# Invasive Plants in Belgium:

# Patterns, Processes and Monitoring











## CONTEXT

- INVASIVE SPECIES: 2 criteria
  - 1. Alien (exotic): taxon introduced ouside its natural distribution
  - 2. Reproduces and increases its range in its new environment
- SECOND LARGEST CAUSE OF BIODIVERSITY LOST

(competition, predation, habitat modification,...)

• INTERNATIONAL PRIORITY :

CBD, IGBP\_GCTE, Diversitas, E.U. 5th and 6th Framework Programme

• NO CLEAR SCIENTIFIC STRATEGY IN BELGIUM:

Lack of scientific basis for monitoring and management

## **OBJECTIVES**

- Multifunctional and multi-level analysis of exotic plant invasion in Belgium
- Specifically :
  - > Provide a **structured list of exotic** and their succes of invasion
  - Detailed analysis of interactions between <u>species dispersal traits</u> <u>and landscape</u> caracteristics
  - Identification of universally valid principles of biological invasions : species and communities traits
  - > Analysis of the **consequences of plant invasion** on ecosystems
- Basic framework for threat evaluation, policies development, management strategy and further research programs

## **PARTNERS**

- Laboratoire d'Ecologie Faculté universitaire des Sciences agronomiques de Gembloux (FUSAGx) (G. Mahy) - coordinator
- Belgian National Botanic Garden (L. Vanhecke)
- Laboratoire de Génétique et Ecologie végétales Université Libre de Bruxelles (ULB) (P. Meerts)
- Research Group Plant and Vegetation Ecology University of Antwerp (UIA) (I. Nijs)

# **METHODS:** Biological models

- All exotics for basic information
- 3 set of target species for detailled analysis
  - Set I: Invaders or potential invaders of natural or semi natural habitats of interest for biodiversity
  - Set II: Species from man made communities (tropical C4 grasses in maize fields)
  - Set III: Exotics that failed to become invasive or with different level of success

# Methods: Biological models

Impatiens glandulifera



Polemonium cearuleum



Rosa rugosa

Prunus serotina



Solidago gigantea

Heracleum mantegazzianum



Fallopia japonica





Senecio inaequidens

## WP I: List and invasion succes

- Compilation of a list of exotics species present or historically found in Belgium
  - Compilation of data from herbarium/litterature
- For set 1 and set 3: estimation of invasive success as expansion rate (area increase/time units)
  - Compilation of data from herbarium/litterature
- For all curent exotic species: evaluation of invasive risk
  - Compilation of data from adjacent or ecologically similar regions:
    litterature and case study

# WP 2: Dispersal/landscape



Relative importance of dispersal features and landscape caracteristics in invasion dynamics

# **WP 3: Trait analysis**

Traits of species with different invasive success (<=WP1)

Traits of representative invaded ecosystems (<= WP2)

#### **Ecophysiological traits**

Relative growth rate, photosynthetic rate, light compensation point, dark respiration rate

[P,K,Mg,Ca, micronutiments]<sub>leaf</sub>

+ Reproductive features (<=WP2)

#### **Ecophysiological traits**

Soil cover

Active radiation, red: far red ratio – humidity

Soil caracteristics and soil elements concentrations (<=WP4)

Multiple regression of invasive success simultaneously on one invader trait and one invaded system trait for all combinaisons

Significant traits of species – ecosystems AND interactions

# WP 4: Impact on ecosystems

Selection of invaded and non-invaded patches within homogeneous sites

Comparisons of ecosystem traits

#### Variance analysis:

- systematic differences in traits
  between invaded and non invaded
  patches across sites
- differences among species in the effect on soils

# Net primary production and above ground nutrient stock

Dried standing phytomass, mineral nutrient composition.

#### **Topsoil chemicals properties**

PH, C total, C/N ratio, Cation exchange capacity, extractable P and cations, nitrogen mineralisation

Multiple regresion (path analysis)

relative importance of site conditions and species traits for determining ecosystems changes (<= WP3)</p>

# **Expected results and valorisation**

- List of exotics species with classification in risk class
- Key traits of species correlated to invasion
- Key traits of ecosystems correlated to invasibility
- Habitat preference for target species
- Historical and current dynamics of invasion for target species
- Landscape compartments prone to invasion in relation to human land use
- Evaluation of level of impact on ecosystem for target species



Early detection of problematic species



Developing strategy for monitoring

Guidelines for Land-use planing

Feasibility of site restoration



## Valorisation and user comittee

- Network for monitoring invasive species
  - In nature reserve (warning system) : RNOB, Ardenne & Gaume, Natuurpunt
  - At larger scale : AEF, FloWer
- Increasing awareness of policy makers (land-use and environment)
  - Aminal, DGRNE, CRNFB, IBGE
- Increasing awareness of belgian scientific community :
  - Biodiversity platform and National Focal point