainage 

networks can lead to redistribution of flows, away from natural drainage paths. Not only the 

position and capacity of drainage systems is important, also their condition needs to be 

known, as man-made drainage systems in cities (especially underground sewer pipes) are 

sensitive to blockage and flow disruption which can induce localised floods in areas that 

would not normally be susceptible to flooding (ten Veldhuis et al., 2009). 

For the damage component of flood risk assessment, collection of damage data associated 

with urban pluvial flooding is complicated by the fact that in cities damage is borne by a wide 

range of individual property owners, industries as well as governmental authorities. Insurance 

databases constitute a valuable source of damage information, albeit difficult to access due to 

privacy issues and data quality (Spekkers et al., 2014). Kundzewicz at al. (2014) show that 

globally about 9% of flood damage in the period 2001-2011 was insured, which implies that 

dedicated methods for damage data collection need to be found to obtain comprehensive 

insight into urban pluvial flood damage. Reports of localised flooding and damage reports 

need to be collected in a structured way over long periods of time before changes in urban 

flood risk can be assessed and drivers of changes can be identified.  

 In summary, analysis of rainfall-generated flooding in cities requires high resolution data in 

space and time of precipitation intensities, catchment characteristics, hydrological response, 

vulnerability and historical flood damage. This will support quantification of current urban 

pluvial flood risk and will constitute a starting point for building up time series of high 

resolution rainfall intensities, occurrence of flood events and flood damage which will enable 

detection of changes to date and forecasting of future changes in urban pluvial flood risk. 

The EU-funded RainGain project set out to collect reliable, high resolution precipitation data 

in four cities in North-West-Europe, based on innovative technology: state-of-the-art dual-

polarimetric weather radars for retrieval or rainfall information. Ten pilot sites were selected 

in the four cities based on availability of recent topographic datasets and detailed 

hydrodynamic models representing the drainage networks and drainage area characteristics. 

Through collaboration with local authorities holding operational knowledge of the urban 

drainage networks and historical flood events, valuable information for flood risk assessment 
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was generated. In this paper, we will present findings of a recent study in which high 

resolution precipitation datasets derived from a dual-polarimetric X-band radar were used to 

examine hydrological response patterns in seven of the 10 pilot catchments. We will build 

upon these findings and ongoing work of the RainGain project to identify some critical 

requirements for data collection in support of urban flood risk analysis and detection of 

changes in flood risk characteristics. We will also outline some approaches and 

methodologies to meet such requirements.  

2 Methods and dataset 

2.1 Urban catchment characteristics 

Seven urban catchments, located at each of the four RainGain partner countries, were adopted 

as pilot locations in this study. With the aim of facilitating inter-comparison of results, 

catchment areas of similar size (3-8 km2) were selected for testing. The main characteristics of 

the selected pilot catchments are summarised in Table 1. Moreover, images of the boundaries 

and sewer layouts of all pilot catchments can be found in Figure 1. More detailed information 

on each of these catchments is available on the RainGain project website: 

http://www.raingain.eu/en/actualite/learn-more-about-ten-locations-where-raingain-solutions-

will-be-implemented. As can be seen, the selected pilot catchments cover a wide range of 

morphological, topographic and land use conditions.  

2.2 Precipitation dataset: dual-polarimetric X-band radar 

One of the aims of the RainGain project is to obtain high resolution precipitation estimates in 

cities. To this end, four different radar-rain gauges configurations are set up for precipitation 

estimation in Leuven, London, Paris and Rotterdam (figure 2). Configurations vary from a 

single polarisation radar and a network of rain gauges for ground truthing in Leuven, 

providing rainfall estimates at 125x125m2 and 1 minute resolution. In London, pilot sites are 

within coverage of 2 radars of the national C-band radar network, equipped and being 

upgraded to dual-polarisation, where super-resolution protocols are applied, i.e. by adjusting 

signal pulse length, to obtain high resolution precipitation estimates. In Paris and in 

Rotterdam, new dual polarisation X-band radars were installed, a pulse radar and a 

Frequency-Modulated Continuous Wave (FMCW) radar, respectively. All sites are equipped 

with a network of rain gauges; additionally, disdrometers are installed in Paris and Rotterdam.  
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While radar rainfall products are under development in the four pilot cities, high resolution 

data were obtained for this study from a polarimetric radar located in Cabauw, the 

Netherlands (Leijnse et al., 2010). Data were derived for nine storms in the period 2011-2014 

and were used to conduct analyses of the space-time scales of storm cells and study 

hydrological modelling response at a range of space-time resolutions.  

The estimated spatial and temporal characteristics of the nine storm events are summarised in 

table 2. For information on the method applied for estimating space-time scales of the storms 

we refer to Ochoa-Rodrigues et al. (submitted). Mean velocity of the nine storms varies from 

6.4 m/s to 19.3 m/s (34 to 69 km/h) and storm ranges vary from 1700 to 4660 m. The 

combination of storm velocity and storm range, together with catchment dimensions, 

determines the time during which the storm core passes through a given catchment. For the 

storms and catchments considered in this study, this time varied between ~2-12 min. 

Moreover, based upon the estimated spatial and temporal characteristics of the storms, and 

making use of communication theory concepts (Shannon, 1948), the minimum required 

space-time resolutions for precipitation sampling were computed for the nine storms under 

consideration. This resulted in required precipitation sampling resolution varying between ~1 

minute and ~6 minutes and spatial resolution varying from ~700m to ~2000m. This implies 

that the typical resolutions of rainfall estimates provided by national radar networks (i.e. 5 

min, 1000 m) matches required space-time resolution for only four out of the nine storms 

under consideration. It should be noted that within the spatial scale of the storm core, high 

intensity storm cells can still be detected (see for instance figure 3). Given the small size of 

drainage areas in the urban catchments, down to below the 100 m scale, such cells can still be 

potential triggers for localised flooding, in cases where local drainage capacity is limited.   

2.3 Hydrological response: sensitivity to space-time resolution 

In order to investigate the sensitivity of urban drainage models to the spatial-temporal 

resolution of rainfall inputs, the high-resolution precipitation data for the nine (9) storm 

events, initially at 100 m and 1 min, were aggregated to a number of coarser temporal and 

spatial resolutions (up to 3000 m and 10 min) and were applied as input to the urban drainage 

models of the seven (7) pilot catchments. Results were analysed at different drainage areas of 

varying sizes (~ 1 ha to ~ 800 ha) within each pilot catchment. Some of the main findings of 

the hydrological response analysis are summarised in this paper; for an in-depth analysis 

please refer to Ochoa-Rodriquez et al. (submitted).  
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The results showed that hydrodynamic response behaviour in urban catchments is highly 

sensitive to combinations of temporal and spatial resolutions of rainfall input: resolution 

combinations that do not properly reflect storm dynamics lead to large deviations in 

hydrodynamic model outcomes. For the storms investigated in this study, hydrodynamic 

response behaviour was more sensitive to temporal than to spatial resolution. Temporal 

resolution coarsening beyond the estimated required resolution (between 2 and 6 min) led to 

under- and overestimations of flow peaks by up to 100% with respect to the original 100 m, 

1 minute rainfall input. Similarly, it resulted in low explained variance (down to 20% 

explained variance, median value, at the level of the entire hydrograph) and flow 

underestimation at the level of the entire hydrograph (figure 4, illustration of results for 1 

catchment, 1 storm). Spatial resolution coarsening led to underestimation of hydrographs for 

spatial scales between 500 m and 1 km for drainage areas of 1 to 100 ha. A special feature 

observed in the analysis is the strong interaction between the spatial and temporal resolution 

of rainfall estimates: the two resolutions must be consistent with each other to prevent  loss of 

information from the higher resolution (more detail in Ochoa-Rodriguez et al., submitted).  

3 Implications for urban pluvial flood risk analysis  

Analysis of critical space-time scales based on high resolution (100 m in space, 1 minute in 

time) rainfall data obtained from dual-polarimetric X-band radar suggested that, for the nine 

investigated storms, sampling frequency for rainfall measurement should be at least of the 

order of ~700m to ~2000m in space and ~1 minute to ~6 minutes in time to capture most of 

the space-time variability. Still higher space-time resolutions are needed to fully reproduce 

rainfall variability. Urban hydrological response proved to be highly sensitive to space-time 

resolution of rainfall input: large deviations in flow peak and hydrograph volumes were found 

for coarser rainfall input resolutions, especially for small drainage basins of 1 to 100 ha, 

typical of urban neighbourhoods.  

For flood risk analysis, this implies that rainfall as well as catchment data need to be available 

at the same high resolutions to be able to explain damage-generating processes, to predict and 

prevent flood risk. If flood risk analysis is conducted based on lower resolution data, large 

uncertainties occur in hydrological response prediction and in the assessment of expected 

flood frequencies and magnitude. Moreover, damage-generating mechanisms cannot be well 
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understood at the coarser level of data resolution (see for instance Spekkers et al, 2014), 

resulting in highly unreliable flood risk predictions.  

Detecting changes in urban flood risk will not be possible at the current state of knowledge 

and data availability. Flood risk generating mechanisms, frequency, vulnerability and damage 

are too poorly understood to conduct reliable flood risk assessment even in the current 

situation. First, high resolution, reliable datasets need to be set up to properly understand 

damage generating mechanisms for urban rainfall-generated floods and to obtain time series 

of hazard (rainfall), vulnerability (catchment) and damage. Once such datasets have been built 

up, time series analyses can be conducted, aiming at detecting changes and their underlying 

mechanisms, whether climate change, urbanisation, ageing infrastructures or other. 

Polarimetric X-band radar has proved to provide valuable, high resolution information in 

support of hydrological response analysis in urban areas, a first crucial step in urban flood risk 

assessment. 
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Table 1. Summary characteristics of pilot urban catchments  

 Cran-

brook 

Torquay Morée-

Sausset 

Sucy-

en-Brie 

Herent Ghent Kralin

-gen 

Area [ha] 865.2 570.03 560.4 269 511.5 649.33 670 

Catchment length 

and width [km]* 

6.1/1.4 5.4/1.1 5.3/1.1 4.0/0.7 8.2/0.6 4.7/1.4 2.1/3.2 

Catchment shape 

factor [-] 

0.23 0.2 0.2 0.17 0.08 0.29 1.49 

Slope [m/m]*** 0.0093 0.0262 0.0029 0.0062 0.0083 0.0001 0.0003 

Main flow 

direction [deg] 

239 270 198 138 40 235 152 

Type of drainage 

system 

Mostly 

separate, 

branched 

Mostly 

combined, 

branched 

Mostly 

separate, 

branched 

Separate, 

branched 

Mostly 

combined, 

branched 

Mostly 

combined, 

branched 

Mostly 

combined, 

looped 

Is flow mainly 

driven by gravity? 

Yes Yes Yes Yes Yes Yes No 

Control elements 3 storage 

lakes 

3 storage 

tanks, 1 

pumping 

station 

2 storage 

tanks 

1 storage 

basin, 1 

pumping 

station 

5 main 

CSO’s with 

control 

15 

pumping 

stations 

20 

pumping 

stations 

IMP (%)**** 52% 26% 37% 34% 27% 41% 48% 

Predominant 

land-use 

R&C R&C R&C R&C R R R&C 

Population 

density [pp/ha] 

47 60 70 95 20 24 154 

*Length = Length of longest flow path (through sewers) to catchment outfall; Width = Catchment Area / Catchment 

Length;  

**Shape factor = Width / Length (this parameter is lower for elongated catchments) 

***Catchment slope = Difference in ground elevation between upstream most point and outlet / catchment length 

****IMP: total proportion of impervious areas in relation to total catchment area 
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Table 2: Estimated spatial and temporal characteristics and required resolutions of the storm 

events under consideration  

 Storm  Spatial Mean Anisotropic Required Required 

 event  Range Velocity Coefficient Spatial Temporal 

 ID    Resolution Resolution 

  [m] [m/s]  [m] [min] 

 E1 4056.69 9.76 0.38 1694.77 5.79 

 E2 3524.76 9.91 0.38 1472.54 4.95 

 E3 4655.10 14.04 0.55 1944.77 4.62 

 E4 3218.91 11.71 0.34 1344.77 3.83 

 E5 2061.98 14.11 0.59 861.43 2.03 

 E6 3737.52 11.68 0.26 1561.43 4.46 

 E7 1702.93 13.95 0.24 711.43 1.70 

 E8 3644.43 18.40 0.36 1522.54 2.76 

 E9 2354.53 16.97 0.08 983.66 1.93 
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Figure 1. Catchment boundary and sewer layout for the pilot urban catchments 

 

    

Figure 2. Radars implemented at the pilots sites of RainGain (from left to right): X-band 

single pol radar implemented in Leuven, Chenies C-band radar of the UK national network, 

dual-pol X-band radar installed in Paris, dual-pol X-band radar to be installed in Rotterdam.



 12 

 

 

Figure 3. Areal average storm profile (left column), snapshot image during the peak intensity 

period of the storm (middle column) and total event accumulations for the storm events under 

consideration.   
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Figure 4. Example of hydrological response characteristics for 1 storm event, 1 catchment, 16 

resolution combinations. Coefficient of determination and absolute error in peak flow are 

plotted for nine gauging stations corresponding with drainage area size increasing from ~1 ha 

to ~ 800 ha. The original input resolution of 100 m, 1 minute resolution is taken as a 

reference.  
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ABSTRACT 
Precipitation and catchment information need to be available at high resolution to reliably 

predict hydrological response and potential flooding in urban catchments. Due to recent 

advances in weather radar technology and DTM availability for urban flood modelling, the 

question arises whether these are sufficient to provide reliable predictions for urban pluvial 

flood control. The RainGain project (EU-Interreg IVB NWE) brings together radar 

technologists and hydrologists to explore a variety of rainfall sensors, rainfall data processing 

techniques and hydrodynamic models for the purpose of fine-scale prediction of urban 

hydrodynamic response. High resolution rainfall and hydrodynamic modelling techniques were 

implemented at ten different pilot locations under real-life conditions. In this article, the pilot 

locations, configurations of rainfall sensors (including X-Band and C-Band radars, rain gauges 

and disdrometers) and modelling approaches used in the RainGain project were introduced. 

Initial results  presented the hydrodynamic modelling using high resolution precipitation inputs 

from dual-polarisation X-band radar, followed by a discussion of differences in hydrodynamic 

response behaviour between the pilots. 

 

KEYWORDS 
Radar rainfall, urban hydrology, urban flood modelling 

 

 

INTRODUCTION 
Urban catchments are characterised by high spatial variability, fast runoff processes and short 

response times. This implies that precipitation and catchment information needs to be available 

at high resolution to reliably predict urban hydrological processes (Aronica & Cannarozzo, 

2000; Einfalt, 2005; Segond et al., 2007). Several studies have shown that despite recent 

advances in the use of weather radar, the resolution of the currently available rainfall estimates 

(typically 1 x 1 km2 in space and 5 min in time)  may still be too coarse to match the spatial-

temporal scales of urban catchments (Fabry et al., 1994; Gires et al., 2012a). In this regard and 

in the light of recent developments, new questions arise, such as: what rainfall resolution is 

needed for different urban applications? How do rainfall data resolution and data reliability 

interrelate? What reliability can be delivered by different configurations of radar and rain 

gauges in cities? What modelling approaches are best suited to obtain reliable results in terms 
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of water level and flood predictions? How sensitive are hydrodynamic models to rainfall spatial 

variability? What is the influence of catchment variability? With the aim of answering some of 

these questions, the RainGain project (EU-Interreg IVB NWE) has set to explore the use of a 

variety of rainfall sensors (including X-Band and C-Band radars, rain gauges and 

disdrometers), to develop and test a number of rainfall data processing techniques and to test 

the response of hydrodynamic models with different characteristics to varying rainfall inputs.  

In addition, the needs of the stakeholders involved in flood risk management are assessed and 

ways of using high resolution rainfall and hydrodynamic model outputs for improving flood 

risk management are explored.  

In this paper, the main characteristics of the 10 pilot locations adopted within the RainGain 

project are presented. Initial experiences and results are presented with respect to 

implementation of high resolution radars in urban settings and to application of resolution 

precipitation estimation in hydrodynamic modelling at different catchments. 

  

EXPERIMENTAL SITES – 10 PILOT LOCATIONS 
Ten experimental sites have been implemented within the RainGain project; pilot sites have 

been selected so as to represent a range of varying urban catchment characteristics and 

different types of pluvial flooding problems. Characteristics of the pilot sites are summarised 

in table 1. Most of the sites are highly urbanised and vary in size from about 1.4 to 34 km2. 

Half of the sites are fairly flat, the other half are characterised by a combination of plateaus 

and steep slopes along river banks. Some of the sites are located in urban polders, without 

natural drainage outlets; in these areas stormwater needs to be locally stored and evacuated 

through pumps. Applied model software includes semi-distributed and fully distributed 

modelling approaches, one-dimensional and two-dimensional overland flow modules.  

 

Table 1. General characteristics of pilot urban catchments 

Pilot site 

Catchment 

size 

[km2] 

General catchment 

characteristics 

General 

characteristics of 

drainage system 

Modelling approach 

and software 

Cranbrook 

catchment (London 

Borough of 

Redbridge) 

8.65 

Highly urbanised, 

mildly sloping,  

coincidental fluvial and 

pluvial flooding 

Mostly separate, main 

brook has been 

culverted 

Semi distributed, dual 

drainage (both 1D-1D and 

1D-2D models; rainfall 

applied through 

subcatchments), 

InfoWorks CS-2D 

Purley Area 

(London Borough 

of Croydon) 

6.5 

Highly urbanised, great 

density of receptors, 

slopes drain to natural 

depression 

Mostly separate, 

combination of 

natural drainage 

channels, culverted 

river and sewers 

Semi distributed, sewer 

system only, simplified 

modelling of exceedance 

flow 

.InfoWorks CS-2D 

Torquay Town 

Centre (Devon 

Borough of Torbay) 

14.5 

Coastal city, steep 

slopes drain to natural 

depression, flooding 

worsened by high tides. 

Combined sewer 

system; two CSO’s, 

discharging into 

Torquay Harbour 

under storm 

conditions. 

Semi distributed, 1D 2D 

dual drainage (with 

rainfall applied through 

subcatchments). 

InfoWorks CS-2D 

Morée Sausset, incl. 

Kodak 

subcatchment 

(Seine-Saint-Denis, 

34 

Kodak: 

1.44 

Highly urbanised, rather 

flat. Several retention 

basins for flood control. 

Mostly separate, main 

brook has been 

culverted, several 

storm water retention 

Semi-distributed, sewer 

system only, simplified 

exceedance flow (Canoe) 

Kodak: Fully distributed, 
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Paris region) basins 1D 2D dual drainage 

(rainfall applied directly 

on 2D model of surface) 

Multi-Hydro 

Jouy en Josas 

(Seine-Saint-Denis, 

Paris region) 

2.5 

Combination of 

residential and green 

areas. River bank, steep 

slopes (100m elevation 

difference) and plateau.  

Mostly separate, 

several storm water 

retention basins 

Fully distributed, 1D-2D 

dual drainage: Multi-

Hydro 

Sucy en Brie (Val 

de Marne, Paris 

region) 

2.69 

Residential and 

industrial use. River 

bank, steep slopes (32 

m elevation difference) 

and plateau.  

Mostly separate, new 

retention basin 

(interest on RT 

control of it) 

Current semi-distributed 

(Canoe). New: fully 

distributed, 1D 2D dual 

drainage: Multi-Hydro 

Herent (Leuven, 

northern part) 
4.75 

Densely built village 

centres and rural areas; 

fairly flat.   

Mostly combined 

sewer system, CSOs 

discharging to two 

local rivers running 

through the city 

Current semi- distributed. 

New: semi distributed, 1D 

2D dual-drainage ( rainfall 

applied through 

subcatchments).  

InfoWorks ICM 

Kralingen- 

(Rotterdam) 
6.70 

Residential and 

industrial use, flat 

polder area 

Combined, looped 

system;  CSOs 

discharging to local 

channels, sewer 

pumps evacuate water 

from urban polder 

Semi-distributed, 

simplified modelling of 

exceedance flow 

(Sobek Urban) 

Spaanse Polder 

(Rotterdam) 
1.9 

Industrial area, densely 

urbanised, flat polder 

area 

Combined, looped;  

CSOs discharging to 

local channels, sewer 

pumps evacuate water 

from urban polder 

Semi-distributed, 

simplified modelling of 

exceedance flow (Sobek 

Urban) 

Centrum district 

(Rotterdam) 
3.7 

Residential and 

commercial area, 2 

urban parks, flat polder 

area 

Combined, looped;  

CSOs discharging to 

local channels, sewer 

pumps evacuate water 

from urban polder 

Semi-distributed,  

simplified modelling of 

exceedance flow (Sobek 

Urban) 

 

HIGH RESOLUTION PRECIPITATION DATASETS 
Four different radar-rain gauges configurations are used for precipitation estimation in 

Leuven, London, Paris and Rotterdam (figure 1). In Leuven, a single polarisation radar has 

been operational since 2008 providing rainfall estimates at 125x125m2 and 1 minute 

resolution. Original data processing algorithms are adjusted under the project, in order to 

improve the quality of radar rainfall estimates. Pilot sites in London are within coverage of 2 

radars of the national C-band radar network, equipped and being upgraded to dual-

polarisation. Experiments are being conducted for improving resolution of the radar rainfall 

estimates by adjusting signal pulse length and shortening the repetition cycle. In addition, a 

short testing of a single polarisation X-band radar was carried out in London between May 

and October 2014. In Paris and in Rotterdam, new, dual polarisation X-band radars are 

installed, a pulse radar and a Frequency-Modulated Continuous Wave (FMCW) radar 
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respectively. All sites are equipped with a network of rain gauges; additionally, disdrometers 

are installed in Paris and Rotterdam. 

    
Figure 1. Radar implemented at the pilots sites of RainGain (from left to right): X-band 

single pol radar implemented in Leuven, Chenies C-band radar of the UK national network, 

impression of dual-pol X-band radar under construction in Paris, dual-pol X-band radar to be 

installed in Rotterdam. 

 

Implementation of radar in densely urbanised environments, experiences 

Through the installation of X-band radars at heart of the highly urbanised RainGain pilot 

locations, many lessons have been learned. Weather radars used for high resolution 

precipitation estimation are preferably installed within a city area, above the urban canopy. 

This generally means installation on existing high-rise, in agreement with constraints set by 

building owner, architect, signal emission standards and other radar applications, especially 

near airports. Clutter correction is especially important in urban areas due to the relatively 

frequent presence of objects and other signals compared to a rural setting.  

Radar signal correction for single polarisation radar to obtain quantitative precipitation 

estimates has proven complicated and the added value compared to rain gauge networks has 

found to be small in several cases (e.g. Goormans and Willems, 2013; Shrestha et al., 2013; 

Ochoa-Rodriguez et al. 2014). Additional Doppler and dual-polarisation measurements 

provide valuable information to improve reliability of precipitation estimates (Van de Beek et 

al., 2010; Otto and Russchenberg, 2013). Another important aspect that the project is 

investigating is the effect of wind drift on rainfall patterns. High resolution precipitation 

estimates are more sensitive to this effect, which plays an important role in urban areas due to 

their highly variable microclimate induced by urban structures.  

 

Rainfall data downscaling 

The availability of rainfall data at different spatio-temporal resolutions in the RainGain 

project provide the opportunity to compare characteristics of downscaled rainfall data from 

C-band weather radar networks to high resolution rainfall data from X-band radar. One of the 

downscaling processes implemented within the RainGain project relies on Universal 

Multifractals which have been extensively used to characterize and simulate geophysical 

fields extremely variable over wide range of scales such as rainfall (see Schertzer and 

Lovejoy 2011 for a recent review). In this framework rainfall is expected to be generated 

through a scale invariant cascade process. This framework is very convenient for 

downscaling (Biaou et al., 2003), which can be done by first assessing the relevant features of 

the underlying cascade process on the available range of scales and second continuing the 

cascade process beyond the observation scale. See Gires et al. (2014) for a validation with 

networks if point measurement devices deployed over 1 km2 areas and Gires et al. (2012) for 

applications in urban hydrology.  
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HIGH RESOLUTION MODELLING APPROACHES  
Initial results of modelling studies conducted at the pilot sites in the RainGain projects, are 

summarised in this paper. Modelling results of rainfall input from X-band radar are presented 

for different pilot sites as well as results of a comparison between fully and semi-distributed 

approaches. For more details on modelling results, the authors refer to relevant papers. 

The modelling approaches adopted at each pilot site are as summarised in table 1. Semi-

distributed models have been current practice at most locations. Semi-distributed one-

dimensional sewer and two-dimensional overland flow models are tested at 4 pilot sites. Two 

types of overland flow models are tested; a fast, one-dimensional model for real-time 

prediction and a detailed, two-dimensional model aiming at accurate water level predictions. 

A fully distributed model, Multi-Hydro, is being tested at 3, potentially 4 sites. This model is 

under development at Ecole des Ponts ParisTech, see also Giangola et al., 2012). The model 

includes a 2-dimensional model representing surface runoff, infiltration and overland flow, as 

well as a one-dimensional sewer model which interacts with the surface model through 

connecting elements such as manholes or gullies. Fully distributed hydrologic models are 

based on a gridded input structure that can be directly adjusted to the spatial resolution of 

rainfall input. In semi-distributed models, rainfall input values are routed through 

subcatchments of varying size and shape, with a lumped representation of hydrological run-

off processes.  

 

High resolution rainfall from X-band radar: hydrodynamic modelling results at four 

pilot catchments 

Two storm events, one convective and one stratiform, measured by a polarimetric X-band 

radar located in Cabauw (The Netherlands) were used as input into semi-distributed models 

at four pilot locations of similar size (between 5 and 8 km2; more catchments characteristics 

in table 2), the Cranbrook catchment (UK), the Herent catchment (Belgium), the Morée 

Sausset catchment (France) and the Kralingen District (The Netherlands). Storm events were 

applied in such a way that: (1) the centroid of the selected rainfall area coincides with the 

centroid of each catchment, and (2) storm direction is approximately perpendicular to the 

main flow direction at each catchment (in order to avoid variations in response due to 

differences in relative storm/flow direction (Singh, 1997)). For each of the model runs the 

simulated flow and water depth time series at the downstream end of three pipes located in 

the upstream, mid-stream and downstream sections of the catchments were selected for 

analysis (see table 3). The looped nature of the Dutch catchment and the fact that flows may 

change direction throughout a storm event make it difficult to determine an exact area drained 

by a given pipe.  

 

Table 2. Summary catchment characteristics of 4 pilot catchments used for high resolution 

hydrodynamic modelling 

Pilot site 
Catchment size 

[km2] 

Catchment length* 

and width** 

[km] 

Catchment 

shape factor*** 

[-] 

Catchment 

slope**** [m/m] 

Imperviousness 

(%) 

Cranbrook, 

UK 
8.65 6.10/1.42 0.23 0.0093 66 

Morée- 

Sausset, FR 
5.60 5.28/1.06 0.20 0.0029 37 

Herent, BE 4.75 8.16/0.58 0.07 0.0220 18 
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Kralingen, 

NL 
6.70 2.12/3.16 1.49 0.0003 48 

*Length of longest flow path (through sewers) to catchment outfall;  

**Width = Catchment Area / Catchment Length;  

****Shape factor = Width / Length (this parameter is lower for elongated catchments) 

****Catchment slope = Difference in ground elevation between upstream most point and outlet / catchment length 

 

Figure 2 shows response hydrographs and depth time series for the two storm events, at the 

upstream pipes selected for analysis at each pilot catchment. The results show that the 

catchments respond quite differently to the convective storm event precipitation. The 

Cranbrook and Moree-Sausset catchments’ hydrographs have a well-defined single response 

peak, while the Kralingen hydrograph has multiple peaks and the Herent hydrograph has a 

quick response peak followed by very slow increase and decrease of the flow. The atypical 

response behaviour of the Herent and Kralingen catchments can be explained by their 

specific features: the Herent catchment is equipped with a throttle device in the main sewer 

transport line to maximise in-sewer storage. This strongly delays the flow upstream and 

smooths the flow peak. The Kralingen catchment is located in a polder area where in the 

absence of natural flow directions, sewer networks tend to be strongly looped. As a result, the 

overall behaviour of the catchments is determined by a filling process of in-sewer storage, as 

evidenced by a fast rise in water depth leading to surcharged pipes. During the filling process, 

flow directions can change, as flow first moves towards a pumping station, then, once 

pumping capacity is exceeded, moves towards combined sewer overflows. Hydrological 

response of the four catchments shows similar behaviour for the stratiform storm event (not 

shown here). Response characteristics were also investigated for different rainfall spatial 

resolutions (100m and 1000m), for a discussion of these results we refer to ten Veldhuis et al. 

(2014). 

 
(a) Flow hydrographs – Convective storm 

 
(b) Depth time series – Convective storm 

 
(c) Flow hydrographs – Stratiform storm 

 
(d) Depth time series – Stratiform storm 
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Figure 2: Response hydrographs and water depths at the downstream end of the upstream 

pipes selected for analysis at each pilot location (with drainage area (DA) ~ 1.5 km2). The 

solid lines correspond to the 100 m resolution outputs and the dashed lines to the 1000 m 

ones. * Water depth scale used for the depths observed in the Cranbrook (UK), Morée-Sausset (FR) and Herent 

(BE) pilot locations; **Water depth scale used for the depths observed in the Kralingen (NL) pilot location. In 

order to avoid distortion, a different y-axis was used for the water depths observed in Kralingen, as these were 

significantly higher than the ones observed at other locations. 

 

Table 3 provides a summary of the measures which characterise the overall 

hydrological/hydraulic response of the catchments to rainfall. The results show that 

characteristic total flow volumes and peak values vary strongly between pilot sites. These 

variations are mainly explained by different settings in the rainfall-runoff model, especially 

runoff coefficients applied for impervious areas have an important influence.  

 

Table 3: Response variables of each pilot catchment for each storm event. Characteristic 

runoff volume (total volume / drainage area) and characteristic peak flow (peak flow / 

drainage area) values are provided for the three pipe locations selected at each pilot 

catchment (Upstream/Mid-stream/Downstream) 

Pilot site 
Model 

location* 

Drainage 

area 

[km2] 

Convective Storm – 28/06/11 Stratiform Storm – 29/10/12 

Vchar  

[m3/m2] 

Qchar  

[m3/m2/s] 

Tc  

[min] 

Vchar  

[m3/m2] 

Qchar  

[m3/m2/s] 

Tc  

[min] 

Cranbrook, 

UK 

US 1.65 0.86 0.29 45 0.017 0.29 49 

MS 3.24 0.89 0.27 45 0.015 0.21 49 

DS 5.67 0.91 0.25 45 0.013 0.17 49 

Morée-

Sausset, 

FR 

US 1.99 3.55 1.4 48 3.5 0.6 52 

MS 3.83 3.88 3.0 48 3.5 0.6 52 

DS 5.60 3.59 3.7 48 2.8 0.5 52 

Herent, BE 

US 1.51 1.19 0.08 307 1.0 0.07 292 

MS 3.80 1.36 0.04 307 1.4 0.04 292 

DS 4.75 1.31 0.1 307 1.1 0.06 292 

Kralingen, 

NL 

US 1.30 7.05 0.79 213 0.11 0.86 169 

MD 3.10 6.71 0.76 213 0.08 0.52 169 

 

Semi-distributed versus fully distributed modelling: sensitivity to small-scale rainfall 

variability  

The uncertainty associated with small scale rainfall variability on urban catchments was 

assessed through the analysis of the sensitivity to rainfall resolution of hydrologic/hydraulic 

models. Two models were tested on the same 1.44 km2 Kodak catchment (see Table 1); the 

fully distributed Multi-Hydro model (grid with 10 m pixels) (Giangola et al. 2012)  and the 

semi-distributed Canoe model (sub-catchments with size ranging from 4 to 16 ha) (Allison et 

al. 2005) . Only a brief summary of this study is reported here, and more details can be found 

in Gires et al. (2013). The methodology implemented consists in first generating an ensemble 

of downscaled rainfall fields with the help of discrete Universal. The raw data is the available 

Météo-France radar mosaic whose resolution is 1 km in space and 5 min in time, and the final 

resolution is 12.3 m and 18.75 s for the Multi-Hydro model and 111 m and 1.25 min for the 

Canoe model (given the size of the sub-catchments it was not relevant to further downscale 
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the data). Then each realisation of the downscaled rainfall field is inputted into the models. 

Finally the variability among the obtained hydrographs is analysed. To achieve this for each 

time step the 95, 75, 25 and 5% quantile are estimated. This enables to compute the envelop 

curves (Q0.1, Q0.25 Q0.75 and Q0.9) corresponding to their temporal evolution. Figure 3 

displays these curves along with Qradar (flow simulated with raw radar data) at the outlet of 

the catchment for the February 2009 event (total depth 8.3 mm). The observed uncertainty 

reflects a significant impact of small scale rainfall variability on simulated discharge. The 

uncertainty increases with upstream conduits. Furthermore it appears that the uncertainty 

revealed by the fully distributed model is much greater. It means the semi-distributed model 

would not be able to fully benefit from improved rainfall data.   

 
  

Figure 3. Simulated flow with the raw radar data (black), Q0.25 and Q0.75 (dark colour), 

Q0.1 and Q0.9 (light colour) for the outlet of the Kodak catchment. (a) Multi-Hydro 10 m, 

2009 event; (b) 1D model, 2009 event; (adapted from Gires et al., 2013) 

 

CONCLUSIONS 
These first  results suggest that model settings, catchment and drainage infrastructure 

characteristics have a strong influence on hydrological response. Differences in catchment 

slope and drainage infrastructures have shown to result in entirely different response 

behaviors. Also, semi-distributed models seem not to be able to fully benefit from high 

resolution rainfall input data. Further studies into the impact of rainfall input resolution in 

relation to catchment characteristics, hydrological input data and model features will be 

conducted to gain more insights into these interactions. 
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Abstract 

In this study high resolution precipitation data are used, derived from polarimetric X-band radar at 

100 m, 1 min resolution. The data are used to study the impact of different space-time resolutions 

of rainfall input on urban hydrodynamic modelling response for 9 storms, in 7 urban catchments. 

The results show that hydrodynamic response behaviour was highly sensitive to variations in rainfall 

space-time resolution, more strongly so for changes in temporal than in spatial resolution.  Under- 

and overestimations of flow peaks amounted to up to 100% with respect to the original 100 m, 1 

minute rainfall input.   

 

Keywords 
Rainfall space-time resolution; Radar rainfall; Urban hydrology; Urban hydrological response 

modelling;  

 

INTRODUCTION 

Cities are particularly sensitive to flooding induced by short-duration, high-intensity precipitation, 

due to their high degree of imperviousness, resulting in fast runoff processes and lack of available 

water storage. Moreover, the high density of population and economic assets in urban areas results in 

high vulnerability to flooding. Based on climate models, increases in the frequency and intensity of 

heavy precipitation are projected for the 21st century in several regions of the world (Kundzewicz, 

2014).  
 

High resolution data at urban scales 

The spatial-temporal characteristics of urban catchments and stormwater drainage systems are 

generally small, often of the order of 1-10 km2 and a few minutes, respectively (Arnbjerg-Nielsen et 

al., 2013; Ochoa-Rodriguez et al., submitted). Cities typically display high spatial variability in land-

use, small catchment areas and a high degree of imperviousness. Stormwater drainage systems are 

predominantly man-made and consist of complex networks of channel and pipe networks. This 

implies that precipitation information needs to be available at high resolution to reliably predict 

hydrological response and potential flooding. 
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METHODS AND DATASET 

 

Urban catchment characteristics 

Seven urban catchments, located at each of the four partner countries of the EU-funded RainGain 

project, were adopted as pilot locations in this study. With the aim of facilitating inter-comparison of 

results, catchment areas of similar size (3-8 km2) were selected for testing. The main characteristics 

of the selected pilot catchments are summarised in Table 1. Moreover, images of the boundaries and 

sewer layouts of all pilot catchments can be found in Figure 1.  

 

Table 1. Summary characteristics of pilot urban catchments  

 Cran 

brook 

Tor- 

quay 

Morée-

Sausset 

Sucy-en-

Brie 

Herent Ghent Kralingen 

Area (ha) 865.2 570.03 560.4 269 511.5 649.33 670 

Catchment 

length and 

width (km)* 

6.1/1.4 5.4/1.1 5.3/1.1 4.0/0.7 8.2/0.6 4.7/1.4 2.1/3.2 

Catchment 

shape factor 

(-) 

0.23 0.2 0.2 0.17 0.08 0.29 1.49 

Slope 

(m/m)*** 

0.0093 0.0262 0.0029 0.0062 0.0083 0.0001 0.0003 

Main flow 

direction 

(deg) 

239 270 198 138 40 235 152 

Type of 

drainage 

system 

Mostly 

separate 

branched 

Mostly 

combined 

branched 

Mostly 

separate 

branched 

Separate 

branched 

Mostly 

combined 

branched 

Mostly 

combined 

branched 

Mostly 

combined 

looped 

Is flow 

mainly driven 

by gravity? 

Yes Yes Yes Yes Yes Yes No 

Control 

elements 

3 storage 

lakes 

3 storage 

tanks, 1 

pumping 

station 

2 storage 

tanks 

1 storage 

basin, 1 

pumping 

station 

5 main 

CSO’s 

with 

control 

15 

pumping 

stations 

20 

pumping 

stations 

IMP (%)**** 52% 26% 37% 34% 27% 41% 48% 

Predominant 

land-use 

R&C R&C R&C R&C R R R&C 

Population 

density 

[pp/ha] 

47 60 70 95 20 24 154 

*Length = Length of longest flow path (through sewers) to catchment outfall; Width = Catchment Area / Catchment Length;  

**Shape factor = Width / Length (this parameter is lower for elongated catchments) 

***Catchment slope = Difference in ground elevation between upstream most point and outlet / catchment length 

****IMP: total proportion of impervious areas in relation to total catchment area 

 

Precipitation dataset: dual-polarimetric X-band radar 

While radar rainfall products are under development in the four pilot cities or RainGain, high 

resolution data were obtained for this study from a polarimetric research radar located in Cabauw, 

the Netherlands (Leijnse et al., 2010). Data were derived for nine storms in the period 2011-2014 
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and were used to conduct analyses of the space-time scales of storm cells and study hydrological 

modelling response at a range of space-time resolutions.  

The estimated spatial and temporal characteristics of the nine storm events are summarised in table 

2. For information on the method applied for estimating space-time scales of the storms we refer to 

Ochoa-Rodrigues et al. (2015). 

 

Table 2. Summary characteristics of pilot urban catchments  

Storm 

Event ID 

Spatial 

range 

 

Mean 

Velocity 

Anisotropic 

coefficient 

Required Spatial 

Resolution 

Required 

Temporal 

Resolution 

 (m) (m/s) (-) (m) (min) 

E1 4057 9.8 0.38 1695 5.8 

E2 3525 9.9 0.38 1473 4.9 

E3 4655 14.0 0.55 1945 4.6 

E4 3219 11.7 0.34 1345 3.8 

E5 2062 14.1 0.59 861 2.0 

E6 3738 11.7 0.26 1561 4.5 

E7 1703 14.0 0.24 711 1.7 

E8 3644 18.4 0.36 1523 2.8 

E9 2355 17.0 0.08 984 1.9 
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Figure 1. Catchment boundary and sewer layout for the pilot urban catchments 

 

RESULTS AND DISCUSSION 

 

Storm characteristics 

Mean velocity of the nine storms varies from 6.4 m/s to 19.3 m/s (34 to 69 km/h) and storm ranges 

vary from 1700 to 4660 m. The combination of storm velocity and storm range, together with 

catchment dimensions, determines the time during which the storm core passes through a given 

catchment. For the storms and catchments considered in this study, this time varied between ~2-12 

min. 

 

Hydrological response: sensitivity to space-time resolution 

In order to investigate the sensitivity of urban drainage models to the spatial-temporal resolution of 

rainfall inputs, the high-resolution precipitation data for the nine (9) storm events, initially at 100 m 

and 1 min, were aggregated to a number of coarser temporal and spatial resolutions (up to 3000 m 

and 10 min) and were applied as input to the urban drainage models of the seven (7) pilot catchments. 

Results were analysed at different drainage areas of varying sizes (~ 1 ha to ~ 800 ha) within each 

pilot catchment. Some of the main findings of the hydrological response analysis are summarised in 

this paper; for an in-depth analysis please refer to Ochoa-Rodriquez et al. (2015). 

  

The results showed that hydrodynamic response behaviour in urban catchments is highly sensitive to 

combinations of temporal and spatial resolutions of rainfall input. For the storms investigated in this 

study, hydrodynamic response behaviour was more sensitive to temporal than to spatial resolution. 

Temporal resolution coarsening beyond the estimated required resolution (between 2 and 6 min) led 

to under- and overestimations of flow peaks by up to 100% with respect to the original 100 m, 1 
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minute rainfall input. Similarly, it resulted in low explained variance (down to 20% explained 

variance, median value, at the level of the entire hydrograph) and flow underestimation at the level 

of the entire hydrograph (figure 2, illustration of results for 1 catchment, 1 storm). Spatial resolution 

coarsening led to underestimation of hydrographs for spatial scales between 500 m and 1 km for 

drainage areas of 1 to 100 ha. A special feature observed in the analysis is the strong interaction 

between the spatial and temporal resolution of rainfall estimates: the two resolutions must be 

consistent with each other to prevent  loss of information from the higher resolution (more detail in 

Ochoa-Rodriguez et al., 2015).  

 

 
 

Figure 2. Example of hydrological response characteristics for 1 storm event, 1 catchment, 16 

resolution combinations. Coefficient of determination and absolute error in peak flow are plotted for 

nine gauging stations corresponding with drainage area size increasing from ~1 ha to ~ 800 ha. The 

original input resolution of 100 m, 1 minute resolution is taken as a reference. 
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Key-findings 

 This paper presents a novel modular and lumped computationally efficient modelling approach for sewer 

system quantity simulations 

 An accompanying software tool with GUI was developed for model set-up 

 Tests with the developed modelling approach and software on a real-life case study demonstrate that the 

methodology can account for backwater effects and deliver accurate CSO predictions, while the simulation 

time is reduced by 4∙105 times compared to a full hydrodynamic model 
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BACKGROUND AND RELEVANCE 

Mathematical models play a crucial role in management of urban drainage systems. To assess the 

efficiency of alternative management strategies for different return periods correctly, long term 

simulations should be performed followed by a statistical post-processing of the results. This 

approach allows for the explicit incorporation of antecedent conditions. To perform such simulations, 

models with a very short calculation time are required. This need is also shared by numerous 

applications that demand for a large number of simulations, such as optimization problems, impact 

assessments and real-time control. In addition, the importance and potential of integrated urban water 

system models becomes more and more recognized, in which not only the urban drainage system 

itself, but many other aspects are being considered simultaneously (e.g. Fratini et al., 2012; Bach et 

al. 2014). This evolution towards integrated models has an impact on the way systems are modelled. 

In summary, future urban drainage management imposes the following four key requirements on 

models: (1) a short calculation time, (2) yield accurate predictions, (3) easily linkable with other 

modules, and (4) allow for different levels of model detail tailored to the application in mind, since 

not all dynamics are relevant for certain applications. 

 

Conventional full hydrodynamic models, such as InfoWorks and SWMM, emulate reality accurately, 

but do not fulfil the other three specified requirements. Their long calculation time and difficulty to 

link models made in different software programs in particular makes their use infeasible for many 

applications. Different simplified modelling approaches (e.g. Saagi et al., 2014) and software 

packages exist (e.g. CITY DRAIN (Achleitner et al., 2007), SMUSI (Muschalla et al., 2006)), but 

these suffer from fundamental shortcomings when emulating complex flow regimes, such as 

backwater effects and pressurized or reverse flows (Vanrolleghem et al., 2009). This paper presents 

a novel conceptual mechanistic modelling approach and accompanying software tool that can account 

for such behaviour, and strives for model parsimony and pragmatism by focusing on the dominating 

processes. 
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METHODOLOGY 

The developed modelling approach emulates the results of detailed models. The methodology is based 

on the storage cell concept, in which the sewer network is lumped and divided into multiple cells. 

The water balance is explicitly closed in each cell, while several structures with different complexity 

are employed to predict the inter-cell flows: predefined discharges in combination with logic controls, 

a static-dynamic virtual storage approach, multi-input transfer functions representing arrangements 

of linear reservoirs, and structures incorporating artificial neural networks. This modular approach is 

very flexible and enables the modeller to pick the most suitable model structure depending on the 

system’s dynamics. Since some of these structures are data-driven and hence adapt themselves to the 

data provided during configuration, many complex flow dynamics can be mimicked accurately.  

 

A software tool with GUIs was developed that guides the user through the configuration of the model. 

Finally, the model itself is automatically generated in a C-script together with files containing all 

boundary data. Such script can easily be expanded with other modules and is computationally very 

efficient. The workflow is schematized in Figure 1. Please contact the authors concerning software 

availability. 

 

 

Figure 1. Schematic overview of the workflow and functionality of the software tool 
 

 

RESULTS AND DISCUSSION 

To demonstrate the approach, a surrogate model was created that emulates an InfoWorks CS model 

of the sewer system of the cities Sint-Amandsberg and Oostakker in Belgium (Figure 2). The detailed 

model is relatively flat and contains over 6000 conduits, 43 pumps and about 100 other hydraulic 

structures. The surrogate model aims to predict the CSO flows and other outflows of the system 

accurately, both in magnitude and timing. Simulation results of three synthetic events with a 

frequency of 7 times a year (f07), and return periods of 2 (T02) and 10 (T10) years were used for 

calibration, while three others (f10, T05 and T20) were used for validation. 
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Figure 2. Network topology of the detailed InfoWorks CS model (left) and the configured conceptual 

model (right). The inter-cell fluxes and fluxes to outfalls are also indicated. 

 

The topology of the conceptual model consists of 6 cells or subcatchments (SC; see also Figure 2). 

The boundaries of these SCs were selected such that the number of inter-cell fluxes is minimal. Some 

flows over CSO’s and other outflows that are situated close to each other were aggregated to minimize 

the amount of variables that has to be calculated. This yielded 9 flows to outfalls and as many inter-

cell fluxes. For each flux, the most suitable model structure was identified and calibrated. The Nash-

Sutcliffe efficiencies (NSE) of the simulated flows to outfalls of the surrogate model are shown in 

Table 1. It is clear that most NSE-values are close to unity, indicating a good fit, even for the most 

extreme events (f10 and T20) which fall outside the calibration range. The prediction of flow ‘E’ is 

characterized by lower NSE-values. This flow is determined by a pump with a predefined discharge 

(see also Figure 3). Indeed, small divergences in pump operation can result in large NSE-value 

deviations. 

 

The calculation time of the obtained surrogate model amounts approximately 0.003 seconds for 

simulating a two-day event with a time step of just 10 seconds. This very short computation time, 

together with its potential to emulate complex flow dynamics and its flexibility, make the proposed 

modelling approach a suitable tool for many applications in urban drainage management. 
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Table 1. NSE-values indicating the goodness-of-fit of the simulated fluxes to outfalls in the 

conceptual model and the InfoWorks CS model. The letters “C” and “V” denote calibration and 

validation events respectively.  

Flow Symbol f10 (V) f07 (C) T02 (C) T05 (V) T10 (C) T20 (V) 

SC1 – Outfalls – a A 0.97 0.98 0.99 0.99 0.99 0.99 

SC1 – Outfalls – b B 0.86 0.87 0.87 0.90 0.90 0.90 

SC2 – Outfalls – a C 0.94 0.96 0.96 0.96 0.97 0.97 

SC2 – Outfalls – b D 0.80 0.78 0.76 0.76 0.76 0.74 

SC3 – Outfalls – a E 0.57 0.52 0.29 0.36 0.33 0.33 

SC3 – Outfalls – b F - - 0.96 0.98 0.98 0.98 

SC4 – Outfalls G 0.96 0.97 0.99 0.99 0.99 0.99 

SC5 – Outfalls H 0.99 0.99 1.00 1.00 1.00 1.00 

 

 
Figure 3. Simulated fluxes to outfalls in the conceptual and InfoWorks CS model for different 

locations and events 
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A framework for probabilistic pluvial flood nowcasting for urban areas
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Pluvial flood nowcasting is gaining ground not least because of the advancements in rainfall forecasting schemes.
Short-term forecasts and applications have benefited from the availability of such forecasts with high resolution
in space (∼1km) and time (∼5min). In this regard, it is vital to evaluate the potential of nowcasting products for
urban inundation applications. One of the most advanced Quantitative Precipitation Forecasting (QPF) techniques
is the Short-Term Ensemble Prediction System, which was originally co-developed by the UK Met Office and
Australian Bureau of Meteorology. The scheme was further tuned to better estimate extreme and moderate
events for the Belgian area (STEPS-BE). Against this backdrop, a probabilistic framework has been developed
that consists of: (1) rainfall nowcasts; (2) sewer hydraulic model; (3) flood damage estimation; and (4) urban
inundation risk mapping.

STEPS-BE forecasts are provided at high resolution (1km/5min) with 20 ensemble members with a lead
time of up to 2 hours using a 4 C-band radar composite as input. Forecasts’ verification was performed over the
cities of Leuven and Ghent and biases were found to be small. The hydraulic model consists of the 1D sewer
network and an innovative ‘nested’ 2D surface model to model 2D urban surface inundations at high resolution.
The surface components are categorized into three groups and each group is modelled using triangular meshes at
different resolutions; these include streets (3.75 – 15 m2), high flood hazard areas (12.5 – 50 m2) and low flood
hazard areas (75 – 300 m2). Functions describing urban flood damage and social consequences were empirically
derived based on questionnaires to people in the region that were recently affected by sewer floods. Probabilistic
urban flood risk maps were prepared based on spatial interpolation techniques of flood inundation.

The method has been implemented and tested for the villages Oostakker and Sint-Amandsberg, which are
part of the larger city of Gent, Belgium. After each of the different above-mentioned components were evaluated,
they were combined and tested for recent historical flood events. The rainfall nowcasting, hydraulic sewer and
2D inundation modelling and socio-economical flood risk results each could be partly evaluated: the rainfall
nowcasting results based on radar data and rain gauges; the hydraulic sewer model results based on water level
and discharge data at pumping stations; the 2D inundation modelling results based on limited data on some
recent flood locations and inundation depths; the results for the socio-economical flood consequences of the most
extreme events based on claims in the database of the national disaster agency. Different methods for visualization
of the probabilistic inundation results are proposed and tested.
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RÉSUMÉ 

Un système prototype a été mis en place pour la prévision immédiate des probabilités de risques 
d'inondation dans les zones urbaines. Il se compose d'un modèle de prévision des chutes de pluie à 
court terme sur la base des données radar et pluviométriques, d’un modèle d'inondation hydraulique 
et surface 1D-2D, un modèle pour évaluer les dommages économiques et les conséquences sociales 
des inondations urbaines, et les méthodes de post-traitement statistique pour produire des cartes de 
probabilités des risques d'inondation urbaines. Le système a été mis en œuvre et testé pour les 
villages d’Oostakker et Sint-Amandsberg, qui sont rattachés à la ville de Gand, en Belgique. Le 
système a été évalué pour des événements historiques récents d’inondations. Les résultats sur la 
prévision des précipitations, les inondations de surface, et les risques socio-économiques pourraient 
être en partie évalués sur la base des observations historiques des précipitations, les débits des 
égouts et les niveaux d'eau, les inondations de surface et des dommages dus aux inondations ayant 
fait l’objet de réclamations auprès de l'agence nationale pour la gestion des catastrophes. Différentes 
méthodes de visualisation des résultats sur les probabilités d'inondation ont été proposées et testées. 

 

ABSTRACT 

A prototype system has been set up for the probabilistic nowcasting of the inundation risks in urban 
areas. It consists of a rainfall nowcasting model based on radar and rain gauge data, a nested 1D-2D 
sewer hydraulic and surface inundation model, a model to assess the damages and social 
consequences of the urban inundations, and statistical post-processing methods to produce 
probabilistic urban inundation risk maps. The system has been implemented and tested for the villages 
Oostakker and Sint-Amandsberg, which are part of the larger city of Gent, Belgium. The system has 
been evaluated for recent historical flood events. The results on the rainfall nowcasting, the surface 
inundations, and the socio-economical risks could be partly evaluated based on historical observations 
of rainfall, sewer flows and water levels, surface inundations and flood damages claimed for the 
national disaster agency. Different methods for visualisation of the probabilistic inundation results were 
proposed and tested. 
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1 INTRODUCTION 

Within the scope of the interdisciplinary research project PLURISK on “Forecasting and management 
of extreme rainfall induced risks in the urban environment” for the Belgian Science Policy Office 
(BELSPO), a probabilistic model has been set up and evaluated for the nowcasting (short-term 
forecasting) of urban inundations. It consists of the following components: (1) a rainfall nowcasting 
model; (2) a hydraulic model that consists of the 1D sewer network and an innovative ‘nested’ 2D 
surface model to model 2D urban surface inundations at high resolution; (3) functions describing urban 
flood damage and social consequences in relation to inundation depth or rainfall intensity; (4) 
statistical post-processing methods in order to produce probabilistic urban flood risk maps: spatial 
maps representing the probability of flooding. The prototype 
system has been implemented and tested for the villages 
Oostakker and Sint-Amandsberg, which are part of the 
larger city of Gent, Belgium (Figure 1). 

 

                                            

Figure 1: Study area of the villages Oostakker and Sint-
Amandsberg in the larger city of Gent, Belgium: (left) 

location in Belgium; (right) sewer network and location 
FURUNO’s WR-2100 X-band radars.  

 

 

2 RAINFALL NOWCASTING 

The rainfall nowcasting makes use of the Short-Term Ensemble Prediction System (STEPS), originally 
co-developed by the UK Met Office and Australian Bureau of Meteorology, but further customised for 
urban applications in Belgium (denoted STEPS-BE). The STEPS-BE nowcasting is based on temporal 
extrapolation of rain storms observed by radar data. The extrapolation is probabilistic in the sense that 
the deterministic radar extrapolation is perturbed with stochastic noise (Bowler et al., 2006). This noise 
aims to account for the unpredictable rainfall growth and decay processes. It hence represents the 
nowcast errors together with its spatial and temporal correlations. 

To obtain uncertainty estimates for the rainfall nowcasts, 20 runs are conducted (20 member 
ensemble nowcast). So far, results are obtained at 1 km and 5 min resolutions up to 2 hours lead time 
using as input the composite image of the 4 C-Band radars located at Wideumont (RMI), Zaventem 
(Belgocontrol), Jabbeke (RMI) and Avesnois (MétéoFrance) (example Figure 2). Future developments 
involve the use of higher resolution X-band radar data at Leuven and Gent (FURUNO WR-2100 
radars). In comparison with the original STEPS, some improvements were made to obtain smoother 
velocity fields and to generate stochastic rainfall within the boundaries of the advected radar 
composite. 

Comparison of the rainfall nowcasts with radar observations for historical events has shown that 
nowcasts of rainfall intensities exceeding 0.5 mm/h are reliable up to 120 minutes lead time, or shorter 
for higher intensities (e.g. 30 minutes for intensities exceeding 5 mm/h) (Foresti et al., 2015). As 
expected, convective rainfall features have less predictability than large areas of stratiform rain. 
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Figure 2: Example of the STEPS-based rainfall nowcasts: (left) rainfall nowcast for 3/10/2012 14:30 for one 
ensemble member; (right) probability of rainfall intensities higher than 1 mm/h. 

 

3 2D SURFACE INUNDATION NOWCASTING 

The rainfall nowcasts are converted in 2D surface inundation maps by means of hydraulic modelling. A 
1D full hydrodynamic model for the underground sewer system, implemented in InfoWorks ICM, was 
coupled to a 2D hydrodynamic model for the surface flow. A digital elevation model (DEM) of very high 
spatial resolution of 1 meter was used as topographical input. In order to limit computational times, a 
nested 2D surface model was applied by developing the 2D surface mesh in diverse resolutions 
(Murla & Willems, 2015). Main streets as mesh zones together with buildings as void regions were 
modelled at the highest mesh resolution (3.75m2 – 15m2). They channel most of the flood water from 
the manholes and are crucial for the interactions within the 1D sewer network. The areas that recorded 
flooding outside these main streets were implemented with a second mesh resolution (12.5 m2 – 50 
m2). The low flood risk areas were finally simulated at a coarser mesh resolution (75 m2 – 300 m2) 

(example Figure 4). Permeable areas were identified and used as 
infiltration zones using the Horton infiltration model. The nested 
approach aims to take the advantages of both modelling systems 
to optimize the accuracy and computational time in describing 
urban surface inundations and allow an optimal representation of 
surface flooding in 2D and of the corresponding coupled 1D 
underground sewer. 

   

Figure 4: (Left) Surface inundation model with three triangular mesh resolutions; (right) example of urban 
inundation result visualized based on the high resolution 1-m DEM. 

The 1D sewer simulation results were validated based on water level and discharge observations 
obtained from a 1-month in-sewer monitoring campaign, and water level data continuously measured 
at pumping stations for longer periods. Surface inundation results were validated for recent historical 
floods based on scattered information on inundation locations and depth assessments from 
photographs, interviews and fire brigade interventions. These validations were based on best 
estimates of the real rainfall over the sewer catchments for these events. 
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4 FLOOD RISK NOWCASTING 

In order to convert the hydraulic flood variables into risk information, both the tangible and non-
tangible consequences of urban floods were studied. For the tangible consequences (monetary 
damage), both “depth-damage” and “rainfall-damage” models (Figure 5) were derived after statistical 
analysis of the survey data of 346 Flemish households that were victims of pluvial floods (Van 
Ootegem et al., 2015). These survery data were collected after sending questionnaires to 3963 victims 
of urban floods (info obtained from newspapers and from the historical database of claims to the 
Belgian Federal Disaster Fund). 24.5% completed questionnaires were received, from a total of 973 
households. 

They statistical analysis shows an average increase in the damage between 3% and 5.3% per cm 
increase in inundation depth at the ground floor, depending on the type of damage (building, content 
or total). Other factors accounted for are building related properties such as the location (e.g. village), 
type of house (single, in row), etc., and person related properties such as the salary or income, 
whether the person suffered already from historical flood events, hence whether the person is aware 
of the flood problem and whether the person has self-coping capacity, e.g. by taking precautionary 

measures, etc. The uncertainty in the models 
was also derived from the survey data. For 
the consequences on cultural heritage in the 
urban environment, a separate study was 
conducted. Validation could be done by 
comparing the damage estimates for a 
number of historical floods with the amounts 
claimed and paid by the Federal Disaster 
Fund Agency. 

The non-tangible consequences were 
assessed by analyzing the relation between 
the self-reported “happiness in life” of the 
people that completed the questionnaire, 
when they are asked to look backwards and 
into the future, and the explanatory variables 
mentioned above. 

 

Figure 5: Depth-consequence versus rainfall-consequence relationships. 

 

5 VISUALISATION AND COMMUNICATION OF NOWCASTS 

The urban inundation risk nowcasts are subject to high uncertainties as a result of the uncertainties in 
the rainfall nowcast, the hydraulic sewer modelling and urban surface inundation modelling, and the 
assessment of the consequences. For each of these three steps, uncertainties were quantified and 
propagated to obtain an overall uncertainty estimate of the risk nowcast. Given the importance to 
clearly but carefully communicate this nowcast uncertainty, different visualisation methods were tested 
and evaluated after consultation of the end users. Rainfall and flood probability or return periods maps 
and flood risk maps were finally selected, as well as plots showing the temporal evolution of the flood 
probability and risk.   
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RÉSUMÉ 

En appui de la gestion de l’eau, il faut des modèles efficaces afin d’évaluer et d’optimiser des 
stratégies différentes au niveau du bassin, de quantifier l’impact des tendances telles que le 
changement climatique ou l’urbanisation en hausse, et enfin, de prendre en compte plusieurs 
incertitudes et risques. Pour les gestionnaires de l’eau, les modèles hydrodynamiques sont devenus 
l’outil standard. Néanmoins, ces modèles présentent des lacunes considérables, dont les principales 
sont : les temps de simulation très longs, les possibilités d’interfaçage limitées et la caractérisation 
souvent trop complexe pour les applications visées. Pour cette raison, nous avons développé une 
nouvelle méthodologie flexible en vue de convertir ces modèles détaillés de la rivière et du réseau en 
modèles conceptuels. Plusieurs études de cas ont montré que les modèles conceptuels sont entre 103 
et 106 fois plus rapides que les modèles hydrodynamiques classiques, à la suite de la jonction efficace 
des processus et en s’appuyant sur les structures de modèles avancées. En parallèle, les modèles 
conceptuels imitent amplement la dynamique complexe des modèles plus détaillés. Un outil logiciel 
semi-automatique, nommé CMD, a été développé pour configurer rapidement des modèles 
conceptuels. En conceptualisant deux modèles de réseau détaillés de InfoWorks CS pour les villes de 
Geel et de Mol, aussi qu’un modèle détaillé en MIKE11 de la rivière Molse Nete, cette communication 
illustre l’approche de la modélisation et du logiciel. 
 

ABSTRACT 

Efficient models are needed in support of water management to evaluate and optimize different 
strategies on catchment level, quantify the impact of trends such as climate change or the increasing 
urbanization, and account for various uncertainties and risks. Detailed hydrodynamic models have 
become the standard tools of water managers. However, these models suffer from several 
fundamental shortcomings, of which very long simulation times, limited interfacing possibilities and an 
often overly complex characterization for the intended applications are arguably the main ones. 
Therefore, we developed a novel flexible framework to translate detailed river and sewer quantity 
models to lumped conceptual models that can be tailored to a specific purpose. Various case studies 
showed that these conceptual models are between 103 and 106 times faster than conventional 
hydrodynamic models due to the efficient lumping of processes and by relying on advanced model 
structures, while they emulate the complex dynamics of the more detailed models accurately. A semi-
automatic tool, named CMD, was developed to quickly configure conceptual models. This paper 
illustrates the modelling approach and tool by conceptualizing two detailed InfoWorks CS sewer 
models for the cities of Geel and Mol, and a detailed MIKE11 model of the Molse Nete River. 
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1 INTRODUCTION 

Water systems are characterized by many interacting processes on different scales. An integrated 
approach at catchment scale is required that can deal with these interactions to develop effective and 
sustainable strategies. Due to the inherent complexity of the water system and the broad scope of 
water management, models are needed to support decision making. These models need to be 
employable for very diverse analyses, such as optimization questions, uncertainty and risk 
quantification and impact estimation of trends. Each type of analyses poses specific model 
requirements. However, water managers rely almost exclusively on detailed hydrodynamic models for 
designing new strategies or performing analyses of river and sewer systems. Due to their prolonged 
calculation times, these models cannot be employed for running long term simulations, or for 
applications that require a large amount of simulations, such as optimization questions or uncertainty 
analyses. In addition, integration of such detailed models is limited to local scales, and often 
problematic for technical reasons. Therefore, we propose the complimentary use of simplified or so-
called conceptual models besides the conventionally used detailed hydrodynamic models. These 
conceptual models lump processes and rely on an alternative characterization of the river and sewer 
systems instead of using the de Saint-Venant equations. Their parsimonious structure results in very 
short simulation times and facilitates model interfacing, enabling multidisciplinary analyses at 
catchment scale. These features make conceptual models ideally suited for applications requiring fast 
and integrated models, while the results could be linked back to hydrodynamic models if spatially 
detailed investigations are required. 

A new, integrated modelling approach is being developed to set up such conceptual models. This 
framework incorporates a flexible hydrological modelling component that can be efficiently employed 
at different scales and that delivers consistent results with varying resolution and model detail (Tran 
and Willems, 2015). In addition, two data-based mechanistic and modular approaches are included, 
one tailored to river modelling (Wolfs et al., 2015) and another for modelling sewer systems (Wolfs and 
Willems, 2015). Research is also being done on conceptual water quality modelling for rivers. To 
ensure that the conceptual models can be configured quickly, a user-friendly tool named Conceptual 
Model Developer (CMD) has been set up. Figure 1  schematizes the modelling framework. This paper 
focuses on the newly developed conceptual modelling methodology for rivers and urban drainage 
systems. 

 
Figure 1: Schematization of the newly developed modelling framework to configure fast and tailored 

integrated conceptual models using the developed CMD software. 

2 CONCEPTUAL MODELLING METHODOLOGY AND SOFTWARE 

A new data-driven mechanistic and modular conceptual modelling approach was developed for rivers 
and sewer systems. The reader is referred to Wolfs et al. (2015) and Wolfs and Willems (2015) for 
details on the modelling approaches. The main characteristics are briefly discussed in this paragraph. 
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The conceptual models are derived from data, but most of the parameters are still interpretable in 
physically meaningful terms. For instance, dikes and hydraulic structures can be modelled explicitly in 
river systems. Such mechanistic representation is crucial for many scenario analyses and optimization 
questions. Due to the modularity of the methodology, the modeller can select the most appropriate 
model structures to emulate the dynamics of the system, including backwater effects and pressurized 
or reverse flows. Structures that are frequently applied in hydrology, such as the linear reservoir theory 
and transfer functions, are combined with advanced machine learning techniques such as artificial 
neural networks, adaptive neuro fuzzy inference systems, M5’ model trees and state dependent 
parameter models. The approach is based on the storage cell concept, which implies that the entire 
system is divided in multiple interconnected cells. In each cell, the water balance is closed explicitly. 
Figure 2 shows the topologies of a conceptual river and sewer model. In addition, a new discrete and 
explicit solver was developed that employs a variable time step that differs in space and time. This 
solver maximizes computational efficiency and avoids numerical instabilities during simulations. The 
developed modelling methodology results in flexible, accurate and very fast models that are suitable 
for many scenario investigations and the optimization of strategies. 

  
Figure 2: Example of a conceptual model topology for a river with floodplains and hydraulic structures indicated in 

red (left) and an urban drainage system (right) based on the storage cell concept. The broad gamut of included 
model structures is used to calculate the variables in the system. 

The developed modelling approaches were incorporated in the CMD software tool to facilitate model 
set-up. Based on the delineated topology of the conceptual model, the tool “learns” how the different 
elements are interconnected. This enables fully automatic handling of the data sets and calibrated 
model structures. The tool guides the user through the step-wise calibration. The user can use built-in 
and tailored algorithms to identify the most suitable model structures. The tool is coded in MATLAB 
and equipped with GUIs. The models itself are generated in the C programming language to yield the 
fastest possible models. A close interfacing was foreseen with the InfoWorks and MIKE programs. 

3 CASE STUDY AND APPLICATIONS 

The functionality of the developed modelling approaches and software is hereafter illustrated based on 
a case study of the sewer systems of the cities Mol and Geel, and the receiving Molse Nete River. 
Conceptual models were set up and calibrated to existing full hydrodynamic models of the two sewer 
systems and the river system and consequently interfaced. The coupled river-sewer model was used 
to quantify the impact of the combined sewer overflows (CSOs) on the water quality of the receiving 
river (see Keupers et al., 2015, for more details on the water quality part). For the water quantity part, 
the main objective of the conceptual models was to predict CSO flows accurately, together with the 
flows and water levels in the river. 

To overcome the lack of sufficient and accurate measurement data, simulation results of the existing 
full hydrodynamic models were employed. These detailed models were implemented in InfoWorks CS 
for the two sewer systems and MIKE11 for the river system. For the sewer models, the conceptual 
models were configured based on simulation results for design storms with return periods ranging 
between 1/20 and 20 years. For the river model, this was done based on a 1-year long term simulation 
in the MIKE11 model. These events and time series were chosen to ensure that the most important 
dynamics are included in the calibration and validation sets. The final conceptual model topology of 
the two sewer systems is shown in Figure 3 . The average Nash-Sutcliffe efficiencies (NSE) for the 
simulated volumes of cells in the conceptual model are 0.81 and 0.94 for the sewer systems of Mol 
and Geel respectively for all validation events, indicating a good fit. The performance of the conceptual 
river model is exceptionally good, with NSE values for all simulated flows and stages exceeding 0.985 
for all investigated events. Simulating a one-year period with the coupled conceptual river-sewer 
model takes merely 1.41 seconds, while this takes almost 60 hours with the hydrodynamic models. 
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Next to this integrated sewer-river modelling application, the methodology and CMD software were 
already employed for various other applications. A coupled sewer-river system was created to analyze 
different urban and river flood mitigation measures (De Vleeschauwer et al., 2014). A conceptual river 
model at catchment scale is used to control hydraulic structures in real time via model predictive 
control to reduce flood damage in the Demer basin (Vermuyten et al., 2015). Another conceptual river 
model was used for flood probability mapping in real time along the Dender River (Wolfs et al., 2012). 

4 CONCLUSIONS 

A modular and flexible conceptual modelling approach was developed to overcome the limitations of 
conventionally used detailed hydrodynamic models. Processes can be lumped on different scales. 
Due to the variety of incorporated model structures, the models can emulate complex dynamics such 
as backwater effects accurately. The parsimonious model structure and very short calculation times 
allow model interfacing on larger scales, enabling integrated system analyses. A software tool, named 
Conceptual Model Developer (CMD), was developed to quickly configure the conceptual models. This 
tool and modelling approach were demonstrated on a case study by modelling two sewer systems and 
the receiving river. The integrated conceptual model emulates the simulation results of hydrodynamic 
models precisely, but simulates events 150 000 times faster than the detailed models. Such short 
calculation time enables optimization of strategies, accounting for uncertainties and risks and 
performing long term simulations. 
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1 INTRODUCTION  

Urban flooding causes worldwide significant disrup-
tion to society, huge economic losses and imposes 
serious health risks. The rapidly increasing urbaniza-
tion, aging storm networks and climate change will 
increase urban flood hazard and risk. Recent studies 
on future climate change impacts show that extreme 
rainfall intensities may strongly increase (Willems et 
al., 2012; IPCC, 2014) and as a result also the urban 
drainage flows and flood hazard (Willems, 2013). 
Increasing the resilience of urban areas to local rain-
fall-induced floods is therefore a major objective of 
present and future water management. 

Next to the design of adaptation measures to re-
duce the flood hazard, measures that increase the 
preparedness of disaster agencies and the self-coping 
capacity of people becomes more and more im-
portant. One of the latter type of actions is the setup 
of an urban flood forecasting and warning system. 
For forecasting of floods in urban areas as a result of 
extreme rain storms, called pluvial floods, the fore-
casting has to focus on extreme convective rain 
storms. Given their short duration but also because 
of the quick responses of urban drainage systems to 
rainfall, forecasting of convective rain storms and 
related pluvial floods can only be done for short lead 
times. This type of forecasting is called “nowcast-
ing”. 

 One such operational nowcasting system is the 
operational Short-Term Ensemble Prediction System 
(STEPS), which was originally co-developed by the 
UK Met Office and Australian Bureau of Meteorol-
ogy (Bowler et al.,2006). The system has recently 
been adapted for Belgium (STEPS-BE). STEPS-BE 
is based on a 4 C-band radar composite as input and 
provides rainfall forecasts at high resolution 
(1km/5min) with 20 ensemble members and a lead 
time of up to 2 hours (Foresti et al.,2016). As the 
forecasts are updated every few minutes, it is essen-
tial that pluvial inundation models are developed to 
suit operational forecasting requirements. More spe-
cifically, fast models are required such that the real-
time flood impact simulations can be conducted eve-
ry few minutes. Because uncertainties may be signif-
icant, especially for longer lead times, such uncer-
tainties also have to be accounted for in the 
forecasting system. Since such quantification re-
quires multiple runs, e.g. simulating the impacts of 
ensemble rainfall predictions, incorporating models 
with very short calculation times becomes even 
more important. In addition, the models need to be 
accurate, and “integratable” in existing systems. 
Given the specific characteristics of urban floods, 
high resolution models moreover are required to rep-
resent topography, the presence of houses, inlets, 
etc.  
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ABSTRACT: This paper presents a parsimonious and data-driven modelling approach to simulate urban 
floods. Flood levels simulated by detailed 1D-2D hydrodynamic models can be emulated using the presented 
conceptual modelling approach with a very short calculation time. In addition, the model detail can be adjust-
ed, allowing the modeller to focus on flood-prone locations. This results in efficiently parameterized models 
that can be tailored to applications. The simulated flood levels are transformed into flood extent maps using a 
high resolution (0.5-meter) digital terrain model in GIS. To illustrate the developed methodology, a case study 
for the city of Ghent in Belgium is elaborated. The configured conceptual model mimics the flood levels of a 
detailed 1D-2D hydrodynamic InfoWorks ICM model accurately, while the calculation time is an order of 
magnitude of 106 times shorter than the original highly detailed model. The proposed models can be used for 
numerous applications of urban water management requiring fast models, such as early warning systems, un-
certainty analyses and optimization, e.g. to determine real-time storage operations.   



Various model types are combined and used to 
simulate urban floods (see e.g. Henonin et al. (2013) 
and René et al. (2014) for a comprehensive discus-
sion). Although physically-based white box models 
are the most popular model type in urban drainage 
modelling (Parkinson and Mark, 2005), coupled 1D-
2D models are commonly applied for urban flood 
studies (e.g. Schmitt et al., 2004; Carr & Smith, 
2006). In such a setup, the underground drainage 
network is modelled in 1D, while the surface flow 
model is 2D. Such detailed 2D approach is necessary 
to accurately represent the full city surface. Howev-
er, a 1D-2D approach is computationally very ex-
pensive and therefore does not meet the requisite 
functional model characteristics of flood forecasting 
systems and many other urban flood applications re-
quiring fast models. 

This paper tries to overcome this issue by intro-
ducing a new and parsimonious modelling approach 
for simulating urban flood water levels that is com-
patible with the “CMD” framework for efficient hy-
draulic modelling of sewers (Wolfs & Willems, 
submitted). A new module is introduced to emulate 
urban flood levels generated by highly detailed 1D-
2D hydrodynamic models. The predicted water lev-
els are translated to flood maps by means of GIS 
procedures using data from a high resolution digital 
terrain model (DTM). The approach is highly flexi-
ble and allows the user to focus on flood-prone are-
as. The proposed method and framework can deal 
with different temporal and spatial scales, and can 
for instance use (weather) radar data as input. A sim-
ilar approach was already developed for river sys-
tems (Wolfs et al., 2015) and applied for various ap-
plications (e.g. De Vleeschauwer et al., 2014; 
Vermuyten et al., 2014; Wolfs & Willems, 2015). 

To illustrate the developed approach, it was im-
plemented for the case study of the sewer system of 
the city of Ghent, Belgium. It starts from a highly 
detailed 1D-2D InfoWorks ICM model to simulate 
urban floods at high spatial resolution. A fast con-
ceptual hydraulic model was identified and calibrat-
ed to that detailed model. The conceptual model will 
then be applied in a surrogate, complementary way. 
It aims to accurately emulate water level simulation 
results of the detailed ICM model. Water level simu-
lation results of the conceptual model are used as in-
put for the GIS-DTM based flood mapping. The de-
rived conceptual model is several orders of 
magnitude faster than the original 1D-2D hydrody-
namic model, and is ideally suited to be used in real-
time flood forecasting systems. 

First, the methodology is presented, followed by 
a discussion of the case study area and available da-
ta. Next, the results of the case study are presented 
and discussed. Finally, conclusions and a view on 
future developments are given. 

2 METHODOLOGY 

The main objective of this research is to develop and 
test fast models that can accurately calculate instan-
taneous urban flood levels and visualize the flood 
extent. Simulating urban flood levels is very compli-
cated due to the large number of interacting process-
es. Flood levels mainly depend on the hydraulic state 
of the subsurface urban drainage network, the topog-
raphy, and interactions between the underground 
system and surface. Hence, in order to accurately 
calculate urban flood levels, the surface flow should 
also be simulated, which in turns necessitates spa-
tially highly detailed maps of the topography. How-
ever, simulating such detailed models is computa-
tionally very expensive. Therefore, we suggest using 
mechanistic, fast and parsimonious conceptual mod-
els that aim to emulate urban flood level data sets. 
By emulating such data sets, the surface runoff does 
not have to be simulated explicitly, since the effect 
of the surface flow is inherently present in the data 
set. This strongly limits the calculation time, making 
these models suitable for flood forecasting systems 
and other applications requiring fast models. A three 
step approach is proposed to set up such models. 
Figure 1 illustrates the proposed methodology. 

 
 

Figure 1: Schematization of the modelling approach. 

In the first step, accurate flood level measure-
ments are gathered to configure the model. Due to 
the lack of accurate level measurements, simulation 
results of hydrodynamic models are used in this 
study to develop and test the approach. The use of 
these “virtual” measurement sets is often advocated 
in literature to compensate for such data shortage in 
urban drainage modelling (e.g. Vaes, 1999; Meirlaen 
et al., 2001). Since urban flood levels are determined 
by fine-scale processes and due to the close interac-
tion with the underground drainage network, highly 
detailed 1D-2D white box model must be employed 
to ensure realistic urban flood levels are obtained. 



In the second phase, a parsimonious and fast 
model is configured to simulate the urban flood lev-
els at selected locations. This model is set up using 
the simulation results obtained in the previous step. 
Note that the use of simulation results instead of in 
situ measurements to calibrate and validate the mod-
el does not put stringent limitations on the use and 
accuracy of the developed approach. Due to the da-
ta-driven character of conceptual emulation models, 
accurate and a sufficient amount of data that cover a 
wide range of system dynamics are essential to en-
sure proper configuration of these models. The pre-
sented approach is not tailored to emulate results 
generated by a specific model type or software 
package, but aims to be generically applicable. 

Finally, the urban flood level predictions are 
translated to flood extent maps using GIS proce-
dures. 

The following sections elaborate on the second 
and third steps of the methodology.  

2.1 Fast model to simulate urban flood levels 

The proposed approach tries to emulate urban flood 
levels using a fast parsimonious model that does not 
model the surface flow during floods explicitly. By 
obviating such costly calculations, the calculation 
time can be significantly reduced compared to full 
hydrodynamic 1D-2D models. In order to configure 
such parsimonious models successfully, three criti-
cal criteria should be met. Firstly, the flood level set 
used to calibrate and validate the model should be 
accurate and realistic. The set should thus inherently 
account for the complex processes that influence the 
water level. Secondly, there must be a functional re-
lationship between the sought flood levels and sev-
eral states in the system that can be calculated accu-
rately. Thirdly and finally, this relationship should 
be identified and parameterized using one or more 
model structures. 

By using simulation results of a hydrodynamic 
model, it is assumed that the first condition is satis-
fied. The detailed 1D-2D hydrodynamic model 
should be able to generate sufficiently accurate flood 
levels. A careful selection of several system varia-
bles is necessary to comply with the second condi-
tion. The hydraulic state of the sewer system, such 
as the degree of filling prior to a storm event, has a 
major impact on floods. It is crucial to account for 
such (antecedent) conditions. It seems plausible to 
assume a dependency between the volume of part of 
the sewer system and the flood level at a selected lo-
cation. To simulate such volumes quickly and accu-
rately, the conceptual hydraulic modelling frame-
work developed by Wolfs & Willems (submitted) is 
used. This framework is denoted as “CMD” and can 
account for various elements that influence the flow 
and thus volumes in the sewer system, including 
backwater effects, reverse and pressurized flows and 

controllable structures such as pumps. Thus, the vol-
ume of part of the sewer system is used as first in-
put. It is important to note that CMD allows varying 
levels of model detail. Thus, the modeller could use 
the volume of a single conduit up to the volume of 
an entire sewer system as input. The most appropri-
ate level of lumping is determined using a trial-and-
error procedure. Rainfall remains the main driver of 
urban floods. Therefore, the rainfall intensity (aver-
aged over the response time of the system) is used as 
second input variable for simulating the flood level. 
Alternatively, the rainfall runoff flow could also be 
used as input, since such flow already accounts for 
antecedent surface conditions. Rainfall runoff flows 
are calculated in CMD using the Wallingford Model, 
which is by default used in the hydrodynamic In-
foWorks software (Innovyze, 2014). Hence, it is as-
sumed that there exists a functional relation between 
the two selected inputs, namely the averaged rainfall 
intensities and volume in selected areas of the sewer 
system, and the urban flood level at a specified loca-
tion. 

Finally, a model structure must be identified and 
calibrated to ensure that flood levels can be simulat-
ed using these two selected inputs. Given the large 
number of interacting processes, the use of machine 
learning techniques is proposed. These techniques 
are very flexible and can configure themselves using 
supervised learning to emulate complex data sets. 
The modelling approach incorporates a serial con-
nection of two artificial neural networks (ANNs). 
The first is a binary classification ANN to determine 
if there is urban flooding at the selected location. 
This ANN has a single hidden layer with an adjusta-
ble number of nodes and uses the two selected in-
puts. It relies on sigmoid and softmax transfer func-
tions in the hidden and output layers respectively, 
which are trained via a scaled conjugate gradient op-
timization to minimize the cross-entropy. This set-up 
improves classification performance. The outcome 
of the ANN is the probability at every time step dur-
ing a simulation of having urban floods (i.e. the wa-
ter level surpasses the ground level). If this probabil-
ity exceeds a specified threshold, the second ANN is 
triggered to calculate the flood level. This second 
ANN uses a sigmoid and purely linear transfer func-
tions in the hidden and output layers and are trained 
via Levenberg-Marquardt optimization using Bayes-
ian Regularization and early stopping. To improve 
generalization and to limit the influence of the ini-
tially randomized parameters of the ANN, an en-
semble ANN is used by averaging the outcome of 
several trained ANNs. After configuring both 
ANNs, the threshold probability that activates the 
second ANN is optimized by minimizing the root-
mean-square error (RMSE). To facilitate and speed 
up ANN configuration, the set-up procedure was 
programmed in MATLAB using the Neural Network 
Toolbox. 



This data-driven yet mechanistic approach inher-
ently accounts for the complex dynamics and inter-
actions between the sewer system and surface flow 
that are present in the calibration set. Given the data-
driven character of the approach, having a sufficient 
amount of data that includes several urban flood 
events is a requisite for configuring accurate models 
with good generalization capabilities. 

2.2 Flood mapping 

Next to the sewer hydraulic computations, also the 
2D surface inundation modelling and mapping are 
constrained with computational resources. Real-time 
urban flood nowcasting demands flood mapping 
techniques that are fast enough. In this regard, re-
searchers and practitioners have developed GIS 
flood inundation techniques with minimal data re-
quirements (Zhang & Pan, 2014; Sampson et al., 
2012). For this study, flood mapping is based on a 
simplified methodology that generates flood extents 
in a relatively fast way based on flood levels and 
topographic information. The methodology is akin to 
the volume spreading algorithm applied in ISIS-
FAST (Néelz & Pender, 2010), albeit with a focus 
on depth spreading.  The steps involved in the meth-
odology are described henceforth.  

The first step involves the generation of a detailed 
topographic map of high resolution (1m or less).  
Steps should be taken to ensure that errors within the 
map are corrected to minimize the effects of data er-
rors in the final flood extent maps. 

In the second step, catchment zones with depres-
sions (pits) are defined. Pits are those locations 
where all surrounding cells have flow directions 
pointing towards them.  The identification of pits is 
done through an iterative approach with the use of 
parameters for storage volume, area and depth. 
However, not all pits are relevant as some pits are 
considered artificial. Therefore validation against 
observed flood extents or other sources of flood in-
undation is required. Without data on observed flood 
extents for urban inundation, results of 1D-2D inun-
dation models help to locate regions that are flood 
prone and pinpoint locations of depressions. From 
these locations, better parameters for more realistic 
pits are estimated.  

The third step involves the selection of control 
points for flood level extension. These locations do 
not necessarily have to be at pits but should fall 
within the catchment boundaries. For 1D-2D simula-
tions, water level profiles along sewer pathways in 
the vicinity of flooded locations provide a suitable 
basis for selection. For instance, locations where the 
hydraulic grade line is close to the 2D water depth 
would be more appropriate for flood extension. For 
flood extents with more than one catchment or de-
pression, a selection of different locations is done.  

The fourth step involves the extension of the wa-
ter levels based on the DTM. The assumption is that 
if the ground elevation within a depression is lower 
than the flood level, then the grid cell is considered 
flooded if it is topographically connected to the ref-
erence flood cell, which is the control point. Repeat-
ing this over all grid cells within a depression gives 
a flood extent map. 

3 CASE STUDY AND AVAILABLE DATA 

The developed approach was applied and tested for 
the urban drainage system of the village of Oostak-
ker, a district of the city of Ghent in Belgium (Figure 
2). A detailed 1D-2D full hydrodynamic model of 
the sewer network (1D) and the surface (2D) was 
setup, implemented in InfoWorks ICM. This ICM 
model covers the entire sewer system of the districts 
of Oostakker and Sint-Amandsberg. It counts in total 
6025 conduits, 182 hydraulic structures (such as 
pumps, weirs, sluices and orifices) and 5855 man-
holes. The system releases water to receiving water 
bodies via 39 outfall nodes. This detailed 1D repre-
sentation of the sewer network is coupled with a sur-
face inundation model at high resolution based on a 
unique very high resolution DTM available for the 
study area. The surface inundation model makes use 
of nested triangular meshes at different resolutions; 
these include streets (3.75 – 15 m2), high flood haz-
ard areas (12.5 – 50 m2) and low flood hazard areas 
(75 – 300 m2). The mesh zones are generated from a 
0.5x0.5x0.05m DTM (AGIV, 2015) with buildings 
defined as no flow zones. Additionally, land use are-
as are classified according to the dominant surface 
cover type into water, pervious and impervious are-
as. The interaction between the 1D underground 
sewer conduits and the 2D surface was through 2D 
manholes. A 2D manhole is conceptualized as a weir 
with a crest level taken as the ground level and a 
crest length equal to the shaft circumference of the 
node (Innovyze, 2014). In this way, water is ex-
changed to the 2D surface when the pressure head at 
the manhole exceeds the ground level.   

 
Figure 2: Detailed 1D-2D InfoWorks ICM model of the 

case study area (left) and hydraulic conceptual CMD 

model (right). 

http://www.sciencedirect.com/science/article/pii/S0022169415004308#b0230
http://www.sciencedirect.com/science/article/pii/S0143622815300254#bib3


Figure 3 illustrates this approach for a subzone of 
the study area. The street with the highlighted nodes 
‘SR07994104’ and ‘SR07995401’ is prone to flood-
ing. The nodes shown in the map are the water level 
calculation nodes in the InfoWorks ICM model. The 
node ‘SR07994104’ represents the highest situated 
manhole of the sewer system and floods first. From 
this location, water flows over the surface to other 
nodes in the street. The node ‘SR07995401’ repre-
sents a manhole which is situated in a depression in 
the topography. Hence, the flow at this location is 
both induced by sewer floods through the manhole 
at that specific location, but also by surface flows 
from other nodes. By selecting two nodes, it is pos-
sible to assess the performance for both types of 
flooding. 

 

Six spatially uniform synthetic storm events with 
different frequencies of occurrence of 10 (denoted as 
‘f10’) and 7 (‘f07’) times per year, and return peri-
ods of 2, 5, 10 and 20 (respectively ‘t02’, ‘t05’, ‘t10’ 
and ‘t20’) years were simulated. These six events 
lead to different flood levels. All models are cali-
brated for the ‘f10’, ‘t02’, ‘t10’ and ‘t20’ events, and 
validated for the ‘f07’ and ‘t05’ events. 

4 RESULTS 

4.1 Hydraulic model 

A conceptual hydraulic model of the sewer system 
was configured based on simulation results of the 
detailed hydrodynamic models of the six synthetic 
storm events. This conceptual model is configured to 
simulate the volumes in the sewer system, which are 
in turn used as input to simulate the flood levels (see 

§2.1 and §4.2). The conceptual hydraulic model di-
vides the entire sewer system in six interconnected 
reservoirs (see Figure 2). The average Nash-Sutcliffe 
efficiencies (NSE; Nash and Sutcliffe, 1970) for the 
simulated volumes in these six cells for the calibra-
tion and validation events are 0.94 and 0.93 respec-
tively. An NSE of unity indicates a perfect match 
between the conceptual and hydrodynamic models. 
Hence, the obtained NSE values indicate that the 
conceptual model manages to emulate the hydraulics 
and volumes of the detailed hydrodynamic model 
accurately. A comprehensive discussion of the cali-
bration and validation results can be found in Wolfs 
and Willems (submitted). 

4.2 Flood levels  

Next, the two ANNs in series are configured for 
both investigated locations to calculate when flood-
ing occurs and, if relevant, the flood levels. First, the 
binary neural network is trained according to the 
procedure outlined in §2.1. Water levels exceeding 
the flood level are given target values of unity, while 
others are zero. After training, the obtained ANN is 
visualized in a grid (see Figure 4a for the binary 
classification ANN and the target values for location 
‘SR07994104’). Target values where flooding oc-
curred in the hydrodynamic ICM model are marked 
in red, while couples without flooding are shown in 
green. It is obvious that there is a clear segregation 
of the 2D input space possible into a subspace with 
no flooding and a subspace where the water level 
overtops the ground level, leading to floods. Next, 
the second ANN is configured, aimed to predict the 
magnitude of the flood levels. Only water levels 
above ground level are used as training data to en-
sure that the ANNs can purely focus on emulating 
the magnitude of the flood levels. An ensemble of 
four networks is trained. The obtained ensemble of 
ANNs is then translated to a single entity using sim-
ple averaging. By using such an averaged ensemble, 
the generalization capability is improved, since the 
variability of each ANNs’ response is reduced. Fi-
nally, possible negative values in the response do-
main (thus representing water levels below the sur-
face) are converted to zero. Note that negative 
values in the ANN’s outcome will rarely occur, 
since the provided training values are strictly possi-
ble. Indeed, this second ANN is only being calculat-
ed when the first (binary) ANN indicates that flood-
ing occurs. The obtained network for location 
‘SR07994104’ is shown in Figure 4b. The ANN sur-
face response misses only very few targets. In the 
third configuration step, the threshold probability 
that is used to determine precisely when flooding 
occurs is optimized.  Note that the training of these 
ANNs only takes a few seconds due to the use of 
solely two inputs (volume and averaged rainfall in-

Figure 3: The most flood prone subzone of the study area, 

indicating the pipes of the 1D sewer network and the calcu-

lation nodes in the InfoWorks-ICM model, and the 2D tri-

angular mesh zones. Buildings (grey) are also shown. 



tensity) and the low number of nodes in the hidden 
layer (≤10). 

 

(a) 

(b) 

Figure 4: Trained ANNs for location “SR07994104”; (a) binary 

classification ANN which calculates the probability of flood-

ing; (b) ANN which simulates the flood level in case the binary 

classification ANN assesses that flooding occurs. 

Figure 5 shows the simulated flood levels for the 
four events that lead to flooding. It is clear that the 
conceptual model manages to emulate the results of 
the hydrodynamic ICM model very accurately. 

 

 
Figure 5: Flood level simulation results of the conceptual and 

1D-2D ICM model for location ‘SR07994104’ for the events 

leading to flooding. 

Table 1 summarizes the RMSE and NSE which 
are calculated by comparing the simulation results of 

the conceptual and 1D-2D ICM models. Note that 
only the 15-minute interval in which flooding occurs 
is used to calculate both goodness of fit statistics to 
ensure that only on the period of interest is focused. 
The results show that the conceptual model can ac-
curately predict the flood level at both locations, alt-
hough the accuracy of the ‘t05’ event which is used 
for validation is lower. However, the deviations re-
main limited as indicated by the low RMSE value.  

 
Table 1: Goodness of fit statistics of the water level simulations 

at the two selected locations for the different events (C = cali-

bration; V = validation). 

 ‘SR07994104’  ‘SR07995401’ 

 RMSE [mm] NSE  RMSE [mm] NSE 

f10 (C) 0.0 1.00  0.0 1.00 

f07 (V) 0.0 1.00  0.0 1.00 

t02 (C) 2.1 0.86  6.6 0.92 

t05 (V) 3.5 0.96  33.1 0.34 

t10 (C) 2.9 0.99  6.8 0.99 

t20 (C) 2.0 1.00  13.0 0.97 

4.3 Flood extent 

Flood extent maps were generated for the flood 
depth computed by the conceptual model for loca-
tion ‘SR07994104’. However, as the depth for the 2-
year event was too shallow (less than 0.05m) it was 
not extended because the DTM vertical accuracy is 
around 0.05m. This implies that spreading flood 
depths close to 0.05m is not feasible. From Figure 6, 
it is evident that flood extents for the different return 
periods are almost indistinguishable which is ex-
plained by the close flood peak depths shown in fig-
ure 4. It is also apparent that GIS-based flood ex-
tents tend to be higher than the flood extents 
computed by InfoWorks-ICM, but the difference is 
small. Considering the 20-year flood extent around 
node ‘SR07994104’, the GIS-based flood extent is 
only about 8% higher than the flood extent by the 
InfoWorks-ICM. Highest differences are located in 
the low–lying areas downstream of the control node. 

 

Figure 6: Maximum flood extent simulated by the InfoWorks-

ICM for the 20-year storm (Left) and by the GIS-based ap-

proach for 5-,10-,20-year storms (Right). 

 



5 DISCUSSION AND CONCLUSIONS 

A new parsimonious and fast emulation approach 
was presented to simulate flood levels in urban are-
as. Application on a case study showed that the ap-
proach can successfully mimic the simulation results 
of a detailed 1D-2D hydrodynamic InfoWorks ICM 
model. The approach combines three modules: (1) a 
conceptual model (set up using the “CMD” frame-
work; see Wolfs and Willems (submitted)) to simu-
late flows and volumes given rainfall intensities, (2) 
a serial connection of two ANNs to simulate flood 
levels at specified locations, and (3) a GIS module to 
visualize the flood extents. This paper focuses on the 
latter two components. 

A connection of two ANNs is configured for each 
location where flood levels are simulated. The 
ANNs depend solely on rainfall intensities and the 
simulated volume of part of the sewer system to cal-
culate the flood level. This volume is simulated by 
the hydraulic conceptual model (CMD). Given the 
flexibility of the CMD conceptual model, lumping 
of areas can range from vary small scales (i.e. the 
volume is being simulated for a combination of sev-
eral pipes) up to entire districts (i.e. one volume is 
simulated for an entire district). Naturally, the ap-
plicability of the presented approach to simulate 
floods depends on the presence of a functional rela-
tionship between the simulated volume and rainfall 
intensities, and the sought flood levels. Given the 
flexibility of the approach, it is impossible to define 
a fixed set of crisp criteria to evaluate if such func-
tional relationship exists. Instead, the existence of 
such relationship should be evaluated in an ad hoc 
fashion. Note that it is easily possible to use other 
inputs sets as well (e.g. add other variables to the in-
put set, such as flows).  

The results of the case study show that the de-
rived set-up (conceptual CMD model extended with 
ANNs for flood level calculation) can simulate ur-
ban floods up to 106 times faster than the original 
1D-2D hydrodynamic model. This vast speed gain is 
achieved due to the data-driven character of the ap-
proach, which obviates detailed calculations of both 
the flow in the sewer system and the surface flow. 
To ensure that the data-driven approach can simulate 
the dynamics of the sewer and surface flow, the data 
used to set up the models needs to cover both dy-
namics. In addition, it is crucial to employ a large 
data set to configure a model with adequate general-
ization capabilities. 

In a second phase, the urban flood levels were 
transformed to flood extent maps using a simple 
spreading algorithm in GIS based on the very fine 
resolution DTM. Flood extent mapping based on 
such algorithm was found to be a practical alterna-
tive to the more detailed 1D-2D full hydrodynamic 
modelling. Even though detailed flood models are 
more precise, calculation times remain prohibitive 

for pluvial forecasting over short time intervals. 
Nonetheless, comparing the flood extents simulated 
by the 1D-2D full hydrodynamic model with the 
GIS-based extents provides insights on selecting im-
portant parameters for defining depressions. The 
GIS-based technique allows for temporal flood 
maps, which is beneficial for understanding flood 
propagation. However, flood level spreading does 
not take into account flood volumes, which often 
lead to an overestimation of inundated areas espe-
cially in flat areas, unless this can be accounted for 
in the conceptual sewer model. Moreover, water 
movements and time delays at the surface runoff are 
not account for in the approach. The quality of the 
DTM obviously is of critical importance for accu-
rately describing flood extents based on flood 
depths. In some cases, some infrastructure may ap-
pear flooded but in reality they could be above the 
flood level. It is crucial to stress that GIS-based 
flood extent maps generated from depths alone are 
aimed at quick assessment and should be treated as 
such. 

The models configured with the presented meth-
odology can be tailored to the intended application. 
Due to their flexibility, the model detail can easily 
be adjusted. For instance, flood-prone or high valua-
ble areas can be modelled with enhanced accuracy, 
while processes in other regions can be lumped to a 
greater extent. The obtained models can be used for 
a wide range of applications that require fast simula-
tion models, such as real-time forecasting systems, 
and to perform uncertainty or optimization analyses. 
The modelling approach can easily be semi-
automated and merged with the CMD framework, 
which facilitates and speeds up the conversion of de-
tailed hydrodynamic models into parsimonious and 
fast conceptual models. 

Although the presented approach gives already 
promising results, additional research remains nec-
essary. Flood extent maps can be generated based on 
several points for a better assessment of the sensitiv-
ity of mapping to different reference locations and to 
explore potential improvements in flood depth rep-
resentation. The use of Digital Surface Models 
(DSMs) would help resolve the effects of flooding 
close to infrastructure. For instance, elevations of 
buildings are inherently incorporated in such maps. 
An approach that makes use of flood volume spread-
ing between depressions would help to address the 
limitations of flood extents with regards to mapping 
temporal flood extents.  The need for verification of 
inundation maps against historical flood related data 
would be important as well. 

Clearly, further testing for different sewer sys-
tems, land uses and other storm events is necessary 
to validate and implement requisite improvements to 
the approach. In a next phase, models configured us-
ing the presented methodology will be incorporated 
in a large-scale urban flood nowcasting test case.  
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In this work a thorough test is conducted of radar-rain gauge merging techniques at urban scales, under different
climatological conditions and rain gauge density scenarios. The aim is to provide guidance regarding the suitability
and application of merging methods at urban scales, which is lacking at present. The test is conducted based upon
two pilot locations, i.e. the cities of Edinburgh (254 km̂2) and Birmingham (431 km̂2), for which a total of 96 and
84 tipping bucket rain gauges were respectively available, alongside radar QPEs, dense runoff records and urban
drainage models.
Three merging techniques, namely Mean Field Bias (MFB) adjustment, kriging with external (KED) and Bayesian
(BAY) combination, were selected for testing on grounds of performance and common use. They were initially
tested as they were originally formulated and as they are reportedly commonly applied using typically available
radar and rain gauge data. Afterwards, they were tested in combination with two special treatments which were
identified as having the potential to improve merging applicability for urban hydrology: (1) reduction of temporal
sampling errors in radar QPEs through temporal interpolation and (2) singularity-based decomposition of radar
QPEs prior to merging. These treatments ultimately aim at improving the consistency between radar and rain
gauge records, which has been identified as the chief factor affecting merging performance and is particularly
challenging at the fine spatial-temporal resolutions required for urban applications. The main findings of this study
are the following:
- All merging methods were found to improve the applicability of radar QPEs for urban hydrological applications,
but the degree of improvement they provide and the added value of radar information vary for each merging
method and are also a function of climatological conditions and rain gauge density scenarios.
- Overall, KED displayed the best performance, with BAY being a close second and MFB providing the smallest
improvements upon radar QPEs. However, as compared to BAY, KED performance is more sensitive to rain gauge
density and to the ability of rain gauges to sample critical features of the rainfall field. By incorporating more
information from radar than KED, BAY is less sensitive to rain gauge density and to poor rain gauge predictability
and proved able to provide a good representation of convective cells even in cases in which gauges completely
missed such structures.
- Based on the findings of this study, it is recommended that KED be used when gauge densities are relatively high
(of the order of 30 km2 per gauge or higher) and/or when the quality of radar QPEs is known to be very poor, in
which case it is desirable to rely more upon rain gauge records. For low rain gauge density situations and QPEs of
reasonable quality (as is the case in most of EU), BAY may be a more appropriate choice. MFB should be the last
choice; however, it is better than no correction at all.
- The two special treatments under consideration successfully improved overall merging performance at the
spatial-temporal resolutions required for urban hydrology, with benefits being particularly evident at low rain
gauge density conditions.
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Summary (700 characters) 

1D-2D dual drainage models are a well-established approach to simulate urban pluvial floods. However, despite 

modelling advances and increasing computer power, this approach remains unsuitable for real time practical 

applications. We thus propose and test two computationally efficient surrogate models of such a dual drainage 

model. In the first one we couple a 1D sewer model to a GIS-based overland flood network. In the second one we 

develop a conceptual sewer and flood model using data-driven and physically based structures, and employ pre-

simulated scenarios for mapping. The city of Ghent is used as a test case. The surrogate models can provide 

comparable results to the original model. 

Introduction 

1D-2D dual drainage models are a well-established approach to simulate urban pluvial flooding, which can provide a 

realistic description of flood flow conditions. They simulate the coupling between the sewer network, represented 

by a 1D model, and the surface flow, computed using a 2D hydrodynamic model. However, this approach is generally 

too computationally intensive for real-time applications such as urban pluvial flood forecasting or for probabilistic 

approaches that require multiple simulations.  

Therefore, there remains a need for developing computationally more efficient surrogates of these models. In this 

context, two broad surrogate modeling approaches can be considered: lower-fidelity physically based models, which 

are simplified models of the original system, and data-driven models which emulate the original model responses 

(Razavi et al., 2012). In this study we propose and test two surrogate models of a 1D-2D dual drainage model which 

combine both modelling approaches. Their capabilities and limitations for pluvial flood inundation mapping are 

evaluated and compared. 

Material and Methods 

Case study 

The city of Ghent was used as a test case. A total of 8 synthetic storms with return periods from 2 to 100 years, 6 

rainfall events obtained with a stochastic rainfall generator (Muñoz et al., 2015) and 2 historical rainfall events 

(occurred on 28th July 2013 and 30th May 2016) were used for calibration and validation of the models.  

Numerical models 

A detailed 1D-2D full hydrodynamic model of the sewer network and the surface of the city was implemented in 

InfoWorks ICM (Fig. 1). The model covered an area of 27.5 km2 and counted in total 6025 conduits, 182 hydraulic 

structures and 5855 manholes. The resolution of the surface triangular mesh ranged from 3.75 m2 up to 50 m2 in the 

flood prone areas. The interaction between the 1D underground sewer conduits and the 2D surface was through the 

manholes, conceptualized as weirs. 

Fig. 1. Definition of the sewer network of the case study area in the 1D-2D original model. The region analyzed in Fig. 2 and Fig. 

3 is marked in yellow. 



Two different surrogate models of the above model were developed in this work. The first one consists of a 1D 

representation of the sewer network in which the flood volumes are stored in virtual reservoirs on top of the 

manholes. A conical flood storage volume was defined for each manhole, being two alternative definitions 

implemented: a default definition based on the size of the contributing areas draining to each node and an enhanced 

definition based on the floodable areas estimated from the surface topography. A volume spreading algorithm, 

which relies on a GIS analysis of the surface topography, was subsequently used to translate the flood water from 

surcharged manholes into a flood depth map.  

The second surrogate model involves a conceptual sewer and flood model which uses both data-driven and 

physically based model structures. It first emulates the volumes in the sewer system using a conceptual network 

topology, as described in Wolfs & Willems (2017). It subsequently estimates the surface flood volumes, aggregated 

in pre-defined regions of the study area (with sizes between 0.25 and 0.5 km2), by means of a serial connection of 

two artificial neural networks and an infiltration model. Pre-simulated scenarios are used for flood mapping in the 

different regions.  

Results and Discussion 

The results show that the first surrogate model is sensitive to the definition of the virtual storage reservoirs in the 1D 

sewer model. When this definition is based on the floodable areas estimated from the surface topography, the 

maximum flood volumes can be correctly estimated (Fig. 2). This surrogate model is however unable to emulate the 

behavior of the surface flow, and thus cannot be used to estimate flood duration or to predict the evolution of the 

volumes in the surface (Tab. 1).  

Fig. 2. Surface flood volume in the region indicated in Fig. 1 for the May 2016 event.  

As illustrated in Fig. 2, the second surrogate model emulates the results of the original model accurately, in terms of 

flood volumes. It can provide accurate estimations not only of the maximum volume, but also of its evolution during 

the flood event (Tab. 1). Given that this surrogate model aggregates these volumes into pre-defined regions, it is not 

possible to identify the surcharged manholes. However, the use of pre-simulated maps based on the above flood 

volumes can provide a reasonable characterization of the flood depth field at the street level (Fig. 3).  

Fig. 3. Depth fields in the region indicated in Fig. 1 at the time of the peak flood volume for the May 2016 event.  

Tab. 1. Model capabilities. 

Conclusions 

The first surrogate model can identify overflow locations and give an estimation of the maximum flood volume. 

These data can then be used to derive a reasonably accurate maximum flood depth map based on the surface 

topography. The second surrogate model can emulate the evolution of the flood volumes accurately and can thus be 

used to predict the dynamics of the flood event. Both models require shorter calculation times (by more than 100 

times) than the original model. 
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TABLE 1 

  Surrogate model 1 Surrogate model 2 

Flood identification (yes/no) Yes Yes 

Flood magnitude (total flood volume) Yes Yes 

Spatial flood prediction Overflow location Yes No  

 Maximum flood extent Yes Yes 

 Maximum flood depth Yes Yes 

Flood dynamics Flood start time Yes Yes 

 Flood duration No Yes 

 Flood evolution No Yes 

Computational time (speed gain) 102 106 
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