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1 INTRODUCTION 

1.1. Context and summary 
 
Modern consumers demand safe, natural, untreated, high quality, and wholesome food products, 
within the framework of sustainable development. The search for an economically feasible 
combination of all these issues is a major challenge for the food industry in the 21st century, and can 
only be attained by safeguarding the food chain from farm to fork. 
A key element of the on-going implementation of the FAO/WHO Risk Analysis framework and 
principles is Microbiological Risk Assessment. Risks in the food chain are specified as related to 
pathogenic micro-organisms on the basis of sound science, combining qualitative and quantitative data 
in the areas of epidemiology and pathogenicity of micro-organisms with food production and handling 
(Klapwijk et al., 2000). It is indicated that Europe is lagging behind North America both in terms of 
quantity of ongoing work and the depth of activity when referring to published Microbiological Risk 
Assessment studies. The urgency to catch up is illustrated in the European Commission’s strategic 
objectives, priorities and work programme in relation to food safety in particular, and food law in 
general as outlined in the White Paper on Food Safety (COM (1999) 719 final, 12 January 2000). This 
document elaborates the Commission’s commitment to develop a comprehensive integrated approach 
for regulating the food supply chain. In particular it proposes the establishment of a European Food 
Authority and an overarching set of definitions, principles and measures to ensure a high level of 
protection and the effective functioning of the internal market in food. Food laws should be based on 
the principles of Risk Analysis, and Risk Assessment should be based on the available scientific 
evidence and undertaken in an independent, objective and transparent manner (COM (2000) 716 final, 
8 November 2000). 
The (Belgian) Federal Agency for Safety of the Food Chain is officially established on February 4, 
2000, as a direct consequence of the dioxin crises in June 1999. The Agency has two principal tasks: 
analysis of the risks related to food products and control of the complete food chain from the stable to 
the table. Hereto, the Agency should establish measures related to the analysis and control of risks that 
could endanger the health of consumers.  
 
This Research Project is to be framed within the context of the above mentioned Risk Assessment. 
More precisely, this projects’ overall objective is the development and integration of generic 
predictive modeling tools in the area exposure assessment, based on predictive microbiology, to 
enhance microbial food safety.  
The (relatively young) discipline of predictive microbiology deals with the design and analysis of 
quantitative relations (mathematical models) aiming at the prediction of the evolution (growth, 
inactivation, survival, …) of pathogenic or spoilage microorganisms (the so-called target-organisms) 
during subsequent stages of production, distribution and storage of food products. The project focuses 
on the development and integration of a collection of generic predictive modeling tools for predictive 
microbiology, hereby aiming at standardizing and consolidating the promising use of mathematical 
modeling techniques in the framework of risk analysis of foods. As a vehicle to demonstrate their 
intrinsic generic nature and applicability, two case studies (that are challenging from both the 
scientific and technological/economical point of view) will be used for development and validation 
purposes: (i) exploring the boundaries of microbial evolution, and (ii) quantifying interactions between 
micro-organisms.  
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1.2. Objectives 
 
The overall aim of this Research Project is to design and exploit new generation predictive models 
able to predict the behavior of microorganisms in foods, taking into account their complex 
microbial ecology, as generic tools for microbial food safety assessment.  

 

The scientific research objectives of this Research Project are threefold.  

1. Development and integration of (both macroscopic and microscopic) building blocks into a widely 
applicable novel generation predictive modeling methodology.  
Transferability (i.e., the generic nature of the approach) will be assessed at different levels.  
a. To transfer model structures from one microorganism to another.  
b. To extend model structures to describe more complex phenomena. For example: (i) to extend 

single species balance models to multiple species balance models describing interaction, and 
(ii) to extend kinetic models to incorporate the effect of multiple environmental factors.  
This modular extension property also implies that models can be reduced in complexity in a 
natural way if certain conditions are satisfied (e.g., no competing species, environmental 
factor not limiting). 

2. To increase the fundamental insight in mechanisms underlying microbial lag phenomena, with 
particular emphasis on (i) (sudden) changes in environmental conditions during microbial 
evolution, and (ii) the previous history of the cells.  

3. To increase the fundamental insight in antagonistic interaction phenomena occurring in mixed 
microbial cultures, with particular emphasis on interactions caused by (i) a single metabolic 
product, or (ii) multiple metabolic products. 

Technological research objectives can be formulated as follows. 

Realization of scientific objective 1 results in a standardized collection of rules, concepts, and 
techniques helpful in building an appropriate model for the application under study. In other words, 
the modeling framework generates an application driven optimal modeling procedure (modeling 
recipe), ranging from experimental design and data collection, over data processing and model 
identification, up to protocols for model validation and validation in real food products.  
As a first technological research objective, the microbial phenomena that form the subject of scientific 
objectives 2 and 3 will serve as vehicles to demonstrate and validate the applicability of the novel 
modeling methodology. Transferability assessment is important in this respect.  
As a second technological research objective, a user-friendly portal site will be created on the Internet 
providing state-of-the-art electronic knowledge transfer to the food industry in Belgium. Within this 
project’s lifetime, a one-way communication from the research consortium towards the Belgian food 
industry, academic institutions and regulatory bodies will be established.  

1.3. Expected outcomes 
 
Details on the expected technical outcomes will be presented in Section 2. 
In the following paragraphs, two issues are dealt with: (i) the way this project is in the public interest, 
and (ii) industrial application possibilities. 
Food-borne pathogenic bacteria are currently responsible for significant illnesses. The yearly number 
of cases of food poisoning in the Netherlands has been estimated on 2,000,000/year. As a result, there 
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is world-wide a substantially increasing interest in predictive microbiology that is expected to offer in 
the very near future an essential contribution to the improvement of the microbial safety and quality of 
foods. The availability of a user friendly, standardised predictive modeling methodology offers a front 
seat view on the behavior of micro-organisms in foods in response to changes in intrinsic, extrinsic or 
processing factors, or to changes in the formulation of food ingredients. Therefore, it enables to deal 
carefully with energy and time consumption, food ingredients and production of waste, contributing to 
the application of the precautionary/preventing principle in the frame of sustainable development. In 
addition, it opens interesting opportunities for education and training. Finally, the acceptance by the 
social instances of this research related to food quality and public health aspects is guaranteed. 
With its annual turnover of 30 billion € (FEVIA, 2002), the food industry lies in third place for total 
Belgian industrial output. The food industry employs about 87,000 people (2001) which make it the 
second largest industrial employer in Belgium. More and more the presence of a sound risk assurance 
system in a food company, in which predictive microbiology can be an important tool, will be 
essential to deliver to important customers like distribution chains. As such, the development of 
knowledge regarding predictive microbiology contributes to competitiveness. Especially larger 
companies, that have in-house knowledge of food microbiology, will be able to assimilate the 
technique of predictive microbiology. As consolidation is one of the major trends within the European 
food industry, specialists are more and more available within the group a food company belongs to. 
The Advisory Committee associated to this project consists of a large number of companies and 
organisations in the food area. Its members are well divided over the different sectors: representatives 
of the meat industry, dairy industry, fish industry, ingredients and additives industry, savoury industry, 
prepared meals industry, handling and processing of fruit and vegetables, household and body care 
products, pharmaceutical industry, and (last but not least) the Federal Agency for Safety of the Food 
Chain and the Flemish Centre for Postharvest Technology. Both large companies and SMEs are 
represented in the Committee.  
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2 DETAILED DESCRIPTION OF THE SCIENTIFIC 
METHODOLOGY COVERING THE WHOLE PROJECT 
DURATION  
(DECEMBER 2001 – JUNE 2006) 

 
This description is a fusion of the original project proposal (covering the period December 2001-
December 2005) and the scientific description provided to motivate the project prolongation (covering 
the period January-June 2006).  
 
2.1. Research strategy 
 
The project objectives listed in Section 1.2 will be reached by carrying out four major Work Packages 
(WPs): 
Work Package 1: Exploring the boundaries of microbial evolution 

Work Package 2: Quantifying inhibition and inactivation phenomena due to microbial interaction 

Work Package 3: Developing and integrating predictive modeling methodologies 

Work Package 4: Towards a Belgian center for predictive microbiology/risk assessment 

The relationship between these Work Packages is presented in the next scheme. 

Scheme 1: Overview of the interface between the different Work Packages (WP’s). 
 
The novel predictive modeling methodology is developed in WP3, while microbial lag phenomena and 
microbial interactions are the subject of WPs 1 and 2 respectively. While WP3 has its own 
deliverables, it also serves as the mathematical foundation (see figure above) for the quantitative work 
to be performed in WP1 and WP2. The Work Packages 1 to 3 continuously interact at their interface.  

 WP3 ↔ WP1 and WP3 ↔ WP2 
The different steps in the model building cycle (namely, data generation, model development, and 
model validation) are to be performed in an iterative scheme. Optimally designed experiments 
(calculated based on methods developed in WP3) are needed to generate informative data sets of 
microbial lag phenomena in WP1 and of antagonistic microbial interaction phenomena in WP2. These 
data, in combination with available a priori mechanistic knowledge, will allow for proper model 
structure selection (based on building blocks developed in WP3) and model parameter estimation 
(including uncertainty assessment using techniques developed in WP3). Models in predictive 
microbiology are usually of the grey box (hybrid) type, combining mechanistic (white box) and 
regression (black box) elements. Validation of the model is a crucial step within this cycle: less 

WP3

WP1 WP2

WP4
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successful modeling attempts are the driving force for designing and performing more informative 
experiments that will yield models with a higher predictive value. 

 WP1 ↔ WP2 
While WP1 concentrates on the initial (lag) phase which delays initiation of microbial evolution, WP2 
investigates the termination of microbial growth by inhibition or even inactivation effects. Proper 
integration of the elementary model building blocks describing these individual phenomena will result 
in new generation predictive models valid over the entire time domain from lag over exponential 
growth up to inhibition (and possibly inactivation). 

Finally, all knowledge generated in WP 1 to 3 is integrated in WP4 to contribute to the establishment 
of a national center for predictive microbiology/quantitative microbial risk assessment. 

  

2.2. Detailed description of the work program 
 
Work Package 1: Exploring the boundaries of microbial evolution 
 
In this study two approaches regarding modeling the lag phase are explored. In Task 1.1 lag phases 
induced by a sudden temperature change are studied, while in Task 1.2 the influence of the history of a 
contaminating cell population on the distribution of individual lag phases is examined. 
 

Task 1.1: Quantifying lag phenomena due to temperature variations 
 
Step 1: Experimental Protocol and Data Generation.  
This task consists in formulating a reproducible experimental protocol and analytical methods for 
optimal determination of the existence and length of the lag phase caused by a change in temperature 
as well as for the identification of relevant influencing variables. In order to avoid interference of any 
change of the medium composition on the temperature-dependent lag, temperature shifts are applied 
during growth (lag, exponential or stationary phase). The experimental protocol implies the 
standardization of the pre-culturing conditions, the composition of the growth medium and the process 
conditions (other than temperature). A series of well-thought experiments will be designed from which 
the occurrence and the amplitude of the lag phases (in relation with the previous history as defined 
above) can be quantified.  
The experiments with stepwise temperature changes will be performed in computer-controlled 
bioreactors equipped with sensors and programmable control systems for temperature, pH and 
dissolved oxygen. The following variables are determined off-line: (i) population density, (ii) substrate 
concentration, and (iii) metabolite concentration possibly affecting the lag phase. As a model 
organism, Escherichia coli K12 grown in a nutritionally rich medium is used.  

 

Step 2: Model Construction.  
In contrast with most predictive models to date, the macroscopic (i.e., population level) model will be 
dynamic, i.e., it will consist of a set of differential equations enabling continuous description of the lag 
dynamics. The qualitative knowledge derived from the rigorous experimental study is directly 
included within the structure characterization step. Next to the macroscopic modeling approach, the 
alternative individual-based modeling (cell level) techniques investigated in WP 3 will be applied.  
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Task 1.2: Quantitative study of the effect of the history of contaminating cells on their lag 
 
Step 1: Experimental Protocol and Data Generation.  
In a first step a protocol will be developed to determine the lag phase of an individual cell and in this 
way the distribution of the individual lag phase of cells within a contaminating population. Listeria 
monocytogenes is chosen as model organism. The lag phase of individual cells will be determined by 
following the individual growth in the wells of microtiterplates, containing one cell/well, by turbidity 
measurements in an ELISA reader. The protocol will be validated by comparing the obtained results 
with Solid Phase Cytometry (SPC) measurements.  
In a second step, the influence of the history of contaminating L. monocytogenes cells on their 
individual lag phase (and on the distribution within a cell population) will be investigated for cells 
which are contaminating ideal but chilled substrates (7°C). This distribution will be determined for 
different histories of the contaminating cells (together with its influence on the apparent lag phase). 
The influence of individual factors (T, pH and water activity) as well as their interactive influence on 
(the distribution of) the individual lag phases within a cell population of L. monocytogenes will be 
quantified.  

In a third step, the influence of the history of contaminating L. monocytogenes cells on their individual 
lag phase will be investigated for cells that are contaminating non-ideal chilled food substrates.  

 
Step 2: Model Construction.  
The obtained data will be used to develop models that are able to predict the influence of history 
factors on the apparent lag phase and on the distribution of the individual lag phase of a cell 
population at 7°C for L. monocytogenes. Parameters describing the observed distribution will be 
modeled as a function of history determining parameters (temperature, water activity and pH). The 
obtained data of individual lag phases within a cell population will be used to validate microscopic 
models developed in WP3. 

 
Step 3 for Task 1.1 and Task 1.2: Model validation and transferability.  
The model structure and the corresponding parameter estimates obtained from the previously 
mentioned experimental designs in Tasks 1.1 and 1.2 will be validated on new growth data. The 
validation tests for Task 1.1 will be generated under time-varying temperature conditions not tested 
during model development. For Task 1.2, the applicability of the proposed model structure will be 
tested for other microbial strains and other substrates.  
 

Task 1.3. Growth behaviour of L. monocytogenes at the growth/no growth boundary 
 
In Task 1.2, the individual lag phase of L. monocytogenes is investigated in conditions were growth 
was obvious. At the growth/no growth boundary, lag phases evolve towards infinite. Little is known 
about the kinetics of L. monocytogenes at this boundary although many food products are having 
properties in the range of this boundary. In this task, which is considered during the project 
prolongation (January – june 2006), lag phases are determined in the growth/no growth area first at 
high inoculation levels and then at low inoculation level. The dependency of the growth/no growth 
boundary of environmental conditions is also determined for low and high inoculum levels. 
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Work Package 2: Quantifying inhibition and inactivation phenomena due to microbial 
interaction 
 
The primary aim is the development of dynamic predictive models for antagonistic interaction 
phenomena in mixed microbial cultures, consisting of 1 antagonist and 1 pathogen. Several 
mechanisms can simultaneously cause antagonistic phenomena. From a modeling viewpoint, it is 
therefore recommended to start with a simple, well-defined case study, based on a single mechanism: 
1 antagonist → 1 metabolite (lactic acid) → 1 pathogen  
 
Task 2.1: Antagonistic phenomena through a single metabolic product 
 
Subtasks 2.1.1 and 2.1.2 Inhibition and inactivation phenomena  
 
Step 1: Experimental Protocol and Data Generation.  
Two different antagonist-pathogen systems will be investigated, namely Lactococcus lactis/Listeria 
innocua (co-culture 1) and Lactobacillus sakei/Yersinia enterocolitica (co-culture 2). Both selected 
antagonists are homofermentative and bacteriocin negative. During preliminary research of BioTeC 
and LFMFP, two interaction phenomena could be observed: (i) inhibition of the pathogen by the 
antagonist (bacteriostatic effect occurring in co-culture 1), and (ii) inactivation (after inhibition) of the 
pathogen by the antagonist (bactericidal effect occurring in co-culture 2). A subsequent 
characterization of co-culture 1 and 2 will enable to gradually incorporate both interaction effects in an 
appropriate model structure (see further). Experiments will be performed in a rich medium. Factors to 
be investigated are (i) temperature, (ii) the ratio of initial cell concentration antagonist/pathogen, (iii) 
initial medium pH, and (iv) medium buffer capacity. During experiments, the following variables will 
be monitored: viable/total cells (through plate/microscopic counting), medium components (through 
chromatography) and pH. 
 
Step 2: Model Construction.  
Two different strategies will be explored. In a first strategy, available single species models are used to 
fit experimental data of the pathogen in both pure and mixed cultures. Differences in estimated 
parameter values are quantified through statistical techniques. In a second strategy, a novel model is 
developed, which -in contrast to the previous approach- incorporates antagonism from the model 
structure characterization step on. Essential building blocks are (i) a set of dynamic balance equations 
for pathogen and antagonist and for all variables influencing or influenced by the microbial 
proliferation, and (ii) related kinetic models, describing the specific rates of the balance equations as 
function of state variables and other influencing factors. 
 
Subtask 2.1.3 Uncoupling the individual lactic acid and pH effects 
 
Step 1: Experimental Protocol and Data Generation.  
The inactivation of L. innocua will be investigated at different combinations of initial pH (pH0) and 
initial concentration undissociated lactic acid [LaH]0. Two series of experiments will be performed. (i) 
To simulate the effect in co-cultures, the evolution of L. innocua is followed at an artificially created 
initial total lactic acid (i.e., both dissociated and undissociated forms) concentration. As such, L. 
innocua inactivation is investigated at (pH0, [LaH]0)-combinations determined by the buffering 
capacity of the experimental medium. (ii) Inactivation of L. innocua will also be investigated at (pH0, 
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[LaH]0)-combinations not situated on the trajectory determined by the buffering capacity of the 
experimental medium, but forming an approximately rectangular shape in the (pH, [LaH])-plane. In 
contrast to the inactivation in (i) and, for example, in co-culture 2 where pH and undissociated lactic 
acid are interrelated, the individual effects of both factors on the L. innocua inactivation can be 
separated. 
During the project prolongation phase, and taking into account the actual project results (see, for 
example, the Third Year Report), much attention is paid on the further delineation of experiments 
enabling to test the variability in response observed during the previously performed experiments. 
Repetitions (originating from one pre-culture) are performed simultaneously, with multiple sampling 
at each time point, and microscopic cell evaluation. Other analyses can be considered if necessary to 
explain the variability. 
Next to this fundamental issue, the kinetic experiments will be completed. 
 
Step 2: Model Construction.  
Available and, where needed, newly developed primary inactivation models will be used to describe 
the experimental data of L. innocua in both series of experiments. After selection of the most suitable 
primary model, a secondary model describing the variation of the primary model parameters with pH0 
and [LaH]0  will be developed. 
 
Step 3: Model Validation  
The constructed model is validated during the project prolongation phase on a set of co-culture 
experiments, where a dynamic profile of pH and LaH is naturally occurring. As such, the model can be 
validated on its performance and, by confronting the model predictions with the newly developed 
experimental data, possibly induced dynamic effects can be identified and evaluated. 
 
Work Package 3: Developing and integrating predictive modeling methodologies 
 
While having deliverables on its own, WP 3 also provides methodological support for both WPs 1 and 
2. Three tasks can be distinguished. First, Optimal Experimental Design techniques for microbial 
kinetic studies are explored in Task 3.1. This will allow obtaining informative, high quality 
experimental data in WPs 1 and 2. Further, generic macroscopic and microscopic model building 
blocks are developed and integrated in Tasks 3.2 and 3.3, respectively. In WPs 1 and 2, their 
applicability (and possible limitations) to model the specific phenomena under study are evaluated. 
 
Task 3.1: Optimal Experimental Design (OED) of kinetic studies 
 
Experiments are to be designed in order to perform the following steps in the modeling cycle.  
 
Step 1: Model structure discrimination.  
This involves the selection of a model structure out of a pre-defined set of candidate model structures 
(either newly developed or taken from literature).  
 
Step 2: Parameter estimation of kinetic models.  
Accurate parameter estimates can be obtained by application of dynamic profiles of experimental 
conditions during experiments. Optimal dynamic profiles can be designed by application of the 
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Optimal Experimental Design methodology, in which basically a scalar function of the so-called 
Fisher information matrix is optimized.  
 
Step 3: Model validation.  
Attention will be paid to OED for both mathematical and product validation. 
For the project prolongation phase, the following aims are put forward (i) Validation of a series of 
optimally designed temperature profiles for optimal estimation of the CTMI parameters for the 
selected model organism (E. coli K12 MG1655). (ii) Transfer of the OED/PE methodology to the 
CPM (cardinal pH model) will be evaluated. The applicability of the dynamic pH profiles for 
parameter estimation will hereto be evaluated based on a literature review and a well-selected set of 
dynamic bioreactor experiments. 
 
Task 3.2: Macroscopic predictive modeling 
 
Macroscopic predictive modeling consists of the specification of a set of differential equations to 
describe the evolution of a system on a macroscopic, i.e., population level. 
 
Step 1: Balance models.  
Dynamic models will be preferentially applied. For both Work packages 1 and 2, it can be expected 
that the vector of state variables needs to be extended in order to include extra information on the 
microbial metabolism. This approach may contribute to accurately describe the microbial evolution 
aspects studied in WPs 1 and 2, for which the classical predictive models, based on the living cell 
concentration only, are not sufficient. 
 
Step 2: Kinetic models.  
Kinetic models to quantify the influence of environmental factors will be maximally based on 
available and newly collected (i.e., in WPs 1 and 2) mechanistic knowledge, completed with advanced 
black box models like artificial neural networks. 
 
Step 3: Implementation of variability.  
The uncertainty on model parameters and predictions will be assessed by computation of asymptotic 
standard errors and joint confidence regions, and by Monte Carlo analysis. 
 
Task 3.3: Microscopic predictive modeling 
 
Step 1: Individual based models.  
The fundamental unit of bacterial life, encapsulating action, information storage and processing, as 
well as variability, is the cell. It therefore seems appropriate to construct models in terms of individual 
cells and their behavior. This is the domain of Individual based modeling (IBM). The first step in this 
approach is to devise a set of rules, consistent with observation, which govern the behavior of the 
microscopic entities and their responses to changing external conditions. This set of rules comprises 
the system model. The output of a well-designed simulation of the model should be comparable with 
the real (macroscopic) behavior that the model is attempting to explain. 
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Step 2: Implementation of variability and object oriented programming.  
It is interesting to develop IBMs in an object-oriented programming language. The principle of the 
latter is to represent each simulated bacterial cell electronically as an object instance of an object-
oriented program. These objects are called agents since they are independent entities with their own 
state (set of parameter values) and behavior (rules). As each simulated cell has its own set of 
parameters, which is an independent copy of the list of default parameter values, variation is 
straightforward. New values can be obtained by, e.g., random draws from a (Gaussian) distribution 
with a chosen coefficient of variation.  
 
Work Package 4: Towards a national center for predictive microbiology/risk assessment 
 
Task 4.1: One-way communication with the national food industry - Development of an Internet Portal 
Site 
 
In this task an informative Internet Portal Site (i.e., in a first phase, a compilation of interesting links) 
will be constructed, forming a generic interface between regulatory bodies, industry and academic 
institutions in Belgium, focusing on the applicability of predictive modeling methodologies in the food 
industry. It should be noted that the actual trend of consolidation in the European food industry opens 
interesting perspectives towards the level of in-house knowledge of food microbiology and careful use 
of predictive microbiology. As such, the exploitation of predictive modeling methodologies in the 
framework of a quantitative microbiological risk assessment becomes more and more feasible for the 
Belgian industry, increasing the applicability of such a Portal Site. 
The Advisory Committee of this Research Project consists of representatives of the major food 
industries (meat industry, dairy industry, fish industry, ingredients and additives industry, savoury 
industry, prepared meals industry, handling and processing of fruit and vegetables) as well as the 
recently established Federal Agency for the Safety of the Food Chain and the Flemish Centre for 
Postharvest Technology. An active input will be requested as to the structure of the Portal Site, as well 
as to the kind of information and the level of detail. This will be thoroughly discussed at the occasion 
of introductory (hands-on) predictive modeling courses offered to the members of the Advisory 
Committee during the early lifetime of the project.  
As a starting point, the generic results of this project will be made available for the Advisory 
Committee through restricted access on this Portal Site. General information, however, e.g., an up-to-
date exhaustive summary of freeware and commercial software packages for predictive microbiology, 
will be available to all interested companies and research institutions. 
 
Task 4.2: Two-way communication with the national food industry - Towards the development of 
Active Server Pages 
 
Exploitation of the predictive modeling framework is part and parcel of this research project. 
Therefore, in this task, the needs of the Belgian food industry in the form of specifications for the 
development of an Internet based interactive predictive microbiology tool (based on Active Server 
Pages) will be categorized and summarized. Active Server Pages have the important property that they 
are dynamically created, i.e., on the basis of a specific request. The active input of the Advisory 
Committee is requested, delineating (i) the most pertinent questions when using predictive 
microbiology methodologies arising in the different branches of the food industry, and (ii) the actual 
functionality and structure of the Active Server Pages. The following topics arise.  
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• A searchable overview of literature of predictive microbiology, microbiological risk 
assessment, HACCP, … 

•  An overview of the results and conclusions of this project. 
•  An e-mail service enabling to post questions to one of the two research partners of this project 

after narrowing his search based on the actual knowledge database (including electronic 
communication of predictive modeling data and client-specific guidance throughout all stages 
of predictive model generation and exploitation). 

• An electronic newsletter on industrial applications. 
Note that the actual implementation of these Active Server Pages is out of the scope of this Research 
Project.  
 

2.3. Distribution of tasks among the two partners of the Research Project 
 
Work Package 1: Exploring the boundaries of microbial evolution 
 
Both research groups aim at a profound experimental study and accurate quantification of lag 
phenomena in microbial dynamics. 
 
Data Collection.  
Within the scope of the available infrastructure in both teams, bioreactor experiments are only 
performed at BioTeC, while microtiter experiments take place at LFMFP. To establish a suitable 
experimental design for both experimental techniques, the large experience of BioTeC in this 
discipline will be exploited. 
 
Model Construction.  
With respect to model construction, BioTeC will develop macroscopic and microscopic models to 
describe the population lag and the individual cell lags, as influenced by temperature gradients (Task 
1.1) and cell history (Tasks 1.1 and 1.2). LFMFP focuses on quantifying the effect of the history of 
contaminating cells on the distribution of the individual cell lags (Task 1.2). 
 
Model Validation.  
Both teams together will design, perform and evaluate a series of validation experiments. If necessary, 
model adaptations are accomplished. 
 
Work Package 2: Quantifying inhibition and inactivation phenomena due to microbial 
interaction 
 
Both research groups have two main objectives: (i) a fundamental contribution to the 
microbiological/experimental knowledge of microbial interactions, and (ii) the incorporation of this 
knowledge in the discipline predictive microbiology by means of appropriate mathematical models.  
 
Data collection.  
Given the numerous factors involved in the experimental study, both research groups perform 
experiments, after a thorough concertation with respect to the experimental protocol, taking into 
account the previous mentioned requirements. Within the scope of the available infrastructure in both 
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teams, bioreactor experiments are only performed at BioTeC, while the experiments with the pathogen 
Y. enterocolitica take place at LFMFP only. In general, LFMFP co-ordinates the experimental part, 
based on the huge experimental knowledge available within that research group. 
 
Model construction.  
With respect to the model building step, LFMFP focuses on statistical data processing (Sub-Task 
2.1.1), while BioTeC develops innovative models (all subtasks). The efficacy of both strategies is 
critically evaluated. BioTeC co-ordinates this part, based on its vast experience as mentioned above 
and the relation of this Research Proposal with the EU-project PREMIUM. 
 
Validation.  
Validation experiments are designed, performed and evaluated by both teams together. If necessary, 
the developed models are further refined. 
 
Work Package 3: Developing and integrating predictive modeling methodologies 
 
Methodological modeling developments are conducted and guided by BioTeC, in close interaction 
with the research performed at LFMFP.  
 
Work Package 4: Towards a national center for predictive microbiology/risk assessment 
 
The homepage of the project is maintained at BioTeC, while the content is decided upon by both 
partners of the project. An active input of the Advisory committee is requested as well. 

2.4. Timetable of Work 
 
On the next page, details about the time schedule of this Research Project are given.  
 
A detailed description of final results of this project will be presented in the next section (Section 3). 
 
 
 
 



Project CP/31- Microbial Food Safety Assessment: Development And Integration Of Generic Predictive Modeling Tools 

 

SPSD II - Part I - Sustainable production and consumption patterns - Agro-Food 18 
 

 
 

Year 5
Months 0 to 6 7 to 12 13 to 18 19 to 24 25 to 30 31 to 36 37 to 42 43 to 48 49 to 54

Work Package 1: Exploring the boundaries of microbial evolution
Task 1.1: Quantifying lag phenomena due to temperature variations

Task 1.2: : Quantitative study of the effect of the history of contaminating cells on their lag phase

     Task 1.3. Growth behaviour of L. monocytogenes at the growth/no growth boundary
Work Package 2: Quantifying inhibition and inactivation phenomena due to microbial interaction

Task 2.1: Antagonistic phenomena through a single metabolic product
Sub-Task 2.1.1: Inhibition phenomena in model system Type A

Sub-Task 2.1.2: Inactivation phenomena in model system Type A

Sub-Task 2.1.3: Uncoupling the individual lactic acid and pH effects

Work Package 3: Developing and integrating predictive modeling methodologies

Work Package 4: Towards a national center for predictive microbiology/risk assessment

Year 1 Year 2 Year 3 Year 4

Model development

Model validation

Data generation

Model development

Model validation

Data generation

Model validation

Data generation

Model development

Model validation

Data generation

Model development

Model validation

Data generation

Model development

Task 3.2: Macroscopic modeling

Task 3.3: Microscopic modeling

Task 3.1: Optimal Experimental Design

Task 4.1: One-way communication

Task 4.2: Two-way communication
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3 DETAILED DESCRIPTION OF THE FINAL PROJECT RESULTS 
 AND CONCLUSIONS 
 
Work Package 1: Exploring the boundaries of microbial evolution 
 
Task 1.1: Quantifying lag phenomena due to temperature variations  
 
Step 1: Experimental Protocol and Data Generation.  
 
Experimental protocol.  
Experiments are performed in a computer-controlled bioreactor (New Brunswick Scientific Inc., USA) 
where E. coli K12 MG1655 is grown under aerobic conditions in 4.5 L Brain Heart Infusion broth 
(Oxoid). A recirculation chiller (Neslab instruments Inc., US) is connected to the bioreactor to obtain low 
temperatures. The inoculum is prepared by subculturing 5 μL of a frozen (-80°C) bacterial culture twice 
in 20 mL BHI at 18°C on a rotary shaker (175 rpm), subsequently for 24h and 18h. Temperature and pH 
are on-line monitored and controlled during the experiments. In all these experiments, the pH is kept 
constant at 7.55. The heating rate that could be realised in the bioreactor is equal to 0.875 ± 0.13°C/min. 
At regular time instants during the experiments, samples are taken aseptically. To determine the 
intermediate lag accurately, a higher sampling frequency was applied around tshift, i.e., the moment of the 
temperature change. The cell density [CFU/mL] is determined by plate counting (on BHI) by means of a 
spiral plater (Eddy Jet IUL Instruments s.a., Spain). To determine the duration of the intermediate lag 
phase λs, the experimental data are fitted both with the growth model of Baranyi and Roberts (1994) and 
the model of Rosso (1995).  
For some experiments, additional measurements were performed. Glucose concentration (substrate) is 
measured enzymatically (Granutest). Concentration of acetate (metabolite) is measured by means of a 
Gas-Chromatograph-Flame Ionization Detector. Protein concentration of the cells is measured by the 
method of Lowry. To obtain these proteins, the cells have to be washed, centrifuged and lysed by an 
extraction reagent (BugBuster, Novagen, Inc., Germany). Subsequently, the protein concentrations are 
measured spectrophotometrically (RC DC Protein Assay, Bio-Rad Laboratories, Inc., USA). 
 
Experimental design and data generation.  
A factorial design is outlined within this study. A graphical representation of the complete factorial design 
is shown in Figure 1. This experimental design is used to characterize the effect of (i) the amplitude of the 
temperature shift, (ii) the pre-shift temperature level, and (iii) the post-shift temperature level on the 
occurrence and length of an intermediate lag phase. Within the temperature range of interest, namely the 
suboptimal temperature range of E. coli, i.e., 10-40°C, a matrix of experiments with different pre-shift 
temperatures and temperature shift amplitudes (two factors) has been identified. For the initial 
temperatures, this range has been subdivided using intervals of 2.5°C yielding 13 levels. The temperature 
shift amplitudes range between -30 and 30°C with 2.5°C intervals. In this way, 25 amplitude levels are 
included. As constant temperature experiments (no lag induction) and experiments in which the 
temperature rises above 40°C or decreases below 10°C are not relevant for this research and will thus not 
be taken into account, the complete factorial design involves 156 experiments. The vertical lines in the 
matrix (Figure 1) indicate experiments with constant initial temperatures T1, while the horizontal lines 
represent experiments with constant temperature shift amplitudes ΔT. The centre horizontal line indicates 
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the experiments at constant temperature. Temperature up- and downshifts are positioned below and above 
this horizontal line, respectively. 
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Figure 1: Graphical representation of the experimental plan. This design embeds a complete factorial 

design. Initial temperature (T1) and amplitude (ΔT) of the temperature step are indicated on the first row 
and column, respectively. The grey horizontal line illustrates the experiments at constant temperature. 

Other series of experiments (see text) are marked by the filled blocks. 
 
Not all experiments within this factorial design have been performed within this study. This would 
namely present a very time-consuming and labor-intensive job. In order to reduce the number of 
experiments, this factorial design has been approached in a systematic way. In zones where the dynamics 
(i.e., the presence or absence of a lag phase) change abruptly, the experimental plan has been refined. For 
example, in view of characterizing the normal physiological range accurately, a denser grid was selected 
in the temperature zone 20-25°C, which is suggested to play a critical role in this phenomenon (Ng et al., 
1962). 
The state of the cells has been kept constant at the moment of the temperature shift by applying the shifts 
to the same cell density. More specifically, temperature up- and downshifts were applied at a cell density 
of approximately 12 ln(CFU x mL-1) and 15 ln(CFU x mL-1), respectively. Hence, cells were in the same 
physiological state at the moment of the shift in all experiments with temperature up- or downshifts. 
Hereto, the moment of the temperature shift ts has been adjusted according to the initial temperature.  
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The sets of experiments performed within this factorial design can be classified in the following groups of 
experiments. 

 Temperature upshift with T1 constant at 15°C. A large set of experiments with the same initial 
temperature, i.e., 15°C, was performed (Figure 1, black boxes). Herein, temperature shifts with 
amplitudes of 0, 5, 7.5, 10, 15 and 20°C were applied after 18.67 hours (corresponding with a cell 
density of approximately 12 ln (CFU/mL). Later on, additional experiments with temperature 
shifts with intermediate amplitudes of 6, 6.8, 8, 8.8 and 9.5°C were performed in order to better 
define the lag/no lag boundary.  

 Temperature upshift with ΔT constant. One extensive set and two smaller sets of experiments 
with temperature upshifts with a constant magnitude ΔT of 10°C (Figure 1, left down to right up 
diagonally lined boxes), 5°C (Figure 1, horizontally lined boxes), and 15°C (Figure 1, crossed 
boxes), respectively, were completed. The initial temperatures were varied from 10°C to 25, 30 
and 35°C, respectively, with intervals of 2.5 or 5°C. The time to grow at T1 was adjusted in each 
experiment in order to obtain approximately the same cell density at the moment of the 
temperature shift. 

 Temperature downshift with T1 constant. Two limited series of experiments with temperature 
downshifts starting at constant initial temperatures T1 of 25°C and 35°C were also implemented 
(Figure 1, left up to right down diagonally lined boxes and vertically lined boxes, respectively). 
Temperature downshifts were applied after 2.25 and 4.5 hours (corresponding with a cell density 
of approximately 15 ln (CFU/mL), respectively. 

 
Qualitative data description and simulation results. 
Temperature upshift with T1 constant at 15°C. The initial temperature T1 was kept constant at 15°C and 
temperature jumps with various amplitudes after 18.67 hours (i.e., at a cell density of approximately 12 
ln(CFU/mL) were applied. A summary of the resulting intermediate lag phases as function of the 
amplitude is presented in Figure 2.  

 
Figure 2: Intermediate lag phase λs [h] as function of the temperature shift amplitude ΔT [°C] for 

temperature shifts starting at the same initial temperature of 15°C. (•) values of λs  obtained by fitting 
with the model of Baranyi and Roberts (1994).  

A fit with Equation (1.1.1) is represented by the dashed line. 
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Roughly spoken, a temperature jump of maximum 5°C causes no intermediate lag phase, whereas 
temperature jumps with amplitudes larger than 8.8°C cause a lag phase with a constant duration of 
(approximately) one hour. It can be concluded that, in between, the duration of the lag phase seems to 
gradually increase with increasing amplitude. 

 
For more details, reference is made to the research reported in Swinnen et al. (2003a,b ;2005). 

 
Temperature upshift with ΔT constant. Temperature shifts with a constant magnitude ΔT of 10°C were 
implemented. The initial temperatures were varied from 10°C to 30°C with intervals of 2.5°C. The time to 
grow at T1 was adjusted in each experiment in order to obtain the same cell density at the moment of the 
temperature shift (same as in the first set of experiments). Figure 3 gives an overview of the resulting 
intermediate lag phases as function of the initial temperature of the temperature change. Temperature 
shifts starting at 10, 12.5, 15, 17.5 and 20°C result in a significant intermediate lag phase. Observe that 
this value is the same as in the first set of experiments. Starting from 25, 27.5 and 30°C only a small lag 
phase was observed which moreover can be attributed to the time needed for the temperature rise (see 
Swinnen et al., 2005). The temperature shift from 22.5°C to 32.5°C caused a lag phase of medium length. 
The set of experiments was completed with some additional experiments to refine the relation between λs 
and T1. 

 

 
Figure 3: Intermediate lag phase λs [h] as function of the initial temperature of the temperature shift [°C] 

for temperature shifts with a constant amplitude of 10°C. (•) values of λs obtained by fitting with the 
model of Baranyi and Roberts (1994). A fit with Equation (1.1.2) is represented by the dashed line. 

 
By combining the results of both series of experiments, it can be concluded that the lower boundary of the 
normal physiological range lies between 22.79°C and 23.86°C (Swinnen et al., 2005). This normal 
physiological range can be defined as the linear part of the Arrhenius plot (ln (μmax) versus 1/T). It has 
been observed by Ng et al.(1962) that temperature shifts (positive or negative) within this region cause no 
lag phase, while shifts starting at a temperature below this range to a temperature within the range result 
in an adaptation period. We also observed an effect of the amplitude of the temperature shift on the lag 
phase duration. 
Additional experiments with temperature shift amplitudes constant at 5°C and 15°C have been performed 
to further characterize the lag phenomenon and the normal physiological range. Experimental data 
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complied with the above-outlined observations. The large data set allowed construction of an overall 
model for lag (see below). 
Temperature downshift with T1 constant. A series of experiments imposing a negative temperature shift to 
an exponentially growing E. coli K12 MG1655 culture has been performed. On the basis of an extensive 
simulation study using the growth model of Baranyi and Roberts (1994) and the model of Hills and 
Wright (1994), it can be concluded that no significant adaptation period can be identified. The bioreactor 
and cooling system used in this research could not establish sudden temperature drops, whereas very high 
rates for temperature increases could be realized. Therefore, it can be derived that temperature decreases 
with a moderate rate in temperature change do not induce (visible) adaptation phenomena. 
Metabolite and protein measurements. The evolution of the measured glucose and acetate concentrations 
proved that the lag phase was not caused by an exhaustion of the substrate (glucose) or an inhibitory 
concentration of acetate. Protein concentrations were measured but no reliable results could be obtained 
(e.g., due to the too small amount of cell material at the moment of the temperature shift). 
 
Step 2: Model Construction.  
 
Review on predictive modeling of microbial lag phenomena on a macroscopic level. 
Factors influencing the lag time duration are the (changes in) environmental conditions (e.g., Whiting and 
Bagi, 2002), the identity and the phenotype of the bacterium (Buchanan and Cygnarowicz, 1990), the 
growth stage or physiological history of the cells (McMeekin et al., 1993) and the inoculum size at the 
moment of the environmental change (e.g., Augustin et al., 2000b). A survey of predictive modeling of 
microbial lag phenomena on a macroscopic scale was being conducted, mainly focusing on the influence 
of temperature and culture history on the lag phase during growth of bacteria.  
In predictive microbiology, a two-step modeling approach is currently being used.  
Primary models describe the evolution of microbial numbers with time and can be subdivided into 
deterministic and stochastic models. Primary deterministic models describe the evolution of 
microorganisms, using one single (deterministic) set of model parameters. The heterogeneous population 
model of McKellar (1997) is a static model, while the model of Baranyi and Roberts (1994) is already 
dynamic, i.e., the model is represented by differential equations (balance models). Both models cannot 
describe intermediate lag phenomena. The dynamic model of Hills and Wright (1994) is able to describe 
intermediate lag phases and makes a distinction between biomass and cell number. Baranyi and Roberts 
(1994) and Hills and Wright (1994) have included an extra (fitting) parameter to describe the 
physiological state of the cells. In primary stochastic models, the model parameters are distributed or 
random variables. The model of Buchanan et al.(1997) is a static model, but makes a difference between 
growth of biomass and cell number. McKellar (2001) has expanded his static model (McKellar, 1997) to a 
dynamic continuous-discrete-continuous model. Finally, Baranyi (1998) defines the relation between the 
individual cell’s lag times and the population lag time. These three stochastic models cannot describe 
intermediate lag phases. Overall shortcomings are that assumed mechanistic concepts of the models are 
not experimentally validated. The influencing factors are mostly not included or lumped into one (fitting) 
parameter.  
Secondary models (kinetic models), e.g., Augustin et al.(2000), describe the influence of the 
environmental conditions on the primary model parameters.  
This survey of predictive modeling of microbial lag phenomena on a macroscopic scale, mainly focusing 
on the influence of temperature and culture history on the lag phase during growth of bacteria, is 
published in Swinnen et al. (2004a). 
With regard to microscopic modeling approaches, reference is made to results reported under Task 3.3. 
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Modeling microbial lag due to a sudden rise in temperature 
Models have been developed for the lag time data resulting from temperature upshift experiments. The 
following modeling approaches have been adopted. 
(1) Modeling the independent effect of T1 and ΔT on the lag phase duration (λs).  
The effect of temperature shift amplitude and the effect of initial temperature have been assessed 
individually. Series of experimental data, i.e., either with constant initial temperature or constant 
temperature shift amplitude, were considered. The experimental data were presented above (see Figures 2 
and 3) and are described by appropriate model equations (presented by the dashed lines) (Swinnen et al., 
2004b, 2005). The selected model structures describe the plateaus of “lag” and “no lag” observed within 
the data using an appropriate rate of transition. Note that the data reflect the normal physiological 
temperature range concept as reported by, e.g., Ng et al.(1962). 
For the evolution of λs as function of the amplitude ΔT for the experiments starting at a constant initial 
temperature of 15°C, the following equation was proposed (as based on Van Impe et al., 1992): 

( ) ( )( )( )[ ]TTT transs Δ−Δ−=Δ αλλ expexpmax      (1.1.1) 

with λmax [h] the maximum value of λs, ΔTtrans the mid-transition value [°C], and α the transition velocity 
[°C-1]. The relation between λs and the initial temperature T1 for the experiments with a constant 
temperature shift amplitude of 10°C can be described by a modification of the former equation : 

( ) [ ] ( )( )( )[ ] min1minmax1 expexp λαλλλ +−−−⋅−= TTT transs    (1.1.2) 

with λmax and λmin, the maximum and minimum values of λs [h] , Ttrans the mid-transition temperature [°C], 
and α the transition velocity [°C-1]. 
(2) Secondary model structure for λs as function of T1 and ΔT. 
The combined effect of T1 and ΔT was integrated within a secondary model. The full set of λs data was 
subdivided into an identification data set and a (small) validation data set. First, the identification data 
were used to derive a set of candidate model structures. Next, the proposed model structures were put to 
trial using the validation set. 
The present modeling results can be summarized as follows. Both a linear and nonlinear model structure 
was identified to the data. Identification of a response surface model (linear in its model parameters) 
results in a second-order polynomial relation embedding both quadratic and cross-product terms 
(interaction effect). At some points, the response surface model fails to describe the data, as the following 
unrealistic trends appear: (i) negative λs-values are predicted for small amplitudes and low initial 
temperatures, (ii) at high initial temperature levels λs decreases with increasing temperature shift 
amplitude. Inspired on the above-derived model equations ((1.1.1) and (1.1.2)), a nonlinear model 
structure could also be derived. Opposed to the response surface model, the nonlinear model embeds the 
normal physiological temperature range concept and better describes the trends observed in the 
experimental data. However, as both models have a comparable descriptive and predictive quality when 
computing performance criteria for the identification and validation data, model selection is not yet 
possible. Moreover, a large parameter estimation uncertainty may point at over-parameterization.  
(3) Modeling the work to be done as function of ΔT. 
A widely accepted working hypothesis in predictive microbiology, formulated by Robinson et al.(1998), 
states that lag is determined by two (hypothetical) quantities, namely, (i) the amount of work that a cell 
has to perform to adapt to its new environment, and (ii) the rate at which it can perform this work. 
Mathematically, this hypothesis can be formulated as  

>>=<<×>< workratelag  
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Typically, <lag> is identified with the lag parameter λ (in this research λs) and the <rate> is identified 
with the maximum specific growth rate μmax dictated by the present environmental conditions. The work 
to be done by the cells upon a change from one environment to another is given by the product λ x μmax. 
For several existing deterministic and stochastic population models, Swinnen et al.(2004a) has derived the 
relation between λ x μmax and the physiological state parameter of the models considered.  
In this research, the work to be done to adapt to a sudden temperature upshift when the culture is growing 
exponentially, expressed by λs x μmax (where μmax corresponds to the maximum specific growth rate at the 
post-shift temperature level T2), is modeled. Out of a series of model structures, a linear relation with 
translation was selected. This model structure reflects the normal physiological temperature range 
concept, and shows that the work to be done is proportional to the temperature shift amplitude. The 
obtained results were critically compared with other publications on this matter. 

The latter work has been published in Swinnen et al. (2006). 
 
Task 1.2: Quantitative study of the effect of the history of contaminating cells on their lag   
 
Protocol development for isolation of individual cells 
In a first step a protocol was developed to isolate single cells in the cup of a microtiter plate based on 
standardized dilution principles. The bacteria were subcultured twice to eliminate variance in the pre-
cultural conditions. Afterwards the cell count was standardized to 108 CFU/ml using OD measurements at 
600 nm. Starting from the standardized inoculum a classical dilution series was made ending up with 1000 
cfu/ml. This cell count was controlled by plate counting of 200µl inoculum on TSA, incubation at 30°C 
for 24h. Further dilution was performed by adding 200 µl of inoculum to 200 µl broth in each cup of the 
first row of a microtiter plate. These cups were used to make further ½-dilution series ending up with 
single cells isolated in the cup of a microtiter plate (Figure 4). This procedure was repeated for 9 plates, 
resulting in 72 ½-dilution series. The content of each cup was plated on TSA and incubated for 24h @ 
30°C to control the dilution pattern and to locate the single cells.  
From the results, it was clear that individual dilution series do not follow the expected pattern from the 
theoretical mean values. Sometimes it can even be seen that empty cups are followed by cups containing 
one or even two cells. In contrast, the mean values do follow the normal expected dilution pattern. 
Single cells are mainly located in the last 5 columns, so these columns are taken into account. In the last 5 
columns, 75 cups containing cells were counted giving a yield of 75/72. From these 75 cups, 60 contained 
one single cell, while 15 cups did contain two or more cells, resulting in a chance of 80% having a single 
cell. When compared with protocols obtained in literature, a higher chance of having single cells (80% VS 
37%) was combined with a slightly higher yield (using the new method it is possible to use several cups 
from one row). 
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Figure 4: Overview of the dilution protocol 
For more details reference is made to Francois et al. (2003) and Standaert et al. (2005). 

Protocol development for measuring the lag phase of individual cells 
For measuring the lag phase of individual cells (isolated in the cups of microtiter plates as previously 
described), a protocol was developed using optical density measurements in microtiter plates. Microtiter 
plates were filled as previously described, and incubated at the fixed conditions. The cell density was 
measured at regular intervals using OD measurements at 600 nm (Versamax microplate reader, Molecular 
devices, Sunnyvale, CA, USA). The upper part of the growth curve was generated by calculating the cell 
counts out of the OD values using a calibration curve. By extrapolating the linear part of the curve, the 
individual lag phase is cut off at the inoculation level (1 CFU/200µl = 5 CFU/ml) (Figure 5). At least 100 
replications were made for each set of conditions.  

Figure 5: Linear extrapolation method to calculate 
 individual cell lag phases (λind) and generation times (GT) 

 
The results from the optical density were recalculated as colony forming units as a function of time, using 
a calibration curve. Therefore, a dataset was generated containing 96 points starting from a cell density of 
about 5 x 109 CFU/ml and diluted in a ½ way to a cell density of about 5 x 106 CFU/ml. Differences in 
OD between the blanks and the samples occurred starting from a cell density of 1 x 107 CFU/ml. A 
logarithmic transformation was done for both the OD values and the cell counts to equalize the 
differences between the data points. These transformed data were used to fit a linear regression curve. A 
good correlation was observed (R2 = 0,972). 
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Using these data, the upper part of the L. monocytogenes growth curve could be constructed, consisting of 
a linear part (the exponential growth zone) moving over to the stationary phase.  
The method assumes that once the cell lag phase has passed, a cell immediately grows at its maximum 
growth speed (µMax) until the stationary phase is reached. By extrapolating this linear zone, the individual 
lag phase is cut off from the inoculation level line and the generation time can be calculated from the 
slope. The data points for linear regression were selected by maximizing the adjusted R². The linear 
extrapolation method was preferred over the sigmoidal curve fittings as high correlations were obtained 
for an easy to use method. 
However, during the project it was noticed that environmental factors do have an influence on the relation 
between the optical density and the cell count. 
Therefore, the effect of environmental stress factors on the relationship between the optical density 
measured at 600 nm, and the plate count results was investigated. Different Temperature levels (between 
2°C and 30°C), pH levels (7.4 – 4.8), and aw levels (0.995 – 0.946) were investigated as separate stress 
factors, and as combined conditions. Nineteen different combinations were tested. L. monocytogenes cells 
were grown in BHI, adjusted to the appropriate growth conditions. When the turbidity in the tube was 
maximal, a ½ dilution series was made in a microtiter plate, resulting in twelve consecutive dilution steps 
with eight replicates of each dilution. The optical density of the cups was measured at 600 nm using a 
Versamax ™ microplate reader (Molecular devices, Sunnyvale, CA, USA) and consecutively the cell 
count was determined by classical plate counting on TSA. A logarithmic transformation was performed 
for both the OD values and the cell count data to standardize the variability and equalize the differences 
between the data points. These transformed data were used to fit a linear regression curve. 
Different stress factors were shifting the calibration curve parallel to the optimal curve. Especially pH was 
having a main effect (Figure 6), whiles the pure effect of temperature and aw was less pronounced, 
although these environmental factors played a more important role when different environmental factors 
were combined. The parallelism between the different calibration curves was statistically proved by an F-
test. As the curves were assumed to be all parallel, a forced regression procedure was performed on all 
nineteen datasets: all regression lines were “forced” to have the same slope, while the intercept of the 
regression line was variable as a function of the environmental conditions.  
 

 
Figure 6: Effect of low pH-values on the calibration curve 
between OD and viable counts for Listeria monocytogenes 
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The forced calibration curve results were used to model the calibration curve shift as a function of the 
environmental parameters temperature, pH and aw.  
Microscopic viability tests showed a viability decrease with increasing stress levels, causing a shift of the 
calibration curve.  
In a last step, a model was developed describing the effect of environmental factors on the calibration 
curve, making use of a constrained polynomial approach developed in Task 3.2.  
 

For more details reference is made to Francois et al. (2005a). 
 
Data collection evaluating the effect of environmental parameters on the individual lag phase of L. 
monocytogenes 
In a third step, the individual cell lag time of Listeria monocytogenes was investigated as a function of 
temperature, pH and aw. To isolate the single cells in the cup of a microtiter plate, the protocol that was 
previously developed was used.  
In a first step the growth curves of Listeria monocytogenes were determined, starting from individual 
cells, measuring the optical density at 600 nm in a Versamax™ microplate reader (Molecular devices, 
Sunnyvale, CA, USA) as a function of time. A factorial experiment design was made incorporating 
temperature, pH and water activity.  

For all performed experiments, generation times (GT) and individual lag phases (λind) were calculated 
using the linear extrapolation method. High adjusted correlation factors were obtained for the linear 
regression (0,99 – 0,98). The results were examined at three levels: firstly the mean values of the 
individual lag phase and generation time were calculated for each set of environmental conditions and 
these results were compared to the predictions from the Pathogen Modeling Program (US Department of 
Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, 
USA, http://www.arserrc.gov/mfs/ pathogen.htm); secondly, histograms were made describing the data 
per set of environmental conditions; and thirdly, a distribution was fitted to the data using @RISK 4.5.2 
Professional Edition (Palisade Corporation, Newfield, NY, USA).  
 
All three factors had a significant influence on the distribution of the individual lag phases of a 
contaminating population of L. monocytogenes. The influence of temperature is illustrated in Figure 7 
while the influence of pH is illustrated in Figure 8.  
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Figure 7: The effect of temperature stress on the distribution 

 of the individual cell lag phase of L. monocytogenes 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Distributions fitted on the histograms of the individual cell lag phases of L. monocytogenes 

cultivated at 7°C in BHI. pH was adjusted to 7.4 (no acid added), 6.1 and 5.5 using HCl. 
 
Two types of distributions were necessary to cover the whole range of observed datasets: when dealing 
with low and intermediate stress levels, the gamma distribution fitted best to the data, while for higher 
stress levels a Weibull distribution is proposed (Figure 8). When dealing with rather low stress levels – 
which was often the case if only one type of stress was applied - the gamma distribution should be 
applied; when only temperature stress was applied, using the non-acidified growth medium, the gamma 
distribution was applicable for temperatures down to 7°C. When, on the other hand, the effect of pH was 
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tested for individual lag phases at 30°C, the gamma function was valid for pH values down to 5.0, 
although at such high stress levels the distribution fit was rather poor. When more severe stress conditions 
were applied (2°C or combined pH-temperature stress) the Weibull distribution delivered more acceptable 
fits for all combinations. This distribution was able to handle the right density shift in the distribution, and 
was proposed in @RISK as one of the best distributions for all combinations.  

 
For more details reference is made to Francois et al. (2005b) and Francois et al. (2006a). 

 
Modeling individual cell lag time distributions for L. monocytogenes 
In this part of the project, the distributions that were collected in the previous part were modeled as a 
function of the environmental parameters temperature, pH and aw. An integrated modeling approach was 
proposed and applied to an existing dataset of individual cell lag time measurements of Listeria 
monocytogenes. In a first step, a logistic modeling approach was applied to predict the fraction of zero-lag 
cells (which start growing immediately) as a function of temperature, pH and water activity. For the non-
zero-lag cells, the mean and variance of the lag time distribution were modeled with a hyperbolic-type 
model structure. This mean and variance allow identifying the parameters of a 2-parameter Weibull 
distribution, representing the non-zero-lag cell lag time distribution. The integration of the developed 
models allows predicting a global distribution of individual cell lag times for any combination of 
environmental conditions in the interpolation domain of the original temperature, pH and water activity. 
These distributions are further applied to refine the risk assessment concerning L. monocytogenes by 
incorporating intercellular variability. 
 

For more details reference is made to Standaert et al. (2006a). 
 

Effect of pre-cultural conditions on the individual cell lag phase of L. monocytogenes 
In this part of the project, the impact of the precultural temperature and pH on the individual cell lag 
phase of L. monocytogenes, incubated at 7°C, is assessed.  
In a first step, the pure temperature effect (37, 15, 10, 7, 4 and 2°C) was investigated on a subsequent 
growth at 7°C and pH 7.4. In a second step, low precultural temperatures (10, 7 and 4°C) were combined 
with a controlled pH at 7.4 and 5.7 with a subsequent growth at 7°C and different pH values (7.4, 6.0 and 
5.5). Growth was monitored by OD measurements at 600 nm using a microplate reader. 
For all temperature-pH combinations, the individual cell lag phase and the subsequent growth rate were 
determined using a three phase linear growth model. Around 100 replications were made for each set of 
conditions. The results were shown as histograms, and distributions were fitted to those data. In most 
cases the exponential distribution gave the best fitting results. 
It was observed that at low precultural temperatures, a high proportion of L. monocytogenes cells were 
able to grow with almost no lag phase. The lower the precultural temperature, the shorter the mean lag 
phase and the higher the proportion of cells showing no lag phase. Regarding to the pH effect, the pH 
transition from the precultural to a growth media was proportional to the mean values of the lag phases. 
There was no remarkable effect observed on the generation time.  
 

For more details, reference is made to Francois et al. (2007). 
 
Practical implications of the individual cell approach on the level of challenge tests 
In this part of the project the focus of this research shifted from experiments in broths to tests in real food 
data: the variability in growth between individual L. monocytogenes cells was investigated on pâté and 
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ham. These results were compared to simulations based on previous data obtained in the project. Single 
cells were isolated by a dilution protocol which was a slight modification from the protocol previously 
described and inoculated on 15g samples of pâté and ham, pasteurized in the packaging. 250 samples 
were inoculated of each product, of which 50 samples were analyzed on each analysis day. The results are 
illustrated for pâté in Figure 9. Results were compared to Monte Carlo simulations performed in @RISK 
4.5, based on distributions that describe the variability of the individual cell lag phases and generation 
times of L. monocytogenes. Based on the same simulation techniques, the variability effect was 
investigated for different inoculum levels (10, 100, 1000 and 10000 cells). It was demonstrated that the 
expected variability of the outgrowth of L. monocytogenes in a challenge test is very high for low 
inoculum levels.  

 
Figure 9: Cell density of L. monocytogenes, grown in liver pâté at 7°C, as a function of time. Single cells 
were used to inoculate samples of 15g of liver pâté. 50 samples were analyzed per day, except for day 14 

(35 samples) and day 21 (48 samples) 
 
The variability in growth characteristics observed between different single L. monocytogenes cells on 
foods appeared to be very large. The simulations based on the previously collected OD data in broths, 
could be confirmed by foods inoculated with single L. monocytogenes cells. The large variability between 
different individual L. monocytogenes cells has serious consequences for the experimental design of a 
challenge test. 1000 cells have to be inoculated to a food sample in order to reduce the variability to 
acceptable levels and quantify the behavior of the pathogen consistently. 

 
For more details, reference is made to Francois et al. (2006b). 

 
Practical implications of the individual cell approach on the risk assessment level 
In this part, the effect of the individual cell lag phase variability was encapsulated in a risk assessment 
study for L. monocytogenes in pâté . A basic framework was designed to estimate the contamination level 
of the pâté at the time of consumption, taking into account the incidence levels and the initial 
contamination levels at retail. Growth was calculated on pâté units of 150g, comparing an individual 
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based approach to a classical population based approach. The two different protocols were compared 
using @RISK 4.5 simulations.  
If only the individual cell lag variability was taken into account, while the other variables like the 
inoculum level or the time of consumption were fixed at their most likely value, important differences 
were observed between the individual based approach and the classical approach, especially at low 
inoculum levels, resulting in high variability when using the individual based approach. Although, when 
all variable factors, like inoculum level or time of consumption, were taken into account, no significant 
differences were observed between the different approaches, concluding that the individual cell lag phase 
variability was overruled by the global variability of the exposure assessment framework. Even if the 
simulated conditions became harsher, by lowering the inoculum level and lowering aw, no differences 
were created between the individual based approach and the classical approach.  
This means that the individual cell lag phase variability of L. monocytogenes has important consequences 
when studying specific growth cases, especially when the applied inoculum levels are low, but when 
performing more general exposure assessment studies, the variability between the individual cell lag 
phases is too limited to have a major impact on the total exposure assessment.  

For more details, reference is made to Francois et al. (2006c). 
 
Task 1.3. Growth behaviour of L. monocytogenes at the growth/no growth boundary 
 
It should be remarked that a large part of this work was already accomplished during a previous two-year 
project financed by the Belgian Federal Public Service of Public Health, Food Chain Safety and 
Environment, while some scientific issues where dealt with during the prolongation phase of this project 
(January – June 2006). For reasons of clarity, all project results are summarized below. 
 
In Task 1.3, more stringent conditions (in comparison with the conditions of Task 1.2), where the lag 
phase evolves towards infinity, were examined. The position of the growth/no growth boundary, i.e., the 
interface between conditions that allow microbial growth (finite lag phase) and conditions that inhibit 
growth (lag phase ≈ infinity) was determined as a function of environmental conditions. If growth was 
possible, the detection time, i.e., the time elapsed before growth was detected, was estimated as measure 
for the lag phase. In a first series of experiments high cell numbers were considered; in a second series 
low cell numbers were examined.  
 
To evaluate the growth behavior at the growth/no growth boundary, different media were made based on 
Nutrient Broth (NB). The media differed in their pH (between 5.0 and 6.0), aw  (between 0.960 and 0.990) 
and/or acetic acid concentration (between 0 and 0.8 % (w/w)). The NB media were buffered additionally 
by adding 2.5 g/L Na2HPO4 in order to be able to fine-tune the pH. To assure that the pH, aw and acetic 
acid concentration did not change anymore after the preparation of the media, the media were sterilized by 
filter sterilization (Ø 0.2 µm, Nalge Nunc International) instead of autoclaving.  
 
The media were divided over different microtiter plates and inoculum was added to each medium. Since 
the inoculum was cultured (for 24 h at 30 °C) in standard NB instead of the pH-, aw- and acetic acid 
adapted media, it was necessary to wash the cells prior to inoculation into the microtiter plates. This 
washing procedure consisted of a centrifugation (4600 g) of the 24 h culture. Afterwards the supernatant 
was discarded; the cells were resuspended in a saline solution and centrifuged again. Finally the saline 
solution was discarded and the cells were resuspended in the appropriate adapted medium.  
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Standardized inoculum cell densities were used in the experiments. Standardization was accomplished by 
optical density (OD) measurements, using a calibration curve for Nutrient Broth (NB) (OD-measurements 
at 380 nm in function of cell count) (using the protocols developed in Task 1.2). The initial cell density in 
the experiments at high inoculation levels was approximately 106 CFU/mL. The initial cell densities in the 
experiments at lower inoculation levels ranged from circa 2 · 105 CFU/well to 1 CFU/well (one well 
contains 200 μL). This range of levels was obtained by making successive ½ dilutions starting from ± 2 · 
105 CFU/well. The applied dilution protocol was based on the protocol of Francois et al. (2003), since this 
protocol has the advantage of obtaining single cells with a high certainty combined with a sufficient yield. 
There is however a small difference between the protocol of Francois et al. (2003) and the applied 
protocol. In the latter, the same pipette points were used throughout the complete dilution series. Due to 
this small difference, adjustments to the simulation model of Standaert et al. (2005) were necessary to 
accurately describe the applied protocol. 
 
Growth at the different pH, aw and acetic acid levels was examined at 7 °C during 90 days. All media 
were tested in twenty replicates (high inoculation levels) or in forty replicates (low inoculation levels) to 
get accurate information about the variability in growth behavior of L. monocytogenes at the boundary 
between growth and no growth.  
 
Growth was determined by measuring at regular time intervals the OD of the inoculated media with a 
VERSAmax microtiter plate reader at 380 nm. Growth was recorded if the OD increase was higher than 
three times the standard deviation of the OD of the blank. Determination of growth by OD measurements 
was feasible for high inoculation levels, even in stress conditions, because the inoculation levels were 
close to the detection limit. At lower cell densities, however, it was possible that the detection limit was 
not obtained even though growth had occurred.  
 
If growth had occurred, the time to detection was also determined in the experiments at high inoculation 
levels. The time to detection was defined as the time at which the OD was higher than the noise on the 
signal (ODblank + three times the standard deviation of the ODblank) and was determined for each of the 
replicates of each medium in which more than 50 % of the replicates showed growth. The time to 
detection can be seen as a measure for the lag phase since the inoculum level is close to the detection 
limit.  
 
The growth/no growth data at higher cell densities were used to develop a growth/no growth model that 
describes the interface between growth and no growth conditions as a function of pH, acetic acid 
concentration and aw. Two types of models were considered, namely the ordinary logistic regression 
model (e.g., applied by Koutsoumanis et al., 2004) and the square root-type logistic regression model 
(Ratkowsky and Ross, 1995). For the present case study, the former proved to be the better of the two.  
The growth/no growth data (and model) at high cell density levels showed that the transition from growth 
to no growth was gradual (see Figure 10), meaning that there was no abrupt transition from the growth 
zone (i.e., growth in all replicates) to the no growth zone (i.e., no growth in all replicates). Instead, there 
was a transition zone between the growth and no growth zone in which the media showed growth in only 
some of the replicates. This gradual transition could be observed due the fact that the intervals between 
the levels were quite narrow and by the high number of replicates (20).  
 
A major decrease in growth probability was noticed at the transition from pH 6.0 to 5.8 for all acetic acid 
concentrations (Figure 10). At constant acetic acid concentrations a major shift in the growth/no growth 
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boundary was seen at the transition from 0 % acetic acid to 0.2 % acetic acid (Figure 11). In the studied 
region for aw (0.960-0.990), this factor had a minor influence on the position of the growth/no growth 
boundary (data not shown). 
 
From the growth/no growth data (and model) at lower cell densities similar conclusions were drawn with 
respect to the abruptness of the growth/no growth interface and the importance of pH, acetic acid and aw 
on the position of the interface. In addition it was concluded that the influence of the cell density is strong. 
A decrease of cell density goes along with a shift of the growth/no growth interface to milder conditions. 
 
The time to detection results indicate that the time before growth was detected, globally increased when 
the combinations of environmental factors were more stringent. The biggest increase always seemed to 
take place at conditions very near to the no growth region.  
It was also seen from the results that in general the confidence interval on the mean of the individual time 
to detection became larger under more stringent conditions (close to the no growth area). This is probably 
due to a larger variation in the lag phases. In some wells a subpopulation of resistant cells can be selected 
upon which subsequent growth of populations will depend. 
 
Most of the above results are discussed in more depth in Gysemans et al. (2004a, 2006a,b,c), Vermeulen 
et al. (2006a,b) and Geeraerd et al. (2006). Publications of the more recent results are in preparation. 

 
 

pH 6.0      pH 5.8 

 
Figure 10: Probability of growth (p) at two different pH levels (A: pH 6, B: pH 5.8). (+) p = 1 (growth 

was observed in all of the 20 replicates), (○) p = 0 (growth was observed in none of the 20 replicates) and 
(∆) p ∈ ]0,1[ (growth was observed in some of the 20 replicates). In the latter case the  measured 

percentage of growth is indicated. Lines represent the ordinary logistic regression model predictions; p = 
0.9 (-), p = 0.5 (- -), p = 0.1 (⋅ ⋅ ⋅). 
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0 % acetic acid     0.2 % acetic acid 

 
Figure 11: Probability of growth (p) at two different acetic acid concentrations (A: 0 % (w/w) acetic acid, 
B: 0.2 % (w/w) acetic acid). (+) p = 1 (growth was observed in all of the 20 replicates), (○) p = 0 (growth 

was observed in none of the 20 replicates) and (∆) p ∈ ]0,1[ (growth was observed in some of the 20 
replicates). In the latter case the measured percentage of growth is indicated. Lines represent the 

ordinary logistic regression model predictions; p = 0.9 (-), p = 0.5 (- -), p = 0.1 (⋅ ⋅ ⋅) 
 
 

Work Package 2: Quantifying inhibition and inactivation phenomena due to microbial 
interaction 
 
Task 2.1: Antagonistic phenomena through a single metabolic product 
 
Subtask 2.1.1 Inhibition phenomena  
 
This task was performed during the first and second year of the project. 
 
Step 1: Experimental Protocol and Data Generation.  
 
Experimental system 
To allow for an unambiguous qualitative and quantitative analysis, we choose to start from a well-defined 
experimental system, designed as simple as possible (see Section 2.2). This system involves a two species 
population, in which 1 antagonist, a lactic acid bacterium, interferes through 1 antimicrobial metabolite, 
lactic acid, with 1 target, a foodborne pathogen. Two examples of this 1:1:1 system are considered: 
 Lactococcus lactis and Listeria innocua (Case study #1), and  
 Lactobacillus sakei and Yersinia enterocolitica (Case study #2). 

The selection of the antagonistic and pathogenic species, the metabolite and the further experimental 
implementation is guided by the following considerations. 
Antagonist. The casting of a lactic acid bacterium as antagonist is self-evident, on the basis of its safety 
and antimicrobial potential. To preserve the single mechanism aspect, the lactic acid bacterium must be 
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homofermentative, producing lactic acid as a sole metabolite. In addition, it may not produce bacteriocins 
or other metabolites that may be toxic towards the pathogen.  
Pathogen. For the same reason as the antagonist, the pathogen must operate a homolactic metabolism. 
The non pathogenic L. innocua is chosen as a model for the foodborne pathogen L. monocytogenes.  
Metabolite. Since the antagonist is a homofermentative lactic acid bacterium, the single antimicrobial 
metabolite is automatically lactic acid. Lactic acid is produced by all lactic acid bacteria. Next, it is the 
only compound that appears as a single metabolite: production of other metabolites is always 
accompanied by lactic acid formation.  
Medium. For reasons of convenience and reproducibility, the use of a commercially available undefined 
rich growth medium is evident. Such media can often be considered as representatives of foods, in which 
(essential) nutrients are usually abundant. In view of the desired homofermentative metabolism, the use of 
glucose as a carbon source is desirable. Further, to preclude competition for available nutrients, a possible 
second interaction mechanism, these nutrients must be present in excess at all times during mono- and 
coculture incubation. In this project, considerable effort has been devoted to the establishment of a 
medium meeting these requirements (Vereecken, 2002). 
Environmental conditions. In order to maintain the homofermentative metabolism of L. innocua, 
experiments are performed in an anaerobic atmosphere. Other environmental factors are not critical with 
respect to the 1:1:1 system and are indicated further in the text. 
 
Experimental plan 
Experiments with the L. lactis/L. innocua case study are performed at BioTeC. Experiments with the Lact. 
sakei/Y. enterocolitica case study are conducted at the LFMFP. Prior to this experimental study, an 
experimental plan and protocol have been agreed upon between the two laboratories. The materials and 
methods applied for both case studies are thus merely the same. Briefly, growth curves of the L. lactis/L. 
innocua case study were collected in 1L erlenmeyer flasks, filled with 550 mL of medium, which were 
closed with screw caps containing a septum. The medium used was a modified Brain Heart Infusion 
(BHI) medium, containing 37 g/L BHI, 18 g/L glucose, 4 g/L yeast extract, 1mL/L Tween 80, 0.2 g/L 
MgSO4·7H2O and 0.04 g/L MnSO4·H2O. Before inoculation, the medium was flushed with N2 to obtain 
anaerobic conditions and pH correction to a value of 6.2 was performed with HCl 4N. Flasks were 
incubated in a cooling incubator. At regular time intervals, samples were taken with a sterile syringe and 
needle through the septum. In these samples, growth of both antagonist and pathogen was quantified 
through determination of cfu/mL by selective plate counting. After filtration of the sample to remove the 
cells, the total lactic acid concentration, the pH and glucose concentration are monitored. pH was 
determined with a pH sensor. Total lactic acid was measured through gas chromatographic analysis of the 
methyl ester. Glucose concentration was determined enzymatically (Granutest, Merck) to verify the 
absence of glucose exhaustion.  
All experiments are performed in duplicate. The experimental plan is illustrated in Table 1. As can be 
seen from this table, an assessment of the influence of (i) the inoculum concentrations of antagonist and 
pathogen, and (ii) the temperature on the interaction effects is aimed at. The selected levels of the 
influencing factors can be motivated as follows. 
Inoculum concentration. For the monoculture experiments, a fixed inoculum level of 103 cfu/mL is 
selected. It is widely accepted that for single species growth, the maximum specific growth rate and the 
maximum cell concentration, which are important growth parameters in this research (see further), are not 
(or only negligibly) influenced by the inoculum size (if not too low or too close to the maximum cell 
concentration) [see, e.g., Buchanan and Phillips (1990)]. An investigation of different initial cell 
concentrations is thus not necessary. However, it is uncertain whether this precept can be extrapolated to 
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the coculture proliferation. For example, many research reports mention the influence of the antagonist's 
inoculum on the interaction effect experienced by the pathogen [see, e.g., Skyttä et al. (1991)]. Therefore, 
we have opted to test a number of antagonist/pathogen inoculum ratios. The selected ratio levels differ 
from each other with respect to the cell concentration of the antagonist. 
Temperature. It is widely accepted that temperature is a main factor determining the microbial behavior in 
food. Each set of mono- and coculture experiments, with initial cell concentrations as specified in the 
table, is performed at different temperatures. The tested temperature levels include values typical for 
fermentation processes on the one hand (37, 35 and 22°C), and for cool storage -with a possible 
temperature abuse- on the other hand (12, 7 and 4°C). 

 
Table 1: Experimental plan for Subtask 2.1.1 

 Case study #1 Case study #2 
Inoculum ratio 
antagonist / target 
[cfu/mL] 

103

0
103

104

105

106

107

/
/
/
/
/
/
/

0 
103 
103 
103 
103 
103 
103 

3.1.1.1 Temperature 
[°C] 

35,12 37, 22,12,7,4 

. 
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Experimental results 
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Figure 12: Cell concentration and pH versus time for L. lactis/L. innocua at 35ºC (left) and 
Lact. sakei/Y. enterocolitica at 37ºC (right). Each experiment is referred to with a code, 

denoting the temperature and inoculum ratio, e.g., 37-L4Y3-ID indicates the experiment at 
37ºC with an inoculum of 104 cfu/mL of Lact. sakei and 103 cfu/mL of Y. enterocolitica. 
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Figure 12 represents the cell concentration and the pH as a function of time for Case study #1 at 35°C (left 
panel) and for Case study #2 at 37°C (right panel). For the monoculture experiment, a clear exponential 
growth phase and a stationary phase can be observed, whereas a lag phase is barely present (except for 
Lact. sakei). Significant acid production (not shown) (and corresponding pH reduction) is only apparent 
from the late exponential phase on. In the coculture experiments, lactic acid is formed in a larger amount 
as compared to the monoculture experiments because of the additional production by the lactic acid 
bacterium. For both case studies, two distinct antagonistic effects emerge, namely, an early initiation of 
the stationary phase and a decline phase, where the cell concentration is reduced to beneath the detection 
level. 
For Case study #1, the growth of L. lactis (Figure 12, left panel) always proceeds at the same rate, 
evolving to the same stationary level, irrespective of the co-incubation with L. innocua. On the other 
hand, in the different experiments, the inhibition of L. innocua occurs at a gradually earlier time instant 
for increasing antagonist inocula, but always synchronous with the abrupt increase in lactic acid (not 
shown in the figure) and decrease in pH. In addition, a complete inactivation (i.e., to below the detection 
limit of 102.8 cfu/mL) is obtained at the end of some experiments. For the Lact. sakei/Y. enterocolitica 
cocultures in Case study #2 (Figure 12, right panel), the same features as for the L. lactis/L. innocua 
curves can be recognised: the growth characteristics (i.e., lag phase duration, maximum specific growth 
rate and maximum cell concentration) of Lact. sakei remain unchanged, while the Y. enterocolitica growth 
curves are distorted by inhibition and inactivation effects. As for the previous case study, the stationary 
phase of Y. enterocolitica starts earlier when the initial cell concentration of Lact. sakei increases. 
However, in contrast to L. innocua in Case study #1, Y. enterocolitica cannot maintain the stationary cell 
level for a long period. In all experiments, a pronounced inactivation takes place quite rapidly after 
inhibition. Furthermore, from the curves, it is clear that the inactivaton rate is significantly larger than the 
preceding growth rate. 
It appears that two threshold concentrations of lactic acid exist, of which the first one is bacteriostatic, and 
the second one -only attained in the coculture- is bactericidal. It should be noticed here that the data of 
glucose concentration reveal that there is never substrate limitation (data not shown). By consequence, all 
intra- and interspecific interaction effects, in casu induction of the stationary phase and/or the decline 
phase, can only be ascribed to the increasing lactic acid concentration, which is in agreement with the 
particular intoxication mechanism, postulated above. 
 
Step 2: Model Construction.  
A first approach consists of exploiting predictive modeling knowledge for pure cultures in order to 
quantify interaction phenomena in mixed cultures [see, e.g., Buchanan and Bagi (1999)]. A classical 
single species model, namely, the model of Baranyi and Roberts (1994) is used to fit the experimental 
data of the pathogenic organism both in pure and mixed culture. Discrepancies in the estimated values for 
the growth parameters (lag phase, maximum specific growth rate and maximum cell concentration) are 
quantified by means of statistical techniques and can be regarded as a measure of the degree of 
interaction.  
Application of this method to the experimental data reveals, as expected, a pronounced reduction of the 
parameter denoting the maximum cell concentration in coculture as compared to its value in monoculture 
(results not shown).  
Positive aspects of this approach are its simplicity and descriptive quality. However, interaction effects 
are only reflected in the numerical values of the parameters and not (mechanistically) explained. 
Therefore, a second approach is proposed, in which interaction effects are embodied in the model’s 
structure.  
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As a first step, a reaction scheme for the 1:1:1 type 
interaction is outlined in Figure 13, including 
available mechanistic knowledge. In this scheme, 
the full line arrows indicate the different 
subprocesses, i.e., the growth and lactic acid 
production by the antagonist and the pathogen, and 
the equilibrium dissociation reaction of lactic acid 
in the applied medium. The dashed line arrows 
express the negative influence of the undissociated 
form of lactic acid [LaH] [M] and the protons [H+] 
[M] on the growth and production processes. From 
literature, it is known that the toxic activity of 
lactic acid is mediated through these components 
in particular [e.g., Russell (1992)]. 
 
As a global modeling framework in which the reaction scheme can be enclosed, we propose the following 
set of differential (balance models) and algebraic equations (with i=A,T): 

 
 

  (2.1) 
 

  (2.2) 
   

(2.3) 
  (2.4) 

with t [h] the time, Ni [cfu/mL] the cell concentration, μmax,i [1/h] the maximum specific growth rate, πmax,i 
[mmol/(cfu ⋅ h)] the maximum specific production rate and LaHtot [M] the total lactic acid concentration 
(i.e., [LaH] + [La-]). In this set, the differential equations quantify the growth of and the lactic acid 
production by the organisms, comprising the biochemical subprocesses of the experimental system. Since 
the specific growth and production rates are dependent on [LaH] and [H+], interaction effects will be 
described as a consequence of an increasing concentration of [LaH] and [H+] in the environment. In 
contrast to the differential equations, the algebraic equations account for the purely chemical subprocess 
of the experimental system, i.e., the dissociation of lactic acid in the aqueous medium. 
In a first modeling phase (in the first year of the project), the chemical subprocess of lactic acid 
dissociation is taken into account [equations (2.3) and (2.4)]. To start, two mechanistic models out of 
literature (Nicolaï et al., 1993 and Passos et al., 1994) are analysed and compared. Although these models 
-which are based on classical chemical equilibria, mass and charge balances- are not directly applicable to 
the experimental data, they have played an inspiring role in the establishment of an alternative method. 
This novel method, which builds upon the results reported in Vereecken and Van Impe (2001) and (2002), 
consists of two reversible algebraic equations, relating [LaH] to LaHtot, and pH to [LaH] respectively: 

 
(2.5) 

 
 

(2.6) 
 

Figure 13 : Reaction scheme of the 
experimental system. 
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Starting from the increasing LaHtot-values, the equations provide an accurate description of the acidifying 
profiles measured in the media of the two case studies. 
 
In a second phase (during the second year of this project), the main achievements are the development of 
model components for the biochemical subprocesses of (i) growth and (ii) lactic acid production of 
antagonist and target. 
The specific growth rate in equation (2.1) incorporates an inhibition function dependent of [LaH] and 
[H+] (or equivalently, their negative logarithms, pLaH and pH), describing the stationary phase in the 
mono- and coculture growth curves. A suitable inhibition function is selected out of a set of candidate 
equations found in literature. Further, the function is adapted in such a way that it includes consecutively a 
decreasing phase and a zero phase when the lactic acid concentration increases:  
 

(2.7)                     
 

 
 

 
 

with pLaHmin,i and pHmin,i: the values of pLaH and pH, respectively, at which growth ceases; parameters α 
and β are free (but constrained to α > 1, β > 1) or fixed (at a value of 1 + 10-6). 
Next, the submodel for the growth model is applied to the experimental data of the two case studies. The 
resulting parameter estimates and confidence intervals (not shown) indicate that not all parameters can be 
estimated in a reliable way. It is postulated that this is caused by the correlation between the independent 
variables of the specific growth rate function pLaH (or [LaH]) and pH (or [H+]), which is inherently 
present in (natural) fermentation processes. The problem can be relaxed by using a reduced version of the 
novel model, containing four free parameters, namely the initial cell concentration N0, the lag phase 
duration λ, the maximum specific growth rate μmax,i and a growth limiting concentration of undissociated 
lactic acid pLaHmin,i (which corresponds to the negative logarithm of [LaH]max,i, i.e., -log([LaH]max,i)). 
Parameters α and β are fixed at a value of 1 + 10-6 during the estimation procedure. For parameter pHmin,i, 
two methods are suggested. In the first, pHmin,i is put equal to the minimum pH for growth at the ambient 
temperature in a rich medium acidified with a strong acid, as available in literature. For the second 
method, the parameter pHmin,i is related to pLaHmin,i by means of equation (2.6). In this case however, the 
model is only appropriate if acidification results from lactic acid production only (and not, for example, 
from addition of a strong acid). For more details on the model development for this subprocess, reference 
is made to Vereecken et al. (2003). 
The specific production rate in equation (2.4) comprises growth and non-growth associated (maintenance) 
production of lactic acid, and the negative influence of [LaH] and pH on these metabolic processes. It is 
demonstrated that the experimental system under study does not obey the classical linear law, which is 
based on a constant maintenance related production rate. Therefore, a novel expression for the 
maintenance is proposed, in which the experimentally observed decreasing production rate at higher lactic 
acid concentrations is accounted for.  
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The descriptive power of this model is illustrated by means of the experimental data of the case studies. 
Key parameters in the submodel for lactic acid production are the yield of lactic acid over cfu Yi 
[mmol/cfu], the maximum maintenance mmax,i [mmol/(cfu·h)], and a metabolism limiting concentration of 
undissociated lactic acid pLaHmin,M,i [corresponding to –log([LaH]max,M,i)]. Similar to α and β in the model 
for growth and lactic acid induced inhibition, parameters γ and δ are kept constant at a value of 1 + 10-6 
during the parameter optimization procedure. And again, the parameter pHmin,M,i, corresponding to –
log([H+]max,M,i), is related to pLaHmin,M,i by means of equation (2.6). For further details on the model 
development for this subprocess, reference is made to Vereecken (2002). 
In summary, combination of the submodels for growth, lactic acid production and dissociation enables to 
quantify the lactic acid induced inhibition effect on growth and metabolism. By means of the unified 
model, a precise description of the experimental data of the cell concentration, the lactic acid 
concentration and the pH is obtained for both case studies (see, for example, Figure 14). Next, it is 
demonstrated that the complete model, in combination with the estimated parameter values yields an 
accurate prediction of the experimental data of the validation set.  

 
For more details, reference is made to Vereecken (2002), Vereecken and Van Impe (2002), Vereecken et 

al. (2002) and Vereecken et al. (2003). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Next to this global modeling framework for the two case studies at hand, an extended literature review 
was made concerning different strategies for modeling chemical inhibition and inactivation of micro-
organisms.  
 

This research is currently published in Devlieghere et al. (2004).. 
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Figure 14: Application of the unified model to Case study #1, experiment with inoculum 
ratio L. lactis/L. innocua = 105/103 cfu/mL 
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Subtask 2.1.2 Inactivation phenomena  
The modeling steps for this subtask were performed during the third year of the project. 
 
Step 1: Experimental Protocol and Data Generation.  
Experimental data for Case study #2, as generated in Subtask 2.1.1 were used in this subtask. In the model 
development steps, the data of the coculture experiments performed at 12°C were explored. Similarly to 
the experimental data of the evolution of Y. enterocolitica for the cocultures performed at 37°C presented 
in Figure 2.1, the evolution of Y. enterocolitica for the cocultures performed at 12°C also show growth, 
early induction of the stationary phase (i.e., inhibition) and finally inactivation of the target organism. 
Data of the experiments 12-Ls0Ye3-ID and 12-Ls7Ye3-ID were not suitable as inactivation of Y. 
enterocolitica in monoculture did not occur within the observed time range. On the contrary, it proceeded 
too fast in the coculture experiment 12-Ls7Ye3-ID to obtain some data points in the inactivation phase. 
 
Step 2: Model Construction. 
The differential equation for growth and inhibition of the pathogen as developed in Subtask 2.1.1 
[equations (2.1) and (2.7)] was extended to describe the subsequent, experimentally observed, inactivation 
phase of Y. enterocolitica in Case study #2 as function of the influencing factors pH and undissociated 
lactic acid. An important structural model requirement is the reduction to growth and inhibition of the 
pathogen when no inactivation takes place.  
 
Modular extension of the existing model [equations (2.1) and (2.7)] to inactivation can be done in two 
ways: (i) the population N can be divided into a viable and death fraction, or (ii) the reaction kinetics can 
be extended with additional terms (i.e., additive) and/or factors (i.e., multiplicative) in such a manner that 
it describes the three subsequent growth phases (i.e., growth, inhibition and inactivation). As 
measurements of the total cell concentration (i.e., viable and death cells) were lacking in the current study, 
method (ii) was preferred. The reaction kinetics in the newly developed model comprises two parts: one 
for growth and inhibition of the target organism, and one for the subsequent inactivation process.   
The selection of a suitable model structure for inactivation is driven by data of the variation of the specific 
evolution rate for Y. enterocolitica μYe with pH and the concentration undissociated lactic acid [LaH]. The 
data for μYe were constructed by linear regression of every three subsequent data points of the cell 
concentration. In contrast to the specific growth rate in equation (2.1) of Subtask 2.1.1, μYe comprises both 
growth and inactivation. The evolution of μYe with pH and undissociated lactic acid is presented in Figure 
15. As a low pH corresponds to a high [LaH], the evolution of μYe with pH and [LaH] show opposite 
behavior. This graphical profile is useful for the identification of critical points in the evolution of μYe. 
Initially, the pH of the medium equals pH0 ([LaH]0 = 0). As pH decreases to pHinhib (or [LaH] increases to 
[LaH]inhib), the specific evolution rate μYe decreases from a positive value towards zero. Then μYe remains 
zero over a certain range. From pHinact (or [LaH]inact) on, μYe decreases to negative values. These 
parameters are preferably incorporated into the function describing μYe as they are easily interpretable.  
 
For simplicity, a suitable model structure is initially developed for only one of the two toxic components. 
Because of the diffuse evolution of μYe with [LaH] at high concentrations (Figure 15, right), the factor pH 
is preferred. The factor [LaH] does not appear in the equations, but is implicitly taken into account as 
undissociated lactic acid is directly related to pH by the chemical equilibrium and mass and charge 
balances for a specific medium having a fixed buffer capacity [equations (2.3) and (2.4), or in full form, 
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equations (2.5) and (2.6) developed in the previous subtask]. Afterwards, the second toxic component 
[LaH] is taken into account.  

 
Based on the thermal model structure of Van Impe et al. (1992) the reaction kinetics μYe finally consists of 
two parts: μgrowth(pH, pLaH) for description of the growth and inhibition (i.e., positive values of μYe), and 
μinact(pH, pLaH) for description of the inactivation (i.e., μYe at negative values). Both parts were 
formulated as being negatively influenced by the undissociated lactic acid concentration [LaH] (or its 
negative logarithm, pLaH = -log([LaH])) and pH.  
 

 
An expression for μgrowth(pH, pLaH) describing the exponential growth phase and early induction of the 
stationary phase is equal to μmax, i · μpLaH, pH, i(pLaH, pH). An expression for the latter is taken from 
equation (2.7). 
The transition function Ftrans(pH) with values between 0 and 1 ensures the smooth transition from growth 
to inactivation. The function, given in the equation below, has been applied similarly in, for example, Van 
Impe et al. (1992), and has also similarities with the well-known modified Gompertz equation for 
microbial growth in Zwietering et al. (1990). 

 
with pHtrans [-]: the pH-value at which transition takes place, α [-]: the parameter describing the curvature 
of the transition. Depending on the value of α being finite or infinite, Ftrans(pH) responds to a continuously 
differentiable equation or a step function respectively. As a consequence, according to the shape of 
Ftrans(pH), the functions μgrowth(pH, pLaH)  and μinact(pH, pLaH)  have to fulfil different conditions to 
ensure a smooth transition. In contrast to μgrowth and μinact who both are dependent on pH and pLaH, Ftrans 
remains dependent on pH only since it guarantees the transition between μgrowth(pH, pLaH) and μinact(pH, 
pLaH). 
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Parameter optimization studies based on experimental data of the cell concentration of Y. enterocolitica 
were performed, in a first phase for pH only, but in a second phase the second influencing factor 
undissociated lactic acid was included. Analogous to Subtask 2.1.1 where pLaHmin,i was related to pHmin,i 
by equation (2.6), the lactic acid associated parameters in the model structures for the inactivation phase 
were related to the pH-parameters to circumvent the strong correlation between them. This finally led to 
the selection of one possible structure for a good and reliable prediction of the inactivation phase (L1 [-], 
L2 [-] and cB [-]: parameters).  

 
Parameters L1 [-] and L2 [-] can be interpreted as a pH- and pLaH-value, respectively. Consequently, as 
already mentioned, the parameter L2 was related to L1 by means of equation (2.6).  
 
Until this point, model equations were applied to each of the cocultures separately. The resulting 
parameter values (not shown) for each coculture were comparable, but not exactly equal. However, when 
considering undissociated lactic acid and pH as the influencing factors in the current system, there should 
exist one unique parameter set valid for all the cocultures. Additionally, the present results do not enable 
the prediction of the inhibition and inactivation of the target organism in cocultures with intermediary 
inoculum concentrations for the antagonist (i.e., intermediary concentrations in the range of 103 – 106 
cfu/mL). Because of these reasons, the final set of equations was applied simultaneously to the 
experimental data of all cocultures showing an inactivation phase. A global model valid for all the 
cocultures was obtained. Comparison of the model simulation based on the optimal parameter values and 
the experimental data is illustrated in Figure 16.  

 
The global model and its optimal parameter values gave satisfying results when used to predict the 
experimental data of the validation set. For more details of this extended model, reference is made to 
Janssen et al. (2003, 2004b and 2006b). 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−−= Binact c

L
pLaH

L
pHpLaHpH

21

exp,μ

Figure 16 : Simulation of the evolution (growth, inhibition and inactivation) of Y. 
enterocolitica in coculture with Lact. sakei by means of the global model with one unique 

parameter set valid for all the cocultures. 

0 50 100 150 200 250 300
1

2

3

4

5

6

7

8

9

10

time [h]

ce
ll 

co
nc

en
tr

at
io

n 
[lo

g 10
(c

fu
/m

L)

12−Ls3Ye3−ID
12−Ls4Ye3−ID
12−Ls5Ye3−ID
12−Ls6Ye3−ID

detection limit 



Project CP/31- Microbial Food Safety Assessment: Development And Integration Of Generic Predictive Modeling Tools 

 

SPSD II - Part I - Sustainable production and consumption patterns - Agro-Food 46 
 

Observe that it could be anticipated that other lactic acid mediated coculture experiments could also be 
described using the developed model structure. The resulting overall model can also be seen as a basis for 
other models describing microbial interactions, as it can be assumed to be transferable to, for example, 
other organic acids, bacteriocins, etc. Additionally, when no microbial interaction occurs (e.g., no 
antagonist), the equation for growth of the antagonist and the term for lactic acid production by the 
antagonist can be omitted. As such, the model reduces in a natural way to growth and lactic acid 
production and (intraspecies) inhibition in monoculture of the target organism. 
 
Subtask 2.1.3 Uncoupling the individual lactic acid and pH effects  
The one-to-one interrelationship between pH and undissociated lactic acid and the correlation between 
their parameters mentioned in Subtasks 2.1.1 and 2.1.2 are not to be seen as an artefact of the experiments 
performed, but are inevitably related to each lactic acid production process. To circumvent these 
difficulties, more knowledge of the individual (separate) effects of pH and undissociated lactic acid is 
desirable. Indeed, by studying the individual effects of pH and undissociated lactic acid the model 
structure could be refined. This information can be obtained by studying the effects of pH and 
undissociated lactic acid not only at conditions determined by the one-to-one relationship but also at 
conditions outside this relationship (see e.g., Buchanan et al., 1993). 
This subtask was started in the third year of the project. 
 
Step 1: Experimental Protocol and Data Generation.  
 
Experimental plan 
The inactivation of L. innocua of Case study #1 was investigated at controlled (static) conditions of pH 
and undissociated lactic acid ([LaH]). Similarly to the coculture experiments performed for Case study #1, 
inactivation experiments were performed in 1 L erlenmeyer flasks filled with 550 mL of a rich, modified 
Brain Heart Infusion medium. This medium was flushed with N2 to obtain anaerobic conditions. 
However, in the current subtask, no lactic acid bacterium was used. Before inoculation, a combination of 
initial pH (i.e., pH0) and initial concentration of undissociated lactic acid (i.e., [LaH0]) was set by addition 
of the appropriate volumes of strong acid (HCl) or base (KOH), and lactic acid. No extra buffers were 
added. At the moment, 30 combinations were tested, which are graphically presented in Figure 17: 
 11 (pH0, [LaH0])-combinations situated on the traditional (pH, [LaH])-trajectory: to simulate the 

effect of co-cultures the evolution of L. innocua at artificially created initial total lactic acid 
concentrations (i.e., both dissociated and undissociated forms) ranging from 0.04 to 0.12 M was followed. 
Before the addition of lactic acid, the pH was set to 6.20 for these experiments. As such, the (pH0, 
[LaH0])-conditions obtained are determined by the same relationship as for the cocultures in Case study 
#1. 
 19 (pH0, [LaH0])-combinations situated outside this trajectory: to be able to separate the effects of pH 

and [LaH] in contrast to the mixed microbial system in Subtasks 2.1.1 and 2.1.2, combinations forming a 
rectangular shape in the (pH, [LaH])-plane were tested. Values of pH0 are ranging from 3.43 to 4.5, while 
[LaH]0 ranges from 0 to 0.05 M. Differences in inactivation curves with equal pH0 can be ascribed to the 
variation in [LaH]0, and vice versa.  
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L. innocua was inoculated at a concentration of 108 cfu/mL and all experiments were performed at 12°C. 
 
Experimental results 
In the evolution of the cell concentration as function of time, two phases could be distinguished: (i) a 
period with a constant cell concentration, i.e., a shoulder period, followed by (ii) a period in which the 
cell concentration decreased to values below the detection limit, i.e., a descent phase.  Depending on the 
pH0 and [LaH]0-conditions, the latter phase consisted of one or two loglinear part(s) with respective 
slope(s), or took a concave or convex shape. During the experiments, the glucose concentration remained 
constant, indicating that nutrient depletion cannot be the cause of the inactivation. As anaerobic 
conditions prevent L. innocua from producing acetic acid next to lactic acid (if any production would 
occur at all, given the inactivation of the microbe) (Kelly and Patchett, 1996), the prevailing lactic acid 
and pH conditions were the only explaining factors for the observed inactivation process. 
For the experimental conditions situated on the trajectory corresponding to the conditions in coculture, it 
can be concluded that when increasing the initial total lactic acid concentration LaHtot,0 (i.e., increasing 
[LaH]0 and decreasing pH0), the length of the shoulder period was reduced, while the inactivation rate 
increased. This is illustrated in Figure 18. 

Figure 17 : Overview of the (pH0,[LaH]0)-combinations tested in Subtask 2.1.3 
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Figure 18 : L. innocua inactivation at (pH0,[LaH]0)-combinations on the trajectory 
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For the (pH0, [LaH]0)-conditions forming the approximately rectangular shape in the (pH,[LaH])-plane, it 
appeared that [LaH]0 and pH0 have an influence on both the length of the shoulder period and the 
inactivation rate when considering results at a constant pH0 and [LaH]0 respectively. The latter 
conclusions are illustrated by means of Figure 19. Part of these results is published as Janssen et al. 
(2004a, 2005).  
After comparing the collected inactivation curves, a certain variation became visible: (i) inactivation 
curves for identical conditions (for experiments performed in duplicate) did not show an identical 
evolution (results not shown), and (ii) in the vicinity of the growth/no growth interface the inactivation 
process seemed to be a rather contradictory process (e.g., for pH0 = 4.00 and [LaH]0 = 0 M in Figure 19). 
Attempts to locate the cause of this variation did not led to any conclusive results. However, it seems 
acceptable that an increased variance in the bacterial response due to less favorable conditions might serve 
as the main reason for the observations made.  
 
Step 2: Model Construction.  
In the model development steps, no further distinction is made between the two series of experimental 
data as the final model has to be valid for all (pH0, [LaH0])-combinations, on the trajectory with 
conditions corresponding to the cocultures of Subtasks 2.1.1 and 2.1.2 as well as for those outside this 
trajectory, forming the approximately rectangular shape. In addition, because of the observed variability 
in the inactivation process for some (pH0, [LaH0])-conditions, all inactivation curves (singular or plural) 
were taken into account. 
First, four types of primary inactivation models were calibrated on the experimental data by means of the 
Microsoft® Excel Tool GInaFiT (Geeraerd et al., 2005). For most of the experimental data, either the 
loglinear model with shoulder or a Weibull-type model gave the best result, with the frequency of `most 
suitable model’ for both being about 50 %. As there was no preference for one or the other model based 
on the goodness-of-fit criterium, other factors were to be taken into account. The Weibull-model was 
preferred as primary inactivation model as it was able to describe the various inactivation shapes. 
Next, a secondary model was developed to describe the evolution of the parameters of the primary 
Weibull-type model as function of pH0 and [LaH0]. Suitable model structures and parameter values are 
identified. Based on combination of the calibrated primary and secondary models, one can predict which 
conditions of pH0 and [LaH]0 are necessary to obtain a predetermined inactivation within a predetermined 
time range. 

Figure 19 : Inactivation of L. innocua at (pH0, [LaH]0)-combinations situated in the 
rectangular shape for a constant pH0 = 4.00 (left) and [LaH]0 = 0.036 M (right) 
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The results obtained in this subtask were recently presented in a poster on International Satellite Congress 
of the Fifth International Symposium on Hormone and Veterinary Drug Residue Analysis: Platform for 
Scientific Concertation: Food Safety, organised in the frame of the cluster project Platform for Scientific 
Concertation: Food Safety, financed by the Belgian Federal Science Policy Office (Janssen et al., 2006a). 
In addition, a manuscript about the findings reported in Subtask 2.1.3 is currently being finalised. 
 
As a validation step within this subtask, it has to be checked whether the combined (primary and 
secondary) model structures developed for the controlled static conditions are applicable to the 
inactivation of L. innocua under dynamic conditions as, for example, in Case study #1. Hereto, an 
artificial lactic acid profile will be created to mimic the lactic acid production by the antagonist.  
 

Work Package 3: Developing and integrating predictive modeling methodologies   
 
Task 3.1: Optimal Experimental Design (OED) of kinetic studies  
 
As underlined in Bernaerts and Van Impe (2004), bioprocess modeling presents a challenging subject that 
requires a meticulous modeling strategy. During the modeling process, experimental data form a key 
ingredient during structure characterisation (SC) and parameter estimation (PE). Accurate system 
identification can only be guaranteed if the experimental data contain sufficient information on the 
process dynamics. In this respect, sufficient effort should be spent on optimal experiment design (OED) in 
order to maximise the information that can be extracted from data; especially because experimental data 
generation for bioprocesses usually presents a time-consuming, labour-intensive and costly job. 
 
Experiment design for Task 1.1 (first year) 
Research activities of Task 3.1 have been conducted in close collaboration with Task 1.1. Previous 
dynamic experiments in the context of OED/PE (see, e.g., Bernaerts et al., 2000, Bernaerts et al., 2002, 
Bernaerts and Van Impe 2002) have shown that sudden temperature rises (without changing other 
environmental conditions) yield a small but significant lag phase (or delayed growth response). As 
extensive data sets on this intermediate lag phenomenon are lacking, a first step is to generate 
experimental data (i.e., Task 1.1) which enable us (i) to identify the causal relationship between the 
microbial dynamics and applied temperature conditions, and (ii) to characterise a (set of) candidate model 
structure(s). Hereto, the set of relevant influencing factors has been identified (see Task 1.1), in casu the 
effects of (i) the step amplitude, (ii) pre- and post-shift temperature, and (iii) state of the cells. 
As reported by, e.g., Box and Draper (1971), Davies (1993), it is wise to choose values of these 
influencing variable(s) equally distributed within the region of interest when the model structure is 
unknown. Suffice to say that extrapolation, i.e., making model predictions outside the studied region, is 
out of the question. The scale of the design should thus include the region within which predictions are to 
be made. If a priori information on the kinetics is available, it is recommendable to space more treatment 
levels at regions where rapid changes of the dependent variable(s) are expected (e.g., Davies, 1993, 
Walker and Jones 1993). 
Based on this knowledge, a full factorial design has been outlined for Task 1.1. Full factorial designs 
refer to experimental plans which encompass all possible combinations of the levels of the factor(s) (i.e., 
independent variables) under study (Anderson and McLean, 1974). Given k the number of factors and l 
levels of each factor, a complete factorial design contains lk experiments of different treatment 



Project CP/31- Microbial Food Safety Assessment: Development And Integration Of Generic Predictive Modeling Tools 

 

SPSD II - Part I - Sustainable production and consumption patterns - Agro-Food 50 
 

combinations. Hence, the number of treatments increases rapidly as the number of factors and/or levels 
increases. But, Anderson and McLean (1974) note that sufficient levels are necessary to investigate non-
linear trends correctly. 
Here, the suggested factorial design encompasses a number of experiments that enable the 
characterisation of (i) the effect of the temperature step amplitude, and (ii) the pre- and post-shift 
temperature. Within the temperature range of interest, i.e., 10-40°C, a matrix of experiments (with 
different pre- and post-shift temperatures) has been identified. The temperature range has been subdivided 
using intervals of 2.5°C (i.e., 13 levels). As constant temperature experiments are not included (no lag 
induction), the complete factorial design involves 156 experiments. However, in view of characterising 
the normal physiological range accurately a more dense grid is selected in the temperature zone, i.e., 20-
25°C, which is suggested to play a critical role in this phenomenon (e.g., Ng et al., 1962). Details on the 
established experiments have been presented under Task 1.1. Based on the collected data, the 
experimental plan shall be revised for further research (e.g., selection of most informative experiments for 
SC). 
 
Optimal experiment design for four-parameter problems 
Research activities have focussed on optimal experiment design for parameter estimation. Once a suitable 
model structure has been selected, the methodology of optimal experiment design for parameter 
estimation (based on the Fisher information matrix) can be addressed to improve the parameter estimation 
accuracy by maximising the information that can be extracted from the experimental data (see, e.g., 
Walter and Pronzato, 1997). Whereas the framework for OED/PE in the field of predictive microbiology 
has been well-established for a two-parameter estimation problem (see, e.g., Bernaerts et al., 2000, 
Bernaerts et al., 2002), a four-parameter estimation problem has been investigated in the framework of 
this project. Predictive models mostly encompass more than two model parameters when more complex 
phenomena are being modeled (see, for example, the model reported in Task 2.1). 
Two existing four-parameter models have been selected to work out the mathematical framework. In 
Bernaerts et al. (2003a, 2003b, 2005) and Gysemans et al. (2003, 2004b), a model output sensitivity 
analysis has been performed and optimal experiment designs have been computed for two cardinal values 
model, namely, the Cardinal Temperature Model with Inflection point (CTMI) and the Cardinal pH model 
(CPM) (Rosso et al., 1995).  
 
1) Optimal static experiment design (first, second and third year) 
An optimal selection of the independent variables (temperature and pH, respectively) has been aimed for. 
Optimal experimental plans are distinct from the arbitrary placement of independent variables which is 
commonly applied in factorial designs. The following results are published in Bernaerts et al. (2005). 
Several optimal design criteria based on the Fisher information matrix were applied during optimization. 
All but one of the criteria optimize an aspect of the parameter estimation quality, e.g., the E-criterion 
minimizes the largest parameter estimation error. One criterion, the so-called G-criterion, minimizes the 
prediction error variance. This criterion was considered as for non-linear models (as under study) the 
precision of the model prediction is not necessarily directly correlated to parameter estimation accuracy. 
Depending on the criterion, different optimal experimental plans were computed.  
The following main results were obtained. Firstly, all design criteria aiming for parameter estimation 
quality yield experimental designs including four different temperatures (pHs) near the maxima of the 
sensitivity functions (i.e., partial derivatives of the model output with respect to each model parameter) 
with replicates at some of these temperature levels. G-optimal designs, on the other hand, have no specific 
structure: informative temperatures (pHs) are scattered. Secondly, the inclusion of more temperature (pH) 
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inputs increases the information content of the data. However, at a certain number of experiments 
saturation occurs for some criteria. 
Within the above-mentioned results, temperature (pH) values were optimally selected within the region of 
growth. In some cases this resulted in optimal designs including optimal treatments (temperature or pH) 
positioned at the boundaries of this region (i.e., the minimum or maximum temperature/pH for growth). 
However, these boundary conditions do not yield growth. Such experiments are impractical and design 
errors (e.g., erroneous nominal values) have drastic effects (e.g., inactivation may be observed when the 
nominal value for the maximum growth temperature was selected too high). In this respect, OED/PE has 
also been executed with lower and upper constraints. Results are published in Bernaerts et al. (2003b, 
2005) and Gysemans et al. (2004b). Constrained designs lead to decreased information content 
(optimality) of final designs. This is more pronounced for the CPM-optimal designs than for the CTMI-
designs because two informative points are excluded in the CPM-designs, namely the minimum and 
maximum pH for growth, while only one informative point, i.e., the maximum growth temperature is 
excluded in the CTMI-designs. In the latter case, the set of informative temperatures is shifted to the left 
(i.e., to lower values). 
 
2) Optimal dynamic experiment design (third, fourth year and project prolongation) 
The CTMI model 
Building upon the above-stated results, the work on optimal dynamic experiment design for estimation of 
the CTMI model parameters has been initiated. As the four-parameter estimation problem becomes 
computationally complex and time-consuming, the problem is reformulated as an iterative experiment 
design encompassing a series of optimally computed temperature inputs for estimation of parameter 
couples. Thoughtful selection of the parameter couples and the optimal design scheme allows an 
amelioration of the model parameters twice (starting from the nominal model parameters) within a series 
of four experiments.  
The following results have been achieved. 
(i) Continuing the work with E. coli K12 MG1655 (see Task 1.1 and Bernaerts et al., 2000, 2002), 
nominal values for the cardinal temperature model parameters have been determined. Hereto, experiments 
in the super-optimal temperature range for growth have been performed. Nominal model parameters are 
required to compute optimal designs. As a side-result irregular growth dynamics of E. coli K12 (in BHI) 
have been detected at elevated temperatures, especially, close to the maximum temperature for growth. At 
44°C and more pronounced at 45°C, the exponential growth phase is disrupted by some kind of apparent 
lag phase. Log-linear growth becomes multiphasic. At 46°C, a short period of fast growth is followed by 
first-order inactivation. Several possible causes of these phenomena have been put forward and 
experimentally tested. Temperature history (referring to the (pre)adaptation to elevated temperature) as 
well as medium composition (referring to the presence of chaperones avoiding protein denaturation) 
exerts a significant effect on the dynamics near the maximum temperature for growth. Given a pre-
adaptation at 45°C, the maximum temperature limit even shifts to nearly 47°C. Results have been 
submitted for publication in Van Derlinden et al. (2006a,b). Application of the pre-adaptation protocol 
produced acceptable specific growth rate estimates enabling nominal parameter estimation for the CTMI. 
However, the observed effects (i.e., irregular growth and effects of temperature history) have a major 
impact for OED. During optimization, temperature profiles should be upper-bounded by 43 ~ 43.5°C. 
(ii) During optimal design, model validity should be guaranteed at all times. Necessary temperature 
constraints need to be specified. Abrupt temperature changes disrupt exponential growth (see WP 1.1.) 
and may not occur in optimal temperature designs. Additional experiments have been performed to 
explore the rate of adaptation of the microbial population when temperature changes are moderate. 
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Dynamic experiments implementing temperature profiles with moderate rates of temperature changes and 
spanning the complete growth temperature range have been performed. As in Task 1.1, experiments have 
been performed in bioreactors under controlled conditions. Experimental data have been analyzed via 
Monte Carlo simulation. Temperature ramps with a slope of 5°C per hour seem to guarantee an 
immediately changing specific growth rate as prescribed by the model structure. 
(iii) In the onset to optimal dynamic experiments, the CTMI model parameters of E. coli K12 MG1655 
have been estimated from a series of four dynamic experiments, the temperature profiles of which varied 
linearly within (parts of) the growth temperature range. Kinetic parameters are deduced in different ways, 
(i) directly from the cell density data (one-step-identification) and (ii) on the basis of the specific growth 
rates, obtained as the local derivatives of the cell density data, as function of temperature (two-step-
identification). Experiments were performed in a computer-controlled bioreactor with E. coli K12 
MG1655 as in Task 1.1.  
Temperature profiles are heuristically derived. The complete growth temperature region was subdivided 
into two zones covering sup-optimal and optimal-super-optimal temperatures, respectively. Temperature 
profiles were selected such that the culture grew (most of the time) exponentially while temperature was 
changing. Temperature was not allowed to closely approach the temperature boundaries of growth to 
ensure significant growth rates. Furthermore, only very moderate temperature gradients were applied as 
rapid changes violate the model structure (see, e.g., Swinnen et al., 2005; Bernaerts et al., 2002 and earlier 
in this report). 
Two-step-identification refers to (i) the computation of the specific growth rate, obtained as the local 
derivatives of the cell density data, as function of temperature, followed by (ii) the identification of the 
CTMI on the specific growth rate estimates as function of temperature. The specific growth rate as 
function of time for each experiment can be derived in multiple ways, e.g., (i) central differentiation of the 
experimental data, (ii) approximation of the data points using a cubic spline which is subsequently 
numerically differentiated, (iii) approximation of the data points using a smoothing cubic spline which is 
subsequently numerically differentiated. Negative values for the specific growth rate are put equal to zero. 
In one-step-identification, all experimental data are joined in a global parameter estimation step during 
which the CTMI parameters are considered as global model parameters.  
Although temperature profiles were not optimized, good parameter values with low uncertainties could be 
derived from four dynamic data sets via a one-step-identification. The model parameters from the CTMI 
can be derived with high accuracy and in a time-efficient way from four dynamic experiments. Amongst 
the various scenarios for parameter estimation, the one-step-identification clearly excels. During the one-
step-identification, the information content of the dynamic experiments is maximally exploited thanks to 
the use of the dynamic growth model. 
These results have been presented in Bernaerts et al. (2006). 
(iv) Finally, optimal temperature inputs have been computed according to the OED/PE framework using 
the Fisher information matrix and associated design criteria. Biological restrictions imposed by the model 
structure have been taken into account through a constrained design. Designs are based on the growth 
model of Baranyi and Roberts encompassing the CTMI model. The above-outlined 2-by-2 parameter 
estimation strategy has been followed. Thus far, linear time-varying temperature inputs are optimized with 
respect of the D- and modified E-criterion. One may highlight this optimization problem is multimodal. 
Global optima could be found through ample random initialization but would be greatly facilitated using 
stochastic algorithms. The latter as well as the experimental validation of optimal linear profiles is 
currently being investigated. 
To be complete, publications explaining the concepts of optimal experiment design for bioprocesses 
(Bernaerts and Van Impe, 2004; Bernaerts and Van Impe, 2005) have been realized in the context of this 
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research project. Theory and methodologies are well-illustrated by means of case studies addressed in this 
project.  
 
The CPM model (part of the fourth year, and project prolongation) 
Transferability of the OED/PE methodology to the CPM (cardinal pH model) is being evaluated. Optimal 
static experiment design could already be successfully applied to the CPM model (see Bernaerts et al., 
2005). The applicability of dynamic pH profiles for parameter estimation is evaluated based on a literature 
review and a well-selected set of dynamic bioreactor experiments.  
The growth dynamics of E. coli K12 MG1655 have been determined at various pH levels within the pH 
range of growth. Two types of experiments were performed: (i) uncontrolled pH experiments (starting 
from an initial pH, the pH is allowed to dynamically change), (ii) controlled pH experiments (pH is kept 
constant by controlled addition of base or acid). Cell density, glucose and acetic acid were measured. 
When E. coli K12 MG1655 grows in BHI, the micro-organism first consumes glucose producing biomass 
and acetic acid, and subsequently internalizes acetic acid to form biomass. This metabolism is known as 
diauxic growth (e.g., Wolfe, 2005) and causes the pH to dynamically vary. In literature reported pH 
experiments are always uncontrolled experiments. Hence, models like the CPM model are built on the 
initial pH (of uncontrolled experiments). The performed bioreactor experiments were performed (i) to 
validate the CPM model based on initial pH values for the applied strains, (ii) to compare to growth under 
controlled and uncontrolled pH conditions, and (iii) to model the effect of (moderate) dynamic 
temperature changes on the growth rate. 
The following conclusions can be drawn on the basis of a large series of experiments between pH 4.5 and 
pH 9.5. (i) Maximum specific growth rate estimates (μmax) derived from uncontrolled pH experiments 
could not be modelled by the CPM model. A pH range within which pH had little effect on μmax is 
observed. An additional model parameter characterizing this plateau was introduced in the CPM. A 
similar observation could only be retrieved in Presser et al. (1997), where data were limited to the 
suboptimal pH range. (ii) Comparing results from uncontrolled and controlled experiments, μmax under un-
controlled condition is consistently higher then μmax from controlled experiments. Most extreme is the 
effect at the pH boundaries of growth. For example, keeping the pH constant 9 does not allow growth 
initiation (after a period of survival even inactivation is observed) whereas starting at an initial pH 9 and 
leaving it free to change, supports growth at a relatively high μmax. The strain is able to initiate growth and 
acidify the medium, thereby lowering the pH to more optimal condition. Within uncontrolled 
experiments, the pH drop (caused by acetic acid production) is more or less 2 pH units. At the lower pH 
limit for growth, the lowering of the pH in combination with the produced acetic acid exhibits an 
inhibitory effect (expressed by a smaller maximum population density in the stationary phase).  
Within a simulation study, it is currently investigated if the dynamic growth curves can be predicted by a 
mathematical model embedding effects of pH (in the form of [H+]) and acetic acid (in its un-dissociated 
form). The model structure could be equivalent with the model developed in Subtasks 2.1.1 and 2.1.2. 
Given the current information, application of dynamic experiments for CPM model parameter estimation 
seems a complicated task as the cell metabolism must be taken into account.  
 
Task 3.2: Macroscopic predictive modeling  
 
The close interface between Work Package 3 and Work Packages 1 and 2 is illustrated above, where  
results on macroscopic modeling techniques, directly related with aforementioned tasks, is reported :  
• Task 1.1., Step 2, “Modeling microbial lag due to a sudden rise in temperature” 
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• Task 1.2, “Modeling individual cell lag time distributions for Listeria monocytogenes” 
• Task 1.3 “Growth behaviour of L. monocytogenes at the growth/no growth boundary” 
• Task 2.1, Subtask 2.1.1, Step 2 “Model construction” (related with microbial inhibition phenomena 
through a single metabolic product) 
• Task 2.1, Subtask 2.1.2, Step 2 “Model construction” (related with microbial inactivation phenomena 
through a single metabolic product) 
• Task 2.1, Subtask 2.1.3, Step 2 “Model construction” (related with the uncoupling of the individual 
lactic acid and pH effects).  
The model developments are various  and range from balance models and kinetic modeling approaches 
over logistic type model approaches to distribution model types. 
Task 3.2 has also deliverables on its own, namely, concerning methodological modeling developments. 
 
Step 1: Balance models.  
As already indicated in the first year scientific report, description of microbial cell (population) behavior 
influenced by dynamically changing environmental conditions intrinsically asks for dynamic 
mathematical balance models. In Bernaerts et al. (2004), Bernaerts and Van Impe (2004) and Bernaerts 
and Van Impe (2005), a general dynamic model building concept describing microbial evolution under 
dynamic conditions is presented. Starting from an elementary model building block, the model structure 
can be gradually complexified to incorporate increasing numbers of influencing factors. The fundamental 
concepts of dynamic macroscopic (population level) and microscopic (individual based) modeling 
approaches (see Task 3.3.) are explained using the case studies addressed in this project (as covered by 
Work Packages 1 and 2). With respect to current and future research trends, the need for (i) more 
advanced measurement techniques, (ii) measurements under dynamic conditions, and (iii) more complex 
model structures, is pointed out. In the context of quantitative risk assessment, the mathematical model 
complexity needs to be kept under control. An important challenge for the future is therefore the search 
for a satisfactory trade-off between predictive power and manageability of mathematical models: When is 
simple good enough? (after Buchanan et al., 1997). 
Next to this, a novel generation of balance type models is developed during the second year of this 
project. The principal underlying reason for this development is the observation that in order to increase 
the predictive power of mathematical models, more mechanistic (i.e., (micro)biological) knowledge 
should be incorporated from the on-set in the mathematical model structure. For microbial growth, 
research is in a first phase focused on modeling the stationary phase of the growth curve. This stationary 
phase is the result of (i) substrate S depletion and/or (ii) toxic product P inhibition. Both phenomena 
cannot be described with the classical logistic model types. In order to overcome this drawback, a novel 
class of more mechanistically inspired so-called S&P models is being developed and analysed (see also 
Task 3.3). More details can be found in Van Impe et al. (2005) and Poschet et al. (2005a). 
 
Step 2: Kinetic models.  
A novel development is related with advanced black box modeling approaches for use as kinetic models. 
Research about this issue has already been reported in the previous scientific report, and is published in 
2004 (Geeraerd et al., 2004). Herein, a novel procedure is developed, consisting of three steps: (i) careful 
formulation of the available microbiological information, both from literature and from the experimental 
case study at hand, (ii) translation of these requirements in mathematical terms under the form of partial 
derivatives throughout the complete interpolation region of the experimental design, and (iii) 
determination of parameter values with suitable optimisation techniques for a flexible black box modeling 
approach, e.g., a polynomial model or an artificial neural network model. As a vehicle for this procedure, 
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the description of the maximum specific growth rate of Lactobacillus sakei in modified BHI-broth as 
influenced by suboptimal temperature, water activity, sodium lactate and dissolved carbon dioxide 
concentration is under study. The procedure results in a constrained polynomial model with excellent 
descriptive and interpolating features in comparison with an extended Ratkowsky-type model and 
classical polynomial model, by combining specific properties of both model types. The developed 
procedure is illustrated on the description of the lag phase as well. It is stressed how the confrontation 
with experimental data is very important to appreciate the descriptive and interpolating capacities of new 
or existing models, which is nowadays not always carefully performed. Alternatively, the first two steps 
of the novel procedure can be used as a tool to demonstrate clearly (possible) interpolative shortcomings 
of an existing model with straightforward spreadsheet calculations. 
The procedure has found immediate application in the project in Task 1.1 during the “Protocol 
development for measuring the lag phase of individual cells”, namely to model the calibration curve 
shift, relating OD measurements and viable counts measurements, as a function of environmental 
conditions. This is reported as Francois et al. (2005a). 
 
Step 3: Implementation of variability.  
A third development is related with the application of predictive microbiology in the context of hazard 
analysis and critical control points and risk analysis studies, in other words, with the implementation of 
variation. For these purposes, a confidence related with a model prediction is indispensable, and a 
transition from classical deterministic models towards stochastic models is essential. Such models predict 
a probability mass function for the microbial load at a certain time instant. Monte Carlo, which is a 
general tool to compute statistical characteristics, is used to generate, starting from the experimental 
observations and a deterministic growth model, probability density functions for (i) the model parameters 
and (ii) the predictions as a function of time. Next to this, also the optimal experiment setup can be 
determined by means of this approach. This probabilistic approach, incorporating experimental variation, 
is applied to experimental growth data and thermal enzyme inactivation data.  
 

For more details, reference is made to Poschet et al. (2004) and (2005b). 
 
Variability, inherent in the production and use of microtiter-experiments in order to characterize the lag 
fase of individual cells, is also taking into account as described in the research reported under Task 1.2. 
Reference is also especially made to (i) “Practical implications of the individual cell approach on the 
level of challenge tests”, where Monte Carlo simulations are implemented to characterize the challenge 
test results on pâté, and, (ii) “Practical implications of the individual cell approach on the risk 
assessment level”. The latter research concludes that the individual cell lag phase variability of L. 
monocytogenes has important consequences when studying specific growth cases, especially when the 
applied inoculum levels are low, but when performing more general exposure assessment studies, the 
variability between the individual cell lag phases is too limited to have a major impact on the total 
exposure assessment.  
 

For more details, reference is made to Francois et al. (2006b) and Francois et al. (2006c). 
 
Task 3.3: Microscopic predictive modeling  
 
Traditionally, predictive microbiology has adopted a macroscopic approach to modeling microbial 
dynamics. Population-level variables like the total cell concentration N or the total biomass X are 
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modelled in function of environmental conditions. Also, experiments are usually performed under 
standardised and strictly controlled laboratory experiments, using relatively high inoculum levels. 
For some aspects of microbial growth, such as the microbial growth rate µmax, this approach gives 
satisfactory results, but for others it is clearly lacking in its ability to provide accurate predictions. The 
bacterial lag phase has proven to be quite difficult to predict, especially when stochastic effects come in to 
play because of the presence of low cell numbers (Bridson and Gould, 2000). Also, more realistic 
environments (i.e., real food products) clearly cause more complex bacterial dynamics to occur than can 
be modelled with these classical model structures. 
To tackle these difficulties, two main approaches can be pointed out. First, classical models are being 
extended with stochastic elements (Baranyi, 2002; Kutalik et al., 2005), which provides them with a basis 
to model inter-cell variability within the modelled population. Second, new modeling approaches such as 
individual based modeling (IbM) are being explored and applied to predictive modeling case studies 
(Dens et al., 2005a,b; Ginovart et al., 2002; Prats et al., 2006). 
The concept of IbM can be summarized by the following defining criteria (Breckling et al., 2006). 
 
• a population is represented by a number of entities or agents which are separately accessible and 
 which have at least one quantitative or qualitative property that differs from each other; 
• the model describes the change of these characteristics over time. 
 
The IbM methodology intrinsically differs with the traditional, macroscopic modeling approach, often 
based on differential equations. Instead of modeling a global characteristic of the population as a whole, 
IbM is based on a (more or less) simple microscopic model of an individual cell constituting that 
population, describing its substrate uptake, cell division, metabolite production, interaction with its local 
micro-environment, and so on. By simulating a large number of these individual cell models in parallel, 
their dynamics and local interactions will give rise to a higher-level population-scale macroscopic 
behaviour with its own characteristics, which is often referred to as emergence. This approach avoids the 
need to formally define relationships at the macroscopic level. 
The macroscopic equation based approach is well suited to describe homogeneous populations in 
homogeneous environments, where the number of individuals is high enough to characterise the 
population as a whole in terms of continuous variables. The characteristics of individual agents (cells) are 
lumped together in the form of averages, providing an efficient and economical way to describe the 
dynamics. The IbM approach is complementary in the sense that it provides the following intrinsic 
advantages. 
 
• IbM model structures allow a more natural mapping of the biological reality onto the model 
 structure. 
• Agent-to-agent heterogeneity and interactions between individuals can be incorporated in a 
 natural way. 
• Spatial heterogeneity can be easily added due to the modular structure of IbM implementations. 
• Mechanistic knowledge, available in literature, is usually specified at the level of the individual 
 agent and can be directly implemented in the model. 
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Of course, IbM also has arguments against it. 
 
• IbM models rapidly attain a high level of complexity with lots of parameters and have no 
 formally defined mathematical structure. This complicates the documentation of, and 
 communication about the models. 
• Simulating large numbers of agents requires a considerable amount of computing power. 
• IbM lacks a solid theoretical framework for model analysis, as is available for macroscopic, 
 equation-based modeling techniques. 
• IbM models can require detailed biological knowledge, which may not be available. The high 
 number of parameters may lead to an increased inherent susceptibility to internal errors and a high 
 sensitivity to small parameter changes. Some counterarguments to this can be found in Breckling 
 et al. (2006). 
 
IbM modeling of the individual cell lag phase 
A first basis for individual based modeling (IbM) was laid in the 1940s by Leslie, who proposed a 
modeling approach for population age distributions based on subgrouping the population based on age. 
This differentiation approach climaxes to the level of individual agents in IbM modeling. The first true 
IbM implementations followed in the 1970s (see, e.g., Kaiser (1979)) but it is only in the 1990s that IbM 
modeling has seen a greater adoption. The main application area is ecology with important publications 
like DeAngelis and Gross (1992) but since about ten years, the application of IbM modeling is spreading 
to various other scientific disciplines. Examples can be found in social sciences (e.g., Helbing et al., 
2000), economics (e.g., LeBaron, 2000; Winker and Gilli, 2002), microbial ecology (Kreft et al., 1998, 
2001; Picioreanu et al., 2004), (predictive) microbiology (Dens et al., 2005a,b; Almaas et al., 2004), and 
so on. 
In Task 1.1, and more specifically, in Swinnen et al. (2004a), research is described on lag phenomena in 
general, and on how these phenomena are currently being modelled in the domain of predictive 
microbiology. It can be concluded that the models available until now remain largely empirical and thus 
have limited predictive value in environmental conditions other than those for which the model was 
developed and for which the parameters were estimated. McKellar and Knight (2000) designate this 
problem to the poor understanding of the physiological events taking place during adaptation of cells to 
new environments. They also emphasise that empirical equations have a limited ability to enhance the 
knowledge concerning the physiological stages of bacterial adaptation to new environments and 
subsequent growth. Especially when the purpose of the models is predictive rather than descriptive, like is 
the case in predictive microbiology, it is important to incorporate as much physiological knowledge as 
possible into the model in order to make it more generally valid. One of the topics of this work package is 
the study of the underlying mechanisms of the lag phenomena such that we would be able to give the 
parameters some mechanistic meaning, including its temperature dependency.  
To learn more about the basic mechanisms behind lag phenomena, the theory on cell division is studied 
on an individual based level. Although some literature (e.g., Cooper and Helmstetter (1968) and Donachie 
(1968)) dates from 30 to 40 years ago, and provides a large amount of information on how cells would 
likely respond to changing environmental conditions, it has up till now hardly been introduced in the field 
of predictive microbiology. It appears that initiation of DNA replication is regulated by the increase in cell 
mass and that a constant time is needed for DNA replication and cell division (the so-called C and D 
period respectively). This is illustrated in Figure 20.  
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Figure 20 : Schematic representation of the cell cycle (after Keasling et al., 1995). The volume of the cell 
grows continuously at a certain growth rate μ. At a particular time, DNA replication is initiated. An un-

initiated chromosome origin is represented by an open circle. A chromosome origin at which DNA 
replication is initiated is represented by a filled circle. The time required for a replication fork to proceed 
from one end of the genome (origin) to the other (terminus) is denoted by the C-period. The time needed 

for cell division (after replication is terminated) is denoted by the D-period. 

 

As a consequence, cell mass at division (and also average cell mass) is an exponential function of growth 
rate and (C + D) period: md = 2m·exp[ µ(C + D) ]. The repercussion of this theory on the evolution of a 
cell population after a medium shift predicts rate maintenance of cell number. Based on published 
experimental evidence and the theory of Donachie (1968) and Cooper and Helm-stetter (1968) on DNA 
replication and cell division, we proposed a similar theory for the behavior of cell populations at a 
temperature shift and at a (more general) combination of medium and temperature shift. From the 
obtained theory, and the temperature dependence of µ and (C + D), the lag time λ can be predicted. 
Simulation results for a temperature shift from 15°C to 35°C with the resulting intermediate lag phase are 
shown in Figure 21. 
 

 

Figure 21 : Fit of the BacSim model simulation results on an experimental dataset of Escherichia coli K12 
(‘*’), subject to a sudden temperature increase from 15 to 35°C (dashed line) (as performed in Task 1.1). 

The model is capable of describing the intermediate lag phase dynamics. 
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This theory is then the basis for a critical evaluation of the existing modeling concepts on lag in predictive 
microbiology. An important conclusion is that the so-called physiological state of the cells which is very 
important in the prediction of lag behavior, can now be identified with measurable cell parameters like 
cell mass, DNA, RNA and protein content per cell. The physiological state of the cells evolves 
exponentially as a function of growth rate and interval between initiation of DNA replication and cell 
division (C + D). Furthermore, from this definition, it emerges that the work defined by the product  λ · µ 
corresponds exactly to the change in physiological state between the two environments. 

For more details, reference is made to Dens et al. (2005a,b). 

The individual-based modeling methodology has been studied extensively in this research. The modeling 
framework used for these modeling efforts, is BacSim (see, a.o., Kreft et al., 1998). Considerable effort 
has been put into documenting and debugging the source code of this framework, in order to gain a better 
understanding of the object-oriented structure of the program and assure an efficient continuation of this 
research. The model that was used for this research was based on an older version of BacSim. The model 
was modified to use a newer BacSim version, implying the adaptation of the code to a new, more logical 
object-oriented structure. This updating process guarantees that future model extensions will be 
straightforward to integrate, and eases our communication and collaboration with the original BacSim 
developers. 
 
IbM implementation of S&P type models 
In a second part of this work package, BacSim has been used to develop a generic platform for the 
implementation of S&P type microbial growth models (Van Impe et al., 2005 and Poschet et al., 2005a), 
where the onset of the stationary phase is modelled in a more mechanistic way, incorporating the effect of 
metabolite and substrate concentrations. An overview can be found in Standaert et al. (2004). The 
developed model serves as a platform to work towards more specific case studies.  
One of those specific case studies is the implementation of an antagonistic two-species system, which is 
described in Task 2.1. In essence, the IbM model is a translation of the macroscopic model structures 
presented in Task 2.1 to the level of the individual cell. This way, the model can be extended to 
incorporate inter-cell variability and, on the long term, effects of spatial structure on the behaviour of the 
microbial populations.  
 
Exploration of IbM parameter estimation techniques 
IbM parameter identification is also one of the topics in Task 3.3. IBMs can only be simulated when 
individual model parameters and their stochastic properties are known. Opposed to macroscopic variables, 
cell-based characteristics are much more difficult to determine experimentally. Estimation of individual 
parameters from macroscopic data stands for an attractive supplement to the time-consuming, labor-
intensive, and error-prone individual measurements. Moreover, parameter estimation of IBMs is still a 
relatively unexplored area but becomes more feasible given the incessant progress in computational 
capacity.  
Individual growth rate and the associated variance have been estimated from macroscopic cell density 
measurements of the 2-species antagonist-target system, described in Task 2.1. Parameter estimates are 
obtained via least squares estimation and based on a grid-search approach. Practical issues on simulation 
limitations, minimizing Monte Carlo variance, choice of the objective function and others, have been 
resolved. Results show that the average individual growth rate and its associated variance can be 
estimated uniquely though with difficulty from exponential growth data. The effect of number of data 
points and the sample spacing has been investigated. Opposed to population models, parameter estimation 
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uncertainty is less influenced by the number of data points (only large datasets can lower the variance 
significantly) and grouping of samples (or replaced sampling at the same time instants) lowers the 
variance. 
A journal publication covering this research has been submitted (Standaert et al., 2006b). 
 
Work Package 4: Towards a national centre for predictive microbiology/risk assessment 
 
Task 4.1: One-way communication with the national food industry - Development of an Internet Portal 
Site 
 
The project website (see Figure 22) can be consulted at  
http://cit.kuleuven.be/biotec/research/projects/podwb/index.php. The website contains an introduction, a 
project summary, an overview of the scientific partners, an overview of the members of the advisory 
committee. The Internet Portal site is visualized through “Microbiology Links” covering general subjects 
and more specific ones like HACCP, risk assessment, micro-organism specific information, predictive 
microbiology software and (European) government guidelines regarding food safety (see an example in 
Figure 23).  
 

 
Figure 22: Homepage of the project website. 

 
As part of the project’s dissemination, four hands-on sessions were organized for the members of the 
users’ committee of the project, comprising people from the Belgian Federal Science Policy, for policy 
supporting purposes, as well as people from the food industry. In these sessions, the basics of predictive 
microbiology as a condensed knowledge base for pro-active food safety preservation was elaborated upon 
(Sessions I and II), while in Session III and IV more application-oriented examples were treated in detail. 
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Every session was followed by a short survey for having guidance for the organisation of the next session, 
and it can be stated that the users’ committee was appreciating very much these workshops. 
 

 
 

Figure 23: A screenshot showing part of the Risk Assessment links 
 provided and shortly commented upon. 

 
The user committee had eight meetings concerning the scientific results of the project: 
• May 3, 2002  
• November 8, 2002  
• March 14, 2003  
• September 26, 2003  
• March 19, 2004  
• September 24, 2004  
• March 18, 2005  
• June 9, 2006 
 
An important dissemination activity of the project has been the Fourth International Conference on 
Predictive Modeling in Foods took place in Quimper (France) in a co-organization of the Université de 
Bretagne Occidentale (France) and K.U.Leuven/BioTeC (Van Impe J.F.M., Geeraerd A.H., Leguérinel I. 
and Mafart P. 2003. Predictive Modeling in Foods - Conference Proceedings. K.U.Leuven/BioTeC, 
Belgium (ISBN 90-5682-400-7), 347 p.). This conference was the fourth world wide conference in the 
discipline and KULeuven/BioTeC is also invited to co-organize the next world wide conference, taking 
place in Greece in 2007. 
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Task 4.2: Two-way communication with the national food industry - Towards the development of Active 
Server Pages 
 
Suggestions made by members of the user committee, at the occasion of the scientific meetings or the 
hands-on sessions, or made by e-mail, and covering both questions and suggestions related with the 
website, where all taken into account during the continuous update of the project website. 
 
A direct technological realization of the project is GinaFiT – a freeware add-inn for Microsoft® Excel (see 
Figure 24) related with the identification of suitable mathematical models for the inactivation of micro-
organisms under varying environmental conditions (see also the publication of Geeraerd et al., 2005). The 
user-friendly tool bridges the gap between people developing predictive modeling approaches and end-
users in the food industry not familiar with advanced non-linear regression analysis tools. The current 
version of the tool contains nine inactivation models. The tool can freely be downloaded from the 
K.U.Leuven/BioTeC-homepage http://cit.kuleuven.be/biotec/ at the topic “Downloads”. 
At this moment, about 200 people from around the globe have downloaded the tool, and positive reactions 
were received. People downloading the tool are generally affiliated with universities, other research 
institutes or food industry, but also with the chemical and pharmaceutical industry. This illustrates the 
versatility of GInaFiT. Support for end-users having questions related with the direct or indirect 
application possibilities of GInaFiT is deliverd on a case-by-case basis.  
 
 

 
 

Figure 24: A GInaFiT screenshot: an example of a microbial inactivation model identification (parameter 
estimates in column F, standard errors in column G, figure, statistical measures in columns L and M) 

based on the experimental data included in columns A and B.
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J.F. Van Impe, F. Poschet, A.H. Geeraerd and K.M. Vereecken 2005. Towards a novel class of predictive 
microbial growth models. International Journal of Food Microbiology, 100, 97-105 
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M. Antwi, A.H. Geeraerd, K.M. Vereecken, R. Jenné, K. Bernaerts and J.F. Van Impe 2006. Influence of 
a gel microstructure as modified by gelatin concentration on Listeria innocua growth. Innovative Food 
Science & Emerging Technology, 7(1-2), 124-131 (Special Issue following the Ninth International 
Congress on Engineering and Food, Montpellier (France), March 7-11, 2004) 
 
K. Francois, F. Devlieghere, M. Uyttendaele and J. Debevere 2006. Risk assessment of Listeria 
monocytogenes: impact of individual cell variability on the exposure assessment step. Risk Analysis, 26, 1, 
105-114 
 
K. Francois, F. Devlieghere, M. Uyttendaele, A.R. Standaert, A.H. Geeraerd, P. Nadal, J.F. Van Impe and 
J. Debevere 2006. Single cell variability of L. monocytogenes grown on liver pâté and cooked ham at 7°C: 
comparing challenge test data to predictive simulations. Journal of applied microbiology, 100, 800-812 
 
K. Francois, F. Devlieghere, A.R. Standaert, A.H. Geeraerd, J.F. Van Impe and J. Debevere 2006. Effect 
of environmental parameters (temperature, pH & aw) on the individual cell lag phase and generation time 
of Listeria monocytogenes. International Journal of Food Microbiology, 108, 326-335 
 
M. Janssen, A.H. Geeraerd, F. Logist, Y. De Visscher, K.M. Vereecken, J. Debevere, F. Devlieghere and 
J.F. Van Impe 2006. Modeling Yersinia enterocolitica inactivation in coculture experiments with 
Lactobacillus sakei as based on pH and lactic acid profiles. International Journal of Food Microbiology, 
111, 59-72. 
 
I.A.M. Swinnen, K. Bernaerts and J.F. Van Impe 2006. Modeling the work to be done by Escherichia coli 
to adapt to sudden temperature upshifts. Letters in Applied Microbiology, 42, 507-513 
 
V.P. Valdramidis, A.H. Geeraerd, K. Bernaerts and J.F. Van Impe 2006. Microbial dynamics versus 
mathematical model dynamics; the case of microbial heat resistance induction. Innovative Food Science 
& Emerging Technologies, 7 (1-2), 80-87. (Special Issue following the Ninth International Congress on 
Engineering and Food, Montpellier (France), March 7-11, 2004) 
 
V.P. Valdramidis, A.H. Geeraerd, J.E. Gaze, A. Kondjoyan, A.R. Boyd, H.L. Shaw and J.F. Van Impe 
2006. Quantitative description of Listeria monocytogenes inactivation kinetics with temperature and water 
activity as the influencing factors; model prediction and methodological validation on dynamic data. 
Journal of Food Engineering, 76 (1), 79-88 
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K. Francois, A. Valero, A.H. Geeraerd, J.F. Van Impe, J. Debevere, R.M. Garcia-Gimeno, G. Zurera-
Cosano and F. Devlieghere 2007. Effect of pre-incubation temperature and pH on the individual cell lag 
phase of Listeria monocytogenes, cultured at refrigeration temperatures. Food Microbiology, 24, 32-43. 
 
V.P. Valdramidis, A.H. Geeraerd, F. Poschet, B. Ly-Nguyen, I. Van Opstal, A.M. Van Loey, C.W. 
Michiels, M.E. Hendrickx and J.F. Van Impe 2007. Model based process design of the combined high 
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Engineering, 78, 1010-1021. 



Project CP/31- Microbial Food Safety Assessment: Development And Integration Of Generic Predictive Modeling Tools 

 

SPSD II - Part I - Sustainable production and consumption patterns - Agro-Food 74 
 

submitted  for publication 
K.P.M. Gysemans, K. Bernaerts, A. Vermeulen, A.H. Geeraerd, J. Debevere, F. Devlieghere and J.F. Van 
Impe 2006. Exploring the performance of logistic regression model types on growth/no growth data of 
Listeria monocytogenes. International Journal of Food Microbiology (under revision) 
 
A. Vermeulen, K.P.M. Gysemans, K. Bernaerts, A.H. Geeraerd, J.F. Van Impe, J. Debevere and F. 
Devlieghere 2006. Influence of varying pH’s, water activities and acetic acid concentrations on the 
growth/no growth boundary of Listeria monocytogenes at 7°C: data collection for the development of a 
growth/no growth model. International Journal of Food Microbiology (under revision)  
 
K.P.M. Gysemans, K. Bernaerts, A.H. Geeraerd, A. Vermeulen, J. Debevere, F. Devlieghere and J.F. Van 
Impe 2006. Evaluation of growth/no growth modeling approaches on a non-abrupt growth/no growth 
interface. (submitted) 
 
A.R. Standaert, K. Bernaerts, J.-U. Kreft and J.F. Van Impe 2006. Parameter identification for individual 
based models: a case study from predictive microbiology. (submitted) 
 
A.R. Standaert, K. Francois, F. Devlieghere, J. Debevere, J.F. Van Impe and A.H. Geeraerd 2006. 
Modeling of lag time distributions for Listeria monocytogenes. (submitted) 
 
V.P. Valdramidis, A.H. Geeraerd, and J.F. Van Impe 2006. Stress adaptive responses by heat under the 
microscope of predictive microbiology. (submitted) 
 
Van Derlinden E., Bernaerts K., and J.F. Van Impe 2006. Dynamics of Escherichia coli at elevated 
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Accurate modeling of non-loglinear survivor curves. International Dairy Federation Bulletin, 392, 97-110 
 

International Conference Proceedings with peer review - full paper 
2002 
F. Devlieghere, A. Geeraerd, J. Van Impe and J. Debevere 2002. Combined preservation factors and 
modeling. Frontiers in microbial fermentation and preservation. Society for Applied Microbiology 
(SFAM) & The Dutch Society for Microbiology, 29-31 (*invited lecture*) [January 2002 Meeting of 
SFAM, Wageningen (The Netherlands), January, 9-11, 2002] 
 
K. Bernaerts and J.F. Van Impe 2002. Optimal dynamic experiment design for estimation of microbial 
growth kinetics at sub-optimal temperatures: modes of implementation. In: B. O'Connor and D. Thiel 
(Eds.), Proceedings of the Second International Conference on Simulation in Food and Bio-industry, 212-
216 [The Second International Conference on Simulation in Food and Bio-industry (FOODSIM' 2002), 
Blarney (Ireland), June 17-18, 2002] 
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A.H. Geeraerd, V.P. Valdramidis, F. Devlieghere, H. Bernaert, J. Debevere and J.F. Van Impe 2002. 
Development of a novel modeling methodology by incorporating a priori microbiological knowledge in a 
black box modeling approach. In: L. Axelsson, E.S. Tronrud and K.J. Merok (Eds.) Proceedings and 
abstracts of the 18th International ICFMH Symposium, 135-138 [Food Micro 2002, Eighteenth 
International Symposium of the International Committee on Food Microbiology and Hygiene (ICFMH), 
Lillehammer (Norway), August 18-23, 2002]  
 
K.M. Vereecken, M. Antwi, M. Janssen, A. Holvoet, F. Devlieghere, J. Debevere and J.F. Van Impe 
2002. Biocontrol of microbial pathogens with lactic acid bacteria: evaluation through predictive modeling. 
In: L. Axelsson, E.S. Tronrud and K.J. Merok (Eds.), Proceedings & Abstracts of the 18th Symposium of 
the International Committee on Food Microbiology and Hygiene (ICFMH), 163-166 [Food Micro 2002, 
Eighteenth International Symposium of the International Committee on Food Microbiology and Hygiene 
(ICFMH), Lillehammer (Norway), August 18-23, 2002]  
 
2003 
K. Bernaerts, T. Nhan Minh and J.F. Van Impe 2003. Critical evaluation of a nonlinear model from 
predictive microbiology using sensitivity analysis and optimal experimental design. In: I. Troch and F. 
Breitenecker (eds.) Proceedings 4th MathMod Vienna, 1274-1280, ARGESIM Report No. 24, Volume 2, 
Technical University Vienna (ISBN 3-901608-24-9) [IMACS Symposium on Mathematical Modeling, 
Vienna (Austria), February 5-7, 2003] 
 
F. Poschet, K.M. Vereecken, A.H. Geeraerd, L. Xu, B.M. Nicolaï and J.F. Van Impe 2003. Development 
and analysis of a novel class of predictive microbial growth models. In: I. Troch and F. Breitenecker 
(eds.) Proceedings 4th MathMod Vienna, 1281-1288, ARGESIM Report No. 24, Volume 2, Technical 
University Vienna (ISBN 3-901608-24-9) [IMACS Symposium on Mathematical Modeling, Vienna 
(Austria), February 5-7, 2003] 
 
A.H. Geeraerd, D. Marquenie, C. Soontjens, C.W. Michiels, B.M. NicoIaï and J.F. Van Impe 2003. 
Evaluation of additive and synergistic predictive modeling: Application on fungal inactivation by 
combined treatments. In: I. Troch and F. Breitenecker (Eds.) Proceedings 4th MathMod Vienna, 1289-
1297, ARGESIM Report No. 24, Volume 2, Technical University Vienna (ISBN 3-901608-24-9) 
[IMACS Symposium on Mathematical Modeling, Vienna (Austria), February 5-7, 2003] 
 
J.F. Van Impe, F. Poschet, K.M. Vereecken and A.H. Geeraerd 2003. Towards a novel class of predictive 
microbial growth models. In: J.F.M. Van Impe, A.H. Geeraerd, I. Leguérinel and P. Mafart (Eds.), 
Predictive Modeling in Foods - Conference Proceedings, 73-74, KULeuven/BioTeC, Belgium (ISBN 90-
5682-400-7) [Fourth International Conference on Predictive Modeling in Foods, Quimper (France), June 
15-19, 2003] 
 
F. Poschet, A.H. Geeraerd, K.M. Vereecken, B.M. Nicolaï and J.F Van Impe 2003. Analysis of a novel 
predictive microbial growth model. In: J.F.M. Van Impe, A.H. Geeraerd, I. Leguérinel and P. Mafart 
(Eds.), Predictive Modeling in Foods - Conference Proceedings, 93-95, KULeuven/BioTeC, Belgium 
(ISBN 90-5682-400-7) [Fourth International Conference on Predictive Modeling in Foods, Quimper 
(France), June 15-19, 2003] 
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K. Bernaerts, K. Gysemans, T. Nhan Minh and J.F. Van Impe 2003. Optimal experiment design for 
cardinal values estimation: instructions for data collection. In: J.F.M. Van Impe, A.H. Geeraerd, I. 
Leguérinel and P. Mafart (Eds.), Predictive Modeling in Foods - Conference Proceedings, 111-113, 
KULeuven/BioTeC, Belgium (ISBN 90-5682-400-7) [Fourth International Conference on Predictive 
Modeling in Foods, Quimper (France), June 15-19, 2003]  
 
K. Francois, F. Devlieghere, A.R. Standaert, A.H. Geeraerd, J.F. Van Impe and J. Debevere 2003. 
Modeling the individual cell lag phase: effect of temperature and pH on the individual cell lag distribution 
of Listeria monocytogenes. In: J.F.M. Van Impe, A.H. Geeraerd, I. Leguérinel and P. Mafart (Eds.), 
Predictive Modeling in Foods - Conference Proceedings, 200-202, KULeuven/BioTeC, Belgium (ISBN 
90-5682-400-7) [Fourth International Conference on Predictive Modeling in Foods, Quimper (France), 
June 15-19, 2003] 
 
A.R. Standaert, A.H. Geeraerd, K. Bernaerts, K. Francois, F. Devlieghere, J. Debevere and J.F Van Impe 
2003. Obtaining single cells - analysis and evaluation of an experimental protocol by means of a 
simulation model. In: J.F.M. Van Impe, A.H. Geeraerd, I. Leguérinel and P. Mafart (Eds.), Predictive 
Modeling in Foods - Conference Proceedings, 203-205, KULeuven/BioTeC, Belgium (ISBN 90-5682-
400-7) [Fourth International Conference on Predictive Modeling in Foods, Quimper (France), June 15-
19, 2003] 
 
I.A.M. Swinnen, K. Bernaerts, K. Gysemans and J.F.M. Van Impe 2003. Quantifying microbial lag 
phenomena due to a sudden rise in temperature: a systematic study. In: J.F.M. Van Impe, A.H. Geeraerd, 
I. Leguérinel and P. Mafart (Eds.), Predictive Modeling in Foods - Conference Proceedings, 212-214, 
KULeuven/BioTeC, Belgium (ISBN 90-5682-400-7) [Fourth International Conference on Predictive 
Modeling in Foods, Quimper (France), June 15-19, 2003] 
 
K. Francois, F. Devlieghere, A.R. Standaert, A.H. Geeraerd, J.F. Van Impe and J. Debevere 2003. 
Modeling the individual cell lag phase: A protocol to isolate single cells using dilution series. In: J.F.M. 
Van Impe, A.H. Geeraerd, I. Leguérinel and P. Mafart (Eds.), Predictive Modeling in Foods - Conference 
Proceedings, 215-217, KULeuven/BioTeC, Belgium (ISBN 90-5682-400-7) [Fourth International 
Conference on Predictive Modeling in Foods, Quimper (France), June 15-19, 2003] 
 
V.P. Valdramidis, A.H. Geeraerd, K. Bernaerts, A. Kondjoyan and J.F. Van Impe 2003. Realistic dynamic 
temperature profiles as a key ingredient for microbial inactivation modeling: backstage microbiological 
considerations. In: J.F.M. Van Impe, A.H. Geeraerd, I. Leguérinel and P. Mafart (Eds.), Predictive 
Modeling in Foods - Conference Proceedings, 253-255, KULeuven/BioTeC, Belgium (ISBN 90-5682-
400-7) [Fourth International Conference on Predictive Modeling in Foods, Quimper (France), June 15-
19, 2003]  
 
M. Antwi, K.M. Vereecken and J.F. Van Impe 2003. Effects of gelatine concentration on the growth 
parameters of Listeria innocua in a model gel system. In: Proceedings of the 17th Forum for Applied 
Biotechnology, Part II, Communications in Agricultural and Applied Biological Sciences, Universiteit 
Gent 68/2(b), 415-420 [17th Forum for Applied Biotechnology (FAB), Ghent (Belgium), September 18-
19, 2003]  
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M. Janssen, K.M. Vereecken, A.H. Geeraerd, F. Logist, Y. De Visscher, A. Cappuyns, F. Devlieghere, J. 
Debevere, J.F. Van Impe 2003. Predicting inhibition and inactivation of Yersinia enterocolitica through 
lactic acid production by Lactobacillus sakei.  In: Proceedings of the 17th Forum for Applied 
Biotechnology, Part II, Communications in Agricultural and Applied Biological Sciences, 68/2(b), 449-
457 [17th Forum for Applied Biotechnology (FAB), Ghent (Belgium), September 18-19, 2003]  
 
A.R. Standaert, E.J. Dens and J.F. Van Impe 2003. Individual-based modeling: a mechanistic complement 
underpinning macroscopic models in predictive microbiology. In: Proceedings of the 17th Forum for 
Applied Biotechnology, Part II, Communications in Agricultural and Applied Biological Sciences, 68/2(b), 
529-533 [17th Forum for Applied Biotechnology (FAB), Ghent (Belgium), September 18-19, 2003] 
 
I.A.M. Swinnen, K. Bernaerts, K. Gysemans and J.F.M. Van Impe 2003. The influence of temperature 
shifts on the lag phase of Escherichia coli. In: Proceedings of the 17th Forum for Applied Biotechnology, 
Part II, Communications in Agricultural and Applied Biological Sciences, Universiteit Gent, 68/2(b), 535-
538 [17th Forum for Applied Biotechnology (FAB), Ghent (Belgium), September 18-19, 2003]  
 
F. Devlieghere and J. Debevere (2003). Possibilities and limitations of predictive microbiology in 
microbial risk assessment. In : EURO FOOD CHEM XII STRATEGIES FOR SAFE FOOD, Analytical, 
industrial and legal aspects : Challenges in organisation and communication, 109-112 [EURO FOOD 
CHEM XII. Strategies for safe food, Bruges (Belgium), September 24-26, 2003] 
 
A.H. Geeraerd, D. Marquenie, C. Soontjens, C. Michiels, B. Nicolaï and J.F. Van Impe 2003. Predicting 
the combined effect of a mild heat and pulsed light treatment on the inactivation of Botrytis cinerea and 
Monilinia fructigena. Proceedings of the Postharvest Unlimited Conference, Acta Horticulturae, 599, 
623-627 [Postharvest Unlimited, Leuven (Belgium), June 11-14, 2002] 
 
2004 
M. Janssen, K.M. Vereecken, A.H. Geeraerd, A. Cappuyns, J.F. Van Impe 2004. Quantifying the 
inactivation of Listeria innocua through lactic acid. In: Proceedings of the 9th International Congress on 
Engineering and Food (ICEF9), CDROM, 156-161 [Ninth International Congress on Engineering and 
Food, Montpellier (France), March 7-11, 2004] 
 
I.A.M. Swinnen, K. Bernaerts and J.F.M. Van Impe 2004. Systematic study of temperature shifts on the 
lag phase of Escherichia coli. In: Proceedings of the 9th International Congress on Engineering and Food 
(ICEF9), CDROM, 192-197 [Ninth International Congress on Engineering and Food, Montpellier 
(France), March 7-11, 2004] 
 
V.P. Valdramidis, A.H. Geeraerd, K. Bernaerts and J.F. Van Impe 2004. Dynamic versus static thermal 
inactivation: the necessity of validating some modeling and microbial hypotheses. In: Proceedings of the 
9th International Congress on Engineering and Food (ICEF9), CDROM, 198-203 [Ninth International 
Congress on Engineering and Food, Montpellier (France), March 7-11, 2004] 
 
M. Antwi, K.M. Vereecken, A.H. Geeraerd and J.F.M. Van Impe 2004. Effects of a gel microstructure on 
Listeria innocua growth. In: Proceedings of the 9th International Congress on Engineering and Food 
(ICEF9), CDROM, 339-344 [Ninth International Congress on Engineering and Food, Montpellier 
(France), March 7-11, 2004] 



Project CP/31- Microbial Food Safety Assessment: Development And Integration Of Generic Predictive Modeling Tools 

 

SPSD II - Part I - Sustainable production and consumption patterns - Agro-Food 78 
 

A.H. Geeraerd and J.F. Van Impe 2004. GInaFiT, a free software tool to describe non-loglinear microbial 
survival curves with so-called shoulders and/or tails. In: D. Causeur and F. Husson (Eds.), Proceedings of 
the 8th European conference Food Industry and Statistics, 293-299 [8e journées européennes Agro-
industrie et Méthodes Statistiques, Rennes (France), March 10 - 12, 2004] 
 
K.P.M. Gysemans, K. Bernaerts and J.F. Van Impe 2004. Constrained input optimization for optimal 
parameter estimation of a predictive biokinetic model. In: Proceedings of the 9th International 
Symposium on Computer Applications in Biotechnology, CDROM, 6p. [9th International Symposium on 
Computer Applications in Biotechnology (CAB9), Nancy (France), March 28-31, 2004]   
 
M. Janssen, K.M. Vereecken, A.H. Geeraerd, F. Logist, Y. De Visscher, A. Cappuyns, F. Devlieghere, J. 
Debevere and J.F. Van Impe 2004. Quantifying lactic acid induced inhibition and inactivation of Yersinia 
enterocolitica in mixed cultures. In: Proceedings of the 9th International Symposium on Computer 
Applications in Biotechnology, CDROM, 6p. [9th International Symposium on Computer Applications in 
Biotechnology (CAB9), Nancy (France), March 28-31, 2004] 
 
A.R. Standaert, F. Poschet, A.H. Geeraerd, F. Van Uylbak, J.-U. Kreft and J.F. Van Impe 2004. 
Evaluating a novel class of predictive microbial growth models in an individual-based framework. In: 
Proceedings of the 9th International Symposium on Computer Applications in Biotechnology, CDROM, 
6p. [9th International Symposium on Computer Applications in Biotechnology (CAB9), Nancy (France), 
March 28-31, 2004] 
 
A.H. Geeraerd, V.P. Valdramidis and J.F. Van Impe 2004. Towards the accurate assessment of non-
loglinear microbial survivor kinetics: development of a freeware user-friendly tool in the area of 
predictive microbiology. In: P. de Jong and M. Verschueren (Eds.), Proceedings of FOODSIM'2004, 82-
86, NIZO Food Research, The Netherlands (ISBN 90-77381-11-2) [The 3 rd International Conference on 
Simulation in Food and Bio-industry 2004, Wageningen (The Netherlands), June 16-18, 2004] 
 
K. Gysemans, K. Bernaerts, I. Verhoeven and J.F. Van Impe 2004. Constrained optimization of 
piecewise-constant inputs for optimal square root model parameters estimation. In: P. de Jong and M. 
Verschueren (Eds.), Proceedings of FOODSIM'2004, 75-81, NIZO Food Research, The Netherlands 
(ISBN 90-77381-11-2) [The 3rd International Conference on Simulation in Food and Bio-industry 2004, 
Wageningen (The Netherlands), June 16-18, 2004] 
 
2005 
K. Francois, F. Devlieghere, K. Smet, A.R. Standaert, A.H. Geeraerd, J.F. Van Impe and J. Debevere 
2005. Modeling the effect of environmental parameters (temperature, pH, aw) on the individual cell lag 
phase of Listeria monocytogenes, In: M.L.A.T.M. Hertog and B.M. Nicolaï (Eds.), Proceedings of the 
Third International Symposium on Applications of Modeling as an Innovative Technology in the Agri-
Food-Chain, (MODEL-IT), Acta horticulturae, 674, 39-48. [MODEL-IT: The third international 
symposium: On applications of Modeling as an Innovative Technology in the Agri-Food Chain, Leuven 
(Belgium), May 29 - June 2, 2005]  
 
M. Janssen, A.H. Geeraerd, A. Cappuyns, L. Garcia-Gonzalez, K.M. Vereecken, F. Devlieghere and J.F. 
Van Impe 2005. Separating lactic acid and pH effects on the Listeria innocua inactivation. In: 
M.L.A.T.M. Hertog and B.M. Nicolaï (Eds.), Proceedings of the Third International Symposium on 
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Applications of Modeling as an Innovative Technology in the Agri-Food-Chain, (MODEL-IT), Acta 
Horticulturae, 674, 231-237. [MODEL-IT: The third international symposium: On applications of 
Modeling as an Innovative Technology in the Agri-Food Chain, Leuven (Belgium), May 29 - June 2, 
2005]  
 
A. Kondjoyan, I. Lebert, V.P. Valdramidis, M. Havet, A.H. Geeraerd, A. Lebert and J.F. Van Impe 2005. 
Application of a complete heat- water model to predict microbial growth and inactivation during airflow 
treatments at the surface of meat products. In: M.L.A.T.M. Hertog and 
B.M. Nicolaï (Eds.), Proceedings of the Third International Symposium on Applications of Modeling as 
an Innovative Technology in the Agri-Food-Chain, (MODEL-IT), Acta Horticulturae, 674, 285-292. 
[MODEL-IT: The third international symposium: On applications of Modeling as an Innovative 
Technology in the Agri-Food Chain, Leuven (Belgium), May 29 - June 2, 2005] 
 
A. Valero, R.M. García-Gimeno, G. Zurera, K. Francois, F. Devlieghere and J. Debevere 2005. The 
influence of pre-cultural conditions on the individual cell lag phase and generation time of  Listeria 
monocytogenes, In: M.L.A.T.M. Hertog and B.M. Nicolaï (Eds.), Proceedings of the Third International 
Symposium on Applications of Modeling as an Innovative Technology in the Agri-Food-Chain, (MODEL-
IT), Acta horticulturae, 674, 441-450. [MODEL-IT: The third international symposium: On applications 
of Modeling as an Innovative Technology in the Agri-Food Chain, Leuven (Belgium), May 29 - June 2, 
2005] 
 
2006 
K. Bernaerts, E. Van Derlinden, J.F. Van Impe 2006. Estimation of cardinal temperatures from dynamic 
microbial growth experiments: a comparison of different approaches. In M. Vivien and X. Reynès (Eds.) 
Proceedings of the 9th European conference Food Industry and Statistics, 201-208 [9th European 
conference Food Industry and Statistics, Faculté de Pharmacie, Montpellier (France), January 25-27, 
2006] 
 
V.P. Valdramidis, G.N. Yannakakis, J.F.M. Van Impe, A.H. Geeraerd, 2006. Artificial neural networks as 
a tool for incorporating microbial stress adaptations in the quantification of microbial inactivation. In M. 
Vivien and X. Reynès (Eds.) Proceedings of the 9th European conference Food Industry and Statistics, 
209-217. [9th European conference Food Industry and Statistics, Faculté de Pharmacie, Montpellier 
(France), January 25 - 27, 2006] 
 
 

International Conference Proceedings with review – abstracts 
2002 
Annemie H. Geeraerd, David Marquenie, Carine Soontjens, Chris W. Michiels, Bart M. Nicolaï and Jan 
F. Van Impe 2002. Predicting the combined effect of a mild heat and pulsed light treatment on the 
inactivation of Botrytis cinerea and Monilinia fructigena. Postharvest Unlimited, Book of Abstracts, 
Poster Presentation PT-8, 2p. [Postharvest Unlimited, Leuven (Belgium), June 11-14, 2002] 
 
F. Devlieghere, K. Francois, K.M. Vereecken, A.H. Geeraerd, J.F. Van Impe and J. Debevere, 2002. 
Modeling of chemical inhibition and inactivation. 1st International Conference on Microbial Risk 
Assessment: Foodborne Hazards, University of Maryland, Book of abstracts, Abstract 26. (invited 
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lecture) [1st International Conference on Microbiological Risk Assessment: Foodborne Hazards, Adelphi 
(USA), July 24-26, 2002] 
 
J.F.M. Van Impe 2002. Modeling microbial evolution under dynamic conditions. 1st International 
Conference on Microbiological Risk Assessment: Foodborne Hazards, University of Maryland, Book of 
abstracts, Abstract 28. (invited lecture) [1st International Conference on Microbiological Risk 
Assessment: Foodborne Hazards, Adelphi (USA), July 24-26, 2002] 
 
F. Poschet, K. Bernaerts, A.H. Geeraerd, N. Scheerlinck, B.M. Nicolaï and J.F. Van Impe 2002. 
Investigation of the sensitivity of microbial growth parameter distributions to data quality and quantity by 
means of Monte Carlo analysis. 1st International Conference on Microbiological Risk Assessment: 
Foodborne Hazards, University of Maryland, Book of abstracts, Abstract 55. [1st International 
Conference on Microbiological Risk Assessment: Foodborne Hazards, Adelphi (USA), July 24-26, 2002] 
 
L. Vermeiren, F. Devlieghere, A. Assi, and J. Debevere, 2002. Inhibitory spectrum of bacteriocin 
producing lactic acid bacteria as a primary screening of their potential use as protective cultures for meat 
preservation. In: L. Axelsson, E.S. Tronrud and K.J. Merok (eds.), Proceedings & Abstracts of the 18th 
Symposium of the International Committee on Food Microbiology and Hygiene (ICFMH), 304 [Food 
Micro 2002, Eighteenth International Symposium of the International Committee on Food Microbiology 
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