Programme d'appui scientifique à la protection des travailleurs

programmes PS 50/47 et PS50/48

Validation de méthodes microbiologiques et chimiques de contrôle des lieux de travail.

RAPPORT FINAL

1. Auteurs

Dr. Nicole Nolard ¹ (Promoteur), Dr Camille Chasseur ¹ Professeur Michel Marlier ², Professeur Georges Lognay ²

(1) Institut Scientifique de Santé Publique Section de Mycologie 14, rue Juliette Wytsman - 1050 - Bruxelles Tél.: 02/642 55 17 - Fax.: 02/642 55 19 n.nolard@iph.fgov.be - c.chasseur@iph.fgov.be

Programmes PS 50/47

- (2) Unité de Chimie générale et Organique Faculté universitaire des Sciences Agronomiques de Gembloux
- 2, Passage de Déportés 5030 Gembloux
 Tél: 081/62.22.26 Fax: 081/62.22.27
 m.marlier@fsagx.ac.be lognay.g@fsagx.ac.be
 Programmes PS50/48
- **2. Mots-clé** : environnements intérieurs, santé des travailleurs, contaminations microbiologiques, bio-marqueurs

3. Introduction:

Les problèmes de biocontamination dans les environnements intérieurs (habitat et lieux de travail) ont conduit à une prise de conscience de leur impact sur la santé et de la difficulté à cerner les différents paramètres.

L'objectif de ce programme de recherche consiste à développer des outils analytiques objectifs et performants permettant d'évaluer l'occurrence d'agents biologiques (fongiques et bactériens) et chimiques (ergostérol, mycotoxines, MVOCs, endotoxines, ...) produits par les moisissures et les bactéries, et susceptibles d'être délétères dans le milieu du travail.

Cette recherche s'articule autour de 2 axes complémentaires:

- a. Les développements relatifs aux aspects microbiologiques concernent d'une part les modes de prélèvements, la mise en œuvre de milieux supplémentaires adaptés, l'affinement de valeurs centiles dégagées des travaux antérieurs ainsi que la diversification des sites investigués. Dans une démarche intégrée à l'ensemble des prérogatives des 2 équipes de recherche, l'ISP a assuré l'extension du site web *www.indoorpol.be* de manière a couvrir un plus large domaine lié à la bio-contamination (secteurs industriel et agricole, hôpitaux, école, crêches, piscine et centre de loisirs, ...)
- b. Parallèlement, la quantification des bio-marqueurs fongiques (ergostérol, MVOC, ...) a été envisagée par la FUSAGx : mise au point et validation de procédures chromatographiques et spectrométriques. La mise en œuvre de celles-ci dans le cadre du suivi de systèmes de conditionnement d'air a pour but de définir des seuils objectifs (valeurs centiles) permettant d'inciter aux mesures préventives et correctives à prendre. Avec l'ISP, l'approche d'autres lieux de travail s'est diversifiée.

Le projet repose sur un ensemble de démarches concertées entre les deux partenaires et met en évidence l'interdisciplinarité nécessaire. Dans l'évolution des travaux, le collège d'experts, sollicité tous les 6 mois, a pu vérifier l'état d'avancement des travaux et suggérer des orientations spécifiques dont il a été tenu compte.

4. Méthode

La démarche de cette recherche vise à la mise en place de procédures d'examen et de contrôle des lieux de travail en s'appuyant sur l'usage de techniques microbiologiques éprouvées et la recherche analytique de bio-marqueurs spécifiques aux micro-organismes (ergostérol, endotoxines, MVOCs)

Les expérimentations ont été menées sur les lieux de travail suivants :

- Bâtiments à usage de bureaux, avec ou sans air conditionné
- Bâtiments avec archives, livres
- Bâtiments à usage industriel (huile de coupe)
- Laboratoire manipulant des matières contaminées
- Bâtiment à usage agroalimentaire (minoterie)

Une présentation générale des méthodologies utilisées peut-être visualisé sur la nouvelle version du site web <u>www.indoorpol.be</u>. Le détails des procédures d'échantillonnage et d'analyses sont colligés dans le rapport final complet. Elles concernent :

A. Procédures d'échantillonnage

- Echantillonnage de l'air pour analyses microbiologiques (germes revivifiables, ergostérol, MVOCs)
- Echantillonnage de la poussière déposée sur support lisse, pour analyses microbiologiques (germes revivifiables)
- Echantillonnage des liquides pour analyses microbiologiques (germes revivifiables, ergostérol, endotoxines)
- Echantillonnage des poussières de moquette et supports apparentés, pour analyses microbiologiques et biochimiques

B. Procédures d'analyse

- Microflore revivifiables (air, surfaces, liquides et poussières)
- Analyses biochimiques (ATP, endotoxines, ergostérol, MVOCs)

5. Résultats

Immeubles à bureaux : étude des humidificateurs de centrales de condionnement d'air

La propagation de micro-organismes et de leur débris dans le milieu de travail peut constituer un facteur de désagrément. Compte tenu de la spécificité de cette microflore, l'immunité acquise n'est pas spécifiquement adaptée à ce type potentiel d'agression.

Des valeurs guide basées sur des centiles et relatives à l'évaluation microbiologique et biochimique sont présentées ci-dessous.

Eau humidificateur - Conductivité			
Centiles	μS/cm		
5	85		
25	620		
50	824		
75	1135		
95	2470		

Eau humidificateur - pH			
unité pH			
Moyenne	8,35		
Ecart type	1,06		
Min:	4,25		
Max:	10,77		

Eau humidificateur - Bactéries à 25°C – CFU/ml				
a	Valeurs Valeurs			
Centile	calculées	arrondies		
5	110	100		
25	3.700	5.000		
50	23.000	25.000		
75	165.500	200.000		
95	1.887.000	2.000.000		

Eau humidificateur - Bactéries à 37°C – CFU/ml				
	Valeurs Valeurs			
Centile	calculées	arrondies		
5	0	0		
25	63	50		
50	600 500			
75	8.825	10.000		
95	590.000	500.000		

Eau humidificate ur – Moisissures à 25°C – CFU/ml				
Centile	Valeurs calculées Valeurs arrondies			
5	0			
25	2			
50	11 10			
75	63 50			
95	548	500		

D'un point de vue qualitatif, les moisissures identifiées dans 417 humidificateurs appartiennent majoritairement au genres : Exophiala spp. (44%), Acremonium spp. (37%), Phoma spp. (17%), Phialophora spp. (9%), Black Yeast (7%), Fusarium spp (6%)

Eau humidificateur - ATP – unités de luminescence				
Centile	tile Valeurs calculées Valeurs arrondies			
5	18	20		
25	250	250		
50	680 700			
75	2.300	2.500		
95	9.000	10.000		

Centiles	Ergostérol			
	Dépôts	Eau		
25	-	-		
50	0.9	-		
75	3 30 < E > 9			
90	5.5 150 < E > 49			
	μg/g	ng/l		

Une échelle provisoire « de propreté » est constituée sur base des centiles 50, 75 et 90/95, qui peut constituer un outil d'aide à la prise de décision pour les responsables de la maintenance quant aux attitudes préventives ou curatives à mettre en œuvre.

Proposition d'un outil d'aide à la décision en cas de contaminations microbiologiques de l'eau d'un humidificateur			
entre 0 et 75 état jugé satisfaisant sur le plan fongique			
entre 75 et 95 à surveiller; reprise d'un échantillon 15j après une maintenance			
supérieur à 95 identifier et solutionner le problème 15 j après une maintenance complète			

Le brassicastérol

Les levures noires appartenant aux genres *Exophiala sp*. et *Phialophora* sont parmi les plus fréquentes dans les humidificateurs. Une analyses approfondie des stérols constitutifs de 12 souches d'Exophiala jeanselmei a conduit à la mise en évidence, en plus de l'ergostérol, d'une molécule indicatrice : le **brassicastérol**.

Eau humidificateur - Endotoxines					
Centile	Valeurs calculées	Valeurs arrondies retenues			
25	18				
50	46 50				
60	75				
70	107	100			
75	146				
90	298				
95 549 > 500					
En unités UE/ml (Unités d'Endotoxines par ml)					
10 UE/ml = 1 ng/m					

Proposition d'un outil d'aide à la décision en fonction de la concentration en endotoxines mesurées dans l'eau d'un humidificateur			
<50 UE/ml état jugé satisfaisant			
>50 et <100 à surveiller; reprise d'un EU/ml échantillon 15j après une maintenance			
>100 et <500 Mesures correctives à prendre rapidement reprise d'un échantillon 15j après une maintenance			
>500 UE/ml Mesures correctives immédiates			

Immeubles à bureaux : étude de la qualité microbiologique de l'air ambiant et pulse

Nous avons calculés, pour les bactéries et les moisissures de l'air, plusieurs centiles à partir des résultats obtenus au cours de 166 enquêtes microbiologiques dans des bâtiments équipés de centrales de conditionnement d'air.

Centile	Extérieur	Extérieur	Intérieur Ambiant	Intérieur Ambiant	Intérieur Pulsion	Intérieur Pulsion
Centiles	EB,25°C	HSB,37°C	EB,25°C	HSB,37°C	EB,25°C	HSB,37°C
5	50	0	25	13	0	0
25	100	25	75	63	38	25
50	213	63	150	125	100	75
75	363	138	275	238	175	138
95	713	450	588	550	375	338
n	122	126	809	812	223	223
Max.	2738	1525	2525	1850	1126	913

EnvB: Mesophilic Environmental Bacteria; H-SB: Mesophilic Human-Source Bacteria

	Air an	nbiant	Air pu	lsé	Air extérieur*
Centiles	HS	DG18	HS	DG18	HS DG18
5	<13	<13	<13	<13	(38) (88)
25	<13	<13	<13	<13	(125) (200)
50	13	25	<13	13	(250)(388)
75	50	63	25	38	(663) (713)
95	263	350	175	250	(1163) (1325)
N° (total data)	739	739	205	205	117 117
Max.	2225	2038	2225	1888	2225 >2375

^{*:} Fluctuations saisonnières, pas une référence.

Nous avons procédé d'une manière similaire pour les poussières déposées sur des supports lisses et celles retrouvées au niveau du sol dans des tapis plain (voir rapport complet)

Industries métallurgiques

Des analyses ponctuelles ont été effectuées sur des fluides de coupe de manière à déterminer le taux de bio-contamination. Les échantillons contaminés par des moisissures contiennent également de l'ergostérol; les teneurs en endotoxines souvent très élevées dans les échantillons d'huiles usagées examinés correspondaient souvent à des charges bactériennes importantes (exemple : endotoxines : 76 944 UE/ml – Bactéries Gram- : 6 000 000 CFU/ml). Toutefois des échantillons montraient de faibles teneurs en bactéries Gram- revivifiables alors que les teneurs en endotoxines étaient élevées. Ceci démontre la complémentarité de l'approche bactériologique et analytique.

D'autres environnements ont également fait l'objet d'investigations similaires tels que laboratoires manipulant des matières contaminées, des salles d'archives contaminées, des usines fabriquant des fibres synthétiques, des sites en voie de décontamination microbiologique, etc.

CONCLUSION

Les travaux menés conjointement par l'ISP et la FUSAGx ont débouché sur l'élaboration de procédures d'échantillonnage et d'analyse visant à objectiver la bio-contamination des lieux de travail. Des valeurs guide indicatives, encore provisoires, ont été proposées. Des potentialités de valorisation se dégagent de l'ensemble des études effectuées. Divers axes de recherche complémentaire ont été mis en évidence :

- 1. Envisager un aspect pré-normatif aux procédures développées (passage du niveau de procédures au niveau de directives) validées et rédigées sous forme standardisée, assorties de tests circulaires « normatifs » entre laboratoires partenaires.
- 2. Accroître par l'expérience journalière les bases de données qui sous-tendent les valeurs guide qui ont été dégagées, et de multiplier les campagnes analytiques dans des environnements encore plus diversifiés. A cet égard une recherche concertée conjuguant les efforts d'équipes interdisciplinaires s'appuyant sur un réseau de médecins, mériterait d'être développée. Une telle démarche serait axée prioritairement sur la prévention et la définition exacte du ou des

- risques pour la santé
- 3. Recherche de micro-organismes spécifiques à des environnements particuliers, en envisageant la détection de composés tels que les MVOCs, les mycotoxines et les endotoxines (substances à la fois indicatrices de contaminations et délétères en tant que tels) qui méritent une attention particulière.
- 4. En outre, des travaux récents ont démontré qu'il peut y avoir des associations relevant un peu du commensalisme entre bactéries et moisissures. Il y a là un champs d'investigation qui pourrait être retenu. Dans cette optique les compétences du mycologiste, du bactériologiste et du chimiste trouveraient une complémentarité de bon aloi.

L'énumération qui précède n'est en rien exhaustive ni hiérarchisée. Elle émane de réflexions éclairées par les résultats de la recherche. Il semble en effet pour les partenaires qu'il y a un intérêt certain à poursuivre dans la voie traçée car les implications socio-économiques de la bio-contamination est directement liée au bien-être au travail et relève d'une facette de la santé publique.

A l'issue de la présente recherche, diverses pistes de réflexion nous amènent à envisager cette problématique sous un aspect plus global relevant d'une politique de développement .

Les problèmes de contaminations dans les environnements intérieurs, ont conduit à une prise de conscience d'une problématique difficile à cerner car essentiellement diffuse et multifactorielle. En effet les liens de causes à effets entre la mise en évidence d'un problème de santé et l'occurrence de micro-organismes potentiellement délétères est extrêmement complexe, particulièrement délicate en milieu de travail. Des facteurs biotiques, abiotiques, voire même psychologiques sont à intégrer dans une perspective analytique. La mise en œuvre d'une réflexion-action à ce sujet nécessite une approche transdisciplinaire qui implique à la fois recherche, information et vulgarisation, sous-tendues par une réglementation. La coordination en cette matière devrait à terme conduire à la création d'une structure fédérale réunissant les compétences indispensables, tant scientifiques, médicales et juridiques débouchant sur une concertation avec le milieu du travail.