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Figure 1  Evolution of two  active regions as seen by the magnetogram on board the SDO mission. The AR on the left grew quickly 
and produced major solar eruptions three days after it appeared. 
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SUMMARY  

 

Context 

Solar flares are the most powerful examples of solar activity. When intense and directed 

towards the Earth, they may affect the ionosphere and radio communications. Providing a 

reliable prediction with confidence interval for their onset time is thus crucial for Space 

Weather applications. In particular it is important to predict as early as possible whether an 

active region will develop into a flare productive active region.  About one out of ten active 

regions will produce one large flare or more (minority class), whereas nine out of ten will 

produce no or small flares (majority class), but a higher risk is associated to a wrong 

prediction of the minority class. 

 

Objectives 

The objective of PREDISOL is to characterize the evolution of active regions through 

quantities computed from magnetogram and continuum images, and to be able to link this 

evolution to the production of large solar flares. A first objective is to provide an optimal 

classification between flaring and non-flaring active regions that takes into account the 

specificities of the problem such as the imbalanced class distribution. The second objective 

is to consider a set of SOHO-MDI magnetogram and continuum images of active regions, to 

analyze their correlation structure, and to derive a classification rule to separate ‘simple’ 

from ‘complex’ active regions. 

 

Conclusions 

To reach the first objective, we developed a software to automate the extraction of active 

regions in SOHO-MDI magnetograms and the computation of related predictors of flaring 

activity. We used support vector machine to separate regions producing at least one X flare 

from regions producing weaker flares, and were able to classify correctly 3/4th of the active 

regions producing X-flares.  In the second part on the modelling of SOHO-MDI 

magnetogram and continuum  images, we found the active region local correlation 

structure to be linear and negligible at locations more than 90Mm apart, where 90Mm 

corresponds to the characteristic lengths of the largest penumbral filaments. We developed 

a data-driven clustering scheme to separate complex from simple active regions and found 

overlap between the resulting classification and the Mount Wilson classification. 

 

Keywords 

Solar flare, active region, sunspot, prediction, magnetic field, continuum image, supervised 

classification, unsupervised classification, local correlation analysis 
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SAMENVATTING  

 

Context 

Zonnevlammen zijn de meest krachtige voorbeelden van zonneactiviteit. Wanneer ze intens 

en naar de Aarde gericht zijn, kunnen ze de ionosfeer en radiocommunicatie beïnvloeden. 

Het verstrekken van een deugdelijke voorspelling met een betrouwbaarheidsinterval op de 

voorspelde aanvangstijd is dus cruciaal voor ruimteweertoepassingen. Met name is het van 

belang zo spoedig mogelijk te voorspellen of een actief gebied zonnevlammen zal 

produceren. Ongeveer één op de tien actieve gebieden zullen één of meerdere grote 

zonnevlammen produceren (de minderheidsklasse), terwijl negen van de tien geen of enkel 

kleine zonnevlammen (de meerderheidsklasse) zal produceren, maar aan een verkeerde 

voorspelling van de minderheidsklasse is wel een hoger risico verbonden. 

Doelstellingen 

Het doel van PREDISOL is om de ontwikkeling van actieve gebieden te karakteriseren door 

de evolutie te volgen van eigenschappen berekend uit magnetogram en continuüm 

waarnemingen, en om deze evolutie te koppelen aan de productie van grote zonnevlammen. 

Een eerste doelstelling is om een optimale indeling te voorzien tussen actieve gebieden die 

wel of niet grote zonnevlammen zullen produceren, rekening houdend met de specifieke 

kenmerken van het probleem zoals de onevenwichtige verdeling tussen de beide klassen. De 

tweede doelstelling is om een set van SOHO-MDI-magnetogrammen en continuümbeelden 

van actieve gebieden te beschouwen, hun correlatiestructuur te analyseren, en een 

classificatieregel  op te stellen om  'eenvoudige'  van 'complexe' actieve gebieden te scheiden. 

Besluiten 

Om de eerste doelstelling te bereiken, ontwikkelden we software om de identificatie van 

actieve gebieden in SOHO-MDI magnetogrammen te automatiseren, en daaruit 

voorspellingsparameters voor de berekening van zonnevlamactiviteit. We gebruikten 

“Support Vector Machine”-technieken om gebieden die  ten minste één X-klasse zonnevlam 

produceren, te scheiden van  gebieden die zwakkere zonnevlammen produceren. We waren 

in staat om ¾ van de actieve gebieden die X-zonnevlammen produceren correct te 

classificeren. In het tweede deel , wat betreft het modelleren van SOHO-MDI-

magnetogrammen en continuümbeelden, vonden we dat de lokale correlatiestructuur van 

actieve gebieden, lineair is en verwaarloosbaar op plaatsen meer dan 90Mm van elkaar. 

90Mm komt overeen met de karakteristieke lengte van de grootste penumbrale filamenten. 

We ontwikkelden een data-driven clusteringregel om complexe van eenvoudige actieve 

gebieden te scheiden en vonden een overlap tussen de daaruit voortvloeiende classificatie en 

de Mount Wilson-classificatie. 

 

Trefwoorden 

Zonnevlam, actief gebied, zonnevlek, voorspelling, magnetisch veld, het continuüm, 

gesuperviseerde classificatie, ongecontroleerde classificatie, lokale correlatieanalyse. 
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RESUME  

Contexte 

Les éruptions solaires de type ‘flare’ sont les manifestations les plus puissantes de l'activité 

solaire, pouvant aller jusqu’à perturber les communications radio et ionosphériques. En  

météorologie de l’espace, on doit prédire de manière fiable lorsqu’une telle éruption va se 

produire. Cela revient à prédire le plus tôt possible si une région active va se développer en 

produisant des éruptions de grandes ampleurs ou non. Environ une région active sur dix 

produira lors de son existence une ou plusieurs éruptions de grande ampleur (classe 

minoritaire), tandis que neuf régions sur dix ne produiront pas d’éruptions ou seulement des 

éruptions de faible amplitude (classe majoritaire). Cependant, un risque plus élevé est 

associé à une mauvaise prédiction de la classe minoritaire. 

Objectifs 

L'objectif de PREDISOL est de caractériser l'évolution des régions actives afin de pouvoir 

relier cette évolution à la production (ou non) d’éruptions solaires de large amplitude.  Cette 

caractérisation s’effectue via des quantités calculées à partir  de magnétogrammes et 

d’images en lumière blanche. Un premier objectif est de fournir une classification optimale 

entre les régions actives susceptibles de produire des éruptions de grande ampleur et les 

régions plus calmes, tout en tenant compte du déséquilibre  au niveau du nombre de régions 

actives appartenant à ces deux catégories. Le second objectif est de considérer un ensemble 

de régions actives observées par les magnétogrammes et images continues de SOHO-MDI, 

d'analyser sur la structure de leur corrélation locale, et de dériver une règle de classification 

pour séparer les régions actives 'simples' des régions 'complexes'. 

Conclusions 

Pour atteindre le premier objectif, nous avons développé un logiciel qui automatise 

l'extraction des régions actives dans les magnétogrammes de SOHO-MDI ainsi que le calcul 

des prédicteurs de l'activité solaire. Nous avons utilisé une machine à vecteur de support 

(SVM) pour séparer les régions produisant au moins une éruption de type X des régions 

produisant des éruptions plus faibles. Cette classification SVM a permis de classer 

correctement les trois quarts des régions actives produisant des X-flares. Dans la deuxième 

partie concernant la modélisation des images de magnéogramme et en lumière blanche de 

SOHO-MDI, nous avons établi que la corrélation locale dans les taches solaires était une 

fonction linéaire et qu'à des distances de 90Mm ou plus elle devenait négligeable, ce qui 

correspond aux longueurs caractéristiques des plus grands filaments pénumbraux. Nous 

avons développé un schéma de regroupement pour séparer les régions actives ‘complexes’ 

des régions ‘simples’ et avons mesuré la correspondance entre cette nouvelle classification et 

la classification de Mount Wilson. 

Mots-clés 

Eruption solaire de type ‘flare’, région active, tache solaire, prédiction, champ magnétique, 

image de continuum, classification supervisée, classification non supervisée, corrélation 

locale.  
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1. INTRODUCTION 

Solar flares are large and abrupt increases of the photon flux, observed in a wide spectral 

range of electromagnetic radiation. They result from the sudden release of stored 

magnetic energy, which may reach up to 1026 Joules in a matter of a few hours or even 

minutes. Most flares occur within so-called Active Regions (ARs), that is, regions with 

locally increased magnetic flux. Intense flares directed towards the Earth may affect the 

ionosphere and radio communication. 

 

The main purpose of PREDISOL is to find criteria for differentiating active regions that 

will produce a strong flare from those who will not. 

 

Towards this goal, a first objective is to characterize the evolution of ARs through 

quantities computed from magnetograms, and to be able to link this evolution to the 

production of large solar flares. Two work packages were dedicated to this task: WP2-

Preparation of dataset, and WP3-Supervised classification of active regions. In these, we used 

three day long photospheric measurements of ARs in their growth phase, in order to 

enable a prediction up to three days in advance. The work in WP2 parts in two: first we 

implemented a software framework and processing pipeline that allows building 

sequences of ARs and the computation of relevant properties, and in a second part we 

computed novel predictors using a fine-scale tracking method called the ‘magnetic 

balltracking’. 

 

The second objective of this project is to model jointly magnetogram and continuum 

images of ARs in order to retrieve as much information as possible. This was 

accomplished in WP4-Analysis of spatial-temporal process. We proceeded in two steps. First, 

we analysed the local and modal correlation structure. Second, we built a data-driven 

clustering scheme of AR using dictionary learning. 

 

2. METHODOLOGY AND RESULTS 

2.1 PREDISOL framework and supervised classification of active regions (WP2 and WP3) 

 

PREDISOL framework 

 

An innovative processing pipeline was developed to automate the extraction of regions of 

interest (also called "patches") in SOHO-MDI magnetograms (Figure 2). We paid special 

attention to the definition of active regions, the projection effect, and the selection of active 

regions in their growing or declining phase. 
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Figure 2   Representation of Debrecen sunspot group 9393 observed on 2001-03-28 at 12:48:30 together with the 

magnetic fragments detected. 

The processing pipeline: 

 Imports metadata of the SOHO-MDI magnetograms, as well as active region (NOAA 

Solar Region Summary and Debrecen sunspots) and flare catalogues (NOAA event 

catalogue), into an SQL database. This enables advanced querying of and linking the 

different kinds of data. One can for example query the database for a list of all 

magnetogram observations of active regions that produced at least one M-class or 

above flare. 

 Produces “patches” of magnetogram data for each active region. These are square or 

rectangular cutouts of the magnetogram data centered around a given active region.  

Prior to producing these patches, the extent of the active region must be calculated. 

For this we use the Debrecen sunspot catalogue 

(ftp://fenyi.solarobs.unideb.hu/pub/DPD/data/ ), as it provides the location and size 

of each observed sunspot in the active region and hence allows us to estimate 

accurately the size and shape of the active region. These patches are computed using 

a coordinate transform that corrects for spherical projection effects.  More precisely, 

we transform the images from helioprojective cartesian coordinates to heliographic 

coordinates. To obtain accurately reprojected images, we implemented the optimized 

image resampling method described in (DeForest, 2004). This method dynamically 

adjusts the amount of resampling that is needed based on the coordinate transform 

ftp://fenyi.solarobs.unideb.hu/pub/DPD/data/
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that is being applied and has the option of preserving flux, which is a highly 

desirable property for our application.  

 

 Detects and segments magnetic fragments, that is, regions of high magnetic flux, in 

the magnetic AR patches. We use a downhill method to achieve this. The properties 

of these fragments are used to compute predictors for flaring activity in Step 4.  

Figure 2  illustrates the fragment detection grouped by polarity on one active region. 

The center location of each spot reported in the Debrecen catalog was dilated by 64 

pixels to obtain the green contour. 

 Calculates timelines of predictors of flaring activity based on magnetic patches and 

fragments.  

The main predictors computed with this method are: 

 Area and intensity of magnetic flux in the ROI 

 R-value: total flux near the polarity inversion line (aka “neutral line”) 

 Length of the neutral line 

 Flux gradients across the neutral line 

 Absolute total flux. 

 

An increased absolute flux and area are indicators of a growing active region, and the 

developed tools allow hence selecting ARs in their growing phase.  

 

The PREDISOL framework also contains a web interface that allows data exploration and 

visualization. It provides an overview of all active regions, sorted by flaring activity, as well 

as detailed information on each active region such as flare counts, movies of magnetogram 

observations, and plots of predictor timelines. 

Innovation: The originality of the PREDISOL framework lies in the ability to follow an AR 

while crossing the solar disk, and in the use of past information up to three days in advance. 

This is in contrast to most existing methods that use only information at a given time to make 

prediction on the next 24h or 48h, see e.g. (Ahmed, et al., 2013) 

 

New set of predictors using magnetic ball-tracking (WP2) 

In order to enable more in-depth solar physics analyses we developed "stand-alone" modules 

that do not require running the whole PREDISOL framework as long as we have a series of 

magnetograms and coordinates of a given AR. 

The PREDISOL framework makes it possible to compute advanced physics-based predictors 

using a new tracking technique called Magnetic Balltracking recently developed in (Attié & 

Innes, 2015). It was originally designed for the tracking of magnetic fragments with low 

magnetic flux in the quiet photosphere.  It was adapted here for application on ARs so we 

can track the magnetic fragments of each AR almost at pixel-level accuracy, see Figure 3. This 
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provides improved (with respect to the ones above) and new local measurements in each AR 

such as:  

 Positions and velocity of each magnetic fragment,  

 Automatic detection of emerging ARs 

 Barycenter of all, or selected groups of magnetic fragments, enabling estimation of 

induced and mutual helicity 

 Lifetime and area of each magnetic fragment 

 Univocal identification of the magnetic fragments 

 Tracking of the neutral lines, resulting in:  

o Flux-weighted positions of the neutral line 

o Univocal identification of each neutral line in the AR  

o Accurate computation of neutral line  length 

 

Innovation: The unprecedented accuracy delivered by the magnetic balltracking method 

opens the door to the computation of physically relevant predictors such as helicity. Those 

have not been previously included in comprehensive flare forecasting studies because of the 

difficulty to compute them. Given the non-trivial projection error present in  line of sight 

magnetograms, it is important to choose the most precise method when computing any 

predictors. In this aspect, Magnetic Balltracking combined with the automation strategy 

behind the PREDISOL framework will considerably improve on the accuracy of predictors 

commonly used in the literature 
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Figure 3 Univocal identification of the tracked magnetic fragments within the early phase of development of an AR 

observed on February 6, 2010. The bottom left panel is the AR at the early stage of his detection, overlaid on scale over 

the same AR at a later phase, when the AR has evolved and grown. The blue diamond and green circles are the flux-

weighted positions of the fragments of each polarity (blue for positive, green for negative flux). The flux-weighted 

position of these two barycenters acts as the barycenter for the whole AR, while their relative displacements is used to 

quantify the average magnetic stress in the AR. 

Supervised classification of active regions using time-line of predictors (WP3) 

 

The PREDISOL framework allows us to compute time line of predictors for any active region 

observed by SOHO-MDI. In order to decide whether an AR was actively producing large 

flares, we used the total importance of flares, computed as a weighted sum of the number of 

flares that an AR has produced until a certain date. The weights depend on the strength of 

the flares: it is equal to 1 for C-flare, 10 for M-flare, and 100 for X-flare. We consider an AR as 

flare-productive when its total  importance of flare is larger than 100.  For each type of 

predictors, we computed a maximum of 45 values (3 days at MDI cadence) either just before 

the total importance of flares produced by this AR reached 100, or before the AR reached its 

maximum in absolute total flux. 

 

To find a first benchmark for predictor performance, we simplified the problem by: 

- Selecting a balanced dataset in order to have a same number of flare-

productive and  non-flare productive ARs. 

- Not taking into account correlation over time of a same predictor 

measurements  
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We use Linear Support Vector Machine (LinSVM), a fast classifier for which only one hyper-

parameter needs to be estimated. We used a protocol for performance assessment that 

shuffles the original dataset, splits it into a training set (for hyper-parameter estimation) and 

a test set (for comparison between predicted and observed value and computation of the 

confusion matrix), and repeats the operation n times. Estimation of hyperparameters was 

done using cross-validation by again divided the training set into several sub-sets. 

 

From the confusion matrix, we computed the following: 

• True Positive Rate (TPR), the ratio of true positives over total number of flaring ARs; 

the higher the ratio the better. 

• False Positive Rate (FPR), the ratio of false positives over total number of non-flaring 

ARs; the smaller the ratio the better. 

• True Skill Statistics (TSS), which measures the quality of the prediction. Its values 

range between [-1; 1], 1 being indicative of a perfect classifier, 0 being as good as guessing at 

random without any analysis. A negative value means the prediction outcome needs to be 

inversed to have a better guess. The TSS is not influenced by an imbalance in the number of 

observations in each class (flaring vs non flaring AR).  

 

With n=5 runs, we obtained the following results: TPR lying between 60 to 75%, FPR lying 

between 8 to 20%, TSS lying between 49 to 59%. Those first results are encouraging, and 

better performance are expected if we consider classifier scheme which takes into account the 

redundancy in the time series of predictors as well as imbalanced between number of 

observations in each class. 

 

Innovation:  We used a rigorous protocol to evaluate the performance of a supervised 

classifier scheme in the flare prediction problem. Often when choosing a training and a test 

set in this context, distinctive years of observations are used (e.g. 2010-2014 for training and 

2015 for testing). With such a practice the reshuffling is not entirely random, and the 

performance measure may include a time effect, reflecting the different phases of the solar 

cycle considered in the training and test sets. 

 

Supervised classification of solar features using prior information 

While the predictors considered here are computed using line of sight magnetogram, it may 

be useful in the future to add information coming from EUV imagers and featuring the Sun’s 

corona rather than its photosphere. Towards this goal, we need to have an adequate 

segmentation of AR in the EUV that matches as best as possible the magnetic AR.  As a first 

step, we presented in (De Visscher, et al., 2015) a supervised segmentation method based on 

a Bayesian classifier and the Maximum A Posteriori rule. The method allows integrating 

both manually segmented images as well as other type of information such as latitudinal 

distribution. It was applied on SDO-AIA images to segment them into ARs, coronal holes, 

and the remaining quiet sun part. 
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Added value brought by this project 

 

This project enabled a first collaboration between the Royal Observatory of Belgium and the 

Machine Learning Group, ICTEAM Institute from the Université catholique de Louvain with 

Prof Dupont from UCL being a subcontractor in this project to deal with issues related to 

machine learning.  As a first step, R. De Visscher and V. Delouille have taken in Fall 2013 the 

course ‘Machine Learning: classification and evaluation’ taught by Prof Dupont.  

Throughout the project Prof. Dupont gave advices and he co-authored one publication (De 

Visscher, et al., 2015). We expect this collaboration to continue during further development 

of the PREDISOL framework.  

 

2.2 Analysis of spatial-temporal process (WP4) 

Introduction 

 

The flare productivity of an active region is observed to be related to its spatial complexity.  

AR complexity is traditionally captured through a categorical classification of sunspots and 

magnetic AR, such as the Mount Wilson and McIntosh classification. The Mount Wilson 

classification has four main classes, two for describing ‘simple’ ARs, and two for more 

‘complex’ ARs. Such categorical classification may not use all the information present in the 

data, and hinder a systematic study of an AR time evolution.  

 

In WP4 we analysed the spatial complexity of ARs through a quantitative data-driven 

approach that use optimally the information present at small scales. Two modalities of ARs 

are jointly studied: SOHO/MDI continuum and SOHO/MDI magnetogram images. Such 

data-driven approach provided with a new way to look at ARs. We could confirm some 

commonly accepted fact but also discover new properties.  

 

We proceeded in three parts: 1/ we analysed the spatial and modal correlation, 2/ we devised 

an unsupervised classification scheme based on Minimum Spanning Tree (MST) for ARs via 

dimension-reduction techniques, 3/ we provided a performance measure of MST for the task 

of separating the AR into two classes (‘simple’ and ‘complex’), the reference label being 

given by the Mount Wilson classes.  

 

 Spatial and modal correlation analysis  

 

Our methodology to analyse the local correlation structure relies on a generalization of 

wavelet analysis, called dictionary analysis (Mallat & Zhang., 1993). More specifically, we use 

a small sized dictionary to find a sparse representation of patches. In this context, a patch is a 

m x m-pixel neighbourhood, and a patch analysis of a n-pixel image will process the m2 x n 

data matrix that collects the overlapping patches, see Figure 4. 
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Figure 4 An example of a 3 x 3 pixel neighbourhood ( ‘patch’) extracted  from the edge of a sunspot in a continuum image 

and its column representation. 

 In (Moon, et al., 2016b) we carried out a patch analysis of sunspot masks applied on 

continuum and magnetogram images. Those images were chosen so as to span the four main 

Mount Wilson classes, which distinguish ‘simple’ from more ‘complex’ AR. We proceeded as 

follows. First, we determined the number of parameters required to describe the spatial and 

modal dependencies. Such ‘intrinsic dimension’ was estimated using both linear and non-

linear methods. The aim was to determine whether a linear method was sufficient for 

describing the correlation structure or not. We found out similar results for linear and non-

linear intrinsic dimension estimates, suggesting that linear methods are appropriate. 

 

Second, we analyzed the partial correlation of AR and sunspots, that is, the pixel-to-pixel 

correlation when the influence of all other pixels has been removed. Our analysis suggests  

that the images are stationary and follow approximately a third-order nearest neighbour 

Markov structure in the pixels. Figure 5  displays the partial correlation pattern within 

sunspots, indicating a stronger correlation  in  continuum than  magnetogram images, and 

also in the vertical rather than horizontal direction.  Our analysis suggests that it is not 

necessary to take patches larger than 5x5 in order to capture accurately the local spatial 

dependencies.  A 5 x 5 patch on SOHO/MDI represents  a square of about 90Mm x 90Mm on 

the Sun and is related to the size of the characteristic length of the largest penumbral 

filaments (Tiwari, et al., 2013) suggesting that on average the local spatial dependencies 

within sunspots are minimal beyond this scale. 

 

 
Figure 5 Partial correlation patches from sunspots. The partial correlation is stronger within the continuum. 
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Finally, we determined the degree of mutual correlation between the two modalities using 

canonical correlation analysis. Our results published in Moon et al (2016a) suggest that the 

two modalities are correlated.  The correlation is however not perfect and so there may be an 

advantage to including both modalities in the classification of sunspots and flare prediction. 

 

Clustering of active regions via dimension reduction techniques 

 

The findings published in (Moon, et al., 2016a)  can be summarized as follows.  

 Linear methods are appropriate to analyse local correlation in AR.  

 A 3x3 patch-analysis will capture most of the local correlation.  

 Both modalities (continuum and magnetogram) should be used 

 Via intrinsic dimension estimation we can choose a reasonable dictionary size, 

 

This knowledge paved the way for building a new classification scheme of AR based on 

image-patch analysis, see (Moon, et al., 2016b). The first building block is to apply a 

dimension reduction operation to the AR image patch matrix:  we considered the Singular 

Value Decomposition (SVD), and the Non-negative matrix factorization (NMF).  The 

dimension reduction proceeds via a matrix factorization, and replace the image patch 

matrix by the product of a matrix of dictionary elements and a matrix of coefficients. 

Choosing a small number of dictionary elements will result in a dimension reduction. 

Figure 6  shows dictionary elements obtained from an SVD factorization.  

 

This factorization can be looked at in two ways: we may focus on dissimilarities in the 

dictionary elements or in the matrix coefficients. In the first case, the matrix of dictionary 

elements is computed for  each AR image, and  a pairwise difference between  these 

dictionaries is calculated using a Grassmannian projection metric (Stewart, 1973). In the 

second case, a single matrix of dictionary elements is computed from the combined 

collection of image patches from all AR image pairs. The matrix coefficients 

corresponding to a single AR  are treated as samples from a distribution.  The pairwise 

distances between these collections  of  coefficient  samples  is  calculated using  the 

Hellinger distance (Csiszar, 1967). In both cases, we input the dissimilarity measure into 

an unsupervised classification (also called clustering) scheme based on MST. 

 

We measured the correspondence between the clusters obtained by MST and the Mount 

Wilson classification using the adjusted rank index (ARI). This ARI value is positive, 

indicating some overlap between the two completely different approaches. We also 

demonstrated that a larger ARI can be obtained by including specifically patches along 

the polarity inversion line.  
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Figure 6 Learned dictionary elements using SVD. The patches consist of uniform patches and gradients in varied 

directions. Dictionary elements are constrained to be orthonormal, resulting here in magnetogram patches  being close 

to zero when the continuum components are nonzero and vice-versa. 

 

 

Bounds on performance of classification scheme  

 

In (Moon, et al., 2015), we quantified the ability of the Grassmannian projection metric 

and Hellinger distance based algorithms to distinghuish  simple ARs (i.e. ARs 

corresponding to the α and β Mount Wislon groups) from complex ARs (corresponding to 

the  βϒ and βϒδ groups). 

 

Considering the supervised problem of classifying a feature vector (here represented by 

the image patches) into one of two classes, it is possible to define the minimum 

classification error that can be achieved by any classifiers on the feature space. This 

quantity is called the Bayes error rate (BER). Unfortunately, computing the BER is difficult 

as it requires perfect knowledge of the probability distribution of the feature vectors, 

which is often unavailable. It is possible however to derive lower and upper bounds on 

the BER, using for example the Chernoff bound (Chernoff, 1952) or bounds using f-

divergence functionals (Berisha, et al., 2016).  In (Moon, et al., 2015) we used the 

Grassmannian projection metric previously defined and plug it into a k-nearest neighbour 

estimator to obtain a supervised classification algorithm. More precisely, we used an 

optimally weighted ensemble estimator using the k-nearest neighbour as our base 

estimator. We estimated upper and lower bounds on the BER using f-divergence 

functions derived in (Berisha, et al., 2016).   

 

Our results indicate that if the goal is to accurately classify ARs into complex or simple 

ARs based on the Mount Wilson definition, then additional or different features are 

required. The image patch factorization may still be relevant for other learning tasks such 

as distinguishing between different local magnetic field structures. 

 

Added value brought by this project 

Through this collaboration with U. Michigan, the team at ROB learned about advanced 

technique for local correlation analysis, classification, and performance estimation of a 
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classifier scheme. Such advanced techniques had never been used on images of the Sun and 

brought a new light on these data. Novel ideas and techniques acquired from this 

collaboration can be extended to other types of images.  On the other hand, the team at U. 

Michigan acquired new experience with the analysis of solar data, learning about their 

peculiarities and adapting the classification techniques in consequence.  

 

3. DISSEMINATION AND VALORISATION 

 

Publications: The scientific results were published in five peer review research papers: 

three in the Topical Issue on ‘Statistical Challenges in Solar Information Processing’ from 

the Journal of Space Weather and Space Climate and two as IEEE conference proceedings (see 

Section 5  on publications). The decision to have a topical issue on ‘Statistical Challenges 

in Solar Information Processing’ was taken at the end of the 7th Solar Information 

Processing workshop, for which V. Delouille was chair of the Scientific Organizing 

Committee.   

 

Website:  http://sdoatsidc.oma.be/web/sdoatsidc/SoftwarePREDISOL  

 

Software: The resampling scheme proposed in (DeForest, 2004) and used in the 

PREDISOL framework was initially written in PDL. We have re-implemented this scheme 

using the Cython extension for Python for high performance. It is being considered for 

inclusion into AstroPy, a Python library for astrophysics that becomes more and more 

popular in the community. 

 

Presentations at international conferences: The PREDISOL team gave eight presentations 

at international conferences: R. De Visscher presented a poster at the 2013 and 2014 

editions of the European Space Weather week (ESWW) and two posters at the 7th Solar 

Information Processing workshop (7th SIPWork) in 2014. K. Moon presented a poster at 

two IEEE International Conference (one in 2014 and on in 2015) and gave a talk at the 7
th

 

SIPWork meeting in 2014. Finally, R. Attié gave a talk at the 2016 edition of the ESWW.  

 

The full list of presentations (chronological order) is as follows: 

1) "Predicting Flaring Activity through Supervised Classification on Predictor 

Variables" De Visscher, R.; Delouille, V.; Dupont, P. ESWW 10, Nov 18-23, 2013,  

Belgium (poster). 

 

2) "Image patch analysis and clustering of sunspots: a dimensionality reduction 

approach " Moon, K.; Li, J.; Delouille, V.; Watson, F.; Hero III, A.O., 7th SIPWork, 

Aug 18-21, 2014, Belgium (oral) 

 

http://sdoatsidc.oma.be/web/sdoatsidc/SoftwarePREDISOL
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3) "Supervised Classification of Solar Features Using Prior Information" R. De 

Visscher, V. Delouille, 7th SIPWork, Aug 18–21, 2014, Belgium (poster) 

 

4) "Predicting Flaring Activity through Supervised Classification on Predictor 

Variables" R. De Visscher, V. Delouille, 7th SIPWork, Aug 18–21, 2014,  Belgium 

(poster) 

 

5) "Image patch analysis and clustering of sunspots: a dimensionality reduction 

approach" Moon, K.; Li, J.; Delouille, V.; Watson, F.; Hero III, A.O., IEEE 

International Conference on Image Processing, 28-30 October 2014, France (poster)  

 

6) "Predicting Flaring Activity through Supervised Classification on Predictor 

Variables"  R. De Visscher, V. Delouille, ESWW, 17-21 November, 2014, Belgium 

(poster) 

 

7) "Meta learning of bounds on the Bayes classifier error" Moon, K.; Delouille, V.; 

Hero III, A.O. Proceeding of IEEE Signal Processing and SP Education workshop, 

Aug 9-12 2015, USA (poster). 

 

8) "Characterization of active regions' time evolution in view of solar flare 

prediction" R. Attie, R. De Visscher, V. Delouille, ESWW 13, 14-18 November 2016, 

Belgium (talk). 

 

4. PERSPECTIVES 

 

V. Delouille and R. Attié, with advice from P. Dupont, will further develop the project 

along two axes: V. Delouille will work on tailoring the machine learning algorithms to the 

peculiarities of the problem  whereas R. Attié will implement new predictors within the 

PREDISOL framework.  

 

V. Delouille will for example account for imbalance in the number of flaring versus non-

flaring active regions, by considering a modified version of the SVM algorithm, where the 

regularization of the loss function  contains two penalty terms, that is, one for each class 

(flaring and non-flaring).  Performance metrics may also be improved if we account for 

the correlation in time of measurements of a same predictor by applying a functional 

analysis that extracts the main characteristics of the predictor evolution before feeding it 

into the classifier scheme. 

 

Magnetic ball tracking was developed in MATLAB and C++. The building of an interface 

in Python is currently under development by R. Attié. This will provide the possibility to 

add new predictors with interesting properties related to the physics of flares, which 
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should further improve the performance of flare forecasting using the PREDISOL 

framework.   

 

5. PUBLICATIONS (PEER REVIEW) 

 

1. K. Moon, J. Li, V. Delouille, F. Watson, A.O. Hero III 

Image patch analysis and clustering of sunspots: a dimensionality reduction approach, 

Proceedings of  IEEE International Conference on Image Processing, Paris, France, 2014. 

 

2. De Visscher R, Delouille V, Dupont P, and Deledalle C-A. Supervised classification of solar 

features using prior information. Journal of Space Weather and Space Climate,5, A34, 2015, 

DOI: 10.1051/swsc/2015033. 

 

3. K. Moon, V. Delouille, A.O. Hero III. Meta learning of bounds on the Bayes classifier error,  

Proceeding of IEEE Signal Processing and SP Education workshop, Snowbird UT, 2015. 

 

4. K. Moon, J. Li, V. Delouille, R. De Visscher, F. Watson, A.O. Hero III. Image patch analysis 

of sunspots and active regions. I. Intrinsic dimension and correlation analysis. Journal of 

Space Weather and Space Climate, 6, A2, 2016, DOI: 10.1051/swsc/2015044 

 

5. K. Moon, V. Delouille, J. Li, R. De Visscher, F. Watson, A.O. Hero III. Image patch analysis 

of sunspots and active regions. II. Clustering via dictionary learning  Journal of Space 

Weather and Space Climate, 6, A3, 2016, DOI: 10.1051/swsc/2015043 
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