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1. INTRODUCTION 

1.1 Context and summary 
Modern consumers demand safe, natural, untreated, high quality, and wholesome food products, within the 
framework of sustainable development. The search for an economically feasible combination of all these 
issues is a major challenge for the food industry in the 21st century, and can only be attained by safeguarding 
the food chain from farm to fork. 
A key element of the on-going implementation of the FAO/WHO Risk Analysis framework and principles is 
Microbiological Risk Assessment. Risks in the food chain are specified as related to pathogenic micro-
organisms on the basis of sound science, combining qualitative and quantitative data in the areas of 
epidemiology and pathogenicity of micro-organisms with food production and handling (Klapwijk et al., 
2000). It is indicated that Europe is lagging behind North America both in terms of quantity of ongoing work 
and the depth of activity when referring to published Microbiological Risk Assessment studies. The urgency 
to catch up is illustrated in the European Commission’s strategic objectives, priorities and work programme 
in relation to food safety in particular, and food law in general as outlined in the White Paper on Food Safety 
(COM (1999) 719 final, 12 January 2000). This document elaborates the Commission’s commitment to 
develop a comprehensive integrated approach for regulating the food supply chain. In particular it proposes 
the establishment of a European Food Authority  and an overarching set of definitions, principles and 
measures to ensure a high level of protection and the effective functioning of the internal market in food. 
Food laws should be based on the principles of Risk Analysis, and Risk Assessment should be based on the 
available scientific evidence and undertaken in an independent, objective and transparent manner (COM 
(2000) 716 final, 8 November 2000). 
The (Belgian) Federal Agency for Safety of the Food Chain is officially established on February 4, 2000, as 
a direct consequence of the dioxin crises in June 1999. The Agency has two principal tasks: analysis of the 
risks related to food products and control of the complete food chain from the stable to the table. Hereto, the 
Agency should establish measures related to the analysis and control of risks that could endanger the health 
of consumers (Temmerman, 2001).  
 
This Research Project is to be framed within the context of the above mentioned Risk Assessment. More 
precisely, this projects’ overall objective is the development and integration of generic predictive modeling 
tools in the area exposure assessment, based on predictive microbiology, to enhance microbial food safety.  
The (relatively young) discipline of predictive microbiology deals with the design and analysis of 
quantitative relations (mathematical models) aiming at the prediction of the evolution (growth, inactivation, 
survival, …) of pathogenic or spoilage microorganisms (the so-called target-organisms) during subsequent 
stages of production, distribution and storage of food products. The project focuses on the development and 
integration of a collection of generic predictive modeling tools for predictive microbiology, hereby aiming at 
standardizing and consolidating the promising use of mathematical modeling techniques in the framework of 
risk analysis of foods. As a vehicle to demonstrate their intrinsic generic nature and applicability, two case 
studies (that are challenging from both the scientific and technological/economical point of view) will be 
used for development and validation purposes: (i) exploring the boundaries of microbial evolution, and (ii) 
quantifying interactions between micro-organisms.  

1.2 Objectives 
The overall aim of this Research Project is to design and exploit new generation predictive models able to 
predict the behaviour of micro-organisms in foods, taking into account their complex microbial ecology, 
as generic tools for microbial food safety assessment.  

The scientific research objectives of this Research Project are threefold.  
1. Development and integration of (both macroscopic and microscopic) building blocks into a widely 

applicable novel generation predictive modelling methodology.  
Transferability (i.e., the generic nature of the approach) will be assessed at different levels.  

a. To transfer model structures from one micro-organism to another.  
b. To extend model structures to describe more complex phenomena. For example: (i) to extend single 

species balance models to multiple species balance models describing interaction, and (ii) to extend 
kinetic models to incorporate the effect of multiple environmental factors.  
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This modular extension property also implies that models can be reduced in complexity in a natural way 
if certain conditions are satisfied (e.g., no competing species, environmental factor not limiting). 

2. To increase the fundamental insight in mechanisms underlying microbial lag phenomena, with particular 
emphasis on (i) (sudden) changes in environmental conditions during microbial evolution, and (ii) the 
previous history of the cells.  

3. To increase the fundamental insight in antagonistic interaction phenomena occurring in mixed microbial 
cultures, with particular emphasis on interactions caused by (i) a single metabolic product, or (ii) 
multiple metabolic products. 

Technological research objectives can be formulated as follows. 
Realization of scientific objective 1 results in a standardized collection of rules, concepts, and techniques 
helpful in building an appropriate model for the application under study. In other words, the mode lling 
framework generates an application driven optimal modelling procedure (modelling recipe), ranging from 
experimental design and data collection, over data processing and model identification, up to protocols for 
model validation and validation in real food products.  
As a first technological research objective, the microbial phenomena that form the subject of scientific 
objectives 2 and 3 will serve as vehicles to demonstrate and validate the applicability of the novel modelling 
methodology. Transferability assessment is important in this respect.  
As a second technological research objective, a user-friendly portal site will be created on the Internet 
providing state-of-the-art electronic knowledge transfer to the food industry in Belgium. Within this project’s 
lifetime, a one-way communication from the research consortium towards the Belgian food industry, 
academic institutions and regulatory bodies will be established.  

1.3 Expected outcomes 
Details on the expected technical outcomes will be presented in Section 2. 
In the following paragraphs, two issues are dealt with: (i) the way this project is in the public interest, and (ii) 
industrial application possibilities. 
Food-borne pathogenic bacteria are currently responsible for significant illnesses. The yearly number of 
cases of food poisoning in the Netherlands has been estimated on 2,000,000/year. As a result, there is world-
wide a substantially increasing interest in predictive microbiology that is expected to offer in the very near 
future an essential contribution to the improvement of the microbial safety and quality of foods. The 
availability of a user friendly, standardised predictive modelling methodology offers a front seat view on the 
behavior of micro-organisms in foods in response to changes in intrinsic, extrinsic or processing factors, or 
to changes in the formulation of food ingredients. Therefore, it enables to deal carefully with energy and time 
consumption, food ingredients and production of waste, contributing to the application of the 
precautionary/preventing principle  in the frame of sustainable development. In addition, it opens interesting 
opportunities for education and training. Finally, the acceptance by the social instances of this research 
related to food quality and public health aspects is guaranteed. 
With its annual turnover of 24.5 billion € (FEVIA, 2001), the food industry lies in third place for total 
Belgian industrial output. The food industry employs about 87,000 people (2001) which make it the second 
largest industrial employer in Belgium. More and more the presence of a sound risk assurance system in a 
food company, in which predictive microbiology can be an important tool, will be essential to deliver to 
important customers like distribution chains. As such, the development of knowledge regarding predictive 
microbiology contributes to competitiveness. Especially larger companies, that have in-house knowledge of 
food microbiology, will be able to assimilate the technique of predictive microbiology. As consolidation is 
one of the major trends within the European food industry, specialists are more and more available within the 
group a food company belongs to. The Advisory Committee associated to this project consists of a large 
number of companies and organisations in the food area. Its members are well divided over the different 
sectors: representatives of the meat industry, dairy industry, fish industry, ingredients and additives industry, 
savoury industry, prepared meals industry, handling and processing of fruit and vegetables, household and 
body care products, pharmaceutical industry, and (last but not least) the Federal Agency for Safety of the 
Food Chain and the Flemish Centre for Postharvest Technology. Both large companies and SMEs are 
represented in the Committee.  
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2. DETAILED DESCRIPTION OF THE SCIENTIFIC METHODOLOGY 

2.1 Research strategy 
The project objectives listed in Section 1.2 will be reached by carrying out four major Work Packages 
(WPs): 
Work Package 1: Exploring the boundaries of microbial evolution 
Work Package 2: Quantifying inhibition and inactivation phenomena due to microbial interaction 
Work Package 3: Developing and integrating predictive modelling methodologies 
Work Package 4: Towards a Belgian centre for predictive microbiology/risk assessment 
The relationship between these Work Packages is presented schematically in Figure 1. 

Figure 1: Overview of the interface between the different Work Packages (WP’s). 
 
The novel predictive modelling methodology is developed in WP3, while microbial lag phenomena and 
microbial interactions are the subject of WPs 1 and 2 respectively. While WP3 has its own deliverables, it 
also serves as the mathematical foundation (see figure above) for the quantitative work to be performed in 
WP1 and WP2. The Work Packages 1 to 3 continuously interact at their interface.  

ü WP3 ↔ WP1 and WP3 ↔ WP2 
The different steps in the model building cycle (namely, data generation, model development, and model 
validation) are to be performed in an iterative scheme. Optimally designed experiments (calculated based on 
methods developed in WP3) are needed to generate informative data sets of microbial lag phenomena in 
WP1 and of antagonistic microbial interaction phenomena in WP2. These data, in combination with 
available a priori mechanistic knowledge, will allow for proper model structure selection (based on building 
blocks developed in WP3) and model parameter estimation (including uncertainty assessment using 
techniques developed in WP3). Models in predictive microbiology are usually of the grey box (hybrid) type, 
combining mechanistic (white box) and regression (black box) elements. Validation of the model is a crucial 
step within this cycle: less successful mode lling attempts are the driving force for designing and performing 
more informative experiments that will yield models with a higher predictive value. 

ü WP1 ↔ WP2 
While WP1 concentrates on the initial (lag) phase which delays initiation of microbial evolution, WP2 
investigates the termination of microbial growth by inhibition or even inactivation effects. Proper integration 
of the elementary model building blocks describing these individual phenomena will result in new generation 
predictive models valid over the entire time domain from lag over exponential growth up to inhibition (and 
possibly inactivation). 
Finally, all knowledge generated in WP 1 to 3 is integrated in WP4 to contribute to the establishment of a 
national centre for predictive microbiology/quantitative microbial risk assessment.  

WP3

WP1 WP2

WP4
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2.2 Detailed description of the work program 

Work Package 1: Exploring the boundaries of microbial evolution 
In this study two approaches regarding mode lling the lag phase are explored. In Task 1.1 lag phases induced 
by a sudden temperature change are studied, while in Task 1.2 the influence of the history of a contaminating 
cell population on the distribution of individual lag phases is examined. 
Task 1.1: Quantifying lag phenomena due to temperature variations 
Step 1: Experimental Protocol and Data Generation. This task consists in formulating a reproducible 
experimental protocol and analytical methods for optimal determination of the existence and length of the lag 
phase caused by a change in temperature as well as for the identification of relevant influencing variables. In 
order to avoid interference of any change of the medium composition on the temperature-dependent lag, 
temperature shifts are applied during growth (lag, exponential or stationary phase). The experimental 
protocol implies the standardization of the pre-culturing conditions, the composition of the growth medium 
and the process conditions (other than temperature). A series of well-thought experiments will be designed 
from which the occurrence and the amplitude of the lag phases (in relation with the previous history as 
defined above) can be quantified.  
The experiments with stepwise temperature changes will be performed in computer-controlled bioreactors 
equipped with sensors and programmable control systems for temperature, pH and dissolved oxygen. The 
following variables are determined off-line: (i) population density, (ii) substrate concentration, and (iii) 
metabolite concentration possibly affecting the lag phase. As a model organism, Escherichia coli K12 grown 
in a nutritionally rich medium is used.  
Step 2: Model Construction. In contrast with most predictive models to date, the macroscopic (i.e., 
population level) model will be dynamic, i.e., it will consist of a set of differential equations enabling 
continuous description of the lag dynamics. The qualitative knowledge derived from the rigorous 
experimental study is directly included within the structure characterization step. Next to the macroscopic 
modelling approach, the alternative individual-based modelling (cell level) techniques investigated in WP 3 
will be applied.  
Task 1.2: Quantitative study of the effect of the history of contaminating cells on their lag 
Step 1: Experimental Protocol and Data Generation. In a first step a protocol will be developed to 
determine the lag phase of an individual cell and in this way the distribution of the individual lag phase of 
cells within a contaminating population. Listeria monocytogenes is chosen as model organism. The lag phase 
of individual cells will be determined by following the individual growth in the wells of microtiterplates, 
containing one cell/well, by turbidity measurements in an ELISA reader. The protocol will be validated by 
comparing the obtained results with Solid Phase Cytometry (SPC) measurements.  
In a second step, the influence of the history of contaminating L. monocytogenes cells on their individual lag 
phase (and on the distribution within a cell population) will be investigated for cells which are contaminating 
ideal but chilled substrates (7°C). This distribution will be determined for different histories of the 
contaminating cells (together with its influence on the apparent lag phase). The influence of individual 
factors (T, pH and water activity) as well as their interactive influence on (the distribution of) the individual 
lag phases within a cell population of L. monocytogenes will be quantified.  
In a third step, the influence of the history of contaminating L. monocytogenes cells on their individual lag 
phase will be investigated for cells that are contaminating non-ideal chilled food substrates.  
Step 2: Model Construction.  The obtained data will be used to develop models that are able to predict the 
influence of history factors on the apparent lag phase and on the distribution of the individual lag phase of a 
cell population at 7°C for L. monocytogenes. Parameters describing the observed distribution will be 
modelled as a function of history determining parameters (temperature, water activity and pH). The obtained 
data of individual lag phases within a cell population will be used to validate microscopic models developed 
in WP3. 
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Step 3 for Task 1.1 and Task 1.2: Model validation and transferability. The model structure and the 
corresponding parameter estimates obtained from the previously mentioned experimental designs in Tasks 
1.1 and 1.2 will be validated on new growth data. The validation tests for Task 1.1 will be generated under 
time-varying temperature conditions not tested during model development. For Task 1.2, the applicability of 
the proposed model structure will be tested for other microbial strains and other substrates.  

Work Package 2: Quantifying inhibition and inactivation phenomena  
due to microbial interaction 

The primary aim is the development of dynamic predictive models for antagonistic interaction phenomena in 
mixed microbial cultures, consisting of 1 antagonist and 1 pathogen. Several mechanisms can simultaneously 
cause antagonistic phenomena. From a mode lling viewpoint, it is therefore recommended to start with a 
simple, well-defined case study, based on a single mechanism (Type A), which is complexified during the 
course of the project (Type B). 

Type A: 1 antagonist → 1 metabolite (lactic acid) → 1 pathogen (Task 2.1)  
Type B: 1 antagonist → 2 metabolites (lactic acid + bacteriocin) → 1 pathogen (Task 2.2) 
Task 2.1: Antagonistic phenomena through a single metabolic product 
Step 1: Experimental Protocol and Data Generation. Two different antagonist-pathogen systems will be 
investigated, namely Lactococcus lactis/Listeria innocua (co-culture 1) and Lactobacillus sakei/Yersinia 
enterocolitica (co-culture 2). Both selected antagonists are homofermentative and bacteriocin negative. 
During preliminary research of BioTeC and LFMFP, two interaction phenomena could be observed: (i) 
inhibition of the pathogen by the antagonist (bacteriostatic effect occurring in co-culture 1), and (ii) 
inactivation (after inhibition) of the pathogen by the antagonist (bactericidal effect occurring in co-culture 2). 
A subsequent characterization of co-culture 1 and 2 will enable to gradually incorporate both interaction 
effects in an appropriate model structure (see further). Experiments will be performed in a rich medium. 
Factors to be investigated are (i) temperature, (ii) the ratio of initial cell concentration antagonist/pathogen, 
(iii) initial medium pH, and (iv) medium buffer capacity. During experiments, the following variables will be 
monitored: viable/total cells (through plate/microscopic counting), medium components (through 
chromatography) and pH. 
Step 2: Model Construction. Two different strategies will be explored. In a first strategy, available single 
species models are used to fit experimental data of the pathogen in both pure and mixed cultures. Differences 
in estimated parameter values are quantified through statistical techniques. In a second strategy, a novel 
model is developed, which -in contrast to the previous approach- incorporates antagonism from the model 
structure characterization step on. Essential building blocks are (i) a set of dynamic balance equations for 
pathogen and antagonist and for all variables influencing or influenced by the microbial proliferation, and (ii) 
related kinetic models, describing the specific rates of the balance equations as function of state variables and 
other influencing factors. 
Task 2.2: Antagonistic phenomena through multiple metabolic products 
The experimental and modelling expertise built up in Task 2.1 will be fully employed in this task.  
Step 1: Experimental Protocol and Data Generation.  Since bacteriocins are not active towards gram- 
bacteria, L. innocua is selected as model pathogenic organism. To help in selecting an appropriate 
bacteriocinogenic lactic acid bacterial strain, the Advisory Committee will be consulted. Note that the exact 
type of interaction (i.e., (i) inhibition, (ii) inhibition following inactivation, or even (iii) only inactivation) 
has to be verified experimentally and probably depends on the selected antagonist and bacteriocin. The 
monitoring procedure of the bacteriocin concentration will depend on its molecular structure and may 
involve agar diffusion techniques or chromatographical techniques.  
Step 2: Model Construction. The models designed in Task 2.1 are modularly extended to include 
antagonistic effects induced by bacteriocin production.  
Step 3 for Task 2.1 & Task 2.2: Model validation The applicability of the developed models on new 
experimental data will be thoroughly evaluated. 
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Work Package 3: Developing and integrating predictive mode lling methodologies 
While having deliverables on its own, WP 3 also provides methodological support for both WPs 1 and 2. 
Three tasks can be distinguished. First, Optimal Experimental Design techniques for microbial kinetic 
studies are explored in Task 3.1. This will allow obtaining informative, high quality experimental data in 
WPs 1 and 2. Further, generic macroscopic and microscopic model building blocks are developed and 
integrated in Tasks 3.2 and 3.3, respectively. In WPs 1 and 2, their applicability (and possible limitations) to 
model the specific phenomena under study are evaluated. 
Task 3.1: Optimal Experimental Design (OED) of kinetic studies 
Experiments are to be designed in order to perform the following steps in the modelling cycle.  
Step 1: Model structure discrimination. This involves the selection of a model structure out of a pre-
defined set of candidate model structures (either newly developed or taken from literature).  
Step 2: Parameter estimation of kinetic models. Accurate parameter estimates can be obtained by 
application of dynamic profiles of experimental conditions during experiments. Optimal dynamic profiles 
can be designed by application of the Optimal Experimental Design methodology, in which basically a scalar 
function of the so-called Fisher information matrix is optimized.  
Step 3: Model validation. Attention will be paid to OED for both mathematical and product validation. 
Task 3.2: Macroscopic predictive modelling 
Macroscopic predictive mode lling consists of the specification of a set of differential equations to describe 
the evolution of a system on a macroscopic, i.e., population level. 
Step 1: Balance models. Dynamic models will be preferentially applied. For both Work packages 1 and 2, it 
can be expected that the vector of state variables needs to be extended in order to include extra information 
on the microbial metabolism. This approach may contribute to accurately describe the microbial evolution 
aspects studied in WPs 1 and 2, for which the classical predictive models, based on the living cell 
concentration only, are not sufficient. 
Step 2: Kinetic models. Kinetic models to quantify the influence of environmental factors will be 
maximally based on available and newly collected (i.e., in WPs 1 and 2) mechanistic knowledge, completed 
with advanced black box models like artificial neural networks. 
Step 3: Implementation of variability. The uncertainty on model parameters and predictions will be 
assessed by computation of asymptotic standard errors and joint confidence regions, and by Monte Carlo 
analysis. 
Task 3.3: Microscopic predictive modelling 
Step 1: Individual based models. The fundamental unit of bacterial life, encapsulating action, information 
storage and processing, as well as variability, is the cell. It therefore seems appropriate to construct models in 
terms of individual cells and their behaviour. This is the domain of Individual based mode lling (IBM). The 
first step in this approach is to devise a set of rules, consistent with observation, which govern the behaviour 
of the microscopic entities and their responses to changing external conditions. This set of rules comprises 
the system model. The output of a well-designed simulation of the model should be comparable with the real 
(macroscopic) behaviour that the model is attempting to explain. 
Step 2: Implementation of variability and object oriented programming. It is interesting to develop 
IBMs in an object-oriented programming language. The principle of the latter is to represent each simulated 
bacterial cell electronically as an object instance of an object-oriented program. These objects are called 
agents since they are independent entities with their own state (set of parameter values) and behaviour 
(rules). As each simulated cell has its own set of parameters, which is an independent copy of the list of 
default parameter values, variation is straightforward. New values can be obtained by, e.g., random draws 
from a (Gaussian) distribution with a chosen coefficient of variation.  

Work Package 4: Towards a national centre for predictive microbiology/risk assessment 
Task 4.1: One-way communication with the national food industry - Development of an Internet Portal Site 
In this task an informative Internet Portal Site (i.e., in a first phase, a compilation of interesting links) will be 
constructed, forming a generic interface between regulatory bodies, industry and academic institutions in 
Belgium, focusing on the applicability of predictive modelling methodologies in the food industry. It should 
be noted that the actual trend of consolidation in the European food industry opens interesting perspectives 
towards the level of in-house knowledge of food microbiology and careful use of predictive microbiology. 
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As such, the exploitation of predictive mode lling methodologies in the framework of a quantitative 
microbiological risk assessment becomes more and more feasible for the Belgian industry, increasing the 
applicability of such a Portal Site. 
The Advisory Committee of this Research Project consists of representatives of the major food industries 
(meat industry, dairy industry, fish industry, ingredients and additives industry, savoury industry, prepared 
meals industry, handling and processing of fruit and vegetables) as well as the recently established Federal 
Agency for the Safety of the Food Chain and the Flemish Centre for Postharvest Technology. An active 
input will be requested as to the structure of the Portal Site, as well as to the kind of information and the level 
of detail. This will be thoroughly discussed at the occasion of introductory (hands-on) predictive mode lling 
courses offered to the members of the Advisory Committee during the early lifetime of the project.  
As a starting point, the generic results of this project will be made available for the Advisory Committee 
through restricted access on this Portal Site. General information, however, e.g., an up-to-date exhaustive 
summary of freeware and commercial software packages for predictive microbiology, will be available to all 
interested companies and research institutions. 
Task 4.2: Two-way communication with the national food industry - Towards the development of Active 
Server Pages 
Exploitation of the predictive modelling framework is part and parcel of this research project. Therefore, in 
this task, the needs of the Belgian food industry in the form of specifications for the development of an 
Internet based interactive predictive microbiology tool (based on Active Server Pages) will be categorized 
and summarized. Active Server Pages have the important property that they are dynamically created, i.e., on 
the basis of a specific request. The active input of the Advisory Committee is requested, delineating (i) the 
most pertinent questions when using predictive microbiology methodologies arising in the different branches 
of the food industry, and (ii) the actual functionality and structure of the Active Server Pages. The following 
topics arise.  
4 A searchable overview of literature of predictive microbiology, microbiological risk assessment, HACCP, 

… 

4  An overview of the results and conclusions of this project. 

4  An e-mail service enabling to post questions to one of the two research partners of this project after 
narrowing his search based on the actual knowledge database (including electronic communication of 
predictive modelling data and client-specific guidance throughout all stages of predictive model 
generation and exploitation). 

4 An electronic newsletter on industrial applications. 
Note that the actual implementation of these Active Server Pages is out of the scope of this Research Project.  
 

2.3 Distribution of tasks among the two partners of the Research Project 
 

Work Package 1: Exploring the boundaries of microbial evolution 
Both research groups aim at a profound experimental study and accurate quantification of lag phenomena in 
microbial dynamics. 
Data Collection. Within the scope of the available infrastructure in both teams, bioreactor experiments are 
only performed at BioTeC, while microtiter experiments take place at LFMFP. To establish a suitable 
experimental design for both experimental techniques, the large experience of BioTeC in this discipline will 
be exploited. 
Model Construction. With respect to model construction, BioTeC will develop macroscopic and 
microscopic models to describe the population lag and the individual cell lags, as influenced by temperature 
gradients (Task 1.1) and cell history (Tasks 1.1 and 1.2). LFMFP focuses on quantifying the effect of the 
history of contaminating cells on the distribution of the individual cell lags (Task 1.2). 
Model Validation. Both teams together will design, perform and evaluate a series of validation experiments. 
If necessary, model adaptations are accomplished. 
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Work Package 2: Quantifying inhibition and inactivation phenomena due to microbial interaction 
Both research groups have two main objectives: (i) a fundamental contribution to the 
microbiological/experimental knowledge of microbial interactions, and (ii) the incorporation of this 
knowledge in the discipline predictive microbiology by means of appropriate mathematical models.  
Data collection. Given the numerous factors involved in the experimental study, both research groups 
perform experiments, after a thorough concertation with respect to the experimental protocol, taking into 
account the previous mentioned requirements. Within the scope of the available infrastructure in both teams, 
bioreactor experiments are only performed at BioTeC, while the experiments with the pathogen Y. 
enterocolitica take place at LFMFP only. In general, LFMFP co-ordinates the experimental part, based on 
the huge experimental knowledge available within that research group. 
Model construction. With respect to the model building step, LFMFP focuses on statistical data processing 
(Sub-Task 2.1.1), while BioTeC develops innovative models (all subtasks). The efficacy of both strategies is 
critically evaluated. BioTeC co-ordinates this part, based on its vast experience as mentioned above and the 
relation of this Research Proposal with the EU-project PREMIUM. 
Validation. Validation experiments are designed, performed and evaluated by both teams together. If 
necessary, the developed models are further refined. 
 

Work Package 3: Developing and integrating predictive mode lling methodologies 
Methodological mode lling developments are conducted and guided by BioTeC, in close interaction with the 
research performed at LFMFP.  

Work Package 4: Towards a national centre for predictive microbiology/risk assessment 
The homepage of the project is maintained at BioTeC, while the content is decided upon by both partners of 
the project. An active input of the Advisory committee is requested as well. 

2.4 Timetable of Work 
On the next page, details about the time schedule of this Research Project are given.  
 
A detailed description of the intermediary results, preliminary conclusions and recommendations with regard 
to the Tasks indicated for Year 1 will be presented in the next section (Section 3). 
 



 10 

 

Months 0 to 6 7 to 12 13 to 18 19 to 24 25 to 30 31 to 36 37 to 42 43 to 48
Work Package 1: Exploring the boundaries of microbial evolution

Task 1.1: Quantifying lag phenomena due to temperature variations

Task 1.2: : Quantitative study of the effect of the history of contaminating cells on their lag phase

Work Package 2: Quantifying inhibition and inactivation phenomena due to microbial interaction
Task 2.1: Antagonistic phenomena through a single metabolic product

Sub-Task 2.1.1: Inhibition phenomena in model system Type A

Sub-Task 2.1.2: Inactivation phenomena in model system Type A

Task 2.2: Antagonistic phenomena through multiple metabolic products
Sub-Task 2.2.1: Inhibition phenomena in model system Type B

Sub-Task 2.2.2: Inactivation phenomena in model system Type B

Year 1 Year 2 Year 3 Year 4

Model development

Model validation

Data generation

Model development

Data generation

Model development

Model validation

Data generation

Model validation

Data generation

Model development

Model validation

Data generation

Model development

Model validation

Data generation

Model development

Model validation
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3. DETAILED DESCRIPTION OF THE INTERMEDIARY RESULTS, 
PRELIMINARY CONCLUSIONS AND RECOMMENDATIONS 

Work Package 1: Exploring the boundaries of microbial evolution 
Task 1.1: Quantifying lag phenomena due to temperature variations  

Step 1: Experimental Protocol and Data Generation.  
Initially, a reproducible experimental protocol has been formulated as follows. Experiments are performed in 
a computer-controlled bioreactor (New Brunswick Scientific Inc., USA) where E. coli K12 is grown under 
aerobic conditions in 4.5 L Brain Heart Infusion broth (Oxoid). A recirculation chiller (Neslab instruments 
Inc., US) is connected to the bioreactor to obtain low temperatures. The heating rate that could be realised in 
the bioreactor is equal to 0.62 ± 0.17°C/min. The inoculum is prepared by subculturing 5 µL of a frozen (-
80°C) bacterial culture twice in 20 mL BHI at 18°C on a rotary shaker (175 rpm), subsequently for 24h and 
18h. In all these experiments, the pH is kept constant at 7.55 by adding base (1N KOH) or acid (1N H2SO4) 
to the medium. At regular time instants during the experiments, samples are taken aseptically. To determine 
the intermediate lag accurately, a higher sampling frequency was applied around tshift, i.e., the moment of the 
temperature change. The cell density [CFU/mL] is determined by plate counting (on BHI) by means of a 
spiral plater (Spiral Systems Inc., Cincinatti, Eddyjet, USA).  Glucose concentration (substrate) is measured 
enzymatically (Granutest). Concentration of acetate (metabolite) is measured by means of a Gas-
Chromatograph-Flame Ionization Detector. Protein concentration of the cells is measured by the method of 
Lowry. To obtain these proteins, the cells have to be washed, centrifuged and lysed by an extraction reagent 
(BugBuster, Novagen, Inc., Germany). Subsequently, the protein concentrations are measured 
spectrophotometrically (RC DC Protein Assay, Bio -Rad Laboratories, Inc., USA). 
This experimental setup is used to characterise the effect of (i) the amplitude of the temperature shift, (ii) the 
pre-shift temperature level, and (iii) the post-shift temperature level on the occurrence and length of an 
intermediate lag phase. It is known that the lag phase is not only affected by the environmental conditions, 
but also by the physiological state of the cells at the moment of the environmental change. Because the 
physiological state of the cell (depending on the growth stage) can be defined by cell properties, like cell 
mass, protein content or RNA, we have started with measuring the protein content to discover more on the 
trigger of microbial lag. 
Two series of bioreactor experiments with positive temperature shifts have been performed. Besides 
temperature, no environmental changes have taken place. In a first series, the initial temperature was kept 
constant at 15°C and temperature jumps with amplitudes of 5, 7.5, 8.8, 10, 15 and 25°C were applied to cells 
with the same pre-history (exponential growth phase) (Swinnen et al., 2002). A summary of the resulting 
intermediate lag phases in function of the amplitude is presented in Figure 1 (see Appendix 1). It can be 
deducted that temperature jumps with amplitude of minimum 8.8°C cause a lag phase with a constant 
duration of (approximately) one hour. In the second series, temperature shifts with a constant magnitude ∆T 
of 10°C starting at an initial temperature of 10, 12.5, 15, 20, 25 and 30°C were implemented at the same cell 
density. Figure 2 (Appendix 1) gives an overview of the resulting intermediate lag phases in function of the 
initial temperature of the temperature change. Temperature shifts starting at 12.5, 15 and 20°C result 
significantly in an intermediate lag phase, while in case of shifts starting at 25 and 30°C immediate 
adjustment of the growth rate was observed. For the shift starting at 10°C, further testing is needed to 
determine if the occurrence of a lag phase is significant. By combining the results of both series of 
experiments, it can be concluded that the lower boundary of the normal physiological range lies between 
22.5°C and 23.8°C (Swinnen et al., 2003, submitted). This normal physiological range can be defined as the 
linear part of the Arrhenius plot (ln (µmax) versus 1/T). It has been observed by Ng et al. (1962) that 
temperature shifts (positive or negative) within this region cause no lag phase, while shifts starting at a 
temperature below this range to a temperature within the range result in an adaptation period. We also 
observed an effect of the amplitude of the temperature shift on the lag phase duration. 
The evolution of the measured glucose and acetate concentrations for the experiment with a temperature shift 
from 15 to 25°C are presented in Figure 3 (Appendix 1). The lag phase was not caused by an exhaustion of 
the substrate (glucose) or an inhibitory concentration of acetate. Protein concentrations were measured but no 
reliable results were obtained until now. 
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Additional experiments are being performed to further characterize the lag phenomenon and the normal 
physiological range. Furthermore, the influence of negative temperature shifts on the lag phase will be 
investigated.  

Step 2: Model Construction.  
Factors influencing the lag time duration are the (changes in) environmental conditions (e.g., Whiting and 
Bagi, 2002), the identity and the phenotype of the bacterium (Buchanan and Cygnarowicz, 1990), the growth 
stage or physiological history of the cells (McMeekin et al., 1993) and the inoculum size at the moment of 
the environmental change (e.g., Augustin et al., 2000b). A survey of predictive modeling of microbial lag 
phenomena on a macroscopic scale is being conducted, mainly focussing on the influence of temperature 
and culture history on the lag phase during growth of bacteria.  
In predictive microbiology, a two-step modelling approach is currently being used.  
Primary models describe the evolution of microbial numbers with time and can be subdivided into 
deterministic and stochastic models. Primary deterministic models describe the evolution of micro-
organisms, using one single (deterministic) set of model parameters. The heterogeneous population model of 
McKellar (1997) is a static model, while the model of Baranyi and Roberts (1994) is already dynamic, i.e., 
the model is represented by differential equations (balance models). Both models cannot describe 
intermediate lag phenomena. The dynamic model of Hills and Wright (1994) is able to describe intermediate 
lag phases and makes a distinction between biomass and cell number. Baranyi and Roberts (1994) and Hills 
and Wright (1994) have included an extra (fitting) parameter to describe the physiological state of the cells. 
In primary stochastic models, the model parameters are distributed or random variables. The model of 
Buchanan et al. (1997) is a static model, but makes a difference between growth of biomass and cell number. 
McKellar (2001) has expanded his static model (McKellar, 1997) to a dynamic continuous-discrete-
continuous model. Finally, Baranyi (1998) defines the relation between the individual cell’s lag times and the 
population lag time. These three stochastic models cannot describe intermediate lag phases. Overall 
shortcomings are that assumed mechanistic concepts of the models are not experimentally validated. The 
influencing factors are mostly not included or lumped into one (fitting) parameter.  
Secondary models (kinetic models), e.g., Augustin et al. (2000), describe the influence of the environmental 
conditions on the primary model parameters.  
With regard to the starting phase of microscopic modelling approaches, reference is made to results reported 
under Task 3.3, and its associated Appendix 8, where some of the model indicated above are further 
analysed. 
Task 1.2: Quantitative study of the effect of the history of contaminating cells on their lag   

Step 1: Experimental Protocol and Data Generation.  
In a first step a protocol was developed to isolate single cells in the cup of a microtiter plate based on 
standardised dilution principles. The bacteria were subcultured twice to eliminate variance in the pre-cultural 
conditions. Afterwards the cell count was standardized to 108 CFU/ml using OD measurements at 600 nm. 
Starting from the standardized inoculum a classical dilution series was made ending up with 103 cfu/ml. This 
cell count was controlled by plate counting on 200µl inoculum on TSA, with incubation at 30°C for 24h. 
Further dilution was performed by adding 200 µl of inoculum to 200µl broth in each cup of the first row of a 
microtiter plate. These cups were used to make further ½-dilution series ending up with single cells isolated 
in the cup of a microtiter plate. 
This procedure was repeated for 9 plates, resulting in 72 ½-dilution series. The content of each cup was 
plated on TSA and incubated for 24h @ 30°C to control the dilution pattern and to locate the single cells.  
From the results, it was clear that individual dilution series do not follow the expected pattern from the 
theoretical mean values. Sometimes it can even be seen that empty cups are followed by cups containing one 
or even two cells. In contrast, the mean values do follow the normal expected dilution pattern. 
Single cells are mainly located in the last 5 columns, so these columns are taken into account. In the last 5 
columns, 75 cups containing cells were counted giving a yield of 75/72. From these 75 cups, 60 contained 
one single cell, while  15 cups did contain two or more cells, resulting in a chance of 80% having a single 
cell. When comparing these results to McKellar & Knight (2000), who observed the last well of each row 
showing growth, a higher chance of having single cells (80% VS 37%) was combined with a slightly higher 
yield (using the new method it is possible to use several cups from one row). When comparing these results 
to the method of Robinson et al. (2001) this method gives a higher chance of having single cells (80% vs. 
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70%). For more details, reference is made to Francois et al. (2003), which is currently submitted. A copy of 
this article can be found in Appendix 2. 
The Solid Phase Cytometry experiments (as indicated in Section 2.2) will not be performed as test conditions 
reveal to be too different from the OD measurements (liquid vs. solid). 
In a second step the individual lag phase of Listeria monocytogenes was investigated at different 
temperatures using OD measurements. Microtiterplates were filled as previously described, and incubated at 
the fixed temperature. The cell density was measured at regular intervals using OD measurements at 600 nm 
(Versamax microplate reader, Molecular devices, Sunnyvale, CA, USA). The upper part of the growth curve 
was generated by calculating the cell counts out of the OD values using a calibration curve. By extrapolating 
the linear part of the curve, the individual lag phase is cut off at the inoculation level (1 CFU/200µl = 5 
CFU/ml). At least 100 replications were made for each set of conditions.  
At the moment, the combined effects of pH, aw and temperature are investigated using optimal pre-culture 
conditions (24h in BHI @ 30°C). The data collection combining different temperatures and pH is almost 
finished and data are currently processed. Data collection combining previous factors with aw will be 
performed during spring-summer 2003. In a further step, these results will be compared to more stressful 
pre-culture conditions. 

Step 2: Model Construction.  
In this research, a simulation model is constructed that represents the serial dilution process described in Step 
1. The aim of the mode lling process is (i) to gain insight in the governing mechanisms of the dilution 
process, (ii) to confirm experimental findings, and (iii) to enable the prediction of an average outcome of 
future microtiter plate experiments. For a detailed description of the model building process, reference is 
made to Appendix 3, of which an abbreviated version is currently under submission (Standaert et al., 2003). 
The starting point for a simulation is the measurement of the cell concentration of the original inoculum 
suspension based on plate counts (ideally 103 CFU/mL). The model is based on a unit operation in which all 
cells inoculated in a well of the first column of the plate are transferred randomly and individually to the well 
in the second column with a 50% chance. This cycle represents one dilution step and is repeated until all 
subsequent wells are filled and the dilution series is complete. Statistical analysis shows that this basic 
simulation scheme is a fully random process and all columns show a Poisson-type cell number distribution. 
The experimental data, on the other hand, follow a different pattern: the left-hand columns of a plate seem to 
be better described by a lognormal distribution, while the right-hand columns do correspond to a Poisson 
distribution. The lognormal nature shows that the process has contagious characteristics and indicates the 
presence of an aggregational aspect (see, e.g., Jarvis, 1989) that gradually disappears as the dilution series 
progresses towards the right side of the plate. The simulation procedure is adjusted to account for these 
observations. Inoculum numbers are now randomly selected from a lognormal distribution based on the 
mean inoculum concentration measurement and a randomly selected variance. This version of the model is 
used to quantify the performance of the experimental process. Simulation results indicate that the wells 
considered by the experimental protocol (wells showing growth in the last five columns) have a probability 
of 77-78% of actually containing exactly one cell.  
Visual comparison of simulation and experimental data shows that the introduction of the lognormal 
distribution alone cannot account for the extent of the aggregational character of the dilution process. For this 
reason, a cell clumping mechanism is added to the simulation model: transfer now happens at the level of cell 
clumps, not of individual cells. Simulation results show that the clumping algor ithm can explain the 
contagious nature of the dilution series. Individual simulated plate experiments show more irregular patterns, 
which is also observed in the experimental data. Future research includes (i) an investigation of the 
predictive performance of the model based on the available experimental data, and (ii) an evaluation of the 
clumping algorithm, which, for the time being, remains fully hypothetical. 
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Work Package 2: Quantifying inhibition and inactivation phenomena  
due to microbial interaction 

Task 2.1: Antagonistic phenomena through a single metabolic product  

Step 1: Experimental Protocol and Data Generation.  
Experimental system 
To allow for an unambiguous qualitative and quantitative analysis, we choose to start from a well-defined 
experimental system, designed as simple as possible (see Section 2.2). This system involves a two species 
population, in which 1 antagonist, a lactic acid bacterium, interferes through 1 antimicrobial metabolite, 
lactic acid, with 1 target, a foodborne pathogen. Two examples of this 1:1:1 system are considered: 
§ Lactococcus lactis and Listeria innocua (Case study #1), and  
§ Lactobacillus sakei and Yersinia enterocolitica (Case study #2). 
The selection of the antagonistic and pathogenic species, the metabolite and the further experimental 
implementation is guided by the following considerations. 
Antagonist. The casting of a lactic acid bacterium as antagonist is self-evident, on the basis of its safety and 
antimicrobial potential. To preserve the single mechanism aspect, the lactic acid bacterium must be 
homofermentative, producing lactic acid as a sole metabolite. In addition, it may not produce bacteriocins or 
other metabolites that may be toxic towards the pathogen.  
Pathogen. For the same reason as the antagonist, the pathogen must operate a homolactic metabolism. The 
non pathogenic L. innocua is chosen as a model for the foodborne pathogen L. monocytogenes.  
Metabolite. Since the antagonist is a homofermentative lactic acid bacterium, the single antimicrobial 
metabolite is automatically lactic acid. Lactic acid is produced by all lactic acid bacteria. Next, it is the only 
compound that appears as a single metabolite: production of other metabolites is always accompanied by 
lactic acid formation.  
Medium. For reasons of convenience and reproducibility, the use of a commercially available undefined rich 
growth medium is evident. Such media can often be considered as representatives of foods, in which 
(essential) nutrients are usually abundant. In view of the desired homofermentative metabolism, the use of 
glucose as a carbon source is desirable. Further, to preclude competition for available nutrients, a possible 
second interaction mechanism, these nutrients must be present in excess at all times during mono- and 
coculture incubation. In this project, considerable effort has been devoted to the establishment of a medium 
meeting these requirements (Vereecken et al., 2003). 
Environmental conditions. In order to maintain the homofermentative metabolism of L. innocua, experiments 
are performed in an anaerobic atmosphere. Other environmental factors are not critical with respect to the 
1:1:1 system and are indicated further in the text. 
Experimental plan 
Experiments with the L. lactis/L. innocua case study are performed at BioTeC. Experiments with the Lact. 
sakei/Y. enterocolitica case study are conducted at the LFMFP. Prior to this experimental study, an 
experimental plan and protocol have been agreed upon between the two laboratories. The materials and 
methods applied for both case studies are thus merely the same, and are summarised in Appendix 4.  
The experimental plan is illustrated in Table 1. As can be seen from this table, an assessment of the influence 
of (i) the inoculum concentrations of antagonist and pathogen, and (ii) the temperature on the interaction 
effects is aimed at. The selected levels of the influencing factors can be motivated as follows. 
Inoculum concentration. For the monoculture experiments, a fixed inoculum level of 103 cfu/mL is selected. 
It is widely accepted that for single species growth, the maximum specific growth rate and the maximum cell 
concentration, which are important growth parameters in this research (see further), are not (or only 
negligibly) influenced by the inoculum size (if not too low or too close to the maximum cell concentration) 
[see, e.g., Buchanan and Phillips (1990)]. An investigation of different initial cell concentrations is thus not 
necessary. However, it is uncertain whether this precept can be extrapolated to the coculture proliferation. 
For example, many research reports mention the influence of the antagonist's inoculum on the interaction 
effect experienced by the pathogen [see, e.g., Skyttä et al. (1991)]. Therefore, we have opted to test a number 
of antagonist/pathogen inoculum ratios. The selected ratio levels differ from each other with respect to the 
cell concentration of the antagonist. 
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Temperature. It is widely accepted that temperature is a main factor determining the microbial behaviour in 
food. Each set of mono- and coculture experiments, with initial cell concentrations as specified in the table, 
is performed at different temperatures. The tested temperature levels include values typical for fermentation 
processes on the one hand (37, 35 and 22°C), and for cool storage -with a possible temperature abuse- on the 
other hand (12, 7 and 4°C). 
 

 Case study #1 Case study #2 
Inoculum ratio 
antagonist / target 
[cfu/mL] 

103 
0 

103 
104 
105 
106 
107 

/ 
/ 
/ 
/ 
/ 
/ 
/ 

0 
103 
103 
103 
103 
103 
103 

Temperature [°C] 35,12 37, 22,12,7,4 

Table 1: Experimental plan. 
All experiments are performed under anaerobic atmosphere at an initial pH of 6.2. At regular time instances, 
the cell concentration of antagonist and pathogen, the total lactic acid concentration, the pH and the glucose 
concentration are monitored. The latter variable is measured to verify the absence of glucose exhaustion. All 
experiments are performed in duplicate. 
Experimental results 

 
Figure 2: Cell concentration, total lactic acid concentration and pH as a function of time for Y. enterocolitica 

in mono- and coculture with Lact. sakei at 37°C. 
 

Figure 2 represents the cell concentration, the total lactic acid concentration and the pH as a function of time 
for some experiments at 37°C, consisting of (i) Y. enterocolitica in monoculture (37L0Y3), (ii) Y. 
enterocolitica in coculture with Lact. sakei, the latter inoculated at 103 cfu/mL (37L3Y3), and (iii) Y. 
enterocolitica in coculture with Lact. sakei, the latter inoculated at 107 cfu/ml (37L7Y3). These experiments 
can be regarded as a representative sample of the entire collection and allow deducing some general 
qualitative trends. A more comprehensive overview of the data of the case studies is provided in Appendix 5. 
For the monoculture experiment, a clear exponential growth phase and a stationary phase can be observed, 
whereas a lag phase is barely present. Significant acid production (and corresponding pH reduction) is only 
apparent from the late exponential phase on. In the coculture experiments, two distinct antagonistic effects 
emerge, namely, an early initiation of the stationary phase and a decline phase, where the cell concentration 
is reduced to beneath the detection level. Lactic acid is formed in a larger amount as compared to the 
monoculture experiments because of the additional production by the lactic acid bacterium. For the Yersinia 
growth curves (mono- and coculture), the onset of the stationary phase coincides with the large increment in 
the lactic acid production curve. In contrast to the monocultures, the stationary cell concentration is not 
maintained in the cocultures. It appears that two threshold concentrations of lactic acid exist, of which the 
first one is bacteriostatic, and the second one -only attained in the coculture- is bactericidal. It should be  
noticed here that the data of glucose concentration reveal that there is never substrate limitation (data not 
shown). By consequence, all intra- and interspecific interaction effects, in casu induction of the stationary 
phase and/or the decline phase, can only be ascribed to the increasing lactic acid concentration, which is in 
agreement with the particular intoxication mechanism, postulated above. 
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Step 2: Model Construction.  
A first approach consists of exploiting predictive modeling knowledge for pure cultures in order to quantify 
interaction phenomena in mixed cultures [see, e.g., Buchanan and Bagi (1999)]. A classical single species 
model, namely, the model of Baranyi and Roberts (1994) is used to fit the experimental data of the 
pathogenic organism both in pure and mixed culture. Discrepancies in the estimated values for the growth 
parameters (lag phase, maximum specific growth rate and maximum cell concentration) are quantified by 
means of statistical techniques and can be regarded as a measure of the degree of interaction.  
Application of this method to the experimental data reveals, as expected, a pronounced reduction of the 
parameter denoting the maximum cell concentration in coculture as compared to its value in monoculture 
(results not shown).  
Positive aspects of this approach are its simplicity and descriptive quality. Note however that interaction 
effects are only reflected in the numerical values of the parameters and not (mechanistically) explained. 
Therefore, a second approach is proposed, in which interaction effects are embodied in the model’s 
structure.  
 
As a first step, a reaction scheme for the 1:1:1 type interaction 
is outlined in Figure 3, including available mechanistic 
knowledge. In this scheme, the full line arrows indicate the 
different subprocesses, i.e., the growth and lactic acid 
production by the antagonist and the pathogen, and the 
equilibrium dissociation reaction of lactic acid in the applied 
medium. The dashed line arrows express the negative influence 
of the undissociated form of lactic acid [LaH] [M] and the 
protons [H+] [M] on the growth and production processes. 
From literature, it is known that the toxic activity of lactic acid 
is mediated through these components in particular [e.g., 
Russell (1992)]. 
 
 
As a global modeling framework  in which the reaction scheme can be enclosed, we propose the following set 
of differential (balance models) and algebraic equations (with i=A,T): 
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with t [h] the time, Ni [cfu/mL] the cell concentration, µmax,i [1/h] the maximum specific growth rate, πmax,i  
[mmol/(cfu ⋅ h)] the maximum specific production rate and LaHtot [M] the total lactic acid concentration (i.e., 
[LaH] + [La-]). In this set, the differential equations quantify the growth of and the lactic acid production by 
the organisms, comprising the biochemical subprocesses of the experimental system. Since the specific 
growth and production rates are dependent on [LaH] and [H+], interaction effects will be described as a 
consequence of an increasing concentration of [LaH] and [H+] in the environment. In contrast to the 
differential equations, the algebraic equations account for the purely chemical subprocess of the 
experimental system, i.e., the dissociation of lactic acid in the aqueous medium. 
Further model development will concentrate on each of the subprocesses separately. In a first phase, the 
chemical subprocess of lactic acid dissociation is taken into account. To start, two mechanistic models out of 
literature are analysed and compared. Although these models -which are based on classical chemical 
equilibria, mass and charge balances- are not directly applicable to the experimental data, they have played 
an inspiring role in the establishment of an alternative method. This novel method, which builds upon the  
results reported in Vereecken and Van Impe (2001) and (2002), consists of two reversible algebraic 
equations, relating [LaH] to LaHtot, and pH to [LaH] respectively. The equations provide an accurate 

Figure 3: Reaction scheme of the 
experimental system. 
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description of the acidifying profiles measured in the media of the two case studies. Full details can be found 
in Appendix 6. 
Next to this global modelling framework for the two case-studies at hand, an extended literature review was 
made concerning different strategies for modelling chemical inhibition and inactivation of micro-organisms 
(Devlieghere et al., 2003, submitted). 

Work Package 3: Developing and integrating predictive modelling methodologies   
Task 3.1: Optimal Experimental Design (OED) of kinetic studies  
As underlined in Bernaerts and Van Impe (2003a, submitted), bioprocess modelling presents a challenging 
subject that requires a meticulous modelling strategy. During the mode lling process, experimental data  form 
a key ingredient during structure characterisation (SC) and parameter estimation (PE). Accurate system 
identification can only be guaranteed if the experimental data contain sufficient information on the process 
dynamics. In this respect, sufficient effort should be spent on optimal experiment design (OED) in order to 
maximise the information that can be extracted from data; especially because experimental data generation 
for bioprocesses usually presents a time-consuming, labour-intensive and costly job. 
In the first place, research activities of Task 3.1 have been conducted in close collaboration with WP 1.1, 
Task 1.1. Previous dynamic experiments in the context of OED/PE (see, e.g., Bernaerts et al., 2000, 
Bernaerts et al., 2002, Bernaerts and Van Impe 2002) have shown that sudden temperature rises (without 
changing other environmental conditions) yield a small but significant lag phase (or delayed growth 
response). As extensive data sets on this intermediate lag phenomenon are lacking, a first step is to generate 
experimental data (i.e., Task 1.1) which enable us (i) to identify the causal relationship between the 
microbial dynamics and applied temperature conditions, and (ii) to characterise a (set of) candidate model 
structure(s). Hereto, the set of relevant influencing factors has been identified (see Task 1.1), in casu the 
effects of (i) the step amplitude, (ii) pre- and post-shift temperature, and (iii) state of the cells. 
As reported by, e.g., Box and Draper (1971), Davies (1993), it is wise to choose values of these influencing 
variable(s) equally distributed within the region of interest) when the model structure is unknown . Suffice to 
say that extrapolation, i.e., making model predictions outside the studied region, is out of the question. The 
scale of the design should thus include the region within which predictions are to be made. If a priori 
information on the kinetics is available, it is recommendable to space more treatment levels at regions where 
rapid changes of the dependent variable(s) are expected (e.g., Davies, 1993, Walker and Jones 1993). 
Based on this knowledge, a full factorial design has been outlined for Task 1.1. Full factorial designs refer to 
experimental plans which encompass all possible combinations of the levels of the factor(s) (i.e., 
independent variables) under study (Anderson and McLean, 1974). Given k  the number of factors and l 
levels of each factor, a complete factorial design contains lk experiments of different treatment combinations. 
Hence, the number of treatments increases rapidly as the number of factors and/or levels increases. But, 
Anderson and McLean (1974) note that sufficient levels are necessary to investigate non-linear trends 
correctly. 
Here, the suggested factorial design encompasses a number of experiments that enable the characterisation of 
(i) the effect of the temperature step amplitude, and (ii) the pre- and post-shift temperature. Within the 
temperature range of interest, i.e., 10-40°C, a matrix of experiments (with different pre- and post-shift 
temperatures) has been identified. The temperature range has been subdivided using intervals of 2.5°C (i.e., 
13 levels). As constant temperature experiments are not included (no lag induction), the complete factorial 
design involves 156 experiments. However, in view of characterising the normal physiological range 
accurately a more dense grid is selected in the temperature zone, i.e., 20-25°C, which is suggested to play a 
critical role in this phenomenon (e.g., Ng et al., 1962). Details on the established experiments have been 
presented under Task 1.1. Based on the collected data, the experimental plan shall be revised for further 
research (e.g., selection of most informative experiments for SC). 
In the second place, research activities have focussed on optimal experiment design for parameter estimation. 
Once a suitable model structure has been selected, the methodology of optimal experiment design for 
parameter estimation (based on the Fisher information matrix) can be addressed to improve the parameter 
estimation accuracy by maximising the information that can be extracted from the experimental data (see, 
e.g., Walter and Pronzato, 1997). Thus far, the framework for OED/PE in the field of predictive 
microbiology has been well-established for a two-parameter estimation problem (see, e.g., Bernaerts et al. 
2000, Bernaerts et al. 2002). However, more model parameters are probably involved in the description of 
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the studied lag phenomena. As a proper model structure is currently under development (see Tasks 1.1 and 
3.3), an existing four-parameter model has been selected to work out the mathematical framework. In 
Bernaerts et al. 2003b and 2003c (submitted) and Gysemans et al. (2003, submitted), a model output 
sensitivity analysis has been performed and optimal experiment designs have been computed for two 
cardinal values models (Rosso et al., 1995). As a starting point, an optimal selection of the independent 
variables has been aimed for. Optimal experimental plans are distinct from the arbitrary placement of 
independent variables which is commonly applied in factorial designs. Further research will investigate the 
applicability of dynamic inputs for optimal parameter estimation. 
Task 3.2: Macroscopic predictive modelling  
The close interface between WP3 and WPs 1 and 2, is illustrated above, where (intermediary) results on 
macroscopic mode lling techniques, directly related with aforementioned tasks, is reported (see Task 1.1., 
Step 2 and Task 2.1, Step 2). For both approaches, balance models and kinetic modelling approaches are 
indicated. 
Task 3.2 has also deliverables on his own, namely concerning methodological modelling developments. 
Step 1: Balance models. Description of microbial cell (population) behaviour influenced by dynamically 
changing environmental conditions intrinsically asks for dynamic mathematical balance models. In Bernaerts 
et al. (2003d, submitted), a general dynamic model building concept describing microbial evolution under 
dynamic conditions is presented. Starting from an elementary model building block, the model structure can 
be gradually complexified to incorporate increasing numbers of influencing factors. The fundamental 
concepts of dynamic macroscopic (population level) and microscopic (individual based) modelling 
approaches (see Task 3.3.) are explained using the case studies addressed in this project (see WPs 1 and 2). 
With respect to current and future research trends, the need for (i) more advanced measurement techniques, 
(ii) measurements under dynamic conditions, and (iii) more complex model structures, is pointed out. In the 
context of quantitative risk assessment, the mathematical model complexity needs to be kept under control. 
An important challenge for the future is therefore the search for a satisfactory trade-off between predictive 
power and manageability of mathematical models: When is simple good enough? (after Buchanan et al., 
1997). 
Step 2: Kinetic models. A second development is related with advanced black box modelling approaches 
for use as kinetic models. In Geeraerd et al. (2002) and (2003), a novel procedure is developed, consisting of 
three steps: (i) careful formulation of the available microbiological information, both from literature and 
from the experimental case study at hand, (ii) translation of these requirements in mathematical terms under 
the form of partial derivatives throughout the complete interpola tion region of the experimental design, and 
(iii) determination of parameter values with suitable optimisation techniques for a flexible black box 
modelling approach, e.g., a polynomial model or an artificial neural network model. As a vehicle for this 
procedure, the description of the maximum specific growth rate of Lactobacillus sakei in modified BHI-
broth as influenced by suboptimal temperature, water activity, sodium lactate and dissolved carbon dioxide 
concentration is under study. The procedure results in a constrained polynomial model with excellent 
descriptive and interpolating features in comparison with an extended Ratkowsky-type model and classical 
polynomial model, by combining specific properties of both model types. The developed procedure is 
illustrated on the description of the lag phase as well. It is stressed how the confrontation with experimental 
data is very important to appreciate the descriptive and interpolating capacities of new or existing models, 
which is nowadays not always carefully performed. Alternatively, the first two steps of the novel procedure 
can be used as a tool to demonstrate clearly (possible) interpolative shortcomings of an existing model with 
straightforward spreadsheet calculations. 
Step 3: Implementation of variability. A third development is related with the application of predictive 
microbiology in the context of hazard analysis and critical control points and risk analysis studies, in other 
words, with the implementation of variability. For these purposes, a confidence related with a model 
prediction is indispensable, and a transition form classical deterministic models towards stochastic models is 
essential. Such models predict a probability mass function for the microbial load at a certain time instant. 
Monte Carlo, which is a general tool to compute statistical characteristics, is used to generate, starting from 
the experimental observations and a deterministic growth model, probability density functions for (i) the 
model parameters and (ii) the predictions as a function of time (Poschet et al., 2003). A normal distribution 
over the experimental data was considered. This probabilistic approach, incorporating experimental 
variation, is applied to experimental growth data of Escherichia coli K12 and Listeria innocua ATCC 33090. 
For more details, reference is made to Appendix 7. 
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Variability, inherent in the production and use of microtiter-experiments in order to characterize the lag fase 
of individual cells, is also taking into account as described in the research reported under Task 1.2, Step 2 
and its associated Appendix (Appendix 3). 
 
Task 3.3: Microscopic predictive modelling  
In Task 1.1, more information is given on lag phenomena in general, and on how these phenomena are 
currently being modelled in the domain of predictive microbiology. It can be concluded that the models 
available until now remain merely empirical and thus have limited predictive value in environmental 
conditions other than those for which the model was developed and for which the parameters were estimated. 
McKellar and Knight (2000) designate this problem to the poor understanding of the physiological events 
taking place during adaptation of cells to new environments. They also emphasise that empirical equations 
have a limited ability to enhance the knowledge concerning the physiological stages of bacterial adaptation 
to new environment and subsequent growth. Especially when the purpose of the models is predictive rather 
than descriptive, like is the case in predictive microbiology, it is important to incorporate as much 
physiological knowledge as possible into the model in order to make it more generally valid. The purpose of 
this work package is to reveal the underlying mechanisms of the lag phenomena as much as possible such 
that we would be able to give the parameters some mechanistic meaning, including its temperature 
dependency.  
To learn more about the basic mechanisms behind lag phenomena, the theory on cell division must be 
studied on an individual based level. Although this literature (e.g., Cooper and Helmstetter (1968) and 
Donachie (1968)) dates from 30 to 40 years ago, and provides a large amount of information on how cells 
would likely respond to changing environmental conditions, it has up till now hardly been introduced in the 
field of predictive microbiology. It appears that initiation of DNA replication is regulated by the increase in 
cell mass and that a constant time is needed for DNA replication and cell division (the so-called C and D 
period respectively). As a consequence, cell mass at division (and also average cell mass) is an exponential 
function of growth rate and (C + D) period: md = 2m l exp[ µ(C + D) ]. The repercussion of this theory on 
the evolution of a cell population after a medium shift predicts rate maintenance of cell number. Based on 
published experimental evidence and the theory of Donachie (1968) and Cooper and Helm-stetter (1968) on 
DNA replication and cell division, we proposed a similar theory for the behaviour of cell populations at a 
temperature shift and at a (more general) combination of medium and temperature shift. From the obtained 
theory, and the temperature dependence of µ and (C + D), the lag time λ can be predicted.  
This theory is then the basis for a critical evaluation of the existing modelling concepts on lag in predictive 
microbiology. An important conclusion is that the so-called physiological state of the cells which is very 
important in the prediction of lag behaviour, can now be identified with measurable cell parameters like cell 
mass, DNA, RNA and protein content per cell. The physiological state of the cells evolves exponentially as a 
function of growth rate and interval between initiation of DNA replication and cell division (C +D). 
Furthermore, from this definition, it emerges that the work defined by the product  λ · µ corresponds exactly 
to the change in physiological state between the two environments. 
For more details, reference is made to Dens and Van Impe (2003) (see alsoAppendix 8). 
Future work will focus on the application of the above-mentioned theories on the experimental results 
reported under Task 1.1 and WP 2. 

Work Package 4: Towards a national centre for predictive microbiology/risk assessment 
Task 4.1: One-way communication with the national food industry - Development of an Internet Portal Site 
The homepage of the project can be consulted at  
ü http://www.agr.kuleuven.ac.be/lmt/biotec/index.htm 
ü Research 
ü Projects and Research Cooperations 
ü DWTC CP-31 
The home page summarises the project objectives, current applications of predictive microbiology in the 
food industry, the two partners of the project and a direct link to the homepage of nine members of the users’ 
committee.  



 20 

A first session of the hands-on course on predictive mode lling courses offered at all members of the users’ 
committee has taken place at November 8, 2002.   
In the near future (March 15, 2003), the second session of this hands-on course will be held.  
The homepage will be enlarged in order to include more links on research and developments related with the 
basics and application of predictive modelling for the food industry. 
It is also worth mentioning that several (joint) BioTeC and LFMFP research (indicated above at the related 
tasks), and, as such, directly related with this project, is currently under submission for the Fourth 
International Conference on Predictive Modelling in Foods, which will be held in Quimper, June 15-19, 
2003, and which is a co-organisation of the Université de Bretagne Occidentale (Prof. Pierre Mafart) and 
KULeuven/BioTeC (Prof. Jan Van Impe).  
 
4. FUTURE PROSPECTS AND FUTURE PLANNING 
 
For the future planning of this Research Project, reference is made to the timetable reported in Section 2.4, 
indicating that all tasks will continue in the second year of the project. 
 
As the previous section contains intermediate results, conclusions and recommendations, it was decided to 
report specific future activities for each task at the end of each subsection.  
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