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2.1 – Context and summary 
 
When thinking in a sustainable mobility framework, one approach could be to limit the traffic demand 
and to balance this demand over different traffic modes. As a complementary approach, one could also 
try to optimise the use of the existing infrastructure. In this project we will look in detail at the second 
approach. More specifically, we will look at advanced traffic management systems (ATMS) as a means 
to enlarge the traffic capacity of the Belgian highway network without constructing new roads. 
 
In this report, a short overview of the six most relevant aspects of our research is given. These include 
(A) inventarisation of ATMS and data analysis, (B) modelling of traffic flows, (C) dynamic OD-
estimation, (D) model calibration and validation, (E) construction of a sustainable cost function and (F) 
control techniques and optimisation. Following this overview, the expected outcomes, which span two 
areas (scientific knowledge and practical use of the results), are outlined. Sections 3 (scientific 
methodology) and 4  (intermediary results) of this report give details on the specific work done, with 
respect to the six previously mentioned aspects, during the first year of the project : 
 

• Regarding the data analysis (A), a higher-order macroscopic traffic flow model will be used 
(based on Payne and Papageorgiou). The goal is to develop a model-based filter that estimates 
traffic densities and mean speeds from measurements obtained by the inductive loops and 
video cameras. Advanced non-linear adaptive filtering techniques are needed in order to cope 
with the nonstationary and highly nonlinear process of traffic flow on highways. 

 
• Part (B), about modelling, discusses the construction of macroscopic and microscopic models. 

The former is based on a heterogeneous extension of the well-known Lighthill-Whitham-
Richards first-order fluid-dynamical model. The latter is based on the cellular automaton 
programming paradigm, which discretizes both time and space. 

 
• The initial construction of the sustainable cost function is outlined in part (C). First the context 

is discussed, followed by some general considerations and the general setup that is to be used. 
A small elaboration on incorporating accident costs in the cost function is given. 

 
• The last aspect considered, is the ensemble of control techniques and optimisation in part (F). 

We look at a succesful implementation of model predictive control (MPC) applied to a ramp 
metering setup along the E17 highway Ghent-Antwerp, resulting in a 4% decrease in vehicle-
hours during the morning rush hour. 

 
The fifth section (future prospects and planning) provides pointers to extensions of the previously four 
discussed parts (A), (B), (E) and (F). 
 
The report concludes with a list of references and publications. 
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2.2 – Objectives 
 
The project's objectives are split into six different topics (A)-(F). We'll give a brief overview of each 
topic in the next few paragraphs. Sections 3, 4 and 5 of this report also relate to the work done 
regarding these six topics. 
 
The proposal’s objectives are outlined as follows : 
 
(A) Inventarisation of ATMS and data analysis 
 
An inventarisation of the available and relevant data is being made. For traffic measurement data, we 
look at the currently implemented technologies as there are loop detectors, traffic cameras, … These 
technologies all provide data with different levels of accuracy. In order to monitor traffic (traffic 
situation, incident detection, …) or to model traffic, attention is paid to data consistency. Conflicting or 
missing measurements are corrected or estimated (for accurate modelling additional data is needed). 
The weather has definitely a non-negligible effect on traffic but also maintenance works on the 
highways, incidents influence, … are taken into account. 
 
(B) Modelling 
 
Two major types of traffic models can be distinguished: microscopic and macroscopic highway traffic 
models. The microscopic models describe the behaviour of the individual vehicles in detail while the 
macroscopic models are lumped models that use relationships (difference or differential equations) 
between aggregated variables like average speed, flow, density, … to describe the evolution of the 
traffic state. In a previous project (see “Het fileprobleem in België : wiskundige modellen, analyse, 
simulatie, regeling en acties” by Bart De Moor, Ben Immers, Tom Bellemans and Steven Logghe, final 
report DWTC-project MD/01/024 en MD/01/025), we have built expertise on microscopic and 
macroscopic modelling by modelling the E17 highway Ghent-Antwerp.  
 
(C) Dynamic OD-estimation 
 
As already mentioned, traffic measurements are important for building simulation models of highway 
networks. The measurement data are used to estimate the model parameters. During traffic simulation, 
the inputs of the model are provided to the model as origin-destination (OD) matrices. The dynamic 
estimation of OD matrices, based upon the available traffic measurements, is currently an area of 
research. 
 
(D) Model calibration and validation 
 
The parameters of the dynamic highway traffic models are tuned using real-life datasets during the 
model-fitting (calibration) phase. The set of parameters, that causes the dynamical model to mimic the 
real traffic conditions best, is looked for. Within this step, several historical traffic patterns (e.g., 
incidents, congestion, holiday, ...) are used to test and to improve the model. After calibration of the 
model, the model is thoroughly validated using new datasets. The ATMS is then used as actuators to 
interact with the traffic. These ATMS are calibrated and validated in detail as well. 
 
(E) Sustainable cost function 
 
In order to be able to assess the ‘quality’ of a simulated traffic situation, we define goals we would like 
to achieve, or stated in control terms : a cost function. In the scope of this project on sustainable 
mobility, a definition of the cost function includes penalisations for pollution (environmental cost), 
congestion (socio-economic cost), noise emissions, dangerous situations (like shock waves, incidents, 
…), … . The cost function is expressed in terms of the states of the model and is evaluated during 
simulation. The exact definition of the cost function is subject to research and alternatives will be 
evaluated. 
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(F) Control techniques and optimisation 
 
An ATMS consists of actuators that interact with the highway traffic flows and of a control strategy 
that attempts to minimise the cost function. ATMS implementing ramp metering, velocity 
harmonisation, … are studied in detail. Starting with controllers for one actuator, the research evolves 
towards co-ordinated control of multiple actuators. Using the right optimisation techniques and 
simulation models, that find the correct trade-off between level of detail and computational complexity, 
will greatly influence the optimality of the resulting controller. 
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2.3 – Expected outcomes 
 
The results of this research can be split up in the following categories : 
 
(I) Scientific knowledge 
 
The research will result in extensive new scientific knowledge that will be presented on congresses and 
will be published in journals.  New knowledge and experiences can certainly be found within : 
 

• The processing of traffic data from traffic detectors. 
• The set-up of a dynamic model on a regional scale. 
• The mixed use and the tuning of macroscopic and microscopic dynamic traffic models. 
• The dynamic OD estimation. 
• The set up and the implementation of a sustainable cost function for the evaluation of dynamic 

traffic patterns. 
• The development and calibration of dynamic models can be linked to the static equilibrium 

approach. The marginal cost function for congestion that is one of the fundaments of the 
external pricing theories can be controlled from a dynamic point of view. 

• The design of new control strategies for ATMS. 
• The application of optimisation within traffic research. 

 
(II) Practical use of results for Belgium 
 
The results of this research will be of importance for Belgium.  
 
First of all the federal road administration can exploit the results to improve the Belgian transportation 
system. A lot of new ATMS will be installed in the near future. The new control strategies can be 
implemented immediately in these systems.  The project will set up a model of part of the Belgium 
road network. This model can be used for other purposes by the road administrator.  This project will 
generate quite some expertise for these future developments and will improve the practical knowledge 
in Belgium of dynamic traffic flow modelling.  
 
Secondly the members of the user comittee will be involved in the transfer of technology and 
knowledge. A web site (http://dwtc-cp40.dyns.cx) spreads information towards the interested public. 
There is also a possible knowledge transfer towards university spin-offs (cfr. Transport & Mobility 
Leuven – http://www.tmleuven.be). 
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3 – Detailed description of the scientific methodology 
 
The paragraphs in this sections all refer back to the six topics pointed out in section 2.2 (Objectives). 
 
(A) Inventarisation of ATMS and data analysis 
 
Analysis and accuracy estimation of camera data for traffic management 
 
The sensor data characterizing the traffic flow on highways and urban traffic networks are corrupted 
due to various reasons: e.g., sensor calibration errors, data link errors, lack of measurements caused by 
sensor failures, … . Furthermore, due to measurement errors, the measured data (such as average 
speeds or vehicle counts) may have physically impossible values, such as negative values for vehicle 
counts or speed. Missing or faulty data calls for on-line data processing algorithms that can accurately 
and quickly improve the accuracy of the traffic measurements. This analysis is a further continuation of 
the study initiated in [2,1] with statistical methods [6]. 
 
The aim of the analysis is to pre-process the data, remove outliers,  estimate the accuracy of the 
measurements in order to make them useful for the next  processing step, building up adequate traffic 
models, as well as for traffic parameters estimation and prediction. 
 
The statistical analysis of the raw data will provide confidence intervals, characterizing the accuracy of 
the raw data. The accuracy bounds of the raw data will allow calculation of confidence intervals around 
predicted future values, in combination with mathematical models of the traffic dynamics. 
 
Distributed Smoothing of Data 
 
In view of the fact that the data are collected in different points of the highway, a distributed processing 
of them will be conducted. The motivation for this choice is that centralized processing is unreliable 
and not very robust. This analysis will allow us to apply robust smoothing algorithms to the data 
observed on line along several Belgian freeways. 
 
(B) Modelling 
 
Within this part, the use of traffic flow models is dealt with. In a first section, a short overview of 
transportation models with their utilities, purposes, assumptions and properties will be set up. Secondly 
two types of dynamic traffic flow models that will be used in the project will be treated. At last a short 
description of an extended dynamic macroscopic traffic flow model will be given. 
 
Transportation models 
 
When some properties of our transportation system are described by a set of mathematically formulated 
assumptions, a transportation model is born. Because there is a wide range of intended properties to 
describe, there exist a lot of transportation models. This set of transportation models can be classified in 
several ways. Within this discussion we will distinguish these models on the basis of the features of the 
transportation system they intend to capture. 
 
Roughly the decision processes of travellers within the transportation system can be clarified with the 
help of figure 1. 
 
 
 
 
 
 
 
 
 
 



Page 7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 : Building blocks of the transportation system. 
 
We distinguish five types of sub-models that are closely related to the described travel options : 
 

• Models that focus on when and where people want to travel are grouped in generation models. 
These models describe the complex decision processes that lead to the making of trips. 

• Models that predict the destination of the trips are grouped within the distribution models. The 
distinction with the generation models can seem somewhat artificial. The decision of making a 
trip is often closely related to the choice of the destination of these trips. 

• Within the proposed classification, the choice of transportation mode and vehicle type comes 
next. 

• Within an assignment model, the route choice of all travellers is considered together. Given 
the amount of trips between several origins and destinations, and knowing the departure time 
and the modal choice of all travellers, an assignment model calculates the used routes and the 
resulting flows over a transportation network. 

• A traffic operation model focuses on the driving behaviour of travellers. This detailed model is 
closely related with the observed traffic flow variables at road level. 

 
When a particular transportation model is set up, some of these five sub-models are worked out. Within 
an economic framework we can state that every transportation model tries to describe an equilibrium 
between demand and supply. Depending on the considered travel options in the transportation system 
we can define a part as the demand modelling and a part as supply modelling . When considering an 
assignment model, the modal split will be considered as a result of the traffic demand. When setting up 
a generation model, the properties of the several transportation modes can be classified as 
transportation supply.  
 
Traditionally, transportation economists focus on the generation, distribution and modal split sub-
models. They are interesting in the results of the decision processes underlying the making of trips, the  
destination of them, the time of leaving and the transportation mode. Transportation engineers mostly 
work on the route choice and traffic flow operations.  
 
Both economists and engineers have the purpose to improve the working of the transportation system. 
Transportation economists are searching to close the gap between the experienced and the real supply 
costs that travellers make. Transportation engineers’ objective is to control traffic operations and route 
choice. The underlying idea for that, matches the economists viewpoint : there exists a difference 
between a user optimum and a system optimum. 
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Within this project the concepts of transportation economists will be projected on the traffic operation 
level. With the help of this, the control of traffic operations can be based on a complete and sustainable 
system optimum. Therefore an accurate mathematical description of traffic operations becomes 
necessary, justifying the use of dynamic traffic operation models. 
 
Traffic flow models 
 
Because traffic operations on the highway network are the main research area of this project, we can 
focus on traffic flow models. Different types exist that can describe the present traffic operations and 
can predict the effect of control measures. Based on the way vehicles on the highway are considered, 
we distinguish tree types of traffic flow models :  
 

• Microscopic 
Microscopic models consider each vehicle separately. Within these simulation models the 
driving decisions of each driver are considered at every time step. This process comprehends 
effects of the vehicle properties, the infrastructure lay-out and the interaction with other 
vehicles.  

 
• Mesoscopic 

Mesoscopic models are based on gas models. The vehicle stream is then seen as a stream of 
molecules. The underlying assumptions are also based on the interaction and moving 
properties of molecules. The difference between vehicles and molecules is that the amount of 
particles related to the dimensions of the encapsulated 'tube' or 'road', is much larger for gas 
models then for traffic. 

 
• 

Macroscopic. 
Macroscopic models describe traffic as a homogeneous fluid in a tube. Simplifications are 
made about acceleration and the speed is assumed to be a function of density.  

 
Within our project two types of models will be combined. 
 
Macroscopic models can calculate in a fast way the state of traffic operation on a road. Therefore, this 
type of model will be used in real-time model based control strategies. Because of the simplifications 
made in these models, the effect of a control measure on a detailed scale is needed as input and not as 
result within these models. 
 
Microscopic models will be used in off-line calculations to predict the detailed effects of some new 
control measures. The results of these off-line simulations can lead to new parameters (e.g. a modified 
fundamental diagram) that will be used as input in the on-line macroscopic model. The microscopic 
model will also function as a mirror of the real world when testing the on-line macroscopic-model 
based control. 
 
(E) Sustainable cost function 
 
The following provides a brief overview of the economic approach to modelling the costs of transport 
schemes. Using this general framework and given our current understanding of the traffic model which 
is being used for the advanced traffic management system (ATMS) scenarios, the components of the 
sustainable cost function have been developed for a feasible, limited network. 
 
When calculating transport costs from an economic point of view, there are a number of approaches 
available for modelling traffic flow. The choice of model depends on the aspects of the traffic situation 
that are of interest. For example, the effect of implementing regulatory policies on the transport 
network as a whole does not require detailed information on a road by road basis but allows for 
public/private road transport and non-road transport options (e.g. rail, ferry etc). Thus, in this case, an 
“aggregate” model is the most appropriate. For the present study however, the traffic model is a 
dynamic, micro-simulation model. Hence speed (u), density (k) and flow (q) vary over a given link, in 
contrast to the static traffic model, for which these variables have constant values. Given this level of 
detail, it is not appropriate to calculate transport costs by aggregating all the traffic information onto 
one generalised “link”. Table 1 summarises three basic types of traffic model and the travel options 
they incorporate. 
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Table 1: traffic models 
 

travel options 
Model choice of 

mode 
choice of 
departure time 

choice of 
route 

choice of 
vehicle 

driver 
behaviour 

Aggregate multi-modal 
models 
(e.g. TRENEN, typical 
strategic models) 

yes peak/off-peak 
only no yes standard 

Bottleneck models 
(e.g. METROPOLIS) no yes yes no standard 

Model for this study 
(micro-simulation 
type) 

no no* no* no 
individual 
driver 
response 

 
Departure time and route have been fixed to simplify the model for this study (see below) but need not 
be in general. 
 
Traffic network model considered for ATMS 
 
In order to be able to generate a manageable and meaningful cost function, certain limitations have to 
be imposed on the traffic network. The basic approach would be:   
 

• Consider only a small section of the motorway network, with several possible control strategy 
options (e.g. ramp metering). 

• Admit a fixed profile of vehicles onto the network section over time period ∆T (typically 1 
hour), each with a fixed departure time and travelling in one direction only. 

• The destination of each vehicle is assumed to be at the exits of the network section and they 
do not change their route. 

• The vehicles are not all identical, with a mix of freight and private transport. The private 
transport can have different levels of occupancy, emissions technology, fuel type, 
representative of the current Belgian car fleet. However, there is no option to change between 
private and public transport. 

• The network section is divided into links of varying length ∆X, so that there are surfaces 
S(∆X, ∆T) over which k, q, and u are defined. Within each S of the macro-model, the dynamic 
model calculates the traffic variables in smaller cells (∆x) at a time interval  ∆t (typically 1s). 

• Given the fixed onset flow, the traffic control model compares the total cost over the network 
section of implementing different control strategies. The minimal cost strategy is 
implemented. 

• Given the existing traffic situation, control measures are implemented to improve traffic 
conditions over the period ∆T. They are normally updated at time interval ∆t (<<∆T), 
typically 5 minutes, to take account of how the modelled traffic pattern fits the observations.  

 
Sustainable Cost Function 
 
The formulation of the sustainable cost function will also depend on the traffic model used. In all cases 
there are user costs which can be broken down into resource costs (vehicle purchase, maintenance, fuel 
etc), taxes and time costs. For the aggregate model, the travel time for each transport mode is usually 
approximated as an exponential function of the traffic demand and this is multiplied by a value of time 
(VOT), again for each mode. In the bottleneck model, the time costs consist of a component due to the 
extra time an individual spends in his vehicle plus components due to the amount of time that he is 
early or late to work. Each of these components has an associated shadow price (or VOT).  The total 
time cost is then obtained by summing over the number of vehicle-km travelled in a given time period 
or the number of individuals, respectively. For the present study, the additional time spent queuing and 
the time late are required. The corresponding VOTs, which will developed by the ETE group, will take 
account of the vehicle fleet mix, income etc. 
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It is also possible to calculate external costs for each model category.  Air pollution costs reflect the 
damage to society and future generations from vehicle emissions. This is normally calculated from the 
product of the damage cost per unit of emission (e.g. euro/g), the emission per vehicle-km and the 
vehicle-km travelled.  For the ATMS study, the emissions are unlikely to be uniformly distributed and 
will be a function of the dynamic variables, flow, density and speed, with greater costs likely under 
congested conditions. 
 
External accident costs cover the average accident costs not covered by insurance: in particular, the 
pure economic costs of police, ambulances etc. They can also include the cost of increased accident 
risk.  The costs depend on the probability of accidents of differing severity occurring between different 
modes (e.g. freight and private car), which is difficult to determine. For the present study, the 
probability need not be constant over all vehicle-km but could depend on the traffic density and speed. 
 
External noise costs can probably be ignored if the motorway section is away from built up areas. 
Otherwise techniques based on hedonic house pricing and equivalent noise level functions have to be 
used to determine the noise costs. 
 
To summarise, the cost function for the ATMS will consist of (at least) the following: 
  

• Minimum travel time cost. i.e. if  no congestion related time costs. 
• Resource costs and taxes. 
• Cost of queuing i.e. additional time spent in vehicle (with associated VOT). 
• Schedule delay cost (cost of being late). We will assume that all vehicles following the same 

route allow the same fixed time to get to their destination.  The VOT for being late to work (or 
other activity) will be derived.  

• External air pollution costs. Possibly a function of dynamic traffic variables instead of 
constant marginal cost.  

• External Accident costs. Using the dynamic model this could depend on speed, density and 
traffic composition and has a probabilistic component. 

• Infrastructure costs. The cost of implementing a particular control strategy. 
 
It is possible to consider the problem in terms of the maximum welfare gain to society instead of the 
minimal sustainable cost of each control strategy. The user costs are transformed into a consumer 
surplus. Then the social welfare function consists of the sum of the consumer surplus, the producer 
surplus of the suppliers of vehicles, fuel etc and government tax revenue minus the total external costs.  
 
(F) Control techniques and optimisation 
 
We give an example of a dynamic traffic management (DTM) strategy for a highway : ramp metering. 
We begin with a description of the ramp metering setup after which we discuss the cost function that 
generally follows from the policy and practical issues. This cost function describes the quality of the 
realized traffic state. After this, we show how MPC based control leads to an optimisation problem 
with constraints; we illustrate this by means of simulation results. 
 
Description of a ramp metering setup 
 
Ramp metering is a DTM measure that consists of allowing vehicles to enter the highway by drops. 
Each highway has a critical traffic density, beyond which the traffic flow declines with increasing 
traffic density. The idea behind ramp metering is to keep the traffic flow of vehicles on the highway as 
optimal as possible, by keeping the traffic density always below the critical density. In practice, this 
can be realized by positioning a traffic light at the on ramp of a highway, this in order to limit the 
number of vehicles that is allowed to enter the highway. The control parameter which allows 
influencing the state of traffic on the highway is the number of vehicles that are allowed on the 
highway. Or in other words, the duration of the green phase of the traffic light. When a practical 
implementation of ramp metering is concerned, it is necessary to accomodate enough space on the on 
ramp in order to hold the waiting the queue of vehicles, without causing any hindrance to the 
underlying road network. 
 
In figure 2 we see a schematic representation of a highway with an on ramp. At this on ramp, a traffic 
light is placed and room is provided in order to accomodate a waiting queue.  
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Figure 2 : Schematic representation of a ramp metering setup : two consecutive highway sections and 
an on ramp with a traffic light and waiting queue. 
 
A practical advantage of ramp metering is the simplicity with which it can be compelled. Drivers are 
obliged to stop in front of the red light, so as not to cause any heavy traffic infringment. It is thus 
supposed that no vehicle enters the highway during the red phase of the traffic light. Furthermore, it is 
easy to quantify the number of vehicles that enter the highway : by keeping the duration of the traffic 
light's green phase very small, we can dose the flow on a vehicle by vehicle basis. 
 
Model predictive control 
 
Model predictive control (MPC) is an on-line control technique that is used for optimal control of a 
ramp metering setup. MPC uses a model in order to predict the future evolution of the traffic state, 
given a known traffic demand. A control signal is searched for in order to minimize a predefined cost 
function. MPC uses a rolling horizon, which means that a prediction horizon Np is defined such that at 
each time instant k of the prediction horizon the Np control signals can be calculated by minimizing the 
cost function over the prediction horizon. These control signals are the number of vehicles that are 
allow to enter the highway at time instant k. The value of the cost function over the prediction horizon 
is calculated by using a traffic state that is simulated by a traffic model. Here the METANET model, 
described by Papageorgiou, was chosen as a traffic model. 
 
The calculation of the Np control signals for the prediction horizon is rather computationally intensive, 
especially with an increasing size of the prediction horizon. Therefore, a control horizon Nc  is defined 
as the period during which the control signals are allowed to vary. The length of the control horizon is 
smaller than or equal to the length of the prediction horizon. After the control horizon has passed, it is 
assumed that the control signal remains constant (see figure 3). By the control horizon's definition, the 
number of parameters to optimize (and as such, the computational complexity) is reduced. In the 
context of a rolling horizon, only the first control signal of the prediction horizon is applied to the 
system. The other signals are discarded. The traffic state is then updated by means of measurements, 
the control and prediction horizons are advanced in time and the whole cycle starts over again. The 
parameters Np and Nc are to be chosen such that a balance is found between on the one hand the 
complexity and on the other hand the accuracy of the controller. 
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Figure 3 : Schematic representation of the rolling horizon principle used in MPC. At timestep k we 
look with the model over a prediction horizon Np and trie to establish a control signal that minimizes 
the cost function. The control signal itself is allowed to vary during timesteps k to k+ Nc, after which it 
remains constant. The first step of the control signal is then applied, after which both horizons advance 
one timestep. 
 
The cost function 
 
A governmental traffic policy might consist of keeping the flows on the highways at maximum 
capacity. We can translate this to the control of the ramp metering setup in the following way : the total 
time spent in the system has to be minimal. The total time spent is composed of the time spent by the 
vehicles on the highway and the vehicles in the waiting queue at the on ramp. This results in the 
following cost function : 
 

. 
 
In this formula, k0 is the starting time, Np is the prediction horizon, S is the number of sections on the 
highway, i is the section under consideration in the summation, ρi(k) is the density on section i at time 
k, vi is the flow on section i at time k, ni is the number of lanes on highway section i, ∆T is the time step 
with which the discrete controller is updated (typically 1 minute), R is the number of ramps, j is the 
ramp under consideration in the summation and wj is the waiting time on the on-ramp. 
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4 – Detailed description of the intermediary results, preliminary conclusions and 
recommendations 
 
(A) Inventarisation of ATMS and data analysis 
 
Adequate models of the vehicular traffic are needed in traffic flow prediction, incident detection, traffic 
control. The various traffic models available in the literature can be classified into two groups: micro- 
and macroscopic models [3, 5, 4]. In microscopic models the behavior of individual drivers is explicitly 
described which imposes a considerable amount of computations. The macroscopic models are 
aggregate models. The computational effort is considerably reduced compared to the microscopic 
models, but on the other hand they are less detailed. Since macroscopic traffic models are better suited 
for model-based estimation techniques, we will use these in our study. 
 
Traffic flow on freeways is a nonstationary and highly nonlinear process. A trade-off between the 
model realism and feasibility of estimation procedures has to be achieved. Current investigations are 
concentrated on the macroscopic freeway traffic model developed by Payne [9, 10, 3], improved by 
Papageorgiou [8, 7], and its application for traffic prediction. 
 
The traffic flow is described with the model, consisting of two partial differential equations : 
 

 
 
where x stands for the space variable, the distance from a fixed origin along the freeway, and t is the 
time variable. Ve is the average speed in equilibrium, q is the flow, ρ is the density, v is the speed and T 
is the relaxation time. The first equation represents the conservation-of-vehicle principle, stating that no 
cars can vanish, nor appear out of the blue. The second equation describes the evolution of speed in 
time. According to this equation, the speed is determined by three terms: convection, relaxation and 
anticipation. Several schemes have been proposed to numerically solve this equation. For the purposes 
of the prediction problem to be solved afterwards, it is more appropriate to discretize at first with 
respect to the space such that a stretch of the freeway is split up into sections with measuring loops at 
the boundaries of each section. This way a connection between the state model and the observation 
equation is achieved. After that the equations will be discretized with respect to the time. 
 
The measurements provided by inductive loops and video cameras consist of counts of passing cars and 
their speeds at each of the measuring sites. In order to control the advisory speed signals, or the on-
ramp metering signals in an optimal way, we need a good estimate of the state of traffic at all time 
instants. Hence, our goal is to develop a model-based filter that estimates traffic densities and mean 
speed from measurements. Studying the traffic model will allow us to get deeper insight into the traffic 
phenomena. At first simulation experiments will verify the adequacy of the model. Second, this 
behavior may be compared to the behavior of traffic in practice. 
 
Due to the specificity and nonlinearity of the process, the standard stochastic filtering techniques, like 
Extended Kalman filters meet difficulties. Advanced nonlinear adaptive filtering techniques will be 
applied for traffic prediction and estimation of its parameters. These nonlinear filters will combine 
traffic simulations, based on macroscopic models, as well as real-time data (pre-processed raw data). 
The techniques will allow us to predict the driving time and speed along some parts of the freeways, 
the fuel consumption and air pollution. 
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(B) Modelling 
 
A heterogeneous macroscopic traffic flow model 
 
In macroscopic vehicular traffic models, the flow on a one-directional road is traditionally idealized as 
an homogeneous fluid. Driver-vehicle entities are supposed to act as identical particles in a fluid tube 
stream. This equalization of all vehicle types contradicts with the vehicle type distinctions 
transportation economists model at the modal split level. Without considering route choice and traffic 
operation, the type of vehicle is than one of the major supply cost properties. Especially when 
considering environmental costs (emission, noise, …) and accident costs (vehicles vs. lorries) the 
homogenisation of the traffic stream is a huge simplification. Furthermore the distinction of vehicle 
types in a traffic stream can lead to a more complete and accurate description of traffic operations. 
Lane changing interactions can not be modelled within a homogenized traffic stream. 
 
In this research heterogeneous properties are introduced. To this end the homogeneous population is 
split into classes. Each class consists of driver-vehicle entities with homogeneous properties. Modelling 
heterogeneous traffic flow is now reduced to describing homogeneous class flow and the interactions 
between these classes.  
 
The properties of a class are defined by the maximum speed, the vehicle length, and the capacity. The 
capacity is the maximal possible flow on the road when only vehicles of the specified class drive on the 
road.  
 
The interactions between several classes is based on a user optimum. Each driver is assumed to 
maximize his own speed. Furthermore it is assumed that faster vehicles cannot affect the speed of 
slower driving vehicles. Therefore the slow vehicles acts as moving bottlenecks for the faster ones. 
 
The model consists of a mathematical formulation that can be solved analytically. Furthermore a 
numerical scheme is set up. This enables us to implement the model with a computer and calculate 
approximate solutions in a fast way. 
 
A Traffic Cellular Automaton 
 
Another approach towards the alleviation of road congestion, consists of the development of a flexible 
testbed environment – based on a traffic cellular automaton – that is capable of providing us with a 
simulation model of a real-world road network (which is, in our case, the Flemish primary highway 
network and its secondary national road network). 
 
The testbed is constructed in two stages : construction of a traffic flow model and simulation of the 
road network. At this moment, we are completing the first stage. 
 
The core of our testbed consists of a microscopic traffic flow model, based on the cellular automata 
programming paradigm as a discrete dynamical system for the modeling of traffic flows. The system’s 
state is changed through synchronous position updates of all the vehicles (i.e., the cells). This level of 
detail is needed in order to fully grasp the emergent effects of the dynamical processes behind traffic 
flows. Our traffic cellular automaton (TCA) model is able to handle highway traffic, thus explicitly 
including the car-following and lane-changing dynamics [16]. Routing is done on a higher layer (for 
the moment we’ll assume dynamic origin-destination (OD) matrices in the sense that they only change 
in time to mimic the daily flow patterns). 
 
The dynamics of the TCA are be modeled as rule-sets that reflect the rule-based behaviour of a cellular 
automaton evolving in time and space. Our motivation is largely driven by the fact that classical TCA 
models (i.e., CA-184, NaSch’s STCA, …) suffer from several deficiencies and are therefore more 
suited for theoretical studies. We remedy this situation by constructing a new TCA model that 
alleviates the problems of the aforementioned TCA models and at the same time includes advanced 
traffic characteristics (such as metastability, hysteresis, time-based headways instead of space-based 
headways, …) [13]. Most of the already developed models either exhibit the aforementioned 
deficiencies, or they’re not suited for large scale application in an integrated real-life road network. Our 
modeling efforts provide the necessary significant innovation. 
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Several generic qualitative measurements are also performed. They act as testing tools to assess the 
validity of the developed TCA model (as well as the classical TCA models). These tests will include 
histograms of lead gap distributions, measuring the time needed to travel a congested section or to 
completely dissolve mega-jams, measuring the life-time and size of congestion waves, … [11]. 
 
 
(E) Sustainable cost function 
 
We’ll first describe the context in which the GSCF is constructed, then we’ll consider some general as-
sumptions followed by an outline of the general setup of the GSCF. We’ll conclude with a description 
of the different sustainability costs involved in the GSCF. 
 
Context 
 
In order to guarantee the optimal operation of the traffic flow, we’ll implement certain control 
measures such as ramp metering, velocity harmonisation, ... which influence the drivers. In this way, 
we can formulate the context as a control problem. Within the optimization loop of the controller, a 
cost function is used which is used to find the optimal operation. This cost function incorporates 
several different costs associated with incident probabilities, air pollution (by emissions of chemical 
compounds, noise, ...), travel time, ... The result is a sustainable cost function. The general applicability 
arises from the fact that we don’t need an explicit specification of the underlying traffic flow model 
used (it can be a macroscopic, mesoscopic or microscopic variant). This generality implies that we’ll 
use the greatest common divisor of these models, namely that traffic flow measurements can be 
extracted over a certain place during a certain time period. In practice, this means that we’ll divide the 
time/space plane into cells of arbitrary size. 
 
General considerations 
 
The following preliminaries should be taken into account : 
 

• the road network used, consists of a limited network (preferably a highway corridor for 
example) with possible on/off-ramps, 

• we only consider uni-directional links in the network, 
• all vehicles have a fixed departure time and don’t have the availability of route choice. We do 

however assume the origin-destination (OD) matrices to be dynamic in the sense that they 
change in time to mimic the daily flow patterns. 

• The vehicle fleet mix (consisting of two classes, namely cars and trucks) is representative of a 
given route (i.e., a Belgian highway in the study area). The difference between cars and trucks 
is expressed as passenger car units (PCUs). 

 
General setup 
 
It is our goal to compare the costs of different control strategies. This is done by assigning a value to 
certain individual costs (related to accidents, chemical emissions, noise, ...). The general sustainable 
cost function (GSCF) is thus constructed by the summation of individual terms. These terms each 
contribute a certain weight to the total cost, reflecting the different sustainability measurements that we 
perform. 
 
The cost function is calculated for each cell in the time/space plane individually (i.e., we only consider 
one cell at a time). This allows us to visualize how the behaviour of each individual cost evolves when 
the daily flow pattern changes, when control measures are taken, ... 
 
As an example, we'll give some details of the contribution to the GSCF by accident costs. 
 
When considering the cost of an accident, we only consider the influence that this accident has on the 
current cell. We implicitly assume that the consequences of an accident (e.g., the formation of a long 
waiting queue) are propagated through the traffic flow by the traffic flow model itself. It is therefore 
unnecessary to take these side-effects of accidents explicitly into account. Because of this 
simplification, we only need to consider the time it takes to clear up the road and remove the accident. 
We assume the accident cost is fixed, but we do however introduce a probability measure for the 
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accident occurrence itself. This results in the multiplication of the accident probability for a certain 
road with the fixed accident cost. This accident probability depends on the traffic density (which can be 
used to characterize the traffic regime) and the dimensions of a cell in the time/space plane. 
 
(F) Control techniques and optimisation 
 
As an illustration, an experiment was performed based on a model of a section the E17 highway 
between Ghent and Antwerp. A ramp metering setup was simulated at the on ramp at Linkeroever (i.e., 
the first left on ramp). The total time spent during a simulated morning rush hour was compared with 
and without an MPC controlled setup. Figure 4 gives an overview of the simulated section of the 
highway. The total time spent in the network is used for the cost function. The prediction horizon Np 
was taken to be 10. Because the sampling step of the controller was considered to be 1 minute (it's 
rather useless to adapt the metering rates more frequently), the controller only 'looks into the future' for 
about 10 minutes. In order to limit the needed computation power, the control horizon was chosen to be 
5, or in other words, the control signal can vary during the first 5 minutes of a simulation period, after 
which it is considered to remain constant. A big advantage of MPC based control is the fact that certain 
constraints can be imposed to the optimisation. For example, it is assumed that the available space on 
the on ramp can only accomodate at most 100 vehicles. Besides the maximal length of the waiting 
queue, other constraints can be imposed. 
 

 
 
Figure 4 : Schematic representation of the simulated section of the E17. 
 
The simulated morning rush hour runs from 5h until 10h. Figure 5 shows a summary of the simulation 
results. In the first plot, the course of the traffic demand on the on ramp is shown. It can be seen that 
this traffic demand increases until it decreased after the morning rus hour. The second plot shows the 
control paramter, which is the metering rate or the fraction of the total capacity of the on ramp which is 
allowed to enter the highway. We can see that the metering rate initially equals 1 and that all vehicles 
that want to enter the highway are allowed to do so (the length of the waiting queue is shown in the 
third plot and is zero). In the fourth plot we can see the course of the traffic density in time. The dotted 
line represents the critical density of the highway, or in other words : if this density is exceeded, the 
flow of the vehicles on the highway begins to decline with increasing density (i.e., congestion). We can 
see that because of the increased traffic demand, the density on the highway begins to increase. 
However, we traffic density on the highway tends to exceed the critical density, the ramp metering 
control is applied : the metering rate declines, reducing the inflow on the highway below the traffic 
demand, resulting in the formation of a waiting queue at the on ramp. The density on the highway 
fluctuates about the critical density (this is the density at which the flow on the highway is maximal). 
At a certain moment, the length of the waiting queue reaches its maximal value (100 vehicles) and the 
controller is necessitated to increase the metering rate, causing an increase of the density on the 
highway beyond the critical density. The accompanying average speed on the high way is shown in 
plot 5. After a while, traffic demand decreases, which results in a dissolvement of the waiting queue 
(this can be seen in the first plot, in which the real inflow of vehicles to the highway is greater than the 
demand). 
 
 
 
 
 
 



Page 17 

If we look at the total time spent in the network (i.e., highway and waiting queue), we can see that, in 
case no ramp metering is applied, this is equal to 2960 vehicle-houres during the complete morning 
rush hour. However, when MPC based control is performed, the total time spent in the network is 
reduced to 2843 vehicle-hours, resulting in a reduction of 117 vehicle-hours (4%) during the morning 
rush hour (i.e., when ramp metering is active). While the queue on the on-ramp is building up, the 
morning rush hour jam is shorter in time than without ramp metering. Once the maximal queue length 
is reached, congestion sets in. 
 

 
 
Figure 5 : Overview of the simulation results for a morning rush hour and MPC based control at the 
E17 highway between Ghent and Antwerp. 
 
Conclusion 
 
The setup of a model based dynamic traffic management (DTM) system starts with the definition of  a 
policy. This policy is then translated into a cost function. An MPC based controller uses the concept of 
a rolling horizon. The control signals which lead to a minimum value of the cost function are searched 
by means of optimisation. In this process, a traffic model is used. Only the first control signal is applied 
to the system, after which the model is adapted to the changed traffic state on the highway and the 
horizons are advanced. MPC is capable of finding a solution which adheres to strict constraints (e.g., a 
maximal length of the waiting queue). In order to suppress the computational complexity, a control 
horizon is defined besides the prediction horizon. 
 
In the presented example, a simple application of MPC based ramp metering on a single on ramp was 
shown. This resulted in a 4% reduction of the total time spent on the considered section of the E17 
highway. 



Page 18 

5 – Future prospects and planning 
 
(A) Inventarisation of ATMS and data analysis 
 
After obtaining the traffic data, we’ll construct meaningful filters that can be applied. This is closely 
related to the correlations between consecutive measurements in space and time. Noise estimation will 
form a key aspect in this research. Conflicting or missing measurements will be corrected and/or 
estimated. Since the weather has a definitely non-negligible effect on traffic, we’ll try to obtain and 
process climatological data. The same holds for incident related statistics. 
 
(B) Modelling 
 
A heterogeneous macroscopic traffic flow model 
At this moment the model framework is worked out. During the next report period the development of 
this model can be finished and applied within the model based control strategy. 
 
A Traffic Cellular Automaton  
The second stage in the development of a microscopic traffic simulation model, consists of the 
construction of a testbed that allows us to simulate the road network [14]. 
 
Our developed model will form the core of a testbed of a real-life road network environment. Its scope 
is the Flemish major road network whose physical modeling will be done by employing data available 
from satellite images and geographical information systems (GIS). 
 
Calibration and validation of the system are required in order to tune the model parameters to the 
dynamic traffic state on the already existing road infrastructure [15]. All the data needed for real-time 
simulation is gathered by sensors in the road network and stored in a database by Flander’s Traffic 
Centre. This database contains the macroscopic flow, occupancy and average speed measurements as 
time series (with a sampling interval of one minute). 
 
Furthermore, constructing the fundamental diagrams from these time series, allows us to investigate the 
transient phenomena associated with traffic flow operations; meta-stability and hysteresis can be 
observed and checked for in the developed TCA model [12]. 
 
(C) Dynamic OD-estimation 
 
When the modelling step is completed, we can construct the OD-matrices containing the vehicle trips. 
These origin-destination (OD) matrices form the inputs of the model. The dynamic estimation of OD 
matrices, based upon the available traffic measurements, remains an area of research. 
 
(D) Model calibration and validation 
 
Using the traffic data, we can classify several historical traffic patterns (e.g., incidents, congestion, 
holiday, ...) to test and to improve the model. After calibration of the models, they are thoroughly 
validated using new datasets. The ATMS is then used as actuators to interact with the traffic. These 
ATMS will be calibrated and validated in detail as well. 
 
(E) Sustainable cost function 
 
Once the general sustainable cost function is derived, we’ll apply it to the different traffic models. 
We’ll also have to gather the relevant data (traffic data, sociological data, economical data, …) and 
devise a way for calibrating and validating this data (after assessing it’s quality). Furthermore, the cost 
function should be integrated in the optimisation loop of the controller. 
 
(F) Control techniques and optimisation 
 
Having discussed local (individual) ramp metering, we’ll increase it’s effectiveness by applying 
coordinated ramp metering, in which several consecutive on-ramps are coupled together to give a 
global optimisation. 
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The following time-table gives an overview of the several steps in the project. Three identifiers are 
used to denote the current state : DONE, BUSY and SCHEDULED (note that some ‘future’ steps are 
already being researched, e.g., construction of the sustainable cost function). 
 
 
 

 
TASK 

 

 
 

Year 1 
 

 
 

Year 2 
 

 
 

Year 3 
 

 
 

Year 4 
 

     

1. The inventarisation of 
technology and monitoring 
systems 

    

1.1 ATMS in Belgium DONE    

1.2 Monitoring systems and 
available traffic data 

DONE    

1.3 Design and application of 
methodologies to process traffic 
data 

BUSY    

1.4 Research influences on 
traffic patterns of: weather, 
incidents, maintenance works, 
… 

SCHEDULED    

2. Set up a modelling 
framework 

BUSY    

3. Dynamic OD-estimation  SCHEDULED   

3.1 Design and application of 
methodology for Belgium 

BUSY    

3.2 Esatimation of OD-tables for 
hypothetical and future traffic 
conditions 

 SCHEDULED   

3.3 Real-time OD-estimation  SCHEDULED   

4. Model fitting, calibration and 
validation 

    

4.1 Calibration of data 
processing 

SCHEDULED    

4.2 Calibration of dynamic OD-
estimation 

 SCHEDULED   

4.3 Calibration of dynamic 
traffic model 

 SCHEDULED SCHEDULED  

5. Sustainable cost function     

5.1 Design of a cost function   BUSY  

5.2 Testing and calibrating cost 
function 

  SCHEDULED  

6. Control techniques     

6.1 Modelling and calibration 
ATMS 

  BUSY  

6.2 Design framework control 
strategies for ATMS 

  BUSY  

6.3 Design co-ordinated ATMS 
and control strategies 

  SCHEDULED  

7. Optimisation     

7.1 Optimisation of ATMS 
control strategies 

  SCHEDULED  

8. Interaction with authorities DONE SCHEDULED SCHEDULED  
     

     

 
 



Page 20 

6 – Annexes 
 
6.1 – References 
 

• [1] T. Bellemans, B. De Schutter, and B. De Moor, “Data acquisition, interfacing and pre-
processing of highway traffic data”, Proceedings of Telematics Automotive, IFAC, 
Birmingham, UK, 2000, pp. 4/1– 4/7. 

• [2] T. Bellemans, B. De Schutter and B. De Moor, “On data acquisition, modeling and 
simulation of highway traffic”, Proc. of the 9th IFAC Symposium in Transportation Systems, 
IFAC, Braunschweig, Germany, 2000, pp. 22–27. 

• [3] T. Bellemans, B. De Schutter and B. De Moor, “Models for traffic control”, Journal A 
(2002). 

• [4] L. E. Haefner and M.-S. Li, “Traffic flow simulation for an urban freeway corridor”, 
Transportation Conference Proceedings, 1998. 

• [5] P. Kachroo and K. Krishen, “System dynamics and feedback control design problem 
formulations for real-time ramp metering”, Transactions on the SDPS 4 (2000), no. 1, 37–54. 

• [6] W. Martinez and A. Martinez, “Computational statistics handbook with MATLAB”, CRC 
Press, 2002. 

• [7] M. Papageorgiou, “Dynamic modeling, assignment, and route guidance in traffic 
networks”, Transportation Research B 24B (1990), no. 6, 471–495. 

• [8] M. Papageorgiou, “Modeling, and real-time control of traffic ow on the southern part 
boulevard périphérique in Paris: Part I: Modelling”, Transportation Research A 24A (1990), 
no. 5, 341–359. 

• [9] H. Payne, “Models of freeway traffic and control”, Simulation Council Proceedings Series. 
Mathematical Models of Public Systems (G.A. Bekey, ed.), 1971, pp. 51–61. 

• [10] S. Smulders, “Control of freeway traffic flow”, PhD thesis, Universiteit Twente, 1989. 
• [11] K. Nagel, P. Wagner and R. Woesler, “Still flowing : Old and new approaches to traffic 

flow and traffic jam modeling”, april 2002 
• [12] A. Schadschneider, “Traffic flow : A statistical physics point of view”, Physica A, vol. 

313–153, 2002 
• [13] D. Jost and K. Nagel, “Probabilistic traffic flow breakdown in stochastic car following 

models”, Transportation Research Board Annual Meeting, 2003 
• [14] R. Barlović, J. Esser, K. Froese, W. Knospe, L. Neubat. M. Schreckenberg and J. Wahle, 

“Online Traffic Simulation with Cellular Automata”, Traffic and Mobility : Simulation-
Economics-Environment, pages 117–134, july 1999 

• [15] D. Dailey and N. Taiyab, “A Cellular Automata Model for Use with Real Freeway 
Data”, ITS Research Program, Final Research Report, january 2002 

• [16] P. Wagner, K. Nagel, D. Wolf, “Realistic multi-lane traffic rules for cellular automata”, 
Physica A, vol. 234, pages 687–698, 1997 

 

 

 

 

 

 

 

 

 

 

 

 



Page 21 

6.2 – Publications 
 

• Bellemans T., Logghe S., De Moor B., Immers B., “Het fileprobleem in België : wiskundige 
modellen, analyse, regeling en acties”, Internal Report 02-15, ESAT-SISTA, K.U.Leuven 
(Leuven, Belgium), 2002 

• Bellemans T., De Schutter B., De Moor B., “Model predictive control with repeated model 
fitting for ramp metering”, in Proc. of the IEEE 5th International Conference on Intelligent 
Transportation Systems (ITCS2002), Singapore, Sep. 2002, pp. 236-241 (CDROM). 

• Bellemans T., De Schutter B., De Moor B., “Anticipative model predictive control for ramp 
metering in freeway networks”, Internal Report 02-153, ESAT-SISTA, K.U.Leuven (Leuven, 
Belgium), 2002. 

• Bellemans T., De Schutter B., De Moor B., “Model predictive control for ramp metering of 
motorway traffic : A case study”, Internal Report 02-207, ESAT-SISTA, K.U.Leuven 
(Leuven, Belgium), 2002. 

• Immers B. en B. Egeter, “OWN als redmiddel tegen verkeersinfarct”, Verkeerskunde 2 / 2002. 
• Immers B., Stada J., en I. Wilminck, “Zuid-Holland ontvlecht”, Verkeerskunde 3 / 2002. 
• Logghe S. and B. Immers, “Heterogeneous traffic flow modelling with the LWR model using 

passenger-car equivalents“ Working paper ‘Verkeer en Infrastructuur’, 2002. 
 
6.3 – Detailed results 
 
All results were integrated in section 4 (Detailed description of the intermediary results, preliminary 
conclusions and recommendations). 
 


