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Report part 2.3

Development of a consistent fuzzy finite element method

for static analysis using interval arithmetic

David Moens
K.U.Leuven, Dept. Mechanical Engineering, PMA
Celestijnenlaan 300B, B-3001 Heverlee, Belgium

david.moens@mech.kuleuven.ac.be

1 Introduction

This annex of the project report describes the study on the applicability of interval
arithmetic procedures for the implementation of the fuzzy finite element method.
As described in annex 2.1 of this report, the core of such a methodology is an
efficient implementation of the interval procedure that has to be performed on all
considered sublevels in the membership range. Therefore, this annex focusses on the
development of an IFE methodology for the calculation of intervals on the output
of a typical structural FE analysis.

In order to apply the interval arithmetic procedure, the starting point, i.e., the
deterministic finite element procedure, has to be clearly defined. Therefore, this
report starts in section 2 with a short general description of the numerical scheme
behind a typical structural FE solution procedure. Section 3 then gives a concep-
tual description of the required input and output of the IFE analysis. Based on the
deterministic scheme, the corresponding interval arithmetic approach is studied by
translating each step in the deterministic algorithm to its interval algebraic equiv-
alent. This interval translation requires a methodology for the calculation of the
range of the outcome of numerical algorithms, which is described in section 4. The
effective interval translation of the general FE solution scheme follows in section 5.
The conceptual study focusses principally on the system matrix assembly phase.
Because of the high degree of similarity between the assembly phase of the static
and dynamic analysis, the study that has been performed has been generalized im-
mediately to structural dynamic finite element analysis. Section 6 finally describes a
hybrid methodology, which was proven to be of high practical value in the dynamic
response analysis (see annex 2.4 of this project).

2 Deterministic FE algorithm

This section discusses briefly the main aspects of the numerical algorithm for the
deterministic dynamic FE analysis based on system matrices. This algorithm is
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model definition

element matrices →

system matrices →

analysis →

. . .

. . .

[Ke1 ]
[Me1 ]
[Ce1]
{f e1}

[Ke2 ]
[Me2 ]
[Ce2]
{f e2}

[Ken ]
[Men ]
[Cen]
{f en}

[K] , [M ] , [C] , {f}

{y} = f ([K] , [M ] , [C] , {f})

Figure 1: Elementary overview of the algorithm for deterministic dynamic FE analy-
sis

the basis for the definition of the allowed input and required output of the IFE
analysis and provides the methodology for the interval matrices assembly described
in section 5. Figure 1 gives an elementary description of the four basic steps of
the algorithm: the model definition, the element matrix computation, the system
matrix assembly and the analysis performed on the system matrices.

The definition of a deterministic FE model consists of the definition and dis-
cretisation of the geometry, the definition of the material properties, constraints
and loads and the specification of the result request. Each element’s contribution
to the global system matrices follows from the model definition using the general
equations [1]:

[Ke] =
∫

V e

[B]T [D] [B] dV e (1)

[Me] =
∫

V e

[N ]T ρ [N ] dV e (2)

[Ce] =
∫

V e

[N ]T µ [N ] dV e (3)

with [B] = ∂[N ], ∂ a linear operator, [N ] the element shape functions, [D] the
material stiffness matrix, V e the volume of an element, ρ the material mass density
and µ the material damping factor. For simple elements, analytical expressions of the
element matrices generally are available. For more complex elements, a numerical
integration scheme gives a good approximation of the element matrices.

When the analysis aims at the behaviour of the model under external loading
conditions, the external force vector equals:

{f e} =
∫

V e

[N ]T {b} dV e +
∫

Ae

[N ]T {t} dAe (4)

with {b} and {t} representing the external volume and surface forces.
The assembly of the deterministic dynamic system matrices from each element’s
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stiffness, mass and damping matrices [Kei ], [Mei ] and [Cei ] yields:

[K] =
⋃

i=1...n

[Kei] (5)

[M ] =
⋃

i=1...n

[Mei ] (6)

[C] =
⋃

i=1...n

[Cei] (7)

with
⋃

representing the assembly over the n elements ei of the FE model. Similarly,
the assembly of the load vector yields:

{f} =
⋃

i=1...n

{f ei} (8)

The final step consists of the dynamic analysis using the system matrices and
load vector. The most frequent types of dynamic analyses are based on the dynamic
equilibrium equation:

[M ] {ẍ} + [C] {ẋ} + [K] {x} = {f} (9)

The most popular numerical solution procedures are the following:

• time domain analysis: the analysis aims at the transient time analysis of
the structure under well defined loading conditions. This involves the solution
of equation (9) in the time domain.

• frequency domain analysis: the analysis aims at the description of the
structure’s dynamic behaviour through frequency response functions. For this
purpose, the equilibrium expressed by equation (9) is transformed to its fre-
quency domain counterpart:(

[K] +  ω [C] − ω2 [M ]
) {X} = {F} (10)

with ω varying over the considered frequency domain and {F} and {X} repre-
senting the amplitude of the harmonic excitation force and resulting displace-
ment.

• modal superposition: the analysis first calculates the eigenfrequencies and
eigenmodes of the structure. This involves the solution of the general eigen-
value equation:

[K] {φ} = λ [M ] {φ} (11)

with λ the eigenvalue and {φ} the corresponding eigenvector. Based on this
information, the frequency response function can be assembled using the modal
superposition principle:

FRFij =
n∑

i=1

φij φik

{φi}T [K] {φi} − ω2 {φi}T [M ] {φi}
(12)
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In the remainder of this work, damping is considered to be proportional. This
means that the damping matrix follows directly from the global stiffness and mass
matrix using:

[C] = αK [K] + αM [M ] (13)

with αK and αM proportional constants to be defined for each analysis. This is one of
the most common models of damping (also referred to as Rayleigh damping). The
assumption of proportional damping is purely made for mathematical convenience
as it simplifies the solution process. Although the assumption has no real physical
basis, in practice the material damping coefficients are rarely known in sufficient
detail to justify a more complicated damping model. Furthermore, the proportional
damping model has proved to be reliable for structures with damping below 10% of
critical [2].

3 Overview of the IFE procedure

3.1 IFEM input: interval model description

Only the physical properties of the model quantified by the analyst are allowed to
be subject to uncertainty or variability. All of these adopt an interval model. For
uncertainties, the analyst defines the feasible domain of the uncertain property for
the analysis. He is completely free to choose the interval which he judges interest-
ing or necessary to analyse. Referring to the deterministic dynamic FE procedure
described in section 2 the following properties are allowed to be non-deterministic:

• model geometry: prescribed tolerances on the design dimensions, thickness of
plates, area of beams, ...

• material parameters: material Young’s modulus, Poisson constant, damping
properties, material density, ...

• constraints: refers to the unknown stiffness of the connection of the constrained
DOFs to the fixed environment

In the framework of dynamic design validation and optimisation, this project aims at
the eigenfrequency analysis and frequency response function calculation. The eigen-
frequency analysis does not take external loads into consideration. The frequency
response analysis considers a known deterministic harmonic excitation force or mo-
ment in a single node. Therefore, this study further does not take non-deterministic
loading conditions into account.

3.2 IFEM output: required result

Requirements for the dynamic properties of a mechanical structure are commonly
expressed in terms of eigenfrequencies. In order to study reliability, the range of the
critical eigenfrequencies is pursued through an interval eigenvalue analysis.

However, rather than eigenfrequencies, the specification of maximal allowable
responses at frequencies that are critical in the operating conditions of the structure
would be a more realistic concept for dynamic design requirements. The IFE analysis
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of frequency response functions enables the use of such design requirements. For this
analysis, the required output is an envelope function for the response, defining an
upper and lower bound on the response in the considered frequency range.

Since generally design requirements are expressed in terms of the lower, easily
identifiable modes, this work focusses on this range of the frequency domain. In
the middle and higher frequency range, the high modal density generally renders a
meaningful deterministic FE analysis impossible. Likewise, the effect of uncertainties
on the dynamic behaviour in this frequency region is more complicated. It is the
aim of this research to define a working methodology for IFE analysis in the lower
frequency range. An extension to the higher frequency domain is left open for future
research.

From the viewpoint of non-probabilistic design validation, the worst case scenario
is pursued. Therefore, conservative results are preferable above underestimations.
This is extremely important because of the crisp definition of reliability based on
non-probabilistic analysis. An underestimated upper bound on a design validation
property could wrongly declare the analysed input range allowable with respect to
the design specifications. On the other hand, precaution is necessary in order to
prevent exorbitant conservatism.

3.3 IFE analysis procedures

As described in annex 2.1 of this project, there are two basic strategies for the
implementation of the IFE analysis: the global optimisation strategy and the interval
arithmetic approach. The applicability of either of these for the IFE analysis strongly
depends on the intended analysis type.

When design requirements are stated in the form of eigenfrequency regions that
should be avoided, the eigenfrequency analysis focusses on a limited number of
modes. The eigenvalue and eigenvector derivatives with respect to an input parame-
ter can be expressed using the corresponding analytical system matrices derivatives,
which are generally available. This makes the optimisation approach a valuable pro-
cedure for IFE eigenfrequency analysis. On the other hand, the interval arithmetic
approach based on interval system matrices requires the calculation of the set:

〈λ〉 =
{

λ |
(
[K] ∈ [K]

)(
[M ] ∈ [M]

)(
[K] {φ} = λ [M ] {φ}

)}
(14)

There are general analytical solution schemes available for the solution of this interval
problem.

The interval frequency response analysis pursues a continuous description of the
response interval over the considered frequency domain. This requires the opti-
misation to be performed successively on a large number of discrete frequencies.
Furthermore, the analytical derivative of a response to an input parameter is not
generally available. This renders the optimisation approach very unattractive for
the IFE FRF analysis. The interval arithmetic approach requires the calculation of
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the following set:

〈{X}〉 =
{
{X} |

(
[K] ∈ [K]

)(
[M ] ∈ [M]

)
. . .

((
[K] +  ω [C] − ω2 [M ]

) {X} = {F}
)}

(15)

This set needs to be calculated for a large number of discrete frequencies in order
to obtain an envelope function. The basic numerical problem at each frequency
is equivalent to that of the equilibrium IFE analysis. Interval arithmetic solution
procedures for this problem were reviewed in annex 2.1 of this project.

4 The set algorithm translation concept

The IFE analysis based on interval arithmetic requires a tool to calculate the range of
the result of the FE algorithm based on interval input properties. For this purpose,
the algorithm translation methodology is developed. This forms the basis of the
interval arithmetic IFE procedure. This section starts from the definition of the
interval and set functions to facilitate the mathematical description of the developed
methods.

4.1 Interval and set functions

The range of a general function f (x1, . . . xn) with reference to the set vector
〈{x}〉

is denoted by:
〈f (x1, . . . xn)〉〈{x}〉 (16)

The range of the function is defined as the set of all results of the function considering
all possible combinations of the function’s argument inside the defined vector

〈{x}〉:
〈f (x1, . . . xn)〉〈{x}〉 =

{
f (x1, . . . xn) | (xi ∈ 〈xi〉, i = 1 . . . n)

}
(17)

This definition of the range of a function considers the argument sets mutually
independent. This is of great importance when considering the conservatism of the
resulting range of the function for specific applications, as discussed in section 4.4.
In order to enhance the readability the notation of equation (16) is simplified using
the set function f̆ :

f̆
(〈x1〉, . . . 〈xn〉

)
= 〈f (x1, . . . xn)〉〈{x}〉 (18)

Both the arguments and the result of a set function are sets. Equation (18) in
conjunction with equation (17) defines the required result of f̆ . The advantage of
this notation is that the set function f̆ defines an action directly on the set arguments
of the function. Therefore, it can be analytically defined, for instance as an action
on the bounds of the argument sets. However, an analytical expression of the result
of a set function exists only for very simple functions and depends strongly on
the complexity of the argument sets. This means that an implementation of a set
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inputs −−−−→ {x} = {x1, x2, . . . xn}
1st step −−−−→ {z1} = f1

(
{x}

)
2nd step −−−−→ {z2} = f2

(
{z1}

)
. . . −−−−→ . . .

mth step −−−−→ {y} = {zm} = fm

(
{zm−1}

)

Figure 2: General algebraic description of an algorithm

function based on a specific argument set type is not necessarily extendable to all
other types of argument sets.

In the particular case where all non-deterministic argument sets of the considered
function are interval objects, the set function is referred to as the interval function.
Its definition is:

f̆ (x1,x2, . . . xn) = 〈f (x1, x2, . . . xn)〉{x} (19)

Compared to a general set function, an interval function is generally easier to imple-
ment using the lower and upper bounds of the argument intervals. This is explicitly
the case for the interval functions for the four elementary operations: addition,
subtraction, multiplication and division:

a + b =
[
a + b, a + b

]
(20)

a − b =
[
a − b, a − b

]
(21)

a × b = [min(a × b, a × b, a × b, a × b) . . .

max(a × b, a × b, a × b, a × b)] (22)

a/b = a ×
[

1
b
, 1

b

]
, if 0 /∈ b (23)

A conservative approximation of the range of a function f ({x}) referring to the
set object

〈{x}〉 is denoted by 〈〈f ({x})〉〉〈{x}〉 similar to the conservative set and

interval object approximations.

4.2 Conceptual overview of the set algorithm translation

Any numerical analysis is based on some deterministic algorithm applied on a num-
ber of inputs. The output of the algorithm is the required analysis result. In
order for the algorithm to be of any practical use, it should be possible to imple-
ment it as a sequence of analytical functions. Figure 2 describes a general algo-
rithm with the conventions applied in this work. There are n inputs denoted by
a vector {x} = {x1, x2, . . . xn}. The total algorithm is represented by a function
f (x1, x2, . . . xn). The final requested result is denoted in the vector {y}. The total
algorithm is split into substeps. Each step has its own subfunction fi which cal-
culates the required variables for the next step of the algorithm {zi} based on the
result of the previous step’s results {zi−1}. The vector {zi} is referred to as the ith

step’s intermediate variables. Applying all subfunction in right order on the inputs
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basic parameters −−−−→ {x} = {x1,x2, . . . xn}
1st step −−−−→ 〈{z1}

〉
= f̆1

(
{x}

)
2nd step −−−−→ 〈{z2}

〉
= f̆2

(〈{z1}
〉)

. . . −−−−→ . . .

mth step −−−−→ 〈{y}〉 = f̆m

(〈{zm−1}
〉)

Figure 3: General algebraic description of a set algorithm resulting from the set
algorithm translation concept

yields the total algorithm expressed as a series of nested functions:

f (x1, x2, . . . xn) = fm (fm−1 (. . . f2 (f1 (x1, x2, . . . xn)) . . .)) (24)

The goal of the set algorithm translation concept is to obtain a general applicable
computation methodology to determine the range of the result of a deterministic
algorithm when a number of inputs are defined as interval scalars. Consider n
uncertain independent inputs referred to as the basic parameters, the uncertainty of
which is described by an interval. The set algorithm translation concept translates
all subfunctions of the deterministic algorithm to the domain of set arithmetic. This
means that for every subfunction in the deterministic algorithm, the corresponding
set subfunction is implemented. The arguments of this set subfunction are sets
resulting from the previous set subfunctions. Initially, these are the intervals defined
for the basic parameters. The result of a set subfunction is again a set vector
containing the sets used as argument for the next set subfunction. By applying this
methodology consecutively on all algorithm subfunctions, the range of the final result
of the algorithm is calculated. Figure 3 describes the set algorithm corresponding
to the deterministic algorithm described in figure 2.

4.3 The inclusion property as source of conservatism

The methodology described in the previous section generally does not result in the
exact description of the range of the algorithm. A simple example illustrates this.
Consider the algorithm with two inputs x1 and x2 defined by f2 (f11 (x1) , f12 (x1, x2)).
The uncertainty on the inputs is defined by the basic parameters x1 and x2. Figure 4
describes the deterministic and corresponding set algorithm.

From the definition in equation (18) it is known that a set function considers all
its argument sets independently. In this case, this does not comply with reality since
the argument sets 〈z11〉 and 〈z12〉 are coupled through the common basic parameter
x1. Consequently, the set resulting from application of f̆2 on the sets 〈z11〉 and 〈z12〉
is possibly an overestimation of the exact range of the total algorithm. The inclusion
property of the range of nested set functions generalises this observation:〈

f
(
g1 ({x}) , . . . gm ({x})

)〉〈{x}〉 ⊆ f̆
(
ğ1

(〈{x}〉), . . . ğm

(〈{x}〉)) (25)

The inclusion property can be explained intuitively. The set on the left-hand side
is assembled from all results of the nested function for which the arguments {x} are
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deterministic algorithm set algorithm

x1 x2 x1 x2

z11 = f11 (x1)
z12 = f12 (x1, x2)

〈z11〉 = f̆11 (x1)
〈z12〉 = f̆12 (x1,x2)

f2 (z11, z12) f̆2 (〈z11〉, 〈z12〉)

Figure 4: Comparison of a simple deterministic algorithm with the corresponding
set translated algorithm

basic parameters −−−−→ {x} = {x1,x2, . . . xn}

1st step −−−−→
〈〈
{z1}

〉〉
{x} = f̆1

(
{x}

)

2nd step −−−−→
〈〈
{z2}

〉〉
{x} = f̆2

(〈〈
{z1}

〉〉
{x}

)
. . . −−−−→ . . .

mth step −−−−→
〈〈
{y}

〉〉
{x} = f̆m

(〈〈
{zm−1}

〉〉
{x}

)

Figure 5: Conservative approximations inside the general algebraic description of a
set algorithm

inside
〈{x}〉. These arguments are equal for all inner functions gi. The right-hand

expression of this inequality considers all argument sets of the outer set function f̆
independently. This is equivalent to allowing different values for the arguments for
each inner function gi. Consequently, the right-hand expression adds to the exact
range the result of combinations of the inner set values which are artificial.

Referring to the algorithm translation concept, the inclusion property states that
whenever a set subfunction is applied on argument sets which are related through
common basic parameters, possibly an overestimation of the set subfunction’s range
is made by considering the argument sets as independent. By applying the inclusion
property on every subfunction of a general algorithm represented as in equation (24),
we can state that the final set resulting from a set algorithm contains the exact range
of the corresponding deterministic algorithm, but we have no information on the ac-
curacy of the predicted bounds. Only in the specific case where the arguments of each
and every subfunction are not correlated through a common basic parameter does
the set algorithm translation certainly yield the exact range of the corresponding
deterministic algorithm. Figure 5 describes the set algorithm using the appropriate
notation for conservative approximations.
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4.4 Predicting the degree of conservatism of a set algorithm

At this point, an important question arises concerning the size of the overestimation
incorporated in the result of the set algorithm. This overestimation should not
be too large in order for the result to be of any practical use. Furthermore, the
degree of conservatism could be an important benchmark to compare different set
algorithm implementations based on different deterministic algorithms of the same
numerical analysis. When different set algorithms are available, the one with the
least conservative result is preferable, although other computational aspects could
play an important role in the selection of the algorithm. It is, however, very difficult
to predict the degree of conservatism of a set algorithm. A simple example illustrates
this. Consider the function f (x) = x with x ranging in x = [0, 1], which is obviously
also the exact range of the function. Now consider an algorithm f (x) = f11 (x) +
f12 (x) with:

f11 (x) =
2x
3

f12 (x) =
x

3

The set algorithm on f11 and f12 yields:

f̆11 (x) =
[
0, 2

3

]
f̆12 (x) =

[
0, 1

3

]
and the final result yields

([
0, 2

3

]
+

[
0, 1

3

])
= [0, 1], which is the exact solution. Now

consider an alternative algorithm f (x) = f11 (x) + f12 (x) which yields the same
deterministic result:

f11 (x) =
3x
2

f12 (x) = −x

2

The set algorithm on f11 and f12 yields:

f̆11 (x) =
[
0, 3

2

]
f̆12 (x) =

[−1
2 , 0

]
and the final result yields

([
0, 3

2

]
+

[−1
2 , 0

])
=

[−1
2 , 3

2

]
. This alternative set algo-

rithm’s solution is conservative.
While both algorithm implementations above are extremely simple and only

differ in the definition of the inner functions, there is an important difference in
their approximation of the exact result range. It seems that the choice of the second
algorithm is unfortunate, since the unlinking of f11 and f12 in this case has an
important influence on the outer function, while in the first algorithm it had no
influence whatsoever. This is due to the unlinking of the single argument x from
itself over the two subfunctions. This is actually a special case of the inclusion
property. Generally, when the range of a function with multiple occurrences of
one set argument is calculated, the argument is unlinked from itself, resulting in
an overestimation. Simplifying the function to an alternative form which cancels
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multiple occurrences of set arguments generally solves this problem. However, this
is only possible for very basic functions.

This simple example shows that predicting a set algorithm’s degree of conser-
vatism requires an extensive analytical study of each set subfunction regarding the
effect on the unlinked set arguments, where properties as monotonicity, linearity
and convexity play an important role. In the case of the numerical procedure of the
FE analysis, this would be an extremely cumbersome and problem dependent task.
While this analytical study might be feasible for some academic examples, it is defi-
nitely not suited for implementation in an efficient IFEM code. The most important
conclusion here is that it is difficult to make general statements about the degree of
conservatism of set algorithms based only on their analytical description. It is, how-
ever, important to detect the sources of conservatism in a set algorithm. This only
results in a qualitative statement regarding the conservatism, but it might already
be a clear indication regarding the applicability of the developed set algorithm.

Still, it is possible to study the degree of conservatism for a set algorithm by
comparing the set algorithm range with other approximations. A Monte Carlo sim-
ulation could be used for this purpose. Introducing uniform probability distributions
over the intervals describing the basic parameters results in a probability distribu-
tion on the result of the analysis. However, while the Monte Carlo analysis aims at a
good description of the first statistical moments and, therefore, mainly concentrates
on the centre of the resulting range, the interval analysis is aimed at the bounds of
the range. This implies that a study of the range of an algorithm through Monte
Carlo simulation can only be meaningful if enough samples are taken. Furthermore,
if the result of the deterministic algorithm is strong non-linearly coupled to the basic
parameters, the uniform distribution could yield misleading results. In this case, it
is mandatory to repeat the Monte Carlo analysis for a variety of probability distri-
butions on the basic parameters in order to incorporate as much of the result range
as possible. The fact remains, however, that one can never predict how much of the
exact range really is covered by a Monte Carlo analysis.

5 Dynamic IFEM based on interval system matrices

The IFE analysis based on interval system matrices results from the application of
the set algorithm translation on the deterministic FE procedure for dynamic analysis
as described in section 2. This section describes the effect of the set algorithm
translation on the first three principal steps of the FE numerical procedure: the
model definition, the element matrix calculation and the system matrix assembly
phase. It only briefly discusses the analysis phase. It focusses in particular on all
possible sources of conservatism during these steps. The following chapters treat
the analysis phase in detail for specific applications.

5.1 IFE model definition

The translation of the modelling phase to interval analysis requires the identification
and quantification of the properties of the deterministic algorithm which are subject
to uncertainty. These basic parameters should be deduced to a set of mutually
independent closed intervals. The vector {x} denotes the vector of basic parameters
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which represent the uncertainties in the model. The interval vector {x} expresses the
interval uncertainty defined for each basic parameter. The certain model properties
are constants in the set algorithm and, therefore, not mentioned explicitly. The
required analysis result depends on the nature of the problem. Representing the
total deterministic FE procedure by {y} = F ({x}), the IFE analysis aims at the
solution of: 〈{y}〉{x} =

{
F ({x}) | {x} ∈ {x}

}
(26)

5.2 IFEM element matrices

The calculation of an element stiffness or mass matrix as expressed in equations (1)
and (2) consists of an integration of an integrand over the volume of the element.
This volume could be uncertain due to geometrical uncertainties in the input. The
dependency upon these uncertainties is expressed explicitly as Ve ({x}). The in-
tegrand consists of factors based on the element shape functions and on material
properties. These material properties could also be uncertain, expressed explicitly
as D ({x}) and ρ ({x}). Substituting these into equations (1) and (2) yields:

[Ke ({x})] =
∫

V e({x})
[B]T [D ({x})] [B] dV e (27)

[Me ({x})] =
∫

V e({x})
[N ]T ρ ({x}) [N ] dV e (28)

These equations express explicitly the direct dependency of the element matrices on
the basic parameters. The treatment of these expressions distinguishes thoroughly
between 1D and more complex element types. Therefore, they are treated separately
here.

5.2.1 1D elements

For 1D elements, the analytical expressions of the element matrices are generally
available in reference to the element coordinate system. This is illustrated here
using a bar element in a two-dimensional FE analysis. For this case, the analytical
descriptions of the stiffness and consistent mass matrix in the local coordinate system
yield:

[Ke
local] =

EI

L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2


 (29)

and

[Me
local] =

ρAL

420




156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2


 (30)

with E the Young’s modulus, I the area moment of inertia, L the length, ρ the mass
density and A the cross section area of the element. When either of the physical
properties involved in a matrix entry calculation is a basic parameter, the interval
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element matrices [Ke
local] and [Me

local] result from substituting the corresponding
intervals directly into these analytical expressions.

Generally, a rotation on the local matrices is necessary to compensate for the
angle between the global and the local coordinate system. Referring to the example
of the bar element this rotation numerically yields:[

Ke
global

]
= [A]T [Ke

local] [A] (31)[
Me

global

]
= [A]T [Me

local] [A] (32)

with

[A] =




cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ − sin θ
0 0 sin θ cos θ


 (33)

and θ the angle between the local and the global coordinate system. Whenever this
angle is subject to uncertainty, the rotation matrix is an interval matrix [A]. Sub-
stituting the interval matrices [Ke

local], [Me
local] and [A] in equations (31) and (32)

yields the general expression for the global interval element matrices:[
Ke

global

]
= [A]T [Ke

local] [A] (34)[
Me

global

]
= [A]T [Me

local] [A] (35)

The resulting matrices are interval matrices since the calculation of the global in-
terval matrix entries involves only multiplications and additions of interval scalars.
Whether the interval entries describe the exact range or are conservative approxi-
mations depends on the basic parameters.

A basic parameter which simultaneously affects multiple of the element’s geome-
try and material properties appearing in one matrix entry causes an overestimation
in the corresponding matrix entry range calculation. It is clear from equation (29)
that for the stiffness matrix, this would imply that some sort of correlation exists
between the length, the area moment of inertia and the Young’s modulus through
a common basic parameter. It is plausible to assume that these types of uncertain-
ties do not occur in the model. In that case, the interval matrices obtained for 1D
elements based on the analytical expression of the local element matrices describe
the exact range for each entry in the matrix. However, equations (34), (35) and
the definition of [A] in equation (33) indicate that there are multiple occurrences
of the angle θ and the length L in the calculation of each global interval matrix
entry through the matrix multiplication. This unlinks these properties during this
substep of the algorithm. Therefore, applying the rotation introduces conservatism
if the orientation or length of the bar is a basic parameter. Furthermore, when the
global geometry of the model is uncertain, defined by interval scalars for the uncer-
tain element’s nodal coordinates, there exists a correlation between the orientation
angle and the length of an element. The matrix rotation neglects this correlation,
which gives rise to yet another source of conservatism.

To summarise, it is plausible to state that an uncertain nodal geometry of 1D
elements is the only possible source of conservatism in the interval element matrices
calculation. The above argumentation can be easily generalised to 1D elements in
three-dimensional FE analysis.
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5.2.2 2D and 3D elements

For 2D and 3D elements, equations (1) and (2) are generally solved by applying a nu-
merical integration scheme on the integrands. The deterministic Gauss-Legendre
numerical integration is based on the evaluation of the integrand in a predefined
number of Gauss points in the element’s natural coordinate system. For 3D ele-
ments, this is stated as:

[Ke] �
n∑

i=1

n∑
j=1

n∑
k=1

HiHjHk [fK (ξi, ηj , ζk)] (36)

[Me] �
n∑

i=1

n∑
j=1

n∑
k=1

HiHjHk [fM (ξi, ηj , ζk)] (37)

with

[fK (ξ, η, ζ)] = [B (ξ, η, ζ)]T [D] [B (ξ, η, ζ)] det [J (ξ, η, ζ)] (38)
[fM (ξ, η, ζ)] = [N (ξ, η, ζ)]T ρ [N (ξ, η, ζ)] det [J (ξ, η, ζ)] (39)

with (ξi, ηj , ζk) the evaluation coordinates in the natural coordinate system, Hi,Hj

and Hk the corresponding weights from the Gauss-Legendre integration scheme
and [J ] the Jacobian describing the transformation between the element’s natural
coordinate system and the global coordinate system. For isoparametric elements,
the Jacobian following the classic deterministic calculation scheme yields:

[J ] =




∂N1
∂ξ

∂N2
∂ξ . . . ∂Nn

∂ξ

∂N1
∂η

∂N2
∂η . . . ∂Nn

∂η

∂N1
∂ζ

∂N2
∂ζ . . . ∂Nn

∂ζ







x1 y1 z1

x2 y2 z2

. . . . . . . . .
xn yn zn


 (40)

with (xi, yi, zi) describing the nodal coordinates of the element.
The calculation of the interval element matrix requires the set translation of this

numerical integration scheme. The Gauss points in the natural coordinate system
are analytically defined in reference to the natural element. Uncertainties in the
model description do not affect this natural element since it is a model independent
entity. Therefore, the uncertainty in the numerical integration is concentrated in the
integrand defined in the natural coordinate system as described in equations (38)
and (39).

Basic parameters for material properties in [D] and ρ are implemented by sub-
stituting the corresponding interval objects directly in the integrand evaluation at
the Gauss points. Basic parameters for geometry properties affect the Jacobian
matrix. By substituting the uncertain geometry of the element’s nodal coordinates
in equation (40), the interval Jacobian matrix equals:

[J] =




∂N1
∂ξ

∂N2
∂ξ . . . ∂Nn

∂ξ

∂N1
∂η

∂N2
∂η . . . ∂Nn

∂η

∂N1
∂ζ

∂N2
∂ζ . . . ∂Nn

∂ζ







x1 y1 z1

x2 y2 z2

. . . . . . . . .
xn yn zn


 (41)

The transformation of the [B] matrix to the natural element’s coordinate system
requires the inverse and the determinant of the interval Jacobian. The only way to
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implement these is through a set algorithm translation of the deterministic matrix
inversion and determinant calculation schemes. This requires every analytical op-
eration on the matrix entries to be translated according to the interval arithmetic.
This results in [B] and det [J] in the Gauss points.

Finally, after substituting all interval objects into equations (38) and (39) the
interval element matrices yield:

[Ke] �
n∑

i=1

n∑
j=1

n∑
k=1

HiHjHk [fK (ξi, ηj , ζk)] (42)

[Me] �
n∑

i=1

n∑
j=1

n∑
k=1

HiHjHk [fM (ξi, ηj , ζk)] (43)

with

[fK (ξ, η, ζ)] = [B (ξ, η, ζ)]T [D][B (ξ, η, ζ)]det [J (ξ, η, ζ)] (44)
[fM (ξ, η, ζ)] = [N (ξ, η, ζ)]T ρ [N (ξ, η, ζ)] det [J (ξ, η, ζ)] (45)

For these elements, there are numerous sources of conservatism resulting from
geometrical uncertainties. The computation of the interval Jacobian as stated in
equation (41) results only in the exact interval Jacobian if none of the nodal geom-
etry uncertainties are physically coupled. This is for instance not the case when
a basic parameter is used to introduce uncertainty on the orientation of one or a
group of elements. This orientation represented by a single or two angles couples
the coordinates of a possibly large number of nodes. Furthermore, the numerical
inversion of the interval Jacobian used for the [B] matrix calculation unlinks the
Jacobian matrix entries. Since these are all based on the same uncertain geometry
description, this introduces conservatism in the resulting [B] interval matrix. The
same phenomenon occurs in the interval determinant calculation of the Jacobian.
Finally, multiplying the interval matrices as in equation (44) again unlinks the [B]
matrix entries from the determinant of the Jacobian, while all are based on the
common uncertain geometry of the element.

Another source of conservatism results from the weighted averaging of the in-
tegrand intervals obtained at the Gauss points as expressed in equations (42) and
(43). The interval averaging considers the contribution of each Gauss point in-
dependently, while in reality these are coupled through the uncertainties used to
describe the integrand. Therefore, applying the Gauss-Legendre numerical inte-
gration introduces conservatism if it is performed with more than one Gauss point.

5.2.3 Summary

Condensing the analytical procedure for 1D elements and the set algorithm transla-
tion of the numerical integration for more complex elements into the set functions
K̆e and M̆e and applying the inclusion property of equation (25), we obtain:〈

[Ke ({x})]
〉
{x} ⊆ K̆e ({x}) (46)〈

[M e ({x})]
〉
{x} ⊆ M̆ e ({x}) (47)
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From equations (27) and (28) it is clear that the element matrices are continuous
functions of the uncertain properties as long as these stay within physical feasible
bounds. Since all basic parameters are defined as completely physical plausible
closed intervals, the exact range of each of the element matrix entries is a closed
interval. Also the conservative procedures described above both for 1D and more
complex elements result in closed interval matrices when all basic parameters are
closed intervals. Therefore, we have:

K̆e ({x}) =
[[
[Ke ({x})]

]]
{x} (48)

M̆ e ({x}) =
[[

[Me ({x})]
]]
{x} (49)

5.3 IFEM system matrices assembly

The total interval system matrices calculation consists of the assembly of the interval
element matrices. The interval counterpart of the deterministic assembly phase is
very simple, since it consists of the addition of interval scalars for the entries of the
interval element matrices. Representing this operation by ∪̆, we obtain:〈

[K ([Ke1] , [Ke2 ] , . . . [Ken ])]
〉
[Kei ]

i=1...n

=
⋃̆

i=1...n

[Kei ] (50)

〈
[M ([Me1] , [Me2 ] , . . . [Men ])]

〉
[Mei ]

i=1...n

=
⋃̆

i=1...n

[Mei ] (51)

This phase combines independently the interval element matrices. It unlinks as
such the physical properties that different elements might have in common. This is
easily illustrated taking the example of an uncertain Young’s modulus defined glob-
ally for all elements. The result of independently adding together interval stiffness
matrix entries from different elements as in equation (50) implicitly encloses the
result obtained from using different values for the Young’s modulus in each element.
This does not comply with the realistic interpretation of the uncertainty, where the
Young’s modulus is uncertain, but equal for all elements. Therefore, this phase in-
creases the degree of conservatism for all total system matrix entries which result
from the addition of element matrix entries with common uncertain properties. The
resulting conservative approximations of the system matrices yield:[[

[K]
]]
{x} =

⋃̆
i=1...n

[Kei ] (52)

[[
[M]

]]
{x} =

⋃̆
i=1...n

[Mei ] (53)

The system damping matrix follows from applying the proportional damping
assumption of equation (13) on equations (52) and (53):[[

[C]
]]
{x} = αK

[[
[K]

]]
{x} + αM

[[
[M]

]]
{x} (54)

The above definition of the damping matrix couples the uncertainty on the system
damping to the uncertainty on the stiffness and mass properties. This limits the
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possibilities of the uncertainty implementation on the damping. Defining the pro-
portional constants as interval scalars enables an independent proportional damping
uncertainty: [[

[C]
]]
{x} = αK

[[
[K]

]]
{x} + αM

[[
[M]

]]
{x} (55)

Both equations (54) and (55) introduce conservatism in the matrix entries for which
the constituting stiffness and mass entries have basic parameters in common.

Another important source of conservatism arises at this point. It results from
the fact that an interval matrix covers all possible combinations of its entries within
their prescribed bounds. This definition adds to the matrix range matrices which
might have been impossible to achieve taking into account the internal entry depen-
dencies. Thus, the interval matrix neutralises every existing dependency between
the entries of the matrix. Consequently, the interval matrices generally loose im-
portant specific matrix properties as symmetry or positive-definiteness since not all
matrices within the defined set result from physical models. This means that the
analysis algorithms which rely on these properties are not necessarily extendable to
the domain of interval analysis. This phenomenon generally does occur in interval
system matrices, since it is very likely that different matrix entries are based on
common physical properties. For instance, for a mass matrix it is obvious that the
entries in an element matrix are coupled through the density and geometrical prop-
erties of the element. Combining different values for material density in the different
entries of a single element’s mass matrix is artificial, yet implicitly enabled by the
interval system matrix.

5.4 Dynamic analysis using IFEM

The interval system matrix entries resulting from the assembly phase are available
for performing the analysis. This requires the application of a set algorithm corre-
sponding to the deterministic analysis on the interval system matrices. This yields
an approximation of the range of the required result of the FE analysis:

〈〈
{y}

〉〉
{x} = f̆

([[
[K]

]]
{x},

[[
[M]

]]
{x},

[[
[C]

]]
{x}

)
(56)

The final result is here generally stated as a set object, since the effect of the analy-
sis function on the interval matrices depends on the considered type of analysis.
Depending on the analysis, additional conservatism might be introduced resulting
from the fact that equation (56) considers the interval system matrices indepen-
dently. This unlinks their stiffness and mass properties, while they could be based
on common uncertain properties, as for instance an uncertain geometry description.

5.5 Discussion

Figure 6 illustrates the total procedure described in the previous sections. This pro-
cedure’s major advantage is its simplicity. The element and system interval matrix
assembly proves to be a series of simple interval operations on the basic parameters.
This is easy to implement using the basic interval operations. From a numerical
viewpoint, it can be seen from these definitions that the basic interval operations
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model definition with uncertainties {x}

. . .

. . .

. . .

[[
[Ke1 ]

]]
{x} = K̆e1 ({x})[[

[Me1 ]
]]
{x} = M̆e1 ({x})

[[
[Ken ]

]]
{x} = K̆en ({x})[[

[Men ]
]]
{x} = M̆en ({x})

[[
[K]

]]
{x} =

⋃̆
i=1...n

[[
[Kei ]

]]
{x}[[

[M]
]]
{x} =

⋃̆
i=1...n

[[
[Mei ]

]]
{x}[[

[C]
]]
{x} = αK

[[
[K]

]]
{x} + αM

[[
[M]

]]
{x}

〈〈
{y}

〉〉
{x} = f̆

([[
[K]

]]
{x},

[[
[M]

]]
{x},

[[
[C]

]]
{x}

)

Figure 6: Conceptual overview of the algorithm for dynamic IFE analysis based on
interval system matrices

consist of the corresponding deterministic operations on some combination of the
lower and upper bounds of the operands. Therefore, an interval matrix assembly
requires roughly between two and four times the computational effort of the corre-
sponding deterministic matrix assembly. The final IFE solution of the analysis as
expressed in equation (56) also proves to be a simple numerical formulation based
on a function of interval matrices. A number of solution schemes for different nu-
merical problems based on interval matrices are available from the world of interval
arithmetic.

The major drawback of this method is its repeated vulnerability to conservatism.
In the total algorithm, there are four major sources of conservatism:

• neglecting the correlation between the terms which constitute the integrand
in the numerical integration for the element matrix computation

• neglecting the correlation between element matrix entries of different elements
during the assembly

• neglecting the internal correlation between total system matrix entries

• neglecting the correlation between the total system matrices during the analy-
sis

Each of these is caused by wrongly unlinking intermediate variables of the algorithm
which are in reality coupled through common uncertain physical properties. The

18



analysis phase source of conservatism
1D element matrices geometrical uncertainties

2D & 3D element matrices geometrical uncertainties
number of Gauss points

system matrices assembly common uncertainties between elements
analysis phase algorithm applied on system matrices

Table 1: Controllable sources of conservatism during an IFE analysis

impact of each of these on the final analysis result depends strongly on the type of
analysis and the nature of the uncertainties.

• For the first source, the amount of conservatism depends strongly on the type
and complexity of the element. Using simple elements, limiting the number of
Gauss points during the numerical integration of more complex elements, and
avoiding geometry uncertainties is the recipe to neutralise all conservatism in
this phase of the algorithm. However, in particular the latter is inherent to
the problem description and, therefore, not to be decided for by the analyst.

• The second source is present if there are uncertainties common to a group of
elements. While theoretically possible, it seems very unlikely that in a realistic
analysis each element has its own independent uncertainty description, which
makes this source of conservatism present in nearly all analyses.

• The third source of conservatism is unavoidable, since the entries of a system
matrix are mutually always closely related.

• The fourth source of uncertainty depends totally on the considered analysis.

Table 1 gives an overview of all the sources of conservatism which are to some
extent controllable by the analyst. It could serve as a guideline for controlling
the amount of conservatism for interval uncertainty modelling when applying the
interval system matrices approach.

In order for the result to be used for design validation or optimisation, a thorough
verification of the conservatism is advisable. This requires an extensive Monte Carlo
simulation as discussed in section 4.4 and, therefore, could cancel out one of the
most important advantages of the interval analysis over the probabilistic approach:
its time efficiency.

6 Hybrid IFE analysis

In limited cases, a possible remedy to some sources of conservatism is to perform
as much as possible of the deterministic FE procedure analytically. This neutralises
all sources of conservatism which occur before the point where the uncertainties
are introduced. The procedure to compute the local element stiffness matrix of 1D
elements based on the analytical description rather than a numerical integration
strategy as described in section 5.2 is an elementary illustration of this principle.
A possible extension of this strategy is to perform both the deterministic element
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basic
parameters

−−−−→ {x} = {x1,x2, . . .xn}

optimisation −−−−→ 〈{zi}
〉
{x} =

[
min

{x}∈{x}
zi

({x}), max
{x}∈{x}

zi

({x})
]

interval
analysis

−−−−→
〈〈
{zi+1}

〉〉
{x} = f̆i+1

(〈{zi}
〉
{x}

)
. . . −−−−→ . . .

−−−−→
〈〈
{y}

〉〉
{x} = f̆m

(〈〈
{zm−1}

〉〉
{x}

)

Figure 7: Conceptual description of the hybrid interval analysis procedure

matrix calculation and the total system matrix assembly analytically. This enables
a simplification of the matrix to global properties which can be brought outside the
matrix. While it is theoretically exact, this approach is limited to small models with
uncertain parameters that allow for a parametrical expression of the system matrix.
This approach was introduced by Enling [3] and later used by Dessombz et al. [4]
to decrease the conservatism resulting from a globally defined uncertain Young’s
modulus. Mullen et al. [5] used a method based on an analytical description to
introduce uncertainty on the load vector in the final step of an algorithm.

In order to extend the applicability of IFEM, a more general applicable remedy
to excessive conservatism is easily derived from this principle. Instead of a par-
tial analytical analysis, it consists of a partial optimisation in the first part of the
analysis. This means that an optimisation is applied to calculate the interval result
at some intermediate step of the total algorithm. In the second part, the interval
analysis is performed on these intermediate results. The optimisation yields:

〈{zi}
〉
{x} =

[
min

{x}∈{x}
zi

({x}), max
{x}∈{x}

zi

({x})
]

(57)

Figure 7 clarifies this procedure. This method has two major advantages:

• because of the global optimisation, all conservatism prior to the optimised
intermediate result is neutralised

• the performance of the optimisation step is controllable by adequately choosing
the level on which to perform it

A simple numerical example illustrates the effect of the hybrid approach com-
pared to a pure interval arithmetic approach. Consider an analytical function:

f
({x}) =

(
(x1 + x2) (x1 − x2)

)2 (58)

and the basic parameters for this function defined as:

{x} =
{

[−1, 2]
[−2, 3]

}
(59)

20



Figure 8 gives a deterministic algorithm in three steps for this function. It also
describes the intermediate results of the corresponding interval arithmetic procedure,
and the hybrid procedure with an optimisation performed on the second substep of
the deterministic algorithm. This optimisation is mathematically expressed as:

〈z2〉{x} =

[
min

{x}∈{x}
(
x2

1 − x2
2

)
, max
{x}∈{x}

(
x2

1 − x2
2

)]
(60)

deterministic
algorithm

interval arithmetic
algorithm hybrid algorithm

z11 = x1 + x2

z12 = x1 − x2

z2 = z11 × z12

y = z2 × z2

〈z11〉{x} = [−3, 5]
〈z12〉{x} = [−4, 4]

〈〈z2〉〉{x} = [−20, 20]

〈〈y〉〉{x} = [−400, 400]

〈z2〉{x} = [−9, 4]

〈〈y〉〉{x} = [−36, 81]

Figure 8: Comparison of the interval arithmetic and hybrid approach for the ap-
proximation of the result of an interval problem

The exact result of the interval problem calculated using the global optimisation
approach yields: 〈

f
({x})〉{x} = [0, 81] (61)

Therefore, the hybrid approach clearly results in a substantial improvement of the
conservative result approximation compared to the pure interval arithmetic ap-
proach. Annex 2.4 of this project illustrates how this hybrid procedure can be
of use in the context of an IFE frequency response function analysis.

7 Conclusion

In order to study the conservatism of the interval system matrices approach, the
set algorithm translation method is introduced. Its basic principle is the translation
of every substep of a deterministic algorithm to interval analysis. It consequently
embodies a procedure which is able to construct the equivalent interval counterpart
of nearly any deterministic numerical algorithm. The main disadvantage of this
approach, however, is its high vulnerability to conservatism due to the inclusion
property. A simple example illustrates that it is extremely difficult to predict the
amount of conservatism implicitly introduced by the translation procedure. The
Monte Carlo simulation procedure is proposed as a verification tool which could
give some qualitative information on the result of the translated algorithm.

Applying the set algorithm translation concept on the deterministic FE analysis
yields the corresponding IFE procedure. The conservatism introduced by this IFE
procedure keeps the result on the safe side as far as reliability analysis is concerned.
For realistic models, however, there are numerous sources of conservatism already
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during the system matrix assembly phase in the IFE procedure. These strongly
devaluate the result of the analysis. Therefore, though the guidelines of table 1
might serve well for some applications with limited complexity, it is concluded that
the approach based on interval system matrices needs special attention when it is
used for implementation in a software environment intended for general uncertainty
analysis. Especially for large models, the unlinking of elements and internal system
matrix entries lifts the conservatism in the interval matrices to a very high level.
Depending on the effect of the intended analysis, this could increase the conservatism
of the final result to an unacceptable level.

The hybrid IFE procedure divides the analysis in an optimisation step followed
by an interval analysis applied on the result of the optimisation. The intended
improvement is that an appropriate choice of the optimisation level could decrease
the conservatism to an acceptable level, even for large realistic models.

The application of the interval arithmetic approach on problems of a very low
dimension already illustrates that the conservatism grows beyond reasonable limits.
This conservatism is mainly due to the matrix assembly phase. Therefore, it is
concluded that a global optimisation or a hybrid form that cancels out the assembly
conservatism are the only applicable implementation strategies for the IFE analysis.
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chanical Systems Using Interval Computations Applied to Finite Element Meth-
ods,” Journal of Sound and Vibration, Vol. 239, No. 5, 2001, pp. 949–968.

[5] Mullen, R. and Muhanna, R., “Bounds of Structural Response for All Possi-
ble Loading Combinations,” Journal of Structural Engineering , Vol. 125, No. 1,
1999, pp. 98–106.

22



Task 3.4 Application of the fuzzy finite element method

to problems with multiple independent uncer-

tain parameters

The employment of fuzzy numbers in engineering applications requires a twofold base. On the one hand, one
has to know their meaning, their advantages and their restrictions, in comparison with other methods aiming
at the modelling of uncertainty or variability of any kind. On the other hand, also a calculational aspect is
involved: after deciding that fuzzy numbers are the appropriate tool in a certain application and setting up the
fuzzy input, one has to be capable of performing the fuzzy analysis itself.

The interpretation of fuzzy numbers and a comparison with other methods such as probability theory and
partial safety factor analysis has been described extensively in other tasks reports [3.1, 3.3, 3.3a]. Under these
tasks, the application examples were of such simplicity that exact solutions could be obtained, allowing to focus
on the interpretation of fuzzy numbers. However, real-life applications often are of a much higher complexity,
so it is certainly worthwhile to spend some considerations on the use of fuzzy numbers in non-trivial examples.

A high complexity can be defined in different ways; one could use the number of DOFs as a criterion, or the
number of uncertain variables. However, also the behaviour of the relation between input parameters and
response variables has a large influence on the choice of the calculational approach. Since finite element analysis
is a well-established method, even for large systems with many DOFs, the examples will mainly focus on the
number of uncertain variables and on non-trivial (non-monotonic) input-output relationships.

This report consists of two parts: the first part gives an overview of the possible (theoretical) approaches to
fuzzy calculations, the second part will illustrate some of these methods with practical applications.

A Problem description and solution strategies

1 Theoretical background on fuzzy number calculations

Although other possibilities exist [1], Zadeh’s extension principle is the most used base to perform mathematical
operations on fuzzy numbers. It states that the membership function of the outcome ỹ of a function f of fuzzy
arguments x̃i is given by

ỹ = f(x̃1, x̃2, . . .)

iff

µY (y) = sup
y=f(x1,x2,...)

inf {µX1(x1), µX2(x2), . . .} (1)

The rightmost part, inf {µX1(x1), µX2(x2), . . .}, can be interpreted as the joint membership function of the
independent fuzzy variables x̃i. Although very general, this expression is not very practical; one has to discretize
with respect to y, determine the contour lines at these values, and then take the maximum value of the joint
membership function along each contour. Certainly for non-monotonic functions, determining the contour lines
is a difficult and expensive task.

Therefore, the problem is reformulated, by discretizing along different α-levels, instead of different values of y.
It can be shown that the expression

ỹ = f(x̃1, x̃2, . . .)
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Problem description and solution strategies 2

iff

[ỹ]α = f([x̃1]α , [x̃2]α , . . .) ∀α ∈ [0, 1] (2)

is equivalent to the previous one. Note that the definition of a function of interval variables is given by

[y] = f([x1] , [x2] , . . .)
= {f(x1, x2, . . .) | x1 ∈ [x1] , x2 ∈ [x2] , . . .} (3)

2 Solution of interval expressions

Since a fuzzy number expression can be reformulated as a set of interval expressions, the aim is now to perform
these interval calculations in an efficient yet robust way. In general, two fundamental approaches exist to
evaluate an interval expression. The first one makes use of interval arithmetics, the second one considers it as
a double constrained optimization problem.

2.1 Interval arithmetics

The idea behind this approach is to generalize all basic mathematical operators (+,−,×,÷, . . .) to interval
operators:

[x1] + [x2] =
[

[x1]
− + [x2]

−
, [x1]

+ + [x2]
+

]
[x1]− [x2] =

[
[x1]

− − [x2]
+

, [x1]
+ − [x2]

−
]

. . .

This approach is very attractive from a computational point of view: the evaluation of an interval expression
with interval arithmetics typically will take only a few times longer than an expression with real numbers.
However, there are two important drawbacks of this approach. The first one is the implementation effort: since
all operations have to be generalized to interval operations, this method requires complete new finite element
software. This explains why this method has been investigated for some small-scale academic structures [2],
but not yet for real-life problems.

A second, more fundamental disadvantage of interval arithmetics is the dependency problem, which occurs if
a variable appears multiple times in one expression. In such situation, each of them will be treated as an
independent variable, giving raise to conservative results. Consider for example an interval variable [x] = [1, 2],
and the function y = x+1

x . Then the application of interval arithmetics leads to

[y] =
[1, 2] + 1

[1, 2]
=

[2, 3]
[1, 2]

= [1, 3]

whereas preceding simplification yields

[y] = 1 +
1
[x]

= 1 + [
1
2
, 1] = [

3
2
, 2]

This example clearly shows how the different occurrences of [x] in the numerator and denominator are treated as
independent variables which can take different values, leading to a conservative estimation of the actual bounds
on the outcome.

Certainly for complex, large-scale structures, involving numerous operations to analyse, this may lead to an
excessive conservatism, or even render the results meaningless. Efforts have been made by several authors [3]
to reduce this artificial conservatism, but this is not yet completely successfull and it goes at the expense of the
computational efficiency.
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2.2 Double constrained optimization problem

Another way to evaluate interval expressions is to view them as a double optimization problem:

[y] = {f(x1, x2, . . .) | x1 ∈ [x1] , x2 ∈ [x2] , . . .} (4)

iff {
[y]− = min f(x1, x2, . . .)

[y]+ = max f(x1, x2, . . .)
subject to x1 ∈ [x1] , x2 ∈ [x2] , . . . (5)

When applying this method to a fuzzy finite element analysis, two subproblems should be tackled: first an
interface should be developed, which reduces the FE-software to a (black-box) function, taking input values
and returning output values. This allows to perform the fuzzy calculations on a higher level, as a shell around
the FE-software. The development of and choice between appropriate optimization methods is the second
subproblem.

The advantages of this approach are clear: since no modifications have to be performed on the actual FE-
calculations, existing FE-software can be used. Secondly, the results will be exact and no artificial conservatism
will be induced. However, this accurateness has a computational price, and in general an optimization-based
fuzzy calculation will be far more expensive than one based on interval arithmetics.

2.3 Hybrid methods

As a way in between these two fundamental approaches, hybrid methods make a combination of both. Up till
a certain point in the calculation, for example after the system matrices assembly, or after a modal analysis,
an optimization method is applied. This will result in accurate (i.e. non-conservative) intermediate results, at
a reasonable computational effort. Hereafter, the remainder of the analysis (which involves few operations) is
done with interval arithmetics.

In a certain way, hybrid methods indeed combine the advantages of both approaches: they are less expensive
than plain optimization, they can make use of existing FE-software, and they will be not as conservative as
a complete interval-arithmetical analysis. However, also the disadvantages are combined: both optimization
methods and interval operators have to be implemented, and even when only the very last step is performed
with interval arithmetics, this may induce a large conservatism, which is hard to quantify. On top of that, they
are not generally applicable, and it takes some judgement on which intermediate results are appropriate as a
starting point for the interval analysis.

2.4 Choice of calculational approach

In the remainder of this task report, the focus will lie on the optimization-based fuzzy calculations. Three
reasons exist for this choice.

First, this approach yields correct results (if the optimization is successful). Even in view of the subjective
character of fuzzy numbers, accurate results are preferable, certainly because the degree of overestimation with
interval arithmetics is impossible to quantify.

Secondly, it is the most general method. Once the interface and the optimization methods have been developed,
any kind of analysis can be performed: static, modal, harmonic or transient, linear or nonlinear, problems
where the results follow directly from the FE solution or problems where finite elements are used as a lower-
level procedure (such as updating problems),. . .

Finally, this method is also generic. The division between optimization methods and finite element software
makes it possible to extend to other optimization methods or other FE-packages. In fact, this division even
allows for a complete abstraction of the finite elements, and any kind of calculational procedure which can be
reduced to a black box can be subjected to a fuzzy analysis with the same optimization methods.
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3 Interface with FE-programs

The interface which will described in this section was developed for the finite element software Ansys [4]. Like
most FE packages, Ansys has the capability of running in batch mode, whereby an input file containing the
subsequent commands should be specified. In order to improve the efficiency, it is desirable to gather different
evaluations of a model into one analysis.

Therefore, use is made of a shell-inputfile, which reads the input variable combinations one-by-one, makes a call
to the actual model-inputfile, and stores the results for each combination.

Example

Suppose one wants to use Ansys to perform the simple calculation y = x1 − x2
2 for x1 = x2 = 0.0, 0.2, . . . , 1.0.

First, the model-input file is created as

Model.inp

Result = _FV(1)-_FV(2)**2

Here, _FV(i) denotes fuzzy variable i (i.e. xi), and Result is the fixed way to denote the outcome. Next, a file
containing the different combinations of the input variables is created as

InpVals.dat

0.0 0.0
0.2 0.2
0.4 0.4
0.6 0.6
0.8 0.8
1.0 1.0

When calling the shell-inputfile, the operations are performed as follows:

Shellfile.inp

<Read x from Inpvals.dat>
*DO,i,1,6

_FV(1) = x(i,1)
_FV(2) = x(i,2)
\INPUT, Model.inp
y(i) = Result

*ENDDO

<Write y to Results.dat>

The results file will contain the results for the different combinations:
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Results.dat

0.00
0.16
0.24
0.24
0.16
0.00

An additional advantage of this architecture, besides the evaluation of different input parameter combinations
in one run, is that existing inputfiles for deterministic models can be modified to a blackbox model easily, simply
by replacing numerical values by _FV(i).

4 Optimization methods

This section describes and compares some commonly used optimization methods for fuzzy calculations. Each
method will be illustrated with two test functions f1 and f2, being a monotonic and a non-monotonic function
of the input respectively.

Monotonic test function

The first test function describes the elongation ∆ of a two-bar truss structure under a static load P (figure 1).
The uncertain variables are the cross sections of the two bars, Ã1 and Ã2.

With P = 1 and E = 1, the relation between the
input variables and the response parameter is

∆ = f1(A1, A2) =
1

A1
+

1
A2

(6)
EA1 EA2 P

Figure 1: Two-bar truss structure

Both uncertain input variables are assigned a triangular membership function with unit centre value and a base
width of 0.4. Figure 2 shows this monotonic function along with the membership functions.

0.5

1

1.5

0.5

1

1.5
A1

A2

∆

(a) Surface plot of monotonic test function and
marginal membership functions

A2

A1

0.8 1 1.2

0.8

1

1.2

(b) Contour lines of monotonic test
function and joint membership
function

Figure 2: Monotonic test function and input membership functions
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Non-monotonic test function

The second test function describes the modulus of the displacement ‖U‖ of a single degree of freedom mass-
spring-damper system under a harmonic load P = sinΩt, as shown in figure 3. The uncertain variables are the
spring stiffness k̃ and the damping ratio ξ̃.

With m = 1 and Ω = 1, the relation between the response ampli-
tude and the input variables is given by

‖U‖ = f2(k, ξ)

=
∥∥∥∥ 1
−mΩ2 + icΩ + k

∥∥∥∥
=

∥∥∥∥ 1
−1 + 2iξ

√
k + k

∥∥∥∥
=

1√
k2 + 2 (2ξ2 − 1) k + 1

(7)

k c

m

P

Figure 3: Mass-spring-damper system

The membership functions of k̃ and ξ̃ are symmetric triangular functions, with base intervals of [0.9, 1.1] and
[2%, 4%], respectively. Figure 4 shows a surface plot and a contour plot of this test function and the membership
functions.

0.8

1

1.2

0.01

0.03

0.05
k

ξ

||U ||

(a) Surface plot of non-monotonic test function
and marginal membership functions

ξ

k

0.9 1 1.1

0.02

0.03

0.04

(b) Contour lines of non-monotonic
test function and joint
membership function

Figure 4: Non-monotonic test function and input membership functions

4.1 General purpose optimization methods

The optimization problem is given by eq. (5) and has to be solved for every α-level (eq. (2)). In fact, any
algorithm capable of solving a constrained optimization problem is a candidate. In literature, pattern search
methods [5], SLP [6] and Genetic Algorithms [7] are found amongst others. In this report, a sequential quadratic
programming (SQP) algorithm is adopted.

The application of this method to the test functions is shown in figure 5. From the contour plots, it can be
verified that this method yields correct results for both test functions.
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A2

A1

0.8 1 1.2

0.8

1

1.2

(a) Location of critical points per α-level:
monotonic test function

ξ

k

0.9 1 1.1

0.02

0.03

0.04

(b) Location of critical points per α-level:
non-monotonic test function

µ∆

∆

1.5 2 2.5

0

0.5

1

(c) Membership function of output

µ‖U‖

‖U‖

10 20 30

0

0.5

1

(d) Membership function of output

Figure 5: Application of the SQP algorithm to the test functions. In (a) and (b), 4
denote the points where the maximal value is obtained within a certain α-cut,
5 denote the points where the minimal value is obtained.
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4.2 Transformation Method

This method, introduced by Hanss [8], and applied by many other researchers, is not really an optimization
scheme. However, since it aims at finding the extreme values at each α-level by means of a series of deterministic
function evaluations, it is treated in this section. The underlying idea is that combinations of extreme values of
the input variables (the vertices of an n-dimensional hypercube), will lead to the extreme values of the output
response parameters. In case of monotonic behaviour of the system, this leads to the exact solution, and for
systems with few uncertain parameters, the computational effort is limited;

N = (m− 1)2n + 1

with N the number of evaluations needed, m the number of α-cuts and n the number of uncertain parameters.
At α = 1, only one evaluation is needed in case of normal fuzzy numbers.

Figure 6 shows the application of this method to both test functions. The results for the first test function
are the same as those obtained by SQP, but for the non-monotonic test function, the Transformation Method
yields incorrect results. Since fuzzy numbers are convex by definition (i.e. every α-cut must be a subset of
any lower level α-cut), the output membership function of this function can be corrected (dashed line in figure
6(d)). However, this is no guarantee to obtain the real solution (as obtained from the optimization method).

A2

A1

0.8 1 1.2

0.8

1

1.2

(a) Evaluated points: monotonic test
function

ξ

k

0.9 1 1.1

0.02

0.03

0.04

(b) Evaluated points: non-monotonic test
function

µ∆

∆

1.5 2 2.5

0

0.5

1

(c) Membership function of output:
monotonic test function

µ‖U‖

‖U‖

10 20 30

0

0.5

1

(d) Membership function of output for
non-monotonic test function with
Transformation Method (– –), after
correction of Transformation Method
(—) and with optimization method
(· · · )

Figure 6: Application of the Transformation Method to the test functions

Major drawbacks of this method are that the results may be unsafe (for non-monotonic systems), and that the
number of evaluations needed increases rapidly (exponentially) as the number of uncertain variables increases.
Factors in favour of this method are that its behaviour is predictable, that it is very easy to implement, and
that multiple output components can be treated without additional costs.
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4.3 Short Transformation Method

Like the Transformation Method, the Short Transformation Method [9] is not really an optimization scheme,
but rather an attempt to generate the set of points leading to extremal values. The underlying idea is similar
to that of the Transformation Method, but it tries to circumvent the fast increase of computational effort as
the number of uncertain variables increases.

The method consists of two parts: first, a sensitivity analysis is performed with respect to all uncertain variables.
This analysis allows to predict which combinations will be critical. Note that only the signs of the sensitivities
are important; the actual magnitude does not matter. The second phase consists of the actual fuzzy calculation:
the function is evaluated along the critical diagonal at several α-levels.

Hanss [10] proposes to obtain the sensitivities by performing a full factorial analysis at one α-level (e.g. α = 0),
and then selecting the critical combinations of the input variables. It is shown that this approach leads to quite
comparable results as a sensitivity analysis based on finite differences at the center point. When comparing the
calculational effort, the full factorial sensitivity calculation needs 2n evaluations, whereas the finite difference
approach requires n + 1 evaluations. Two of the evaluations of the full factorial method can be recycled (they
immediately give the bounds of the result at that α-level), and one can be recycled for the finite difference
method (the center point has to be evaluated anyway). This means that the finite difference method is cheaper
if n ≤ 2n−2, or n ≥ 2. Therefore, throughout the remainder of this report, the finite difference based sensitivity
analysis will be used.

Figure 7 illustrates the application of the Short Transformation Method to both test functions. The results are
exactly the same as those obtained from the full Transformation Method, and a similar correction should be
applied in order to obtain convex fuzzy numbers.

The most important aspect of this method is that it is independent of the number of uncertain variables (if
the sensitivity analysis is not considered). Therefore, this method is an obvious candidate for problems with
many uncertain variables. However, the results may be erroneous for non-monotonic functions, and therefore
the application area is restricted to monotonic functions, or to problems with a small uncertainty range.

4.4 Gradual α-level Decreasing algorithm

The Gradual α-level Decreasing (GαD) algorithm is an optimization method which was developed specifically
for fuzzy number calculations. Its main difference with the previous methods is that it does not consider the
different α-cut interval calculations as separate problems, but that it makes use of the fact that the target
function remains the same while only the bounds vary.

The algorithm starts with a number of search paths at the center of the fuzzy numbers, which proceed in
different directions. At each level, the partial derivatives are calculated, allowing to detect possible new search
directions. Adaptive α-level stepsizing makes it possible to concentrate on interesting search paths and reducing
the number of function evaluations.

Depending on the choice of the adaptive stepsize parameters, the algorithm evolves from a very robust (but very
expensive) method to a method which is comparable to the Short Transformation Method (i.e. independent of
the number of fuzzy variables). Figure 8 shows the application of the GαD algorithm to the two test functions,
with the adaptive stepsize parameters set to moderate values. From the evaluated points on the contour plots it
is clear that the results are the same as with the general purpose optimization method, both for the monotonic
and non-monotonic test functions.
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(d) Membership function of output for
non-monotonic test function with
Short Transformation Method (—),
after correction of Short
Transformation Method (– –) and
with optimization method (· · · )

Figure 7: Application of the Short Transformation Method to the test functions. In (a)
and (b), × denote the points needed for the finite difference sensitivity analysis
and ◦ denote the evaluated points along the critical diagonal.
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Figure 8: Application of the GαD algorithm to the test functions
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4.5 Conclusions

As always in engineering problems, a trade-off has to be made between robustness and accuracy on the one
hand, and efficiency and computational cost on the other hand. In order to make an optimal judgement between
the different methods described above, some basic knowledge about the problem’s behaviour is necessary.

In general, following rules can be maintained:

• in case of many uncertain input variables, the Transformation Method should be avoided. Also the non-
adaptive version of GαD will require a lot of function evaluations. The Short Transformation Method, a
general purpose optimization method or the adaptive version of GαD (with large maximal α-level stepsize
and large aggression factor) are better candidates.

• also the number of output design variables is important. General purpose optimization methods deal
with these different output components separately, and the computational effort increases linearly with
the number of design variables. The Transformation Method, the Short Transformation Method and the
GαD algorithm more efficient for such problems

• in case of expected non-monotonical behaviour, the Transformation Method and certainly the Short
Transformation Method should be avoided in order not to obtain unsafe results. This aspect also has an
influence on the choice of parameters in general purpose optimization algorithms, or on the choice of the
adaptive stepsizing parameters in GαD

• general purpose optimization algorithms and GαD also perform more efficient if first-order derivative
information is readily available, such that it hasn’t to be determined by means of finite differences.
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B Applications

1 Fuzzy Frequency Response Function of a composite floor

In this example, a 3385 DOF model with six uncertain parameter is subjected to a fuzzy analysis. The Fuzzy
Frequency Response Function is calculated with (a modified version of) the Transformation Method. As has
been shown above, a FRF of a system with uncertain stiffness and damping parameters is a non-monotonic
function. Therefore, the Short Transformation Method may lead to unsafe results. This also holds for the
Transformation Method, but it will be shown how this problem can be circumvented.

Although the Transformation Method is not the most efficient method for systems with a large number of
uncertain variables, it is possible to reduce the calculational efforts substantially by means of the method of
Component Mode Synthesis in combination with a fuzzy superelement.

1.1 Case description

The structure under investigation consists of an orthotropic concrete slab supported by cellular beams (figure
9). The eigenfrequencies and modeshapes of the first floor have been measured.

Figure 9: Composite floor

The cellular beams are modelled as beams with constant cross section and equivalent stiffness parameters,
derived from a demand of equal strain energy under equal deformations applied to an elementary module of
the beam (figure 10). The geometrically orthotropic slab (based on a steeldeck profile) is transformed into a
slab with constant thickness and material orthotropy. These material characteristics again are derived from the
principle of equal strain energy, but cannot be determined unambiguously because there are more elementary
deformations on a slab than orthotropic material properties. It is therefore believed that the material properties
of the equivalent slab carry more uncertainty than the properties of the beams.

An important factor in the dynamic behaviour of this floor are the boundary conditions. Along the long sides of
the floor, the cellular beams are connected to columns with bolted connections. The stiffness of these connections
depends on the type of connection, but also on the number of floors at that location, which varies from two up
to six (figure 9). Therefore, the connection stiffnesses are also allowed to vary from one connection to another
(Kc1, Kc2 and Kc3), as indicated in figure 11. One of the short sides is simply supported on four columns, the
opposite side is connected to a stiff concrete core in the building. This connection is modelled with rotational
springs as well, but it is difficult to predict a value for its stiffness.

An updating procedure has been applied to estimate the connection stiffnesses and to check the orthotropic
material properties. The updated values of the connection stiffnesses are respectively KU

c1 = 33.0 kNm/rad,
KU

c2 = 6.5 kNm/rad, KU
c3 = 38.0 kNm/rad and KU

wall = 1.72 kN/rad, and the material properties of the slab are
corrected with a factor 0.99.

Figure 12 shows the first four mode shapes of the floor.
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(a) Elementary module of a cellular beam (b) Elementary module of the orthotropic slab

Figure 10: FE models used to determine equivalent properties of cellular beams and or-
thotropic slab

K
c1

K
c3

K
c2

K
wall

Figure 11: Model of the composite floor

(a) Mode 1 at 5.67 Hz (b) Mode 2 at 6.60 Hz (c) Mode 3 at 7.83 Hz (d) Mode 4 at 9.68 Hz

Figure 12: Eigenmodes of the floor
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1.2 Uncertainty modelling

It is most interesting to investigate the influence of the uncertainty on the updated parameters on the modal data
of the structure, as this may explain part of the remaining discrepancy between measurements and numerical
data.

Six individual uncertain parameters are used: one for the orthotropic material properties (Ẽx = EU
x X̃1, Ẽy =

EU
y X̃1 and G̃xy = GU

xyX̃1), three for the column connection stiffnesses (K̃c1 = KU
c1X̃2, K̃c2 = KU

c2X̃3 and
K̃c3 = KU

c3X̃4), one for the connection with the concrete core (K̃wall = KU
wallX̃5), and finally also the damping

coefficient is modelled as a fuzzy variable (ξ̃ = 0.8% · X̃6).

It is observed that most of the uncertainty acts very locally, but for this structure, no deterministic substructure
exists. A considerable profit is however obtained when the floor is modelled with a fuzzy superelement (when

using the Transformation Method): at a certain α-level, two superelements are generated, one for
[
X̃1

]−
α

, and

one for
[
X̃1

]+

α
. While all other uncertain parameters change, x1 always takes one of these two values. When

taking 20 modes of the substructure into account, the total number of DOFs is reduced from 3385 to 119.

Secondly, when calculating an FRF with the modal superposition method, the damping ratio only comes in at
a very late phase in the calculation. This means that when two analyses take equal values for x1, . . . , x5, and
only differ in their values for x6 (as is the case when applying the Transformation Method), the main part of
the calculation should only be performed once.

Figure 13 shows the flowchart of the calculation of the FRF at all vertices of one α-level. If the fuzzy numbers
are discretized into m = 11 α-levels, the original set of m2n = 704 modal analyses of 3385 DOFs is reduced to
22 CMS analyses of 3385 DOFs and 352 modal analyses of 119 DOFs. The number and complexity of the FRF
calculations has not changed (i.e. 704 analyses of 20 modes).

1.3 Fuzzy frequency response function

The uncertain parameters are modelled as triangular fuzzy numbers, with base widths of 20% for the ma-
terial properties, 40% for the connection stiffnesses, and 75% for the damping ratio (meaning that

[
ξ̃
]
0

=

[0.5%, 1.1%]). A fuzzy FRF (figure 14) is determined between an excitation at the center of the plate and the
response at a point near the excitation point with the Transformation Method. The FRF is determined with
modal superposition of 20 modes.

Most striking observation on this graph is the local decrease (and increase) of the upper (and lower) FRF enve-
lope at resonance frequencies at low α-levels. The reason for this behaviour can be found in figure 6(b), where
also stiffness parameters and damping ratio are modelled as fuzzy numbers. When considering an excitation
frequency near an eigenfrequency of the ‘mean’ model, the maximal response will be obtained for mean values of
the stiffness parameters, combined with the lowest value of the damping ratio. However, this combination is not
made by the Transformation Method: at high α-levels, the moderate values of stiffness parameters are combined
with moderate values of the damping ratio and at low α-levels, extreme values of both stiffness parameters and
damping coefficient are combined.

Keeping in mind that most of the calculational efforts are spent to the variation of the stiffness parameters,
and that an evaluation of the structure at a new damping ratio only requires very limited efforts, the evaluation
points as shown in figure 15 (simplified to 2D) can be chosen in order to improve the fuzzy FRF. Since the FRF
varies monotonically with respect to the damping coefficient, not all combinations are required.

With these evaluation points, the number of modal analyses remains the same (i.e. 22 CMS analyses of 3385
DOFs and 352 modal analyses of 119 DOFs), but the number of harmonic analyses increases from 704 to 46464
(but even for this number of analyses, the time spent to the harmonic analyses (with 1000 excitation frequencies)
is only about 1/3 of the time spent to the modal analyses). The corrected FRF is shown in figure 16.
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Figure 13: Flowchart for FRF calculation of composite floor
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Figure 14: FRF of the composite floor
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Figure 15: Extended version of the Transformation Method in case of uncertain damping:
◦ denote the regular TM evaluation points, × denote the extra points
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Figure 16: FRF of the composite floor, after correcting for fuzzy damping ratio

2 FE Model updating of a damaged beam

In this section, damage detection of a reinforced concrete beam was performed by a finite element (FE) model
updating method in which the uncertainty, involved in the experimental modal data, was modelled using a fuzzy
approach. First, vibration experiments are conducted in laboratory before and after application of a static load
on the beam. The FE model results of the RC beam is adjusted to the test results, and the stiffness distribution
along the beam is updated. FE model updating of the undamaged RC beam was performed by deterministic
FE analysis, and the FE model updating of the damaged RC beam was performed by fuzzy FE analysis. In
the present study, modal characteristics as natural frequencies and mode shapes are used as input parameters
in the model updating.

Before the detail discussion, one should note an important difference between this application and the others:
fuzzy analysis is applied on a problem in which FE method is used as a lower level procedure (FE method is
directly used in the other applications).

2.1 Case description

The dimensions of the RC beam is shown in figure 17. The total mass of the beam is 750 kg. Vertical stirrups
of 8 mm diameter are placed every 200 mm for shear reinforcement.

Figure 17: The dimensions of the RC beam and the static load experiment setup

A modal test is carried out on the beam supported by two flexible springs as shown in the figure 18. The
load for excitation is an impact applied at one of the free ends of the beam. Dynamic response signals are
taken from 62 sensors (accelerometers) placed at both longitudinal edges of the beam (31 sensors at each edge
with a longitudinal interval of 20 cm). The dynamic modal parameters are extracted from measured dynamic
response signals applying the stochastic subspace analysis [11]. After an initial (reference) dynamic test, a
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static point load of 25 kN is applied at 2m away of the right end. The experimental setup of the static load
application is shown in figure 17. The same modal test is applied again in order to obtain the experimental
modal data of the damaged beam. The first four identified modes will be used in the computation section. The
corresponding dynamic modal parameters of the reference and the damaged state of the beam are given in table
1 (eigenfrequencies) and figure 19 (modeshapes).

Figure 18: The vibration experiment setup

Mode Undamaged Damaged
1 22.02 19.35
2 63.44 56.90
3 123.27 111.64
4 201.92 185.22

Table 1: Experimental eigenfrequencies for the undamaged and damaged RC beam. All
the values are in Hz

The reinforced concrete beam is modelled in ANSYS [4] with 30 (2 dimensional) beam elements. In principle,
any parameter in the system matrices can be selected as the updated parameter [12]. The correction of the
stiffness properties was performed in this work due to the fact that this property decreases significantly with
applied damage. 8 damage elements are used instead of updating 30 beam elements [13]. Damage is represented
as the sum of 7 linear damage functions multiplied by 7 updating parameters (design variables of the updating
problem). The FE model of the beam, its damage elements and damage functions are shown in figure 20.

2.2 FE model updating

First, updating of the reference beam is performed with deterministic FE method. The initial FE model is
characterized with E0 = 37.5 GPa and I0 = 1.93 × 10−4 m4 being Young’s modulus and moment of inertia
respectively. Note that the initial FE model is the reference state for the updating of the undamaged (reference)
beam. The objective function is set up with 4 frequency residuals, and 124 mode shape residuals. The initial
and updated FE model results are shown in figure 21. As mentioned in the previous section, dynamic modal
parameters are obtained from 62 measurement points (for both of the experiments). The obtained data is
averaged to 31 values. Therefore, there are 31 × 4 = 124 (31 values for each one of the 4 modes) modal
parameters, and 4 corresponding eigenfrequencies as inputs (128 inputs in total).

Updating of the damaged beam is similar with some differences. First of all, the reference state is the updated
FE model of the undamaged beam. The other difference is that fuzzy uncertainty is applied on the inputs in
this case (fuzzy uncertainty can also be applied to the updating of the initial FE model). The dynamic modal
parameters are converted to fuzzy numbers to represent uncertainty. The number of α-levels is adjusted to 10
and ± 1% uncertainty is applied at zero α-level (support of fuzzy numbers). Triangular membership functions
are used for simplicity [14, 15] where µ(x) = 1 level has the deterministic value obtained from dynamic tests.

The choice of optimization method for fuzzy calculations is limited due to the number of modal parameters
(inputs). The SQP method minimizes and maximizes the function for each α-level. This corresponds to
7× 9 = 63 times function optimization (7 design variables, 9 α-levels of intervals). This method was tried and
it was observed that the developed program has a very high computation cost. The Transformation Method
does not work for such a problem due to the high number of inputs. The number of function evaluations
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Figure 19: Experimental modeshapes of the undamaged and damaged beam

Figure 20: The FEM, damage elements and damage functions of the RC beam

Figure 21: The stiffness distribution along the undamaged beam
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needed for this method is NTM = (10− 1)× 2128 + 1 = 3.06× 1039, which means that the computation time is
extraordinary for this problem. The last choice, Short Transformation Method, performs well for this updating
problem. Due to the 7 design variables 14 critical combinations of upper and lower bound values are predicted
by performing a sensitivity analysis (the value of the critical combinations can be any even number between 2
and 2 times the design variables depending on the problem), which corresponds to 127 function evaluations. It
is obvious that Short Transformation Method is ideally suited for such a large problem. However, one should
note that this method gives good results if the function is monotonic in its inputs. In a first approach the Short
Transformation Method is applied on the current updating problem, with a low range of uncertainty (± 1%) in
order to obtain safe results. The results are shown in figure 22 .

Figure 22: The stiffness distribution along the undamaged and damaged beam. −, indi-
cates the initial FEM and + indicates the updated FEM of the undamaged
beam.

2.3 Comments on the results

FE model updating was performed including fuzzy uncertainty on the dynamic parameters obtained from
vibration tests. The uncertainty was introduced by triangular membership functions for simplicity. At the
end of the computation the fuzzy distribution of stiffness along the beam was obtained as output. When the
output at each individual finite element is examined, it was observed that all of them are convex membership
functions. Therefore, it can be concluded that the objective function is a more or less monotonic function of the
eigenfrequencies and modeshapes. Consequently, the Short Transformation Method is a safe method for this
problem. When the fuzzy stiffness distribution along the RC beam is studied, the corresponding graph shows
wide intervals at zero α-level. Considering only ± 1% uncertainty at the input parameters at that α-level, it
can be said that the objective function is very sensitive to the dynamic input parameters.
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3 Static analysis of a frame

In this example, the maximal deflection of a frame under a static load (figure 23) is investigated. Different kinds
of uncertainty are modelled by means of fuzzy numbers, including stiffness parameters (the rotational stiffnesses
of the connections, K1 and K2), the load amplitude F , and the load location x.

F

x

K2K1

Figure 23: Static analysis of a frame

The frame has a height of H = 5 m, a width of 20 m, the columns consist of IPE400 profiles and the girder
is an IPE360 profile. Both spring stiffnesses are modelled as triangular fuzzy numbers with a centre value of
14.6×106 Nm/rad, and a base width of 20 %. The load amplitude F has a centre value of 20 kN and a base
width of 20%, and the load location varies between 4m and 12 m, with a centre value of 8 m. The membership
functions of the uncertain model parameters are shown in figure 24.
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Figure 24: Uncertain input variables membership functions for frame example

Whereas the stiffness parameters and the load amplitude are expected to result in monotonical behaviour of
the response variable (the maximal vertical deflection), the load position certainly does not, as it is clear that
the maximal deflection will occur when the load takes place at midspan. Therefore, the Tranformation Method
and the Short Transformation Method are not appropriate candidates to perform the fuzzy calculations, and a
more sophisticated optimization scheme should be adopted.

Although non-monotonical, the input-output relation is believed to be a well-behaving function (continuous,
differentiable), with only one local optimum at each α-level (namely for x = 10 m). Therefore, the GαD
algorithm, with the adaptive α-level stepsizing parameters set such that only two search paths remain, seems
to be a well-suited choice for this problem.

In order to get an idea of the behaviour of this structure under these uncertainties, figure 25 gives a contour
plot of the maximal vertical deflection as a function of the load location and the spring stiffnesses (which are
assigned identical values here).

Finally, the fuzzy analysis itself is performed with the GαD algorithm, yielding results as shown in figure 26.
It is observed that the extremal points indeed are formed by minimum and maximum values for the stiffness
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Figure 25: Maximal vertical deflection as a function of load location x and spring stiff-
nesses K1 and K2

parameters and the load amplitude, while for the load location, x = 10m leads to the maximal deflection (if
this value is inside the α-cut at that level).
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Figure 26: Results of fuzzy analysis of frame example. In (a), (b) and (c), 5 denote the
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1. Introduction 

This part of the project will describe the application of uncertainty modeling on industrial test 
cases. As described in work package 1.5, different alternatives have been presented as 
possible industrial cases for static structural analysis.  
 

2. civil engineering 

A first proposal for industrial test case consists in evaluating the settlement of the footings of 
a symmetric 2-dimensional frame. In a first approximation, the structure was considered as 
well defined with only uncertainty in the (rotational) stiffness at the connection between the 
column and the beam and also an uncertain finite rotational stiffness at the connection with 
the soil. This real – but simple – industrial case is discussed in work package 3.3 
(Annex33a_scientific_report_2004_313_BWM.pdf). 

 
In a later discussion of  this industrial 
test case, the soil is described more 
realistically by two parameters (cohesion 
and angle of friction) and non linear 
material behaviour for the soil (type 
elasto-plastic).  Uncertainties concerning 
the soil parameters were deduced from 
extensive soil investigation data obtained 
at two test sites in Limelette (loam and 
sand soils) and in Sint-Katelijne-Waver 
(clay soil). As this extension of the basic 

industrial testcase also considers only 2 uncertain parameters, the report is also bundled in 
work package 3.3 (Annex33a_scientific_report_2004_313_BWM.pdf). 

In both studies, emphasis has been put on the comparison of different methodologies to 
model the uncertain behavior (deterministic with safety factors, probabilistic, possibilistic).  

For an example in civil engineering with multiple uncertainties, an example of industrial 
background is discussed in workpackage 3.4.  
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3. mechanical engineering 

A first industrial test case consists of a mud guard support (example made available by DAF 
Trucks). The main uncertainties are in fact design variables: wall thickness of stiffeners and 
base plate. Their values are discrete (e.g. 6 or 8 mm thick). Secondary uncertainties depend 
on tolerances and have possible values within narrower, but continuous ranges (e.g. wall 
thickness of tube between 4.5 and 5 mm, and the 
position of the connection bolts to the frame, which 
vary within a tolerance of 2 mm around the nominal 
position).  
As an academic case, further investigation is done 
on the connection method of the base plate to the 
frame and the geometrical detail at the end of the 
stiffeners (triangle or trapezium), i.e.  topological 
parameters.  
As the validation of the results depend on the first 
natural frequency  by way of a penalty function (the 
lower the eigenfrequency, the more vibrations with 
higher amplitude will take place), a modal analysis 
has also to be carried out. See details in chapter 3.1. 
 
A second, more complex case from CNH (Case New Holland), consisting of a complex 
welded structure forming the frame of a harvesting machine, has not been executed. Instead, 
another case has been setup for evaluation by a design of experiments setup (see further 3.2). 
 
A third case is rather a dynamic problem (courtesy of DAF-Trucks). It consists of a truck 
cabin placed by means of spring/dampers on the chassis, which again rests through 
spring/dampers on the wheel axles. The goal is to optimize spring/dampers to the most 
comfortable behavior for the driver. This is a model with limited degrees of freedom (point 
masses and springs in a 2-dimensional 
model), but many uncertainties: 

- design variables or uncertainties  for 
the stiffness & damping of all springs 
(including tyre stiffness).  

- masses of cabin, chassis and trailer 
- center of gravity for the masses of 

trailer and the cabin with respect to the 
chassis. 

 
This case was presented at the meeting of the Users’ Committee of 21june2005 by David 
Moens, and is further discussed in the work-package 4 (dynamic structural analysis). 
 

3.1 Study of the mudguard support (DAF-Trucks) 

The picture on next page shows the support as modeled in the CAD-system, connected to a 
[-shaped beam (modeled with limited length). That peace of chassis girder is considered rigid 
connected at its ends. De mudguard itself (with some additional components) is modeled as 3 
pointmasses (m1=m2=3.35 kg; m3=6.1kg) connected to the tube. 
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Horizontal and vertical unit forces 
Fx=Fz=1kN act on the tube at points m1 and 
m2. The real forces are unknown. This study 
is used to compare new designs with an 
existing and tested design. The tests are 
performed on a test bed, and calculation 
results for a unit force are (logarithmic) scaled 
to a lifespan of 6000 km on the test bed.  
 
The model is calculated in FEA using shell 
elements. This allows for an easy 
implementation of a variable shell thickness 
for the tube, the stiffeners and the base plate. 
The model consists of  20746 plate elements 
(CQUAD4), 21049 nodes (6 dof per node). 

The uncertain model parameters: 
� Young’s modulus: nominal=210 GPa range [205 ; 211] GPa 
� thickness of the tube: nominal= 5mm range [4.5 ; 5] mm 
� stiffener thickness:  nominal=8mm 2 possible values: 8 or 10 mm 
� 2 possible shapes for the stiffener geometry:  
 triangular trapezium 

               
� connection of the baseplate to the chassis by MPC (Multi Point Constraint or Coupling): 
   3 possibilities: 
complete rigid connection  rigid connection on edge 4 bolts (coupling of circular areas) 

     
The 4 bolts are located within a tolerance of ±2mm in vertical and horizontal direction about 
the nominal value. 

Most of the uncertain parameters have discrete values or mean topological differences. For 
the tube thickness, the nominal value corresponds to the maximum. For that reason, no 
membership functions have been set up. The calculations are performed using the DOE-
approach to the transformation method. Because there are no α-cuts defined, this means that 



Annex35_scientific_report_2005_WTCM.doc 4 

the study is limited to calculations at the vertex points (thus a full factorial DOE-approach).  
Only for the material property (Young’s modulus), it could be interesting to define a 
membership function with α-cuts. Only the nominal value is used for a (deterministic) 
“center point” analysis, and for a first set of analyses where the response ranges are 
quantified for each uncertain parameter keeping al the other parameters at there nominal 
value. For the tolerances on the bolt-positions, the nominal position is the central location.  

On the other hand, the different connections between baseplate and chassis that we consider, 
means that this parameter must be evaluated at different (>2) distinct values, and for the case 
of a bolted connection, we consider for each bolt separately an uncertainty in horizontal and 
vertical position, thus combined 8 uncertainties, this means that 2+2

8
 = 258 combinations 

must be considered for the connection (the first “2” refers to the other 2 totpologies). 

The responses of interest depending upon the uncertain model inputs: 

� the first two eigenfrequencies in a modal analysis 
� maximum displacement for both static analys (with 
     force along X resp. along Z) at the end of the tube  
     in longitudinal (X) and vertical (Z) direction. 
� maximum stress responses for both static analyses:  
     1) maximum Von Mises’ stress in the connection 

 stiffener-cylinder 
     2) maximum Von Mises’ stress in the connection 

stiffener-baseplate 

The results of the modal analysis: 

The first 2 modeshapes correspond to vibrations of the tube (with pointmasses !), the first in a 
quasi horizontal plane, the second normal to the first. 
As explained higher, a first set of analyses is performed to quantify the response-ranges for 
each input parameter separately (keeping all the other parameters at their nominal values). 
During a second set of analyses, all the combinations of bolt-positions are considered, and 
finally, all possible combinations of the uncertain parameters at their extreme values.  

 
Overview of the results for the modal analysis (indicated numbers = nominal case). 
 

1 2
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As expected, results show monotonic eigenfrequency variation with respect to Young’s 
modulus, tube and stiffener thickness. And of course, the connection method of the 
baseplate to the chassis influences considerably the stiffness (thus the eigenfrequencies).  

The results of the static analysis: the tables beneath show a short overview of the 
calculation results for the static analyses. 

Horizontal load FX:  

 
Vertical load FZ:  

 

Comments on these results: 

( expected monotonic variation of displacements with respect to Young’s modulus, tube and 
stiffener thickness 

( edge and full rigid connection between baseplate and frame substantially increase stiffness, 
resulting in significantly lower displacements. The  huge number of analyses for the 
consideration of tolerance of the bolt positions, is in contrast with the limited influence of 
that uncertainty. 
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( maximal Von Mises stress in the cylinder-stiffener connection is strongly influenced by the 
tube and stiffener thickness 

( model of baseplate connection mainly influences maximal Von Mises stress in the 
baseplate-stiffener connection 

 
Conclusions: 

� this case study shows that material, geometrical and modeling uncertainties can be 
combined in a single uncertainty study 

� the interval procedure identifies the model uncertainties that mainly influence the 
eigenfrequency, displacement and maximal Von Mises’ stress 

� material and element property uncertainties are clearly the easiest to handle in the 
automated procedure 

� in order to analyze topological modeling uncertainties with more than two 
possibilities (as in this case for the baseplate-stiffener connection), an ’adjustable 
full factorial’ is required 

Remark (see workpackage 2.2): An experimental design where factors are set at more than two 
levels, is sometimes called an ‘adjustable’ factorial. An adjustable full factorial DOE for a model with 
k factors at 2 levels, m factors at 3 levels (n factors at 4 levels) will require 2k * 3m (* 4n)  
experiments. In the case of the mudguard support, the adjustable full factorial uncertainty study 
required   2 4 * (2+ 2 8)1 = 4128 experiments for each laodcase (1 modal & 2 static cases). 

2 4   � 4 parameters evaluated at 2 levels  
(2+2 8) � number of variants for the connection between baseplate and chassis 

Further investigations on the mudguard support: 

In order to compare the FFE (Fuzzy Finite Element) analysis with other tools, th model has 
been slightly simplified: only the bolted connection between baseplate and chassis is 
considered and tolerance on the position of the bolts is omitted (this had only a small 
influence), but the bolts are modeled as springs with variable axial stiffness and constant 
shear stiffness. Also only the trapezoidal shaped stiffener geometry is considered. Hence all 
uncertain parameters can vary in a continuous range, mostly symmetric.   
 

Uncertain parameters: 
� unc1 – Young’s modulus E ± 5% [210 GPa] 
� unc2 – thickness stiffeners ±25% [8 mm] 
� unc3 – thickness tube [0 ;-10]% [5 mm] 
� unc4 – thickness baseplate [0; +25]% [8 mm] 
� unc5 – axial stiffness kn of 1 bolt [1-10000] 

MN/m, nominal 100MN/m  
Constant transverse stiffness horizontal and vertical: 
kt=500 MN/m. The model consists of ~100.000 DOF’s 
 
The responses are the displacements (translations & 
rotations) in node 45030 (end point of the tube) & 832 
(lower right bolt, rather an academic control) for the 
horizontal force Fx. 
 
 

m1 
m2 
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The study is executed in several approaches (some using LMS-Optimus application): 
� FFE using transformation method with 1 α-level (=vertex method) 
� RSM (Response Surface Modeling) using polynomial  
� RSM using Radial Basis Functions  (RBF) 
� Global optimization method 
� Monte Carlo simulations (MC) 
 

 
 
Despite the relative few solution runs (32) for the vertex method, the total range of outputs is 
covered, except for the academic output at node 832: there is a small part at the lower 
amplitudes of output covered by the other methods, that is missed by the vertex method for 
Tz (translation along Z) and Rz (rotation about Z-axis). This means that the response is not 
completely monotone for the variable input parameters. Although a detailed investigation has 
not been performed, one can expect that for some combinations of the parameters, the 
combination of bending & twisting can lead to situations where the total deformation for 
some DOF is to a higher level compensated than for the vertex points.. 

Finally, a numeric quantification of the 
influence of each parameter is performed 
(analog to the methodology of DOE, 
discussed more in detail in next industrial 
case (§3.2)). 
The plot on the right shows the relative 
influence for each input variable  on the 
displacement Tx of node 45030. 
It seems surprising that parameter3 
(thickness off the tube) has only a small 
influence (1%). This can be explained by the 
fact that the nodes at points m1 & m2 are 
connected by MPC’s. Due to this modeling 
idealization, only the small part of the tube 
between point m2 and the stiffeners is really excitated. Also the range covered by uncertainty 
3 is relative small compared with the other (unc5 covers a very large range !). 
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3.2 Study of the straw chopper (Case New Holland *) 

A straw chopper is a machine that cuts the straw of harvested wheat or other cereals in small 
pieces, in order to leave it on the ground as natural fertilizer. The main part of the machine is 
a drum (semi-transparent yellow on figure; ±φ194mm and more than 2m long) with triangular 
shaped plates welded on it (paddles). On each of these paddles two knifes are connected over 

an axis with bushings, so they can rotate during a collision with a big part. The bushings are 
clamped by a bolt against the paddle, so that radial force is transferred by friction (according 
to the clamping force, this is true if the friction coefficient µ>0.3). 
The radial distance between the axes of 2 opponent knife-pairs is 300 mm. This dimension is 
very strict and follows from the paddle geometry with very tight tolerances and the setup for 
the automatic welding robot.  
This case considers the nominal centrifugal load. The rotational speed is 3500 rpm, leading to 
a radial force of 24kN per paddle. 

Uncertain input parameters 

The drum consists of a standard tube, with normalized tolerances for outer diameter (±1%) 
and wall thickness (approx ±5%): 
unc A R_out (from φ193.7 ±1%) nominal 96.85 mm range [95.88 ; 97.82]mm 
unc B Thickness T nominal 6.3 mm range [5.95 ; 6.75] mm 

The inner face of the paddle is dimensioned such that it fits the outer tube diameter for the 
maximum R_out. For smaller values of R_out a gap exists up to about 2mm that has to be 
filled with welding material. 

Peak stresses are expected near the shoulder (S) 
in the weld . For that reason 2 design parameters 
are introduced that model an excavation in order 
to introduce less rigid behavior and hence less 
peak stresses near the shoulder S: 

unc C = excavation depth h (blue dimension) 
 nominal 6mm range [1 ; 8] mm 
unc D = excavation length L2 (red dimension) 
 nominal 67.4mm range [64.25 ; 68.9] mm 

The maximum of D is given by the necessity to 
leave a minimum amount of material in order to 
form the weld. 
                                                 
* the case has been presented in a meeting of the partners on 07-09-2005, Leuven.  
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As an additional (academic) parameter, the way how forces are distributed from the bushings 
to the paddle, is taken into account by de force distribution parameter F_distr and is 
expressed as the rate (%) the force is transferred as bearing load (sinusoidal distributed on the 
outer half of the hole). The rest of the force is transferred by friction due to the clamping 
force on the bushings (equally distributed all over the hole). The nominal value for F_distr is 
unknown, but ideal and in normal circumstances the bearing rate = 0 (100% Clamping). For 
the study it is assumed that the bearing component (B) varies between 33% and 67% (the 
clamping component inversely varies from 67% to 33%) 
unc E F_distr nominal (B): 33% range (B) [33 ; 67] % 

Uncertain measured responses 

The uncertain outputs that were considered are the maximum Von Mises’ stresses (VM) in 
the dark colored areas on the plot. Only the fillets for one paddle representing the weld is 
modeled and meshed in detail. 
 
 
 
 
 
Response 1: VM at the fillet (weld) 
Response 2: VM in the hole 
Response 3: VM in the excavation 

 

 

 

 

Remarks: 
- after executing the analyses, response 3 was no longer considered: stress levels are low. The 
expected raise of stresses in that area becomes relevant for higher values of h.    
- the tightening force for clamping the bushings to the paddle is not modeled 
- it was not the purpose to investigate the way how welds are exactly modeled. This would be 
a research project on itself. 

Results of the uncertainty study 

The purpose of this study is to verify the effect of different parameters on the level of the 
peak stresses. Based on these results, geometry could be optimized by setting the optimal 
values for the design variables. 

As the ranges for the uncertainties are relative small (except for the force distribution), the 
number of calculations has further been reduced. The vertex method (only 1 α-level) would 
necessitate 2

5
 calculations (+eventually a core level analysis).  

For this study one has limited the number of analysis to 8 (fractional factorial study). The 
parameter combinations are set up based on the DOE-methodology using a so called 
L8-factorial. The table on next page shows the combinations and the results (for responses 
1 and 2). The last 2 variants (NOMINAL_1 & NOMINAL_2) will be used afterwards for 
inspection & prediction. 
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Combinations of parameter values & results for the “straw chopper study”  

Detail of the stress plot for VARIANT3 (left) and for VARINT6 (right) 
 
If we study the effects of each parameter on the response, one can conclude that the Force 
distribution has no effect on the maximum stress in the weld, but is the most influencing 
parameter on the hole-stress (as expected). Only the excavation depth (h) has also a limited 
effect on response 2. A quick visual overview of the responses is given in the figures below. 

 

 
 

 
 
 
 

 A B C D E A B C D E 
 
Response 1 is the most interesting concerning sensitivity analysis & geometrical optimization 
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(goal = minimal VM-stress in the fillet). From the main effects, it is clear that the excavation 
should be maximized (parameters C & D maximized). 
 The limited number of analyses allows to construct response surfaces. As only 2 
parameters(C & E) influence response 2, it is easy to interpret the response surface that plots 
the response2 in function of these 2 parameters.  

      
As the isolines (for constant stress response 2) are almost horizontal, the parameter on the 
horizontal axis has only small influence on the response. 
As only the parameters C (excavation depth h) & D (Force distribution F_distr) influence 
response 2, a full prediction can be made based on this single response surface (extrapolated 
for the force distribution from 0% (zero bearing, thus full clamping) to 100%.  
Example: h = Bearing force  50% � 240 < resp2< 250 MPa  (see variant NOMINAL_1) 
                h = Bearing force    0% �           resp2 ~150 MPa  (see variant NOMINAL_2) 
 
It is also possible to calculate (predict) the stress response1 for any combination of parameter 
values. For the parameter values of the combination NOMINAL_1,  the prediction calculates: 
  response 1:   289.4 MPa   (FEM-control calculation � 296 MPa) 
 response 2:   247.4 MPa   (FEM-control calculation � 248 MPa) 
 

Remarks:  

- the methodology followed above is only valid for monotonic and (quasi) linear behavior 
of the responses in function of the uncertain parameters. This should always be checked 
by extra calculations (at least 1, e.g. “core level” analysis at the nominal values of the 
parameters). 

- as known from the DOE-methodology, the main responses in the results table (page 10) 
also include possible interactions (which means that the effect of one parameter is 
strengthened or weakened by the variation of another parameter.  

 main effect A also includes interaction BxE However, we do not expect 
 main effect B also includes interaction AxE any interaction between these  
 main effect C also includes interaction DxE parameters and the force  
 main effect D also includes interaction CxE  distribution  
 main effect E also includes interaction AxB and CxD 
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TAP 31 
 

Report part 3.6 
Comparison of fuzzy finite element approach  

to the DOE approach. 
 

Stephan Masselis 
WTCM-CRIF 

Celestijnenlaan  300C, B-3001 Leuven, Belgium 
 
 
 

1. Introduction 
 
The approach using fuzzy arithmetic that is developed in task 2.3 should produce results that 
are similar to the results of the Design Of Experiments approach. However, the performance 
of the procedures is probably different. This task compares the results of both procedures and 
the performance of both methods. 
Remark that also comparisons are made of the fuzzy method with different probabilistic 
methods. For these cases (see general description in workpackage 3.1 and examples in 3.3) a 
more ‘realistic’ membership function has been setup (possibility curve of the strength & 
necessity curve of the load). This allows to estimate the ‘possibilistic’ reliability of a civil 
structure, which is compared with the probability that a structure will resist (or fail) in a 
probabilistic analysis. This issue, as well as the comparison with deterministic calculations 
using safety factors, is described in more detail in workpackage 3.7. 
 

2. Comparison of the fuzzy finite element approach (FFE) to the DOE 
approach. 

 
The FFE methodology is implemented following different strategies (*): 

- using interval arithmetic (� IFFE = Interval Fuzzy Finite Element method). 
- global optimization (i.e. optimization method in order to find the minimum & 

maximum responses (= fuzzy response interval) as function of the fuzzy input 
parameters and the considered ranges (respective ranges for each α-cut). The input 
parameter values corresponding with the maximum output is in general the ‘worst 
case’.  

- transformation method (reduced to vertex method in only 1 α-cut is considered) 
- hybrid approach: combines global optimization & interval arithmetic in order to 

reduce computational cost and moderate the conservativeness of the interval 
approach. 

                                                 
*  see presentation “Implementation and Application of Finite element Method” of David Moens at the 

meeting of the Users’ Committee on 21/06/2005  
 see also workpackage 2.3 (& 2.4): Static (& dynamic) fuzzy FE development 
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The hybrid approach as well as the interval arithmetic are implemented for dynamic 
problems (modal analysis & FRF-analysis), and is discussed more in detail in workpackage 4 
(Dynamic structural analysis). 

The transformation method is far most used for static (mechanical) structural analyses. The 
main disadvantage of this approach is the fact that it is only applicable in case of monotonic 
behavior of the responses with respect to the uncertain input parameters. If not, one risks to 
miss a range of the fuzzy output (and hence the worst case). 

An analytical illustration of monotonic versus non-monotonic behavior is given by 2 simple 
systems with 2 fuzzy input parameters (**): 

    
         two-bar truss: monotonic behavior                              resonant spring-damper system: non-monotonic behavior 

The plots on next page show the points where minima (�) and maxima (�) are found for 
each α-cut using the optimization approach (left) and the vertices (o) for calculations at each 
α-cut using the transformation method (right). The analytical results are plotted as iso-lines 

                                                 
** see presentation “Performing fuzzy analysis using optimization methods” by David Moens at the meeting of 
the Users’ Committee on 21/06/2005 

Hybrid 
method 
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of the response surface on the background. It is clear the optimization method finds the 
extreme responses (best & worst case) for both cases, but the transformation method fails to 
detect the worst case for the spring-damper response (mid-bottom area of the response 
surface). 

optimization method transformation method 
 two-bar truss spring damper two-bar truss spring-damper 

 

 
As illustration, the membership function of the fuzzy output is also plotted (by interpolation of the 
minimum and the maximum responses at each α-cut). 

Remark: the non-monotonic example is a dynamic calculation and indeed, resonance 
phenomena yield to non-linearity an non-monotonic behavior. Another dynamic example is 
demonstrated by the Garteur –model (airplane). In that case the eigenfrequencies wee 
calculated, not the harmonic response. This property is close related to stiffness & mass (not 
resonance responses) and hence rather monotonic behavior can be expected. Indeed, the 
results showed perfect correlation between the optimization method and the transformation 
method. 

This plot shows the range of the 
fyzzy outputs (the 14 first 
eigenfrequencies) as deviation 
about their mean value for 
different approaches: 

DOE = transformation method 
(vertex method) 

� 24 = 16 runs 

OPT = optimization method 
� ±16 runs per mode 

MC= Monte Carlo simulations 
� 60 runs (limited 

number, hence lack of finding the 
real extrema) 



Annex36_scientfic_report_2005_WTCM.doc 4 

Another static structural example was the mudguard support (courtesy of DAF-Trucks). The 
plot below compares the results and computational effort (# of runs) for the different 
approaches for the simplified model with fuzzy spring stiffness for the connecting bolts.  
(5 parameters at 2 levels � 25=32 runs for the vertex method). 

 
Only for 2 responses, the exact extrema were not found by the vertex method. These extrema 
are minima (Tz are negative values and the skipped extremum is at the richt side) and do not 
concern ‘worst case’.  

Remark: the computational effort for the vertex method is extremely low in relation to the 
other methods.  

3. Further refining the results of the Transformation Method 
In order to assess the behavior in non-linear or non-monotonic cases, one can increase the 
number calculations for each α-cut of any fuzzy parameter using multiple values within the 
range (thus not only the minimum and maximum value) as described at the end of 
workpackage 2.2 (“general transformation method”).  

The illustration beside shows the evaluations points for 
the spring-damper system if only one parameter is 
evaluated at intermediate values: 
  o � evaluation point for vertex method 
  x � extra evaluation points 

 

The procedure of calculating at one or more intermediate 
values can be limited to only one α-cut (level 0). This 
approach yields to the “adjustable” full factorial DOE. 
The number of calculations is then ~m1

n1*m2
n2*…  

where m1 parameters are evaluated at n1 values etc. 
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4. Reducing computational effort. 
Although the computational effort for the transformation method is relative low, in many 
cases one can even reduce it further. 

One approach is reducing the number of algebraic operations by reducing ndof (number of 
degrees of freedom). A general used method in Finite Element systems is substructuring. 
Pieces of geometry that are not dependent on the variation of fuzzy parameters, can be 
reduced to one ‘super’-element. Suppose that piece of geometry divided in a number of finite 
elements (and a corresponding number of nodes and hence number of degrees of freedom 
nsub), then that piece of geometry can be reduced to 1 element with a limited set of DOF 
(these DOF can be a number of selected points where responses are to be measured, or the 
points/nodes where that substructure interfaces with the rest of the geometry). 
Another approach that can be followed, is the reduction of ‘active’ DOF for dynamic (modal) 
analysis. That method is also called ‘Component Mode Synthesis’ or ‘Reduced Modal 
Analysis’. The set of active DOF are called the master DOF. After a calculation of the 
eigenfrequencies and modeshapes with the reduced set of DOF, the results can be expanded 
to the complete model in order to visualize the modeshapes on the complete model. 

Both approaches (***) for reducing the number of active DOF (substructuring & reduced 
modal analysis) are standard implementations in most commercial FE-systems and can in 
fact be used for any FFE-approach, as well as for other deterministic & probabilistic 
calculations. 

 

Another approach for further reducing the computational effort is applying a fractional 
factorial DOE. When monotonic and quasi linear structural behavior can be expected, the 
computational effort of the transformation method (vertex method) can  further be reduced:  
 

- Short Transformation Method (illustrated by way of the previous examples: two-rod 
truss & spring-damper): after a sensitivity analysis (calculations x on the plot) to 
determine the critical diagonal, the response is calculated for the vertices along that 
diagonal. It is obvious for this example that the worst case is detected for the two-
truss beam, but not for the resonant spring-damper. 

                

                                                 
*** examples showed in presentation “The application of substructures in fuzzy analyses” by Daan Degrauwe ea 
at the meeting of the Users’ Committee on 21/06/056 
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- fractional factorial DOE: this approach is well known in the DOE-methodology. It 
allows to detect the worst case and to quantify the effects of the fuzzy input 
parameters on the outputs. The method is only applicable in case of monotonic and 
(quasi) linear behavior. However, it is also possible to apply adjustable fractional 
factorial DOE-experiments (one or more parameters are then evaluated at one or more 
intermediate values between the minimum and maximum). 
A fractional factorial DOE-experiment has been executed for the industrial case of the 
‘straw chopper’ (courtesy of Case New Holland, see workpackage 3.5). For a 
problem with 5 uncertainties (each at 2 levels), only 8 solutions have been calculated 
(52 = 32 for a full factorial or vertex method). 

 

                 
 

5. Conclusion. 
The  FFE-analysis using the optimization-approach yields best results in terms of covering 
the complete output range and detecting the worst case. The computational cost is high 
relative to the transformation method, but lower than the probabilistic methods. 
The transformation method yields to adequate results and is very powerful in terms of 
computational cost, but is limited to monotonic problems. In most cases, the transformation 
method can be limited to the vertex method, which is analogue to a full factorial DOE. 
However, this method can be extended to ‘adjustable’ full factorial when more accurate 
results are needed for non-linear or even non-monotonic behavior. On the other side, the 
method can further be optimized in terms of computational applying a ‘fractional’ factorial 
DOE or following the “short Transformation Method”.  A combination of increasing the 
output quality with limited extra computational cost, can be attained with application of the 
GαD-algorithm (discussed more in detail in task 3.4). 
As the behavior of static structural models are is in most cases monothonic, and the ranges 
are in mahy cases relative narrow, the transformation method is very well suited for this kind 
of analysis. Dynamic problems, and certainly harmonic responses in the vicinity of 
resonance, are often strongly non-monotonic. For that reason, the optimization method (and 
hybrid method, see workpackage 4)  is rather suited for dynamic problems. 



 
 
 
 
 

TAP 31 
Report part 3.7 

Comparison to traditional design rules 
 
 
 
 
 

1. Introduction 
 
This part of the report gives an overview of the safety margin obtained with 
probabilistic methods, the partial safety approach of the Eurocodes, and fuzzy 
methods applied to civil applications. 
 
 

2. Overview of the applications 
 

2.1 Tensile bar 
 
The first application consists of a tensile bar as illustrated in the figure below and 
presented at the users meeting of 11 Oct. 2004. 
 

 

Gk = 1 MN 
fyk = 235 N/mm² 
A = 6319 mm² 
γG = 1.35 
γM = 1.1 

G 

R 

  
One can verify that the design meets the Eurocode rules (Gd < Rd with Gd = Gk * γG 
and Rd = fyk * A / γM ) 
 
Supposing that  μG = Gk and σG = 0.1 μG and 
   μR = Rk + 2 σ and σR = 0.08 μR , 
one can determine the reliability index β = 4.4 and the probability of failure  
Pf = 4.5 E-6. 
 
A design according to Eurocodes and with the partial factors given in their annexes is 
considered generally to lead to a structure with a β value greater than 3.8 for a 50 year 
reference period, which corresponds to a probability of failure of 5 E-5 / 50 year. 
 
This design is indeed safe enough (β> 3.8).  See also part 5.2 of this report. 
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2.2 Two dimensional portal frame 

 
The second application consists of a two dimensional portal frame as shown in the 
figure below and already presented in part 3.3. 
 

Beam : IPE 360, L = 20 m 
Column : IPE 400, H = 5 m 
P = 2.24 kN/m 
KA = 8.3 E6 Nm / rad 
KB = 14.8 E6 Nm / rad 

 
The main goal was to compare the fuzzy approach with probabilistic methods for the 
angles φA and φ’B and the midspan deflection v. 
 
The problem is solved for two values of the standard deviation of the parameters : 
10 % and 50 % of the mean value.  Membership functions are defined from the CDFs. 
For more information see part 3.3 of this report. 
 
The results show that the fuzzy method provides a safe approximation at the tails of 
the CDFs.  The deviation between the analytical solution and the fuzzy one is much 
bigger for φA than for φ’B and v because φ’B and v are nearly independent of KA and 
mainly depend on one fuzzy input variable KB. 
 

 
Percentile values for σ = 10 % 
 

 
Percentile values for σ = 50 % 
 
The fuzzy method leads to conservative results.  Important parameters are the 
correlation between the different input parameters, the number of stochastic 
parameters and the sensitivity of the response to these parameters. 
 

2 



2.3 Shallow foundation 
 
The third application consists of a shallow square foundation in Boom Clay, as shown 
in the figure below and presented in part 3.3a of this report.  The load applies 
vertically and centrally on the footing.  Load and soil are modelled as uncertain 
variables.  Three different methods are applied to evaluate the reliability of the 
foundation : the Eurocode method with partial safety factors, a probabilistic analysis 
and a possibilistic approach based on fuzzy numbers.  Soil characteristics are 
determined based on soil investigation results.  For more information see part 3.3a of 
this report. 
 

          
 
A summary of the results is given in the table below. 
 
Eurocode method (partial safety factors) Set 1 : Fd = 43.23 kN < Rd = 56.96 kN 

Set 2 : Fd = 32.02 kN < Rd = 40.69 kN 
 design OK 

Probabilistic approach β = 3.96 
Pf = 3.7 E-5

Design point : Fd = Rd = 30.60 kN 
 OK 

Possibilistic approach (fuzzy) β = 3.22 
Design point : cu = 16.36 kPa 
  F = 36.35 kN 

 NOK 
 
As was illustrated already with the other examples, the reliability index obtained from 
the possibilistic method is more conservative and in this case leads to an inacceptable 
design. 
 
 

3. Conclusions 
 
The fuzzy method leads to more or less conservative results.  Important parameters 
are the correlation between the different input parameters, the number of stochastic 
parameters and the sensitivity of the response to these parameters. 
 
On the other hand, the fuzzy method has also his advantages.  First of all, no direct 
assumption has to be made on the PDF of the input parameters, and only the upper 
and lower boundaries of all CDFs are required, which makes it very suitable for 
design problems where no sufficient statistical data are available. 
 

3 
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Report part 3.7(B) 
Comparison of the analysis to the traditional design rules with 

safety factors in mechanical engineering 
 

Stephan Masselis 
WTCM-CRIF 

Celestijnenlaan  300C, B-3001 Leuven, Belgium 
 
 
 

1. Introduction 
 
This report aims at comparing the results of a FFE-analysis with traditional analysis 
based on design rules with safety factors.  
 

2. Design rules 
 
In civil applications, where safety is primordial, decades of experience and statistical data 
is available concerning loads (windload, snowload, seismic data, …) and resistance of 
materials & structures , leading to standards and normalization of calculation methods 
based on safety factors. The main goal of a civil design, is the requirement that a building 
or bridge lasts for 30, 50 or 100 years with a failure rate of less then e.g. 1E-6.  (see also 
report 1.2, and examples in reports 3.2 & 3.3).  
In mechanical applications however, design rules are based on functional performance 
and life-time prediction. The further essentially is related with allowed deformations, 
vibrational behavior and limits on plastic deformation or rupture; the latter is essentially 
related to stresses (stress concentrations) with respect to fatigue limits of the applied 
material and material treatment. 
 

3. Validation methods for mechanical & automotive designs 
 
Design in mechanic and automotive applications is mostly based on  rules of thumb and 
practical experience (test bed validation). This was already mentioned in the beginning of 
the project (questionnaire, as basis for report 1.2 & 1.3).  
In most cases, a new design is compared with an existing deterministic (and tested) 
design. That existing design is treated as a reference, often without knowing to which 
degree that part is ‘over-dimensioned’ (unless fatigue failure data is available). The new 
design and the reference are both analysed under a “unit” force when no accurate data is 
available. Validation is based on stress levels or deformation. The uncertainties on both 
designs are considered to be similar.  
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For vehicles and trucks, lots of track-data are available, but this is not the case e.g. for 
agricultural machines, and reciprocating machines in general. General rules of thumb are 
available, e.g. the use of a load factor to quantify the design load based on the nominal 
torque or forces. As one can see in the table below, the load factor (“Betriebsfactor”) is 
very fuzzy for machines with e.g. hammering mechanisms, as is often the case for 
agricultural machines. 

       
     fig. 1: load factor (“Betriebsfaktor”) (ref. “Maschinenelemente” by Roloff/Matek) 

In some cases, design and validation is based on existing standards (imposed by 
authorities or insurance companies). This is the case for “standard parts” (like gear teeth 
or steel cables), in applications where safety and reliability are primordial (lifting devices, 
windmills (*)), and in application area where standards are available based on decades of 

                                                 
* see presentation concerning “Design of a Windmill” of Joris Peeters & Dirk Vandepitte 
at partner meeting of 11/10/2004  
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experience  concerning the loads and material resistance (**). However, most of these 
parts are not analysed by means of FEM.  
Other applications where standards are to be met are crashworthiness of vehicles and roll-
over of buses. Such analyses can be done by FEM, but are extremely non-linear. Besides, 
these standards do not rely on safety factors, but describe experiments that have to be 
simulated and executed, with validation based on maximum accelerations and maximum 
deformation of the occupants’ zone. Simulations are executed to analyse robustness of a 
design, and to prevent multiple iterations of the final physical test. 
 

4. relevancy of uncertainty modeling for mechanical design. 
 
For all the reasons above, it is difficult to compare the fuzzy method as a validation tool 
with existing practices. However, the methodologies investigated and developed, are 
very suitable as design tool for sensitivity analysis, optimisation and reliability 
analysis (robustness of a design). 
The different methods investigated have shown that (***) 

- interval arithmetic approach is too conservative 
- global optimisation is very time & computer resources consuming 
- transformation method has an inherent risk of being under-conservative, 

especially if limited to the vertex method (full factorial with 1 α-level) 
- hybrid method : more complex to implement on commercial FE-systems 

       
Especially the vertex method is easy to implement with existing FE-systems. In many 
cases, where variations are relative small (e.g. tolerances) or the behavior is quasi linear 
(at least monotonic), the method is very powerful tool for analyzing parameter sensitivity, 
optimization and reliability analysis.  
An illustration of reliability analysis is the detection of allowable tolerances. Based on a 
study with at least one α-cut and a core-level analysis, one can construct the response as 
function of one or more variable parameters (see figure on next page).  

                                                 
** e.g. design of towercranes: DIN15018-15019 
*** see presentation of David Moens at the meeting of the Users’ Committee on 21/06/2005 

hybrid method 
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__________________________________________________________________ 

 
presentation of the transformation method with multiple α-cuts.  
 
The response can be validated based on experience concerning allowable stresses or 
deformations (critical value). Giving feed-back to the design parameters (or tolerance 
variations), it is possible to adapt the permitted tolerances. 
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maarten.demunck@mech.kuleuven.be

1 Introduction

This annex of the project report compares the vertex method and optimisation
methods for envelope FRF calculation. A first section gives a short overview of both
methods, their advantages and disadvantages. A second section compares both
methods on an envelope FRF calculation (described in annex 2.4 of this report) on
the Garteur benchmark model (described in annex 1.4 of this report).

2 Description of the methods

This section describes the vertex method and optimisation methods and their main
advantages and disadvantages.

2.1 Vertex Method

The vertex method, also known as transformation method or two level full factorial
design of experiments, calculates the response of every possible combination of min-
imum and maximum values for each uncertain parameter. A vertex analysis with n
uncertain parameters requires 2n deterministic analyses.

The vertex method has some clear advantages. It is by far the easiest interval
finite element method to implement. Since the number of deterministic analyses and
the values for all uncertain parameters for each analysis are known in advance, it
is also easy to parallelise the computation on HPC (High Performance Computing)
clusters.

The vertex method also has two important disadvantages. The number of de-
terministic analysis grows exponentially with respect to the number of uncertain
parameters. A vertex analysis with 10 uncertain parameters requires 1024 deter-
ministic analyses, which is feasible for most finite element models. An analysis with
20 uncertain parameter requires 1048576 deterministic analyses, which is unfeasible
for all but the most simple finite element models. When the output is monotonous

1



with respect to the uncertain parameters, the vertex method finds the extremes, but
when the output is non-monotonous with respect to the uncertain parameters, the
vertex method underestimates the extremes. Figures 1(a) and 1(b) illustrate this on
a monotonous and a non-monotonous function with one uncertain parameter. The
squares and the dashed lines show the extrema found by the vertex method. For
the monotonous function, both the minimum and the maximum are found, but for
the non-monotonous function, only the maximum is found.
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(a) Monotonous function
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(b) Non-monotonous function

Figure 1: Vertex method and monotonicity

2.2 Optimisation Methods

Optimisation methods use a different approach. There are a lot of different optimisa-
tion algorithms, but most of them have in common that the number of deterministic
analysis nor the values for the uncertain parameters in each analysis are known in
advance. They require the user to specify a combination of uncertain parameters
to start with (the starting point) and based on the function value and often also
gradient of the results, they try to find a new combination of uncertain parameters,
closer to the extreme. This is repeated until the algorithm estimates that the current
combination is close enough to the real extrema.

The most important advantage of optimisation methods is of course that they
are able to approximate the real extreme quite accurate, both for monotonous and
non-monotonous functions. Figure 2(a) and 2(b) shows the extrema found by an
optimisation method. For most optimisation algorithm, the choice of the starting
point is important: for the function shown in figure 2(b), most optimisation algo-
rithms will converge to the left side of the interval instead of to the right side when
the user specifies a starting point left of the minimum.

Optimisation algorithms also have some disadvantages. The values for the un-
certain parameters in each analysis are not known in advance, which makes it hard
to implement a parallel version for HPC clusters, although there are some opti-
misation algorithms designed for parallel processing. Even the computational cost
isn’t known in advance, but in general optimisation methods are computationally

2



more expensive than the vertex method, especially for a low number of uncertain
parameters.
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Figure 2: Optimisation methods and monotonicity

3 Example

The Garteur benchmark model is described in annex 1.4 of this report. The first
analysis uses three uncertain parameters, as defined in that annex, i.e. the Young’s
modulus of the wing (E = [67.5 GPa, 68.5 GPa]), the stiffness of the fuselage-wing-
connection (k = [105 N/m, 1011 N/m] and the thickness of the visco-elastic layer on
the wings (t = [0.1 mm, 1.6 mm]). The frequency response function is calculated
using the algorithm described in annex 2.4 of this report.

The top graph in figure 3 shows the envelope frequency response functions for
the vertex method and for an optimisation method, the vertex FRF in red and the
optimised FRF in blue. The bottom graph shows the ratio between the upper bound
of the vertex FRF to the upper bound of the optimised FRF in magenta and of the
envelope with of the vertex FRF to the envelope width of the optimised FRF in
cyan. A value of 100% indicates that the bounds of both methods are equal, a value
¡ 100% indicates the vertex method underestimates the responses. A value ¿ 100%
would indicate that the vertex method overestimates the response, but from the
description of both methods it’s clear this would indicate a failing optimisation. On
average, the vertex method underestimates the response by 1% or 2%, but for some
frequencies, the vertex method underestimates the response with as much as 8%.

The second analysis uses only one uncertain parameter, the Poisson coefficient
of the wing material. For metals, this coefficient is around 0.3, but for composite
materials, it can be as low as 0.1 or as high as 0.4. This analysis uses values in the
interval [0.1, 0.4]. Although the maximum underestimation of the upper bound by
the vertex method is lower than in the first analysis, the average underestimation is
significantly higher.
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Figure 3: Garteur testcase

4 Conclusion

This annex compares the vertex method and optimisation methods for envelope FRF
calculation. The vertex method underestimates responses that are not monotonous
with respect to the uncertain parameters. Optimisation methods get more accurate
results, but in general their computational cost is higher than that of the vertex
method, especially for a lower number of parameters.

Two analyses on the Garteur benchmark model show that this theoretical un-
derestimation can be important in real life models.
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Task 5.1 Summary of the results of static test cases

1 Interpretation of fuzzy numbers

The first static test case involved the investigation of a 2D portal frame, with uncertain connection stiffnesses
[Task 1.4]. A comparison has been made there between a classical probabilistic approach, executed with different
probabilistic methods, and a possibilistic approach by means of fuzzy numbers. This comparison is based on
the axioms of possibility theory, which introduce possibility and necessity as limiting cases of probability.

Regarding the calculational efforts, the possibilistic method performed quite well, mainly because the calculation
of events with very low probabilities is quite expensive with Monte Carlo based methods, while this is not the
case for events with very low possibilities.

It was however observed that the possibilistic method results in conservative estimations of the results. Further
reasoning with respect to the cause of this conservatism leads to the observation that a possibilistic analysis
comes down to an implicit assumption of worst case correlation. By this, it is meant that when interpreting
fuzzy numbers, through possibility theory, in terms of probabilistic concepts, one neglects any existing or non-
existing correlation between different uncertain variables, and performs an analysis as if they were correlated
in the worst possible way.

In the second static test case [Task 3.3a], a foundation problem was solved with three methods: a probabilistic
analysis, an analysis based on partial safety factors (as described by EuroCode 7), and a fuzzy-possibilistic
method. Since the partial safety factors were originally calibrated in order to yield similar results as a proba-
bilistic analysis, both of them indeed showed that this test case fulfills prescribed requirements. The possibilistic
analysis however, resulted in an inacceptable value for the reliability index, indicating that this method indeed
is conservative in comparison with probability theory.

Of course, it is not fair to compare the results of a possibilistic analysis with criteria which were originally
intended for probabilistic analyses. However, in view of the lack of possibilistic criteria, this renders a possibilistic
analysis rather useless as a method to check if a design fulfills prescribed norms. Instead of seeing it as
a replacement for traditional design procedures, fuzzy numbers and possibility theory should be used as a
complement to them. They doubtlessly are a usefull tool for design optimization, sensitivity analyses, worst
case load combinations or linguistic uncertainty modelling, but one should avoid a direct comparison with
probabilistic results or criteria based on possibility theory.

2 Calculational aspects

As illustrated by the two basic test cases, static analyses often behave very well. Response variables such as
displacements, stresses or member forces usually are continuous, differentiable, monotonic functions of uncertain
variables like stiffness parameters or load amplitudes.

This good behaviour suggests the application of the fastest method to perform the fuzzy calculations, namely the
Short Transformation Method [Task 3.4]. With this method, the number of function evaluations is independent
of the number of uncertain input variables, making it very interesting for large-scale problems. It also is capable
of handling multiple response variables at the same time.

In some cases, non-monotonic behaviour is observed, for example when a load position is modelled as an
uncertain parameter. In such situation, the GαD algorithm with a high maximal α-level stepsize, and a high
aggression factor provides an efficient but robust alternative to the Short Transformation Method [Task 3.4,
example 3].
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TAP 31 
Report part 5.2 

Comparison to conventional rules 
 
 
 
 
 

1. Introduction 
 
All safety aspects of civil applications are based on the Construction Products 
Directive (CPD 89/106/CEE) in which are stated the basic requirements of all 
construction products.  Two basic requirements are important in the framework of this 
project : (1) stability and mechanical resistance, and (2) safety at serviceability stage. 
 
This part of the report gives an overview of the relation between the failure 
probability and traditional design rules for civil applications and the role fuzzy 
methods can play in this context. 
 
 

2. Probability of failure 
 
A construction is usually designed in accordance with a certain level of safety which 
is generally accepted.  This means that the probability of failure of the construction 
during its design working life is limited to a certain value.  This is often expressed by 
the reliability index β.  The relation between the reliability index β and the probability 
of failure Pf is given in the table below. 
 

 
 
 

3. Design rules : global safety format 
 
In civil applications, where safety is primordial, decades of experience and statistical 
data are available concerning loads (wind load, snow load, seismic data,…) and 
resistance of materials and structures, leading to standards of design methods based 
on global safety factors.  E.g. by limiting the allowable stress to a fraction of the yield 
stress or the ultimate stress (at rupture) or by limiting the calculated loads to a fraction 
of the calculated resistance, thus only taking into acount the mean value and not the 
variation of the parameters.  These are deterministic methods ; no quantfied relation 
between the probability failure and the global safety factors exists.  The value of the 
global safety factor is determined based on experience.  
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4. Design rules : partial safety format of the Eurocodes 
 
How do the Eurocodes apply the basic requirements of the CPD ?  
 
For the purpose of reliability differentiation consequences classes may be established, 
as illustrated in the table below : 
  

 
EN 1990, Annex B - Table B1 : Definition of consequences classes 

 
Reliability classes may be associated with the consequences classes (RC1 to CC1, 
RC2 to CC2, RC3 to CC3).  The table below gives recommended minimum values for 
the reliability index β associated with reliability classes. 
 

 
EN 1990, Annex B - Table B2 : Recommended minimum values for reliability index β (ultimate limit 
state) 

 
A design according to Eurocodes and with the partial factors given in their annexes is 
considered generally to lead to a structure with a β value greater than 3.8 for a 50 year 
reference period, which corresponds to a probability of failure of 5 E-5 / 50 year. 
 
The figure below illustrates the methods available for the calibration of the partial 
factor design : 
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EN 1990, Annex C – Figure C1 : Overview of reliability methods 

 
Full probabilistic methods (Level III) give in principle correct answers to the 
reliability problem as stated.  Level III methods are seldom used in the calibration of 
design codes because of the frequent lack of statistical data. 
 
The level II methods make use of certain well defined approximations and lead to 
results which for most structural applications can be considered sufficiently accurate. 
 
The Eurocodes have been primarily based on method a.  Method c or equivalent 
methods have been used for further development of the Eurocodes. E.g. design values 
may be determined based on the formulas given in the table below.  In these formulas 
α is the FORM (First Order Reliability Method) sensivity factor. 
 

 
EN 1990, Annex C – Table C3 : Design values for various distribution functions 

 
 

5. Design rules : the role of fuzzy methods 
 
As an alternative to the use of partial safety factors, a design according to Eurocodes 
may also be directly based on probabilistic methods (EN 1990 §3.5(5)).  Since fuzzy 
methods lead to more conservative results than full probabilistic methods, they may 
play a role in a Eurocode design.  They also may be used to calibrate the partial 
factors.  
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    Fuzzy methods 
 
 
 
 
 
 
 
 
 
 
 
 

 
The fuzzy method leads to more or less conservative results.  Important parameters 
are the correlation between the different input parameters, the number of stochastic 
parameters and the sensitivity of the response to these parameters. 
 
On the other hand, the fuzzy method has also his advantages.  First of all, no direct 
assumption has to be made on the PDF of the input parameters, and only the upper 
and lower boundaries of all CDFs are required, which makes it very suitable for 
design problems where no sufficient statistical data are available. 
 
Interval Finite Element procedures can perform the core calculations in an automated 
fuzzy implementation. 
 
Considering the optimisation approach, the effect of uncertain parameters on the 
analysis result is often unknown, which renders the numerical performance of the 
optimisation strategy unpredictable. 
 
Considering the interval arithmetic approach, the conservatism grows quickly beyond 
reasonable limits. 
 
A hybrid IFE procedure, which divides the analysis in an optimisation step and an 
interval analysis step, could decrease the conservatism to an acceptable level, even for 
large models.   
 
This illustrates that fuzzy analysis is complementary to classical probabilistic 
approach, rather than competitive.  If reliable probabilistic information is available, a 
probabilistic analysis remains the best choice.  If probabilistic information is limited, 
fuzzy analysis is a valuable alternative. 

4 
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TAP 31 
 

Report part 5.3 
Definition of design criteria for dynamically loaded structures 

with uncertain parameters 
 

CSL 

PARC SCIENTIFIQUE, B-4031 ANGLEUR, Belgium 

 

 

The objective of this project is to develop an applicable and consistent methodology to 
predict the effect of parameter uncertainties on the dynamic response of a structure, to be 
able to propose verification criteria, that are 

• safe, even in worst case conditions 
• based on objective knowledge of structural characteristics 
• economical, by minimizing artificial conservatism in the analysis 
For static load cases, the objective is to develop a theoretical basis for the determination 
of safety factors. For dynamic load cases, the objective is to develop a theoretical basis 
that builds on dynamic response levels that must not be exceeded. 

Although procedures for static design validation are very different for different domains 
of applications, the concept is always the same. For dynamic load cases however, there 
are no such rules. The most common requirements are expressed in terms of resonance 
frequencies which should not coincide with operating frequencies of the structure, but 
even these rules depend on the application. The design rules for components that are used 
on launchers are conceptually summarized to the following requirements that should be 
verified in a prescribed order: 

1) The first resonance frequencies of the global modes (with effective masses greater 
than 10 % of the static mass) should at least be equal to a prescribed minimum value 
level 

2) Criterion 1 being satisfied, the structure has to survive with some safety factors, to the 
Flight Loads which are accelerations applied to the instantaneous center of gravity.  

3) The structure has also to survive with some safety factors, to the Sine Vibration, 
Random Vibration, Acoustic and Shock Qualification Tests, whose specifications 
correspond to imposed acceleration curves at the interface between the Spacecraft and 
the launcher (for a spacecraft ) or between the instrument and the Spacecraft (for the 
instrument). This situation could some times be more severe than the precedent one 
even if flight loads are normally considered as dimensioning for the primary 
structure.   

4)  if the structure which results from the application of rule 1) would be too heavy, the 
designer is allowed to neglect rule 1), but he must take the dynamics of that 



Annex53_scientific_report_2005_CSL.doc 2/26

component into account and prove that the entire system does not exhibit excessive 
vibration levels. Coupled load analyses could be needed to determine the correct 
flight loads and the qualification tests levels.  

5) if vibration levels are too high, the designer must modify and optimize the topology 
of his design or introduce additional damping. 

 

Whereas verification of this set of rules is fairly straightforward for structures that are 
already well detailed, it is much more difficult to do so for structures that are 
characterized by a number of uncertainties.  

Spacecraft structural response to low frequency mechanical environment of the launch 
and ascent phase is simulated by spacecraft-launcher coupled analysis. The loads of the 
spacecraft issued from coupled dynamic analysis are taken as a basis to verify the 
dimensioning of the spacecraft. The quality of these loads depends on the quality of the 
mathematical models used for such simulations. Therefore, assuming the launcher model 
and the loads are well known, it is mandatory to take steps ensuring that the spacecraft 
model is adequately representative of the actual hardware. 

One way of minimizing artificial conservatism in the usually adopted procedure is to 
reduce the safety factors introduced in all the specification definition procedure and to 
study the response distribution compared to the acceptable values. The responses of 
interest can be stresses, deformations, displacements, … and the most important result of 
a fuzzy dynamic finite element analysis is to give upper bounds on the frequency 
response functions for these dimensioning parameters. These upper bounds take into 
account all kinds of uncertainties that can possibly occur, and their combinations. It 
covers the entire frequency range that is specified.  The worst case situation that is within 
the design space is certainly included. If uncertainty on damping values can also be 
included, the prediction is certainly conservative.  

Similar situations appear for a scientific payload instrument mounted on the Spacecraft or 
simply for a subsystem mounted on an instrument. 
 
We decided in this project to analyze in this context, the effects of uncertainties on the 
COROT baffle flight loads and the resistance of this baffle with respect to qualification 
tests and launch. The criteria are manifold: no plastic deformation, integrity, no buckling 
of the vanes and limited displacements at some points of the baffle to avoid contact with 
the telescope. For this baffle, it is difficult to reach the requested 150 Hz and so a coupled 
analysis with the telescope, with the satellite, with the launcher (??) is required to 
evaluate the real Flight loads and the risks of contact with the telescope. For this type of 
analysis, a good accuracy of the eigenfrequencies, damping parameters, eigenmodes is 
required.  
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COROT Baffle on jig and shaker 

The generalized accelerations {ai> at the D.O.F. of the interface Baffle / COROT 
Telescope are related to the generalized forces {Fi> at the D.O.F., by the following 
equation which is coming from the mathematical model of the structure on which the 
baffle is mounted (Launcher + Spacecraft + Telescope coupled mathematical model) : 

(1)  {ai> = {ai, Free> + {ZLauncher+Spacecraft+Telescope}  {Fi> 
The generalized forces {Fi> can also be deduced from the model of  the baffle  

(2) {Fi> = {-{L»«diag(…ω²Hk(ω)/kk…)»«φ] – {φ] ][F0>   
+ { -ω²{L»«diag(…ω²Hk(ω)/kk…)»«L}- ω²{φMφ} + {φKφ}  } {qi> 
or 

(3) {Fi> = -ω²{ Mdynamic Baffle} {qi> 
with the dynamic amplification factor :  

(4)  
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(5) {ai> := - ω² {qi> 
The displacements are given by :  
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The baffle has to have a first “significant 1 ” eigenfrequency higher than 150Hz to avoid 
coupling with the telescope.  

Our main concern in this stage of the project is that the baffle manufacturer proposes us a 
first eigenfrequency of exactly 120Hz and tests show a frequency below 80 Hz. There is 
no margin on the eigenfrequency (120 Hz could be acceptable). 
That means that all the uncertainties that could appear in the determination of the 
eigenfrequency are not taken into account. The consequence is that the loads that will 
appear in the baffle could be greater than the calculated loads at 120 Hz. 

A first evaluation of the flight loads is shown on the graphic below. 

 

To obtain a good estimation of {ai> and  {Fi> and consequently of the stresses, 
deformations and loads, the complete process need an excellent evaluation of the modal 
parameters. This is done by a correlation and update process, where test results (dynamic, 
static) are compared to predicted results and the mathematical model updated till 
representativity is judged satisfactory within a certain tolerance. When the distance 
between the model and the experimental results is sufficiently “close”, the model is said 

                                                           
1  effective mass greater than 10 % of total static mass 
 

15

20

25

30

35

40

100 120 150 200

Frequency (Hz)

L
im

it
 lo

ad
 (g

 )



Annex53_scientific_report_2005_CSL.doc 6/26

to be valid. (A similar situation appears at the interface between an instrument and the 
spacecraft). 

 

1 Vibration Test / Mathematical model correlation 
The correlation and mathematical model update process is based on deterministic 
approaches, i.e. is based on the attempt to match, as closely as possible, the results of a 
deterministic numerical analysis, with that of a single physical test, without taking into 
account the natural dispersion or scatter inherent to all physical structures. This approach 
can lead to unreliable results or be misleading and induce wrong conclusions on the 
quality of the model. This results in limited confidence in the model, which can only be 
partially compensated by the use of uncertainty or safety factors. It would be therefore 
highly desirable, if not necessary, to consider the scatter as an integral part of the model 
and to establish correlation and validation techniques that take this scatter into account. In 
this way, deterministic "point-to-point" comparison is replaced by a much more robust 
"cloud-to-cloud" comparison where each cloud contains a full stochastic description of 
the model including scatter among its observed variables (Figure 1). In order to do this, 
we have to perform the following tasks: (test-analysis) correlation, error localization, 
model updating and validation. 

A key point to be developed is the validation of its models by experiments themselves 
subject to scatter.  

 

 
Figure 1 :  Experimental and computed Meta-Models. Initial and after Updating clouds 

 

Stochastic approach can on one side enhance the traditional design approach, but on 
another side procures (via the meta-model) a very important additional insight in the 
structural behaviour. 

The lack of matching can come from:  

• inaccuracies or uncertainties that may be present in analytical models and which are 
mainly due to: 

+ The approximation of boundary conditions 
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+ The classical lumping of distributed parameter systems 

+ The estimation of the different physical properties and design parameters of 
different structural materials 

+ Lack or inappropriate damping representation 

+ Inadequate modelling of joints and couplings 

+ Classical assumption of linearities 

• Shortcomings in test data which  usually include one or more of the following 
problems: 

+ The number of measurement degrees of freedom is limited and may be different 
from those of the analytical model. 

+ Some types of degrees of freedom, such as rotational or internal ones, cannot be 
readily measured with present technology. 

+ The number of identified mode shapes is limited. Thus the frequency range of 
test data is also limited. 

+ Measured data or parameters contain levels of errors. 

+ Some modes of the structure under test may not be excited in a certain test or, if 
excited, may not be identified. 

+ Experimental simulation of boundary conditions. 

+ Experimental simulation of actual environment (such as near vacuum and zero 
gravity for space structures).  
+ Test non-linearities versus the linear assumption of the analytical model. 

A further important reason of mismatch are mistakes resulting from human error 
(analysts, experimentalists, etc.). In addition model debugging is made difficult due to the 
large size, in terms of numbers of properties and degrees of freedom, of the actual 
models. 

2 Uncertainties 
It is clear that uncertainties play a key role in the model validation process. Uncertainties 
can be broadly classified as being either reducible or irreducible. Irreducible 
uncertainties are inherent in process being simulated and cannot be eliminated. Reducible 
uncertainties are a potential deficiency that is due to incomplete information, e.g., lack of 
knowledge, poor understanding of physical process, etc. We can summarize the main 
sources of uncertainty as follows: 

• Experimental data (Text fixtures, Environmental conditions, Measurements) 
• As-built systems and structures (Design tolerances, Material properties, Construction 

methods) 
• Models (Modelers judgment, Modeling tools, Modeling resources) 
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3 Scatter and variability 
 

Multiple sources of scatter and variability (not to be confused with absence of 
knowledge) affect the design and life of a structure. First of all, material & components 
variability (Table 1) as a result of the material nature, its production mode, acceptance 
testing, its implementation at component level. 

 

Material  Strength Characteristic Coefficient of Variation (%) 

Metallic  Rupture  

Yield  

Buckling 

8  

8 to 15  

14 

CFRP  Rupture  10 to 17 

acceptance testing 

Screw, rivet, weld  Rupture  8 

Bonding:  

Adhesive film,  

Metal-Metal join 

Rupture  12 to 16  

8 to 13  

acceptance testing 

Honeycomb  Tension  

Shear/compression  

Face wrinkling 

16  

10  

8 

Structural Inserts  Axial rupture  12 

Equipment Inserts  Axial rupture  16 

Mirror glass  Static strength  10 to 30  

surface finish 

Invar Superior  Rupture  4 to 9  

hammered/tempered 

Fibrous Thermal Protection  Rupture  2 to 24  

loading/temperature 

Table 1: Scatter and Variability in Material strength 

 

Second, the loads by their nature and their knowledge exhibits a considerable randomness 
and variability, as shown in Table 2. 
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Load Type  Coefficient of Variation (%) Source 

Launcher thrust 5 STS, Ariane 

Other flight events QSL  30 STS, Delta, Ariane 

Transient events  60 Ariane 

Thermal  8 to 20 Thermal tests  

(correlated or not) 

Deployment shock 10 regulated mechanism 

Thruster  2 Thruster calibration 

Acoustic  30 STS, Ariane 

Vibration 20 Test damping factors 

Re-entry   No data available 

Mech. Pre-load  5 to 15 Test results  

(with/without gauge) 

Table 2: Scatter & Variability in loads 

 

Other factors bring additional scatter elements, such as tolerances on prepregs and sheets, 
lay-up angle errors for composites, manufacturing tolerances, scatter of local stiffnesses 
due to assembly (friction coefficients, tooling, torques, …). Depending on the application 
and its related requirements, minor aspects can acquire an extreme importance (e.g. 
homogeneity of material for a high precision mirror) and need special measure to be 
accounted for during definition, design and analysis.  

 

4 Safety factors 
This paragraph defines and explains the use of factor of safety (FOS). The Table 3 is a 
list of the cases where FOS are used. 

1. Safety factors are used in projects to cover possible uncertainties in: 
− Load predictions, e.g. design limit loads, etc. 
− Structural analyses, 
− Manufacturing process, and 
− Statistical variations in material properties 
 

2. Different safety factors may be selected within a program, depending on the levels of 
uncertainty. Higher safety factors may be allocated to cover ill-defined loads, 
incomplete material characterization and/or a decision not to undertake structural 
testing. The uncertainties are either load or strength related. These depend on the 
space vehicle type. Uncertainties include: 
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LOAD RELATED 

− Loads caused by pressure, e.g.: 
- Fuel containment, 
- Propulsion systems, and 
- cabins 

− Aerodynamic included load, e.g.: 
- Vehicle manoeuvers, 
- Wind gust, 
- Inertial change effects 

− Rocket motor induced or related loads, e.g.: 
- Thrust 
- Motor cut-off 
- Stage release 

− Launch loads, including survivable emergencies 
− Transportation and ground handling 
− Rocket and aerodynamic noise. 

STRENGTH RELATED 

− Material choice and properties. Particularly 
concerning composite anisotropy. Important 
issues include: 

- Effects of temperature and moisture, 
- Space specific: outgassing, LEO: atomic oxygen 

damage and corrosion 
− Standardisation of manufacturing processes, e.g 

common procedures for different sites 
− Structural analyses and verification testing, e.g: 

- Confidence in theoretical and experimental 
stress/strain prediction 

- Simulation of environmental effects, 
- Demonstration of surplus strength and/or 

residual strength by test to failure 
− Reduction in structural strength during 

operational life 
− Aeroelastic effects involving the interaction of 

loads, stiffness and strength consideration. 

Table 3: uncertain parameters: output of work package 1.2 
3. Special factors, also called “additional factors”, can be applicable for joints, bearings 

and welds. Such additional factors shall be applied in combination with other factors 
of safety. 

4. Determination of safety factors: 
- Factors of safety shall be determined considering the uncertainty of all relevant load, 

design, material, manufacturing and verification parameters. 
- As opposed to the empirical approach applied in the definition of deterministic factors 

of safety, a probabilistic approach can be followed. Factors of safety are calculated 
based on a statistical description of loads, materials and geometry, combined with a 
failure probability requirement. 

4.1 Loads and factors relationship 
Definition of the different loads used: 

- Loads that depend on the environment: 
- Flight load (or limit load or design load): maximum launch load that may be 

applied during flight 
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- Qualification load: loads applied during qualification tests 
- Loads that depend on the structure itself: 

- Ultimate load: maximum strength value that does not lead to yield deformation 
- Yield strength: strength value that lead to yield deformation 

 

Flight load
 (2sigma)

Qualification load

Yield load

Ultimate load
xqualification factor

xultimate factor

xyield factor  
Figure 2: loads and factors relationship, definition of qualification, ultimate and yield 

factors 

The following values are used for the mechanical design of structure, to check the 
resistance of materials used in the structure: 

1. Ultimate load: Design load multiplied by the ultimate safety factor 
2. Yield load: Design load multiplied by the yield safety factor 
 

It is clear that the Factors of Safety nowadays called factors of uncertainty  

- which are identical for static and dynamic calculations !  
- and only depend on the type of material (Metals and non-metals2) and the type of 

failure (static, buckling, …)  
don’t take into account all the inevitable uncertainties in the presented complex process 
of calculation.  

Historically, 1.5 safety factor was derived from a ratio of aluminum ultimate to yield 
stress, but this is just a coincidence which tended to support the selection of 1.5. This 
factor did not evolve as the result of some concentrated effort to derive a useful factor. 
Rather, it evolved together with other design requirements as part of an overall desire to 
rationalize structural design criteria. Its use is accepted by most engineers without 
question. 

When problems have arisen or structural failures have occurred, changes were made to 
design specifications, load prediction techniques, manufacturing techniques, etc., but the 
factor of safety value has never been changed. 

The 1.5 factor is rational because it is based on what were considered to be representative 
ratios of design to operating maneuver load factors experienced during the 1920s and 
1930s. Yet at the same time it is arbitrary because we do not know the exact design, 
manufacturing, and operating intricacies and variations it protects against or how to 
                                                           
2 : The amount of scatter observed in composite material testing tends to be high relative 
to metals. Variability in composite material property data results from a number of 
sources, including variability in laying up the material, batch-to-batch variability of raw 
materials, and material testing methods. In addition, composite properties show higher 
(compared to metals) degradation due to environmental effects, which creates the need 
for testing at different temperatures and moisture absorption levels. 
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quantify them. Neither can the degree of inflight safety provided by the 1.5 factor be 
quantified; but its successful history cannot be lightly dismissed. 

Interest in replacing the factor of safety approach with probabilistic interpretations of 
structural safety initiated in the late 1950s. The continued application of the factor of 
safety approach is challenged by some engineers, but there is reluctance to undergo a 
major change in design philosophy, especially one which could encourage legal 
entanglements. The factor of safety still covers many unknown contingencies, and for this 
reason, some engineers believe there will always be a need for some such factor. 

Recently, the factor of safety was renamed to “factor of uncertainty.” A draft (June 1995) 
of the Joint Service Structures Specification Handbook states “The selection of the factor 
of uncertainty, formerly called the factor of safety, should be made by assessing the 
factors that have been used on similar air vehicles performing similar missions. The value 
for manned aircraft has been 1.5.... The selected value of the factor of uncertainty should 
be increased to account for above normal uncertainty in the design, analysis, and 
fabrication methods when the inspection methods have reduced accuracy or are limited 
by new materials and fabrication methods and where the usage of the air vehicle is 
significantly different.... The use of reduced factors of uncertainty needs to be carefully 
defined and justified.” If variability in design, manufacturing, and operating 
environments can be reduced, then a reduction of the 1.5 factor of uncertainty could be 
justified. If, however, the introduction of new material systems (for example) actually 
increases the variability, then the 1.5 factor may be unconservative and have to be 
increased. In either case, probabilistic analysis can be used to quantify these effects, 
hence serving a useful purpose. It would not necessarily replace the factor of safety as a 
design criterion, but would help to establish the optimum factor of uncertainty level. 

 

5 Traditional approach to the Scatter / Variability Problem 
The above mentioned variability were recognized in the past, and tackle with the general 
concept of Factor of Safety and similar factors. Regarding buckling for example, the 
knock-down factor was introduced to cater for the difference between the theoretical 
critical load as computed for a perfect structure and the actual values resulting from 
experiments (Figure 3).  
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Figure 3: Test data for isotropic cylinders under axial compression 

 

For stressing purposes, the well known factor of 1.5 was defined at the time aluminium 
alloys started to be used, based on the ultimate to yield ratio of the alloy, with the 
objective to keep the structure operating in the linear range. Such factors (with various 
values) have been used since now; associated to the requirement for the design to exhibit 
a positive margin of safety (MOS), the latter being defines as: 

1
*

−=
FOSstresscomputed

stressallowable
MOS  

However, considering the actual scatter of loads and components as shown in Table 1 and 
Table 2, and assuming the simple Stress-Strength approach (Figure 4) it can be easily 
shown that, using a fixed FOS, very different structural reliability as achieved depending 
on considered loads and materials (Figure 5). This is a problem for some new materials.  

 

 
Figure 4: The Stress-Strength Approach 
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Figure 5: FOS for a target probability of failure 1E-6 at 2 sigmas 

 

As a result, various actions were undertaken in a recent past to better take into account, 
along different routes, the variability of the various structural and related parameters. 

6 Reliability Based Refinement of the Present Approach 
An action was undertaken by ESA to identify a set of adequate FOS on the basis of 
accepted structural probability of failure (identified itself during the study). For this 
purpose, the number of critical parts in a typical spacecraft was identified in relation to 
the related failure cases (materials, components) and loading cases and their respective 
scatter. Also considered was the vehicle/spacecraft model philosophy (e.g. QM, PFM) in 
relation to the possible re-use of structures during different tests as well as possibly for 
the flight model (PFM), and the objectives of the various tests and their accepted risks. 
The output was a set of consistent FOS as shown in Table 4. One shall note that these 
FOS exhibit strong similarities with the currently used factors. However the difference 
lies in the knowledge now gained with respect to their applicability conditions, and the 
consequent possibility to modify these factors when considering different / new materials 
with other scatters for which heuristic information is not available yet. These approach 
and results are the basis for an ECSS Standard on FOS in preparation. 
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 FOS wrt qualification loads  

FOS wrt limit loads 

  yield / functional ultimate  buckling 

QM with no yield exceedance requirement Standard material scatter  

Qualification factor = 1.4 

Conventional material metallic  1.25  

1.75  

1.40  

1.9  

1.30  

1.85 

Conventional material  

non metallic 

1.05  

1.45 

1.15  

1.60 

1.30  

1.85 

Non-conventional mat. 1.70 

2.35 

1.85 

2.60 

 

1.30 

1.85 

 

Insert / bonding 1.70 

2.35 

1.85 

2.60 

 

QM with no yield exceedance requirement Reduced material scatter (U=5%,Y=8%) 

Qualification factor = 1.25 

Conventional material metallic  1.05 

1.30  

1.15 

1.45  

1.40 

1.75 

Conventional material  

non metallic 

1.00 

1.25 

1.10 

1.40 

1.40 

1.75 

Non-conventional mat. 1.80 

2.25 

2.00 

2.50 

1.40 

1.75 

Insert / bonding 1.80 

2.25 

2.00 

2.50 

 

Note: For a classical automatic spacecraft, 2.3 sigma loads and A-values for materials 

Table 4: Typical set of reliability based Factors of Safety 

In parallel, the possibility to use reliability methods applied to fracture Analysis and 
Fatigue was investigated using simulation approach (Monte Carlo). 

The objective was to feed into the analysis the scatter derived from test measured fracture 
/ fatigue parameters, and to replace the go/no-go life statement for a given load spectrum 
by a probability of failure statement (Figure 6). The attempt was successful, and resulted 
in probabilistic prototypes of the ESACrack and ESAFatigue applications, and confirmed 
the possibility to consider partial factors of safety (wrt the parameters of fracture / fatigue 
equations) and load spectrum dependent FOS. 
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Figure 6: Variation of the probability to fail in fatigue versus the scatter of the 

parameters A, B, C 

 

7 Evaluation of Scattered Structural Responses 
In a second step, the possibility to apply simulation methods to structural analysis was 
investigated, in order to be able to cater for variability occurring at structures level and to 
be able to assess robustness of derived frequencies, effective masses, loads, buckling 
knockdown factors (manufacturing geometric imperfections) for example, and to enable 
evaluation of full structural reliability of critical parts (single point failure items). 

Specific modules were generated (and are available) for general purpose software such as 
MSC-Nastran for covering the identified need for probabilistic based analysis, including 
launcher coupled analysis and vibroacoustic analysis. Where relevant, specific matrix 
perturbation, modal space projection and load transformation methods were used to 
reduce the volume of computations. 

Investigations were led on the technological scatter of spacecraft elements (e.g. cylinder 
and panels face sheets, cleat stiffness, members inertia) in industrial environment. 

8 New trends and perspectives for structural analysis in Space 
The Stochastic Structural Analysis by the virtue of its merit is gaining momentum in the 
space community. The approach has already contributed efficiently to take into account 
real life facts and scatter, to rationalize the Factors of Safety, to highlight the importance 
of reliability as compared to Margin of Safety, to improve definition of load envelopes 
and design requirements. With the advent of new materials, and increased requirements 
for lightweight and better-controlled behaviors, the experience behind these factors is put 
in default. We also have to evaluate possibilities to drastically reduce computational 
effort by using advanced fast response evaluation methods. This will be tested in this 
PAT project. 
The approach has without doubt key role and a very high potential with respect to reliable 
prediction of the behaviour of complex systems whether structural or multi-physics. 

However, one shall pay good attention that fundamental aspects of Physics need 
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always to be properly understood, and cannot be replaced by stochastics.  
Stochastic / reliability based design is now needed: Although structural computed / target 
reliability might be 0.999, as a result of implementation aspects by humans, 
manufacturing, assembly and verification, experienced structural reliability is only 0.95. 
That difference needs to enter in the design decision, theoretical probability of failure / 
reliability being only relative values. 

The natural question is therefore: is all the future of structural design, analysis, and 
verification on the stochastic route?  

An element of answer for the Space field might be obtained by considering structural 
design of elements of a space project. Such projects encompassing multiple factors, their 
respective requirements and commitments must be (contractually) well defined at 
individual level (Technical Specifications, ICD’s (interface control document)…). It is 
noted that no heritage exists in this area. How should one define a Technical 
Specification / an ICD in a stochastic / multiple contractor approach? How should one 
perform or define / perform a structural analysis (what are the deliverables, how to 
couple?) in a stochastic / multiple contractor approach? How will the sub-system 
verification be done? What are the qualification / acceptance cases? What is the 
responsibility of the subcontractors at system level? How will it be verified? Similarly, 
the actual benefit of such approach has not been quantified yet. This PAT project will 
certainly improve our knowledge of the subject. 
It is clear that, in addition to its more complex interface aspects, owning to its novelty 
and more demanding interpretation skills, the stochastic method is not going to rush into 
all levels of the design process (e.g. down to equipment / component level). With 
exception of special cases, it might actually not be necessary there since physics / 
behavioural options are limited. At these lower levels, reliability based and calibrated 
refined traditional methods (e.g. FOS, partial-FOS) will still have their niches. 
On the contrary, where physics / behavioural options are widely open, and hence where 
sensitivity / jumps / discontinuities are possible, there efforts should be made to promote 
the application of the method. This addresses also the system level. 

With respects to open physics / behavioural options, coupled (multidisciplinary) 
problems appear to be natural privileged candidates for such approach (e.g. aero-
structural interaction, aero-thermal interaction), in general all multi-physics problems.  

With regards to computational aspects, the perspective of analyzing complete systems in 
their full details (to which level?) requires teraflop level machines.  

Although these are (nearly) available on some very specific places, they will hardly be 
available at the level of all design offices. Hence, there is still scope for improvement of 
computational methods in support to popular size computers. The recent successful 
development of Higher Order Derivatives Methods opens interesting perspectives in a 
near future. 

With regard to industrial implementation, a set of tools is available (commercial or not), 
certainly adequate to experiment the method. Application of stochastic approach is 
particularly important in automotive industry (crash), but momentum is increasing in 
aerospace industry, see applications to Artemis , Ariane 5 EPS, composite fiber lay-up, 
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separation shock analyses. 

 

 

 

9 Safety Factors or Uncertainty factors are no more 
representative 

Current aerospace design analysis methods generally do not directly account for the 
random nature of most input parameters. The result of treating parameters such as 
material properties, geometry, environment, and loads as singly determined 
(deterministic) values is a design of unknown reliability, or conversely, unknown risk. 

 New developments (e.g., reusable launch vehicle, high-speed civil transport) are 
departing dramatically from traditional environments. Application of historical 
uncertainty factors may not be sufficient to provide adequate safety. Conversely, the 
trend to design to all possible unfavorable events occurring simultaneously could produce 
an unacceptable weight. 

The aerospace industry has seen a steady rise in the percentage of composite airframe 
structures. These materials have more intrinsic variables than metals due to their 
heterogeneity and are subjected to more manufacturing process sources of variation. To 
account for uncertainties, relatively large knockdown factors are employed, which reduce 
the material allowable. This results in a substantial weight increase without a quantifiable 
increase in structural reliability.   

The foundation of probabilistic design involves basing design criteria on reliability 
targets instead of deterministic criteria. Design parameters such as applied loads, material 
strength, and operational parameters are researched and/or measured, then statistically 
defined. A probabilistic analysis model is developed for the entire system and solutions 
performed to yield failure probabilities. 

The solution includes a number of locations and failure modes. Each location requires 
corresponding applied stress and material strength distributions. The applied stress is 
usually obtained from finite element modeling, coupled with conventional structural 
mechanics approaches. Mathematically, the applied stress and material strength 
distributions are generally assumed to be independent. The general concept is to integrate 
the joint probability of applied stress and material strength over the region where stress 
exceeds strength. The result of this integration is the probability of structural failure. 

10 Optimization is only really meaningful under a probabilistic 
approach 

Sensitivity analysis and/or optimization can be performed once the probabilistic model 
has been established. The concept is that once design driver contributions are identified, 
the design can be optimized for the given constraints, while maintaining the overall 
failure probability at an acceptable level. Sensitivity analysis reveals the major 
contributors to risk; this allows the analyst to vary the design parameters to 
produce acceptable reliability at minimum weight, for example. 
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The basic probabilistic approach can be summarized as the statistical definition of all 
input variables required for structural analysis methods, statistical definition of the 
resulting stress and strength of the structure associated with predicted failure modes, and 
evaluation of the resulting probability of structural failure. The Figure below illustrates 
this process. The left-hand side shows the input data to determine the applied stress 
distribution, with each having a statistical distribution, while the right-hand side depicts 
the various capabilities of the structure. The middle shows the output of the process, that 
being an applied stress and resistive component strength distribution, per failure mode, 
with an associated probability of failure. 

 

 
One missing element is probably the definition of an acceptable probability of 
failure.  
 
Optimally, probabilistic analysis codes should be interfaced to these structural analysis 
programs and procedures so that the structural analysis output can be directly fed to the 
probabilistic program and vice-versa. This is one of the objectives of the present study 
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11 BENEFITS OF PROBABILISTIC ANALYSIS. 
Uncertainties in the definition of loads, geometry, assembly procedures, manufacturing 
processes, engineering models, material properties, and maintenance or operational 
environments as well as uncertainties in testing lead to uncertainty in structural design 
and ultimately safety. 

Here is a list of the benefits of a probabilistic approachJ: 

a. Enables quantification of the design risk or reliability. The classical deterministic 
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analysis approach accounts for design uncertainties via an uncertainty factor multiplying 
the maximum expected stress. Probabilistic analysis, on the other hand, models most or 
all design parameters as being variable and combined with established structural analysis, 
yields a quantitative measure of reliability. This is obviously advantageous if reliability is 
specified as a basic contractual requirement. NASA design requirements for future space 
vehicles and structures are expected to be specified in reliability terms. 

Employing probabilistic methods will aid reliability engineers in improving their 
analyses. 

b. Identifies regions of high risk in a design. The total structural risk is typically a 
function of a series of reliability values at specific locations within the structure. Should a 
particular region be shown to drive the overall risk, measures can be taken to reduce that 
risk via design change, and/or manufacturing inspection procedures can be implemented 
to minimize the occurrence of defects in critical zones.  

c. Allows determination of design variable importance to reliability. The reports were 
unanimous in identifying this benefit of probabilistic analysis. A powerful attribute of 
probabilistic analysis is the information gained in understanding the interactions, effects, 
and sensitivities of design variables. This information can be used to optimize testing for 
various purposes and can highlight the need to tighten (or relax) design or manufacturing 
tolerances. For instance, if it was shown that minor variation in stringer thickness had a 
major effect on resultant stress, tightening tolerances may be advantageous. Most 
probabilistic analysis software provides an output of design parameter sensitivity. 

d. Provides a means to compare competing designs. In addition to comparing overall 
reliability values of competing designs, the probabilistic analysis can point out specific 
features or locations in which the reliability significantly differs among designs. This can 
increase the understanding of the structure’s behavior and lead to design improvements. 
e. Provides a metric for design optimization. Aerospace structures are operated in harsh 
and uncertain environments and yet must meet minimum weight, high performance, and 
stringent reliability requirements. Safety must be maintained at a high level. Reduced 
weight tends to reduce reliability and therefore must be implemented judiciously. 
Probabilistic analysis provides the measure of structural reliability, which can then be 
optimized by changing certain design variables. That is, design parameters are varied to 
minimize weight, but the overall reliability must meet a specified level. 

f. Can reduce unnecessary conservatism. This is particularly true with composite aircraft 
and spacecraft structure design, which is governed by compounded conservatism 
illustrated by the following criteria: 

�  Worst case temperature and moisture 

�  Worst case damage, undetected 

�  Reduced design allowables 

This approach translates to a design philosophy that assumes the structure will 
simultaneously experience the worst case temperature, moisture, and damage conditions 
and will be composed of low-strength material. These worst case assumptions often lead 
to an excessively conservative design. The probabilistic analysis approach accounts for 
the expected occurrence of such events and combines them statistically. 
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Incorporating probabilistic methods eventually leads to a better design approach in that 
the engineer develops a more comprehensive understanding of the problem encompassing 
many disciplines. The probabilistic evaluation gives the designer an idea of the inherent 
risk, but just as important, provides a means of evaluating design parameter sensitivities. 
In general, probabilistic methods require more detailed analysis, which can ultimately 
lead to an improved, more efficient design. 
 

12 Overview of non-deterministic modelling techniques 
The standard FE code is a deterministic procedure. Standard codes however have options 
to calculate the effect of deviations from nominal conditions for quite a number of years 
already. Next to options that are incorporated in commercial FE software, several codes 
exist to work with results calculated from FE codes. The approaches that are listed are 
generic approaches that can be used for all kinds of FE analysis. 

•  The first additional component that was developed to analyse the effect of non-
nominal conditions was sensitivity analysis. This type of analysis predicts the effect 
of the variation of one parameter to the output quantity. This type of analysis is fully 
deterministic. The variation of the output quantity is directly coupled to the variation 
of one or more input quantities.  

• Sensitivity calculations are used in optimisation. In the optimisation procedure an 
objective function is defined, together with a number of minimum and maximum 
values on individual input parameters and/or output quantities. The procedure 
searches for the combination of input parameters that lies within the allowable range, 
and that optimises the objective functions. Several FE codes have this built-in. 

• External optimisation procedures are built to work with any other analysis package, 
and they combine multiple types of analysis. Research on Multidisciplinary Design 
Optimisation (MDO) has developed very powerful analysis procedures that are used 
in the design of (extremely) complicated systems. Different sets of specifications on 
structural, thermal, aerodynamic, ... behaviour are combined into a generic approach.  

• Response Surface Modelling (RSM) is a technique which calculates a certain 
characteristic of the response of a structure for various discrete parameter 
combinations. A surface with a prescribed (usually polynomial) form is then fitted 
through all the calculated data points. The numerical description of this surface is 
considered to represent the response of the system. It is then no longer needed to 
repeat extensive calculations on the actual system. RSM is often used in conjunction 
with Design Of Experiments (DOE). DOE is an approach that originates from 
experimental procedures. It is now used in conjunction with numerical simulation 
systems as well. DOE is a methodology to efficiently plan a series of experiments 
(individual analysis runs) for systems that require the definition of several 
independent (input) parameters. The strategy is to obtain the maximum of information 
from the minimum number of experiments. The effect of individual parameters is 
calculated, next to the effect of parameter combinations. The output of the analysis 
ranks the effects in order of importance. Statistical analysis of data is involved, 
including analysis of variance (ANOVA).  
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• Monte Carlo (MC) analysis is widely used as a statistical approach to evaluate the 
behaviour of systems that are characterised by a number of parameters of which some 
are defined by a statistical distribution. A sample of random numbers is generated 
within the distribution of each uncertain parameter, and these samples are combined 
into a random set of parameter settings for the entire model. One analysis is run for 
each combination of parameter settings, and after all individual analyses are 
completed, all response data are gathered to represent the stochastic response of the 
uncertain model. After some statistical interpretation of the entire response data set, 
the maximum value is considered to be the worst case, and design criteria are applied. 
A requirement for using MC simulation is that statistical data on input parameters are 
available. A serious disadvantage of the approach is the fact that running many 
individual cases with separate parameter combinations requires a very large 
computational effort. Much research has been done and is still being done on this type 
of approach. Many recent research efforts focus precisely on procedures to reduce the 
computational effort. Another important requirement that has to be met in order to 
effectively apply MC analysis is that an actual statistical distribution of model 
parameters must be available. Elishakoff has shown that it is unsafe to use MC 
analysis when parameter distributions are not clearly defined.  

• Fuzzy arithmetic and interval analysis employ the concept of imprecisely defined 
numbers. Fuzzy arithmetic is a recently developed mathematical theory that is able to 
represent and operate on imprecise or ill-known quantities. These quantities are 
represented by means of fuzzy closed intervals (i.e. graded extensions of classical 
crisp intervals) and fuzzy numbers (i.e. extension of crisp real numbers). All classical 
arithmetic operations such as addition, multiplication, subtraction and division have 
been extended theoretically as well as practically to fuzzy numbers.  

• Next to the generic approaches, many techniques have been developed that are 
specific to certain fields of application, such as updating methods and perturbation 
techniques.  

13 The fuzzy finite element method 
The fuzzy FE method was introduced in 1995 by Rao in a very simple case of linear 
static analysis on one-dimensional rod elements. Unknown degrees of freedom are 
calculated as a solution of the system of equations. As inputs are imprecise, outputs are 
imprecise too. The general principles are more or less established, but only in theory. Up 
to now, numerical implementations of fuzzy arithmetic have always been based on a 
decomposition of the fuzzy numbers into intervals at different levels of memberships, and 
a subsequent application of the theory of interval arithmetic. 

There are several methods to perform numerical operations on fuzzy numbers. 
Straightforward application may however lead to overestimation of the result. For the 
purpose of safe design, overestimation is not inappropriate, but excessive overestimation 
should be avoided by all means. Artificial conservatism masks real physical results, and 
reduces the quality of the predictions. 
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14 The fuzzy concept for design validation with uncertainties 
Zadeh introduced the theory of fuzzy sets as a basis for reasoning with possibility. From 
this point of view, the membership function is considered as a possibility distribution 
function, providing information on the values that the described quantity can adopt. More 
generally, the possibility is defined as a subjective measure that expresses the degree to 
which a person considers that an event can occur. As such, it provides in a system of 
defining intermediate possibilities between strictly impossible and strictly possible 
events. The choice of the possibility distribution of a quantity of which no statistical data 
is available is subjective and can only be based on expert opinion. On the other hand, a 
number of methods exist to derive a possibility distribution corresponding to a known 
probability density function. However, apart from the probability distribution, these 
conversion techniques always rely on some sort of subjective judgement. This is why a 
possibilistic analysis can only be interpreted in reference to the input possibilities. 

Fuzzy analysis in this case is a sort of large-scale sensitivity analysis of the combined 
effect of design variables and uncertainties on design requirements. It enables the analyst 
to calculate design variable ranges for which the design meets the requirements with a 
certain degree of possibility. This means that the interpretation of the result of the 
analysis is only meaningful by referring to the considered input possibility distributions. 
A different possibility distribution for the design variables will yield a different 
possibility distribution of the analysis result, and consequently also different allowable 
ranges for the design variables. The design based on this analysis however is equally safe. 
As such, the possibility distribution for a designer is merely a useful tool to control the 
allowable range for the uncertainties than an absolute quality measure. 

 

15 Description of some probabilistic methods 

15.1 Monte-Carlo Simulation  
Monte-Carlo method is time consuming but leads to reference predictions. Its precision 
largely depends on the number of draws and on the algorithm generating the random 
numbers. Generally, a very large number of draws is needed to insure & good 
convergence of the standard errors of the uncertain parameters.  

15.2 Taylor's Development and Perturbations 
This method is based on the Taylor development, often up to the second order of the 
dynamical response around mean parameters. The mathematical expectation of this 
development gives the statistical  moments of the response. The efficiency of the Taylor 
development method strongly depends on the ratio fluctuation/mean value of the 
uncertain parameters and on the sensitivity of the system to the uncertain parameters. 

When the analytical evaluation of the partial derivatives of the response is not feasible, 
the efficiency of the method will also depend on numerical evaluation of the derivates. 

15.3 Taguchi Method 
Taguchi method is based on numerical integration methods of the Gauss quadrature type. 
It allows a simple estimation of the statistical moments of a function of several 
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independent random variables the probability densities of which are known. The principle 
consists in the discretization of each probability density in a finite number of points 
suitably chosen and in the computation of the function for whole the possible 
configurations. The statistical moments of the function are obtained by a weighted sum of 
the results of each configuration. The ponderation depends on the type of probability  
density of each random variable. The precision of the method rapidly increases with the 
number of points. The main advantages of this method are simplicity and small 
computation times compared to Monte-Carlo simulation. 

Reference:  D’Errico J.R., Zaino, jr. N.A.. Statistical tolerancing using a modification of 
Taguchi’s method. Technometrics, Vol 30, no 4, pp 397-405, 1988. 

15.4 Fuzzy Logic Method 
The Fuzzy Logic method followed in this project should be more general and more 
efficient than the above  listed methods. 

In any case, we believe that at the early stage of a new project with uncertain parameters 
for which we don't have an idea of the distribution law, a Fuzzy Logic FEM must be 
applied; later on, when a better knowledge of the distribution of the unknown parameters 
is obtained, a more classical probabilistic (Monte Carlo) method can be applied. 

 

16 Activities at CSL and GDTECH 
In the context of a PAT contract n° PA-12-315, of CSL with SSTC : Static and dynamic 
analysis procedures for structures with uncertain parameters, GDTech has been identified 
as a subcontractor of CSL for specific FEM calculations preparation and evaluation on 
different aerospace uncertain models on which a Fuzzy Logic FEM will also be applied.  

With the help of GDTech, for the FEM modelisation, definition and calculations, and 
with some inputs from the Users,  CSL will define, test cases in dynamics, for space 
activities. 

The activities identified for GDTech at the beginning of the project, are : 

1. Define test cases FEM 
2. Test the validity of the FEM of the test cases.  
3. If possible, we will try to compare the results obtained with the fuzzy logic 

developments by the partners, with "our classical" way to do this type of calculations.  
There are different ways to do the classical calculations: sensitivity analysis (suitable 
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if linear and not to many parameters), Monte-Carlo analysis, ... . The way we will do 
it, will be discussed with GDTech on a case by case basis.   

4. If possible, we will introduce in someway, the developments of the fuzzy method in 
our SAMCEF methods. 

These activities are subject to modifications due to the possible interactions from the 
partners and especially from the users. 

Due to all these uncertainties (the last two activities are not contractual but are interesting 
for both parties CSL and GDTech) and since the time and budget allocated to these 
activities are limited, CSL and GDTECH will define the priority activities on a regular 
basis. An extension of this project could easily be justified. 
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1 Introduction

Both the probabilistic and the non-probabilistic finite element method aim at the
investigation of the effect of non-determinism on selected finite element output quan-
tities. Each of the non-deterministic methods has its strengths and weaknesses, and
requires a specific input. It is up to the engineering analyst to select an appropriate
method for the analysis of the problem at hand. In some cases, the selection of a
specific approach might be straightforward, but in other cases the pros and cons of
different techniques have to be weighted against each other. Therefore, this report
tends to formulate some guidelines on the application possibilities of the different
non-deterministic approaches.

Section 2 of this report gives a general overview of the applicability of both the
probabilistic and non-probabilistic method, based on the type of the non-determinism
present in the problem, and based on the purpose of the presumed non-deterministic
analysis. Section 3 gives some guidelines regarding the uncertainty assessment of
some frequently encountered non-determinism in FE models of engineering prob-
lems.

2 Selection of a non-deterministic approach

2.1 Selection based on the type of non-determinism

For the selection of an appropriate non-deterministic FE approach, the type of non-
determinism and the amount of available non-deterministic input data has to be
considered. In this part, distinction is made between certain variabilities, uncer-
tain variabilities and invariable uncertainties. This terminology and classification of
non-determinism is clearly described in the second section of the report of project
task 1.1.
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2.1.1 Probabilistic variability and uncertainty representation

The probabilistic concept is most appropriate to represent certain variabilities, as
for this type of non-determinism information on both the range and the likelihood
can unambiguously be incorporated in the required probability density function.
However, care has to be taken when multiple certain variabilities are present, as
the information on the joint probability density function is then required. In case
of uncertain variabilities, mostly the information on the likelihood is missing. The
probabilistic concept can be used, but it is mandatory to apply a number of different
probability density functions in order to examine the effect of the chosen PDFs on
the result. In case of invariable uncertainties, some PDF support and distribution
is chosen by the analyst, but it does not represent available objective information.
Hence care should be taken when interpreting the resulting probabilistic outcome.

Nowadays, the probabilistic concept is by far the most often used approach to
describe non-determinism in finite element models, and is included in most available
non-deterministic FEM software codes. However, criticism has arisen concerning
the use of the probabilistic model for the numerical representation of both variabili-
ties and uncertainties. When subjective input information on the non-deterministic
properties has to be included, non-probabilistic techniques could give an additional
insight. In this case, the limited (objective) added value of a probabilistic analysis
might not justify the required computational effort, which can be very high.

2.1.2 Interval variability and uncertainty representation

The use of an interval for the numerical description of certain variabilities is not
mandatory, as only the information on the range is used, while the information
on the likelihood is lost. Hence, not all available information is used, which is an
important disadvantage. The interval concept is mainly appropriate for uncertain
variabilities of which the upper and lower bound is known but the information on
hte likelihood is missing. In this case an interval is a very good representation of the
available information, without the inclusion of subjectiveness. In case only limited
or no information is available on a given PDF support, the non-determinism is
best modelled probabilistically. For invariable uncertainties a subjective interval is
chosen by the analyst, which represents the range of values he/she considers possible
at the time the analysis is performed. Hence the representation is subjective, but
requires less information than a probabilistic representation.

It can be concluded that the interval concept is most valuable for the description
of uncertain variabilities with known support but unknown distribution, and for the
description of invariable uncertainties.

2.1.3 Fuzzy variability and uncertainty representation

The fuzzy concept uses a membership function for the description of each of the
non-deterministic properties, and hence uses subjective input as these membership
functions are mostly completely based on the subjective knowledge or believes of
the analyst. Therefore, the results of a fuzzy analysis may only be interpreted in
reference to the assumed fuzzy input.
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In case of a certain variability, the known probability density function has to
be converted into a compatible membership function. A number of methods are
available for this purpose, but they all insert subjectivity. Hence the objective data
is replaced by subjective data, which is highly irrational and should not be done.
For uncertain variabilities, the fuzzy concept can be used for a hybrid uncertainty
model, as is described in the report of task 1.1. In this approach, a fuzzy number
is used to simultaneously examine the effect of a set of different probability density
functions in a single analysis. Hence this method seems very powerful, but is has
only rarely been applied yet. The fuzzy concept is most useful for the description of
uncertainties. In this case, the fuzzy membership function represents the subjective
expectation of the analyst, eg. the possible values of a design parameter that is still
left open for optimisation. The more objective information becomes available on a
non-deterministic model property, the less the fuzzy concept becomes appropriate
to describe it.

2.2 Selection based on analysis pupose and the design phase

From the discussion above, it is clear that non-probabilistic approaches can be very
valuable to model non-deterministic properties in a finite element model in ab-
sence of crucial probabilistic information. Still, the decision regarding which non-
deterministic concept to use should not be based exclusively on the available infor-
mation at the analysis input. The clear definition of the objective of the analysis
is at least equally important in the determination of the most appropriate non-
deterministic analysis tool. Therefore, this section now focusses on a number of
practical non-deterministic analysis types that concern a design engineer. In order
to evaluate the possibilities of the non-probabilistic approaches in specific applica-
tions, references will be made to the corresponding probabilistic treatment of the
non-determinism.

2.2.1 Numerical non-determinism in a design process

The main objective of the application of numerical tools in a design process is to
assess the product quality at a specific design stage by simulation of its realistic
physical behaviour. Still, an exact quantification of the design quality based on
the numerical predictions is not always straightforward. This is mainly due to the
non-determinism implicitly contained in the numerical analysis results. Analysing
the design quality over time, very often an evolution as illustrated in figure 1 is
observed [1].

The design quality is expected to increase over time. Still, there always is a
scatter on the predicted design quality, represented by the grey area in the figure.
This scatter tends to decrease over the process, since additional information acquired
over time will decrease the amount of uncertainty. On the other hand, the scatter will
generally not disappear because of the presence of irreducible variability. Figure 1
indicates the evolution of the applicability of design analysis tools over time. The
upper bound on the useful range of numerical methods is induced by the limit on the
realism in numerical simulation of physics. There are currently two fundamentally
different approaches that aim at moving this upper bound forward into the design
process. On the one hand, there is a tendency towards integrated numerical analysis,
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Figure 1: Limits on the application of numerical analysis in design

aiming mainly at multi-physics simulations that incorporate all physics relevant
for the design into a single simulation. On the other hand, it is more and more
acknowledged that the introduction of non-determinism in the numerical analysis
is equally, if not more important in influencing this upper bound. Therefore, it
is imperative to have insight in the numerical analysis tools that can be of use
to incorporate non-determinism in the analysis during design. This will not only
extend the useful range of numerical methods, but should simultaneously lead to a
better understanding of the sources of the scatter on the predicted behaviour. This
information on its turn can be extremely important to improve the design quality
obtained after the numerical design cycle. Figure 2 summarises these envisaged
effects of numerical analysis of non-determinism in a design process.

extend useful range
of numerical analysis

increase
design quality

functional
quality of

design

time

Figure 2: Extending the applicability of numerical methods and improving design
quality through the application of non-deterministic analysis techniques in the nu-
merical design cycle

Generally, there is an evolution of the type of non-determinism encountered dur-
ing a typical design process, or as formulated by Ross et al. [2]: As more information
about a problem becomes available, the mathematical description of non-determinism
can transform from one theory to the next in the characterization of the uncertainty
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as the uncertainty diminishes or, alternatively, as the information granularity in-
creases and becomes specific. In an early stage, objective information on model
properties is often difficult to obtain, since a large number of model properties have
yet to be defined. Some design decisions are even intentionally postponed in order
to be able to study their effect on the design quality. Furthermore, early design
improvements are commonly the result of expert knowledge rather than detailed
numerical procedures. This means that the amount of objective information on av-
erage is low, and therefore subjectiveness is substantially present in the analysis.
This leads to the conclusion that in early design stages, most non-determinism be-
longs to the uncertainty class. Through the course of a design process, the amount of
information generally increases. In some cases, the non-deterministic properties can
be more objectively described, e.g., when certain design aspects are fixed, or compo-
nent manufacturers are chosen. The classification of the remaining non-determinism
gradually moves towards to what has been defined as model variability, i.e., design
independent variations in the product or its environment.

The evolution of non-determinism in a typical design process as described above
is illustrated in figure 3. This figure also indicates the evolution of the numerical
concepts that are most appropriate for the dominant class of the occurring non-
determinism. In the early stages, the non-determinism in the numerically predicted
design quality is mainly driven by model uncertainties, which leads to the conclusion
that non-probabilistic concepts are most appropriate in these early stages. Later in
the design process, variability becomes more important, leading to a more prominent
application of the typical variability modelling tool, i.e., the probabilistic concept.

functional
quality of

design

time

fuzzy probabilistic
interval
convex

uncertainty

variability

Figure 3: Typical occurrence of non-determinism in the product quality predictions
during a design process

The evolution of a property from one class of non-determinism to another can
be clarified using a simple example. Take for instance the design of a new car body.
The start point of the structural design is generally a conceptual design inspired
esthetically rather than mechanically. In this initial design, there is a lot of non-
determinism on the dimensions of structural components, such as for instance plate
thickness. Since there is no information whatsoever on the exact plates that will
be used, numerical analysis in this phase can only incorporate subjective knowledge
based on other designs. Alternatively, a designer could be interested in the impact
of a certain plate thickness on the behaviour of the design. In that case, a preferred
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range could be defined for the thickness in order to identify the most appropriate
value. In either case, there is no clear objective information on the actual property
in the final product. Hence, if non-determinism on this property is to be taken
into account, this can only be achieved through modelling of subjective knowledge.
Later, at a certain point in the design process, a specific reference value will be
chosen for the thickness of the plates in the car body structure. Tolerances are
chosen, which define the allowable region for these properties in the actual product.
At this point, the range of the thickness in the actual product is known, but there’s
no information on the likelihood inside the range. The property has clearly evolved
to an interval. Finally, when the design is finalised up to the detailed description of
the manufacturing process, information on the variation of the plate thickness within
the bounds of the tolerances could become available. The value for the thickness
then becomes a variability.

2.2.2 Probabilistic reliability analysis

The reliability of a product is defined as the likelihood that it will successfully
fulfil its intended task over a predefined period in time under specific environmental
conditions. Numerical reliability analysis is very popular in a structural design
context because it can provide a designer with crucial information on the likelihood
of failure of the analysed design. As such, it can be usefully applied in an economical
product analysis taking into account the cost associated with failure.

Reliability analysis of non-deterministic structures using the probabilistic con-
cept has been studied extensively in literature. Very powerful software codes exist
supplying the analyst with a vast arsenal of probabilistic reliability analysis pro-
cedures. See Casciati et al. [3] for a comprehensive overview of probabilistic re-
liability methods. Most commonly, the probabilistic reliability analysis results in
a probability of failure, defined as the likelihood that the structure will successfully
fulfil its intended task over a predefined period in time under specified environmental
conditions. This probabilistic reliability analysis is broadly applied and already in-
corporated in generally accepted design specifications in civil engineering. However,
its application in mechanical engineering is far less standardised. This is mainly
due to the plentitude of different mechanical products, which all require a differ-
ent amount of reliability under very different environmental and loading conditions.
Hence, there are very few standards for reliability in mechanical design. Each prod-
uct designer applies rules which are based on experience rather than on general
engineering standards.

Mathematically, the probabilistic reliability analysis requires the definition of a
performance criterion based on the relevant load and resistance parameters. This
performance function generally is referred to as the limit state function and is de-
scribed as:

Z = g(X1, X2, . . . , Xn) (1)

The failure surface is then defined as Z = 0. It represents the boundary between
what are considered to be unsafe and safe design regions in the parameter space.
The limit state can be an explicit or implicit function of the parameters. This char-
acteristic has an important influence on the analysis procedure. Using the definition
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of Eq. (1) the probability of failure Pf equals:

Pf =
∫

. . .

∫
g(X1,X2,...,Xn)<0

fX(x1, x2, . . . , xn) dx1dx2 . . . dxn (2)

with fX(x1, x2, . . . , xn) the joint probability density function for the considered para-
meters. This equation forms the basis of probabilistic reliability analysis. However,
it is in most cases impossible to solve because the necessary information to describe
the joint probability density function is missing. But even if it was available, eval-
uating the multiple integral is extremely difficult. In this context, approximation
methods have been developed. Each of these methods has its own requirements
concerning the performance function. Only the most common are listed here:

• First Order Reliability Methods (FORM): After transformation to a
standard normal parameter space, each limit state function is replaced with
a first-order polynomial approximation at a specific point in the parameter
space. This point is usually the point on the failure surface nearest to the
origin, and is generally referred to as the design point or most probable point.
The probability of failure follows directly from the distance from the origin to
the design point.

• Second Order Reliability Methods (SORM): This method is completely
similar to FORM, with the exception that a second-order polynomial is used
for the limit state function approximation. (see [4] for a general introduction
to FORM and SORM)

• Mean Value Based Methods (MVBM): This method constructs a first-
order Taylor series expansion of the limit state function around the mean values
of the random variables.

• Simulation Methods (SM): The approximation of the probability of failure
results directly from a series of analysis runs using samples of each variable.

The FORM, SORM and MVBM require information on the derivatives of the
limit state function to the parameters. Therefore, they are most appropriate when
an analytical closed-form expression of the limit state function is available. This
is generally not the case for reliability assessment based on finite element analysis,
where the relation between the model parameters and the limit state function is im-
plicit. This has led to the development of specific algorithms for sensitivity analysis
which directly aim at the calculation of these derivatives, either analytically or based
on numerical approximations. This is already provided in a number of commercial
finite element codes nowadays. When there is no explicit relation between design
parameters and the limit state, response surface methods are commonly applied to
approximate the limit state function in the design space. With these, a limited
number of analysis runs is performed at several points in the design space based
on a design of experiments strategy. The approximation of the true limit state
function then generally results from a second-order polynomial fitted through the
resulting points. These developments induced implementations of FORM, SORM
and MVBM around a finite element code. The computational burden for these im-
plementations, however, remains large. Furthermore, the exactness of these methods
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decreases rapidly when the range of the parameter variabilities increases because the
approximations are based on local information.

Currently, the simulation methods are by far the most popular numerical tool to
predict the probability of failure of a given design. This is mainly due to the fact that
they are easy to use, straightforward, and require little background in probability
theory. Their main disadvantage is that they are computational expensive. How-
ever, in combination with a response surface approximation of the limit state, their
efficiency can be increased. The probability of failure can be derived numerically
based on a Monte Carlo simulation by rewriting Eq. (2) to:

Pf =
∫ +∞

−∞
I(g(x))fX(x)dx = E{I(g(x))} (3)

with:

I(g(x)) =
{

1 if g(x) ≤ 0
0 if g(x) > 0

(4)

Therefore, it can be estimated from N Monte Carlo samples using:

Pf ≈
1
N

N∑
i=1

I(g(Xi)) (5)

with Xi the numerical value of the samples. From this approximation it is also
clear how a good preceding response surface procedure could greatly improve the
efficiency of Monte Carlo simulation. Recently, Schuëller et al. [5] gave a clear
overview of the recent advances in Monte Carlo based simulation procedures for
application in reliability analysis of high dimensional problems.

According to its definition, reliability belongs clearly to the probabilistic frame-
work in the frequentist context. On the one hand, this complicates probabilistic
analysis of designs intended for limited production, since the fact that the prod-
uct is only produced in limited quantity strongly complicates a decent aposterior
verification of the non-deterministic numerical predictions. Furthermore, for most
designs intended for limited production nowadays, an unverifiably high reliability is
requested (e.g. spacecraft). The current tendency towards designing for 6-σ clearly
illustrates this evolution. However, such specifications require an extremely high ac-
curacy of the predicted probabilistic behaviour, especially in the tails of the obtained
probability density functions. This is extremely difficult to achieve. Furthermore,
even if a mass production is envisaged, such high reliability requirements can never
be verified. Therefore, it is the authors opinion that it is rather irrational to attach
any objective meaning to reliability values of 1-109 or more. The reliability specifi-
cation in this case comes down to requiring an extremely reliable product, which is
a clear step towards treating reliability in a subjective non-deterministic context.

As discussed in section 2.1, while applying the probabilistic concept for the rep-
resentation of subjective information is possible, results from such an analysis should
definitely not be interpreted as indication for an absolute frequency of occurrence.
This means that the subjectiveness devaluates the use of the probabilistic results in
a reliability context. It is important to note that the subjectiveness incorporated in
the information on which the analysis is based is not always detected. For instance,
neglecting unknown correlation between properties by assuming them as indepen-
dent is a common simplification that is sometimes implicitly made, but that can
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have important consequences. This implicit assumption of independence between
probabilistic quantities was one of the important errors that were the source of the
Challenger space shuttle disaster [6]. In this case, the impact of different extreme
weather conditions on the launch was analysed for each condition individually be-
forehand. The impact of a combination of more than one of these events, however,
was never checked. Although each of the events had a very low probability of occur-
ring, the probability of their combination proved to be not simply a multiplication
of the probabilities of the single events. The correlation between the conditions was
clearly misjudged, leading to a plausible but unaccounted probability for a weather
situation with disastrous consequences.

The lack of credibility of numerical predictions of reliability is generally com-
pensated by safety factors. However, one could argue that using these safety factors
after applying sophisticated and computationally expensive numerical procedures is
not a really economical situation. Much effort is spent on a numerical prediction,
which, in the end, still has to be corrected based on practical experience. In this
context, the non-probabilistic approaches could prove their value. The remainder of
this section briefly discusses possible applications of the non-probabilistic concepts
for numerical reliabilty analysis.

2.2.3 Non-probabilistic reliability analysis

The application of the interval concept in numerical reliability studies is often re-
ferred to as anti-optimisation. This name stems from the fact that from all numerical
models within the interval input boundaries, the one with the least favourable analy-
sis result is the most interesting from reliability point of view. Finding this least
favourable result is mathematically equivalent to performing a numerical optimisa-
tion aimed at the worst-case result with respect to the input intervals.

The concept of anti-optimisation has been introduced as the basis for a non-
probabilistic reliability framework [7]. This requires an evolution from a reliability
concept as probability of failure towards range of acceptable behaviour. This means
that the design must assure that the performance remains within an acceptable
domain, without specifying a likelihood of failure. Reliability then becomes a crisp
criterion distinguishing between either acceptable or unacceptable designs. The most
important benefit of the anti-optimisation concept is that it broadens the objectivity
of reliability studies to uncertain variabilities with known range, because the interval
model perfectly represents these uncertainties without the need for subjective input.
For instance, this enables a fast assessment of dimension tolerances on a design,
without knowing the actual distribution of the dimension within the bounds of the
prescribed tolerance. For some cases, it can be shown that the anti-optimisation
procedure results in the same choice of design parameters as a probabilistic analysis
if the required reliability tends to one [8]. The anti-optimisation in this case proves
to be far less expensive in computation time.

The numerical implementation of the anti-optimisation approach is subject to
an important requirement. Since the result of the analysis is the source of a crisp
decision between acceptable and unacceptable designs, approximate results should
always be kept on the safe side of the exact result. This means that if approximate
solution procedures are used in the numerical implementation, they should guarantee
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conservatism in their result. On the other hand, this conservatism should not be
excessively high in order for the result to be of any practical value.

Also the fuzzy concept has been introduced as a numerical reliability assessment
tool [9]. In the interpretation of the membership function as a degree of possibility,
the fuzzy outcome of an analysis could be used to define a possibility of failure. This
possibility is clearly influenced by the subjectiveness that is implicitly incorporated
in the fuzzy input of the analysis. This means that for the same problem, different
analysts can and generally will end up with different possibilities of failure. This
could be compensated by defining a personal threshold value for the allowed possi-
bility of failure in the final decision on acceptable or unacceptable designs. However,
due to the necessary amount of personal interpretation of the analyst, possibility of
failure only has a relative value. Therefore, this approach is extremely difficult to
standardise in a general reliability framework.

Still, based on the α-sublevel technique, the fuzzy approach becomes very useful
when the effect of interval bounds on the anti-optimisation result has to be analysed.
In this context, the fuzzy analysis can serve as a tool to derive the α-level on which
the required safety margins are reached on the crisp failure modes. The input
intervals derived from the input membership functions intersected at this α-level
then define the allowable range for the non-deterministic input properties. The fuzzy
reliability analysis as proposed by Biondini et al. [10] is based on this principle. The
same approach was applied by Catallo [11] for reliability assessment based on a
fuzzy analysis of limit state load multipliers of a precast concrete structure.

A different application of the fuzzy concept in reliability analysis is based on the
use of the membership function as limit cumulative density functions as explained in
the report of project task 1.1. It was shown by Ferrari et al. [12] that, if the input
membership functions represent boundaries on the cumulative density functions of
the input parameters, the membership function resulting from fuzzy analysis on
this input forms reliable boundaries on the actual cumulative density function of
the result. Therefore, the fuzzy result of a fuzzy finite element analysis can be
used to derive bounds on the probability of failure. A simple example illustrates
this. Suppose that a fuzzy finite element analysis results in a membership function
µλ̃(λ) representing a crucial eigenfrequency of a design as illustrated in figure 4.
Suppose furthermore that a crisp criterion states that the design is acceptable if
this eigenfrequency is kept below the value λ∗. The fuzzy result envelopes the exact
cumulative density function of the eigenfrequency. This means that the bounds on
the probability that the eigenfrequency of the design lies below λ∗ can be derived
from the fuzzy result. The probability interval is obtained from taking the value
of the envelope curves at λ∗ as indicated in the figure by P

′
f and P

′
f . The most

conservative statement resulting from the analysis is that the probability of failure
equals (1− P

′
f ) in the worst case.

It is clear that also the above non-probabilistic reliability methods are subject to
the limitation that whenever there is subjective information involved in the problem
definition, the results can not be interpreted as absolute measures of design quality.
In an absolute reliability context, the amount of expert knowledge required in the
distinction between a good or bad design is proportional to the amount of subjec-
tiveness incorporated in the description of the non-determinism. Still, subjective
analysis can be of great value when used in a relative framework, as for instance a
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Figure 4: Example of the application of the fuzzy outcome of a fuzzy finite element
analysis to predict bounds on the probability of failure

design optimisation procedure. This will be discussed in the next section.

2.2.4 Numerical design optimisation

The principal goal of design optimisation is to define the best possible product under
certain restrictions. These restrictions can be anything from manufacturing cost to
limitations placed on physical properties of the design. The ingredients of the goal
function and their relative weights determine the final result of the optimisation.
Reliability can be used as an indication for the design quality, and therefore can
be an important part of the goal function. Classicaly, this is approached from
a probabilistic viewpoint, and referred to as reliability based design optimisation.
Youn et al. [13] gives an overview of different approaches that aim at an increase in
design quality or robustness through an optimisation based on numerical reliability
predictions.

Still, when reliability is used as a design quality indicator in an iterative design
optimisation process, the demands on the objectivity are much lower than when it
is used for absolute design assessment. A relative reliability improvement during an
optimisation process can already be very valuable, even though the absolute relia-
bility is only roughly approximated. This means that also subjective analysis can be
usefully applied in a design optimisation context. While applying subjective proba-
bility for this purpose is possible, it is not always the most advisable approach. In
some cases, especially in design optimisation, a probabilistic reliability measure is
not required. For instance, if the range on some parameters is all information that
is available, placing subjective probability density functions on these ranges only
complicates the numerical problem, while it doesn’t necessarily add any valuable
meaning to the analysis. In that case, it doesn’t really make sense to transform the
problem to the probabilistic concept. Or as formulated by Ross et al. [14]: Some-
times, striving for precision can be expensive, or adds little or no useful information,
or both. This indeed holds for the application of reliability calculations in an iterative
optimisation procedure, where the numerical efficiency becomes very important. It
is now discussed to what extend the non-probabilistic approaches can be considered
as valuable alternatives for design analysis in an optimisation framework.

For the interval concept, the most useful application lies in modelling invariable
uncertainties. Though they are assumed to be constant, they could play an impor-
tant role during design optimisation. The analyst may ask the question whether the
defined ranges for the invariable uncertainties result in an allowable range for the
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behaviour, without really being interested in the likelihood of occurrence within the
defined interval bounds. Or, alternatively, the invariable uncertainty represents an
open design decision, i.e., a model property that has yet to be quantified, and the
value of which will be optimised. Pure probabilistic analysis in both cases seems like
an unnatural thing to do, since it requires information that is not available (prob-
abilistic input) to produce information that is not requested (probabilistic output).
The interval procedure is limited to the definition of the intervals on the uncertain-
ties the analyst would like to take into account. Subsequently, the design can be
assessed from an interval analysis by reassuring that the worst-case output is still
within the range of acceptable physical behaviour. This comes down to a worst-case
oriented design optimisation.

A commonly formulated criticism on this approach is that the worst-case behav-
iour generally results from the combination of extremely rare events. Taking these
combinations into account in a design assessment procedure could lead to severe
over-dimensioning. This criticism only holds if you can objectively verify the actual
probability of occurrence of the model properties which are considered to be extreme
events. But even more important, if you want to give a realistic weight to the actual
occurrence of such an extreme combination of events, it is imperative to incorporate
the exact mutual interdependence between these extreme events in the procedure, as
discussed for the Challenger case in section 2.2.2. In such cases, worst-case analysis
could be a tool for identification of extreme events which lead to failure, without the
need for a prediction of the actual probability of this extreme event. This identifi-
cation should not necessarily lead to adapted designs and the generally associated
over-dimensioning. In the Challenger case, accustomed launch protocols incorporat-
ing identification of possible disastrous extreme weather conditions would already
have been of great value.

As discussed in the previous section, due to its implicit subjective nature, the
value of fuzzy finite element analysis as an absolute reliability analysis tool is rather
limited. In an optimisation procedure, however, the complete process is generally
conducted or followed up by one and the same analyst. This means that the sub-
jective possibility measure can be interpreted in a consistent manner throughout
the optimisation procedure. Therefore, the possibility of failure can be used as a
quality measure in an optimisation procedure. In this context, Choi et al. [15] re-
cently introduced a possibility-based design optimisation procedure based on a fuzzy
representation of the uncertain design aspects.

Apart from reliability optimisation, an important aspect of designing under un-
certainty is to define a robust design, i.e., a design whose critical properties have
a minor sensitivity to changes in the uncertain influences like for instance exter-
nal loading. Also in this context, the fuzzy approach can be of value. By placing
fuzzy membership functions as loading factors on the crucial loading components,
the sensitivity of some design quality indicators to these external influences can be
analysed. Using this approach, the robustness of the design can be assessed by mea-
suring the width of the resulting membership function on the critical design quality
indicators.

Another practical approach of the fuzzy analysis is in the study and choice of
tolerances placed on design dimensions. From the α-cut strategy, it is clear that
the fuzzy finite element analysis is actually a large-scale sensitivity analysis of the
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combined effect of the bounds defined on some interval design variables on critical
design properties. By placing membership functions on the design properties sub-
ject to tolerances, the effect of their range on the design behaviour can be analysed.
This can be helpful in defining tolerance intervals in the model. For instance, at a
certain α-level, an allowable range could be identified in the fuzzy outcome of the
analysis. The corresponding input intervals at this α-level can then be chosen as
the set of tolerances on the analysed design properties. This procedure is clarified
in figure 5, where the design specification is assumed to be an upper bound λ∗ on
an eigenfrequency. The analyst can control the analysis by defining the possibility
distributions on the input according to personal preference or practical limitations.
A different possibility distribution for the design variables will yield a different pos-
sibility distribution of the analysis result, and consequently also different tolerances
for the design variables. The design based on these alternative allowable ranges,
however, is equally safe. In this context, again, the possibility distribution is rather
a useful tool to control the allowable range for the uncertainties than an absolute
quality measure.
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Figure 5: Illustration of the application of the fuzzy concept for design tolerance
analysis

2.3 How are probabilistic, interval and possibilistic analyses re-
lated?

Elishakoff [16] compares the concepts of probabilistic analysis, fuzzy sets and
anti-optimisation applied on finite element analysis. He concludes that each of the
methods has its own advantages and could be preferred above the others under
specific circumstances. De Lima et al. [17] compared the result of a probabilistic
finite element analysis and an equivalent fuzzy finite element analysis on a simple
example. He concludes that the fuzzy method leads to less expensive qualitative
results which are adequate for practical engineering purposes.

To compare the applicability of the different methods, it is of interest to study
the performance of each of the different concepts when applied to the same design
problem. After all, they are all aimed at providing the analyst with enough infor-
mation on the influence of the non-deterministic input on the numerical analysis to
draw conclusions regarding the performance of the design. Maglaras et al. [18]
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compares experimentally the designs resulting from optimising reliability in both
a probabilistic and possibilistic framework. He concludes that the design acquired
through probabilistic analysis is better when there is enough information to describe
the probabilistic data realistically. Another comparison of probabilistic and possi-
bilistic design under uncertainty by Nikolaidis et al. [19] demonstrates that a fuzzy
set method yields safer designs than probabilistic design methods when very lim-
ited information is available. Both these conclusions confirm the main drawback of
probabilistic analysis, i.e., the fast devaluation of its result with increasing lack of
information on the non-deterministic input.

It could be useful to do an analysis using a mixture of different uncertainty
models, for instance when there is sufficient statistical data to describe some vari-
abilities, but also uncertainties are present in the model. For this purpose, a hybrid
finite element analysis has been developed by Langley [20]. It consists of a single
mathematical algorithm to analyse all three models of non-deterministic quantities
simultaneously, based on a SORM or FORM approach for reliability. A different
approach for combined uncertainty and variability analysis was proposed by Rao et
al. [21]. It is based on a separate probabilistic and non-probabilistic analysis run,
after which both results are unified to a hybrid-uncertainty mean value and variance.

Based on the above discussion, it is concluded that the mutual relationship be-
tween the probabilistic and the non-probabilistic approaches is rather weak. While
both can be put to use in a numerical design procedure, their application field is
strongly dependent on the available information and the intention of the numerical
analysis. Considering a design process as given in figure 3, this leads to the con-
clusion that the non-probabilistic approaches should be regarded as complementary
rather than competitive to the probabilistic approach.

3 Typical non-determinism in FE models of mechanical
engineering structures

This section gives some practical guidelines for the assessment of non-determinism
typically encountered in finite element models built for the static and/or dynamical
analysis of mechanical structures. Non-determinism is frequently found affecting sev-
eral parameters, such as material characteristics (Young’s modulus, mass density),
damping characteristics, geometry, loading and connection characteristics (boundary
conditions, joints, etc). Depending on the available information and the purpose of
the analysis, one non-deterministic approach can be more appropriate than others.

For material characteristics such as the Young’s modulus, the Poisson coefficient
and the mass density, both probabilistic and non-probabilistic methods can be ap-
plied. In case there is a sufficient amount of statistical data available on both the
range and the likelihood of the parameters, the probabilistic approach is advisable.
In case only the range is (objectively/subjectively) known to the analyst, the inter-
val or fuzzy method is preferable. For loading conditions, the same considerations
can be made.
For non-determinism affecting the geometry, a distinction has to be made between
small geometric changes (eg. variabilities caused by manufacturing tolerances) and
larger geometric changes (eg. due to open design decisions). In most cases of pro-
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duction tolerances, statistical data is available on the range and likelihood of the
geometric characteristics, and hence the probabilistic approach is a logical choice.
In case of large uncertainties affecting the geometry, eg. in case of not yet decided
design dimensions, the interval and fuzzy methods are far more advisable, as hardly
no objective data is available in this early design stage.
The most difficult sources of non-determinism in finite element models arise from
damping, joint characteristics (eg. spot welds) and non-ideal boundary conditions,
as these properties are inherently difficult to model numerically, and hardly any in-
formation is available. Hence the uncertainty intervals are large and the ranges are
often subjective. Therefore, the interval and certainly the fuzzy method are best
suited to account for these non-deterministic model properties.

In case a non-probabilistic approach is chosen, special attention has to be paid
to an appropriate implementation of the interval method. In this project, a Design
of Experiments (DOE) approach and a global optimisation approach have been pro-
posed. The DOE approach is the most computationally efficient method, but has
as important drawback that is does not guarantee that the worst-case scenario is
detected and conservative results are produced. Especially the effect of large uncer-
tainty intervals and uncertain parameters affecting only a small part of the structure
is very hard to predict, and mostly non-monotonic. In these cases it is necessary to
apply a global optimisation approach in order to detect the extreme static and/or
dynamic response values.

4 Conclusion

This report describes some guidelines regarding the selection of an appropriate
non-deterministic method in order to investigate the influence of variabilities and
uncertainties on the static and/or dynamic behaviour of engineering structures.
Several important factors influencing this selection are detected: the sources and
types of non-determinism, the available objective information (probabilistic/non-
probabilistic), the purpose of the non-deterministic analysis, the design phase, the
available computer resources, etc.
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