B-BLOOMS Algal blooms: emerging problem for health and sustainable use of surface waters

- 1. Warning of bloom in UK
- 2. Dead duck in Luxemburg
- 3. Bloom in New-Zealand
- 4. Dead sheeps in Canada

http://www.environmentagency.tv/ye/qa-ea-doc/

R. Willame, CRP-GL, Luxembourg

bio.waikato.ac.nz/staff/davidh_research.shtml

http://www.usask.ca/pds/news2-3.htm

Context

- Algal blooms: a **world-wide** problem in freshwater bodies
- Generally planktic **cyanobacteria**, though toxic freshwater dinoflagellates also recorded
- 40 to 70 % of cyanobacterial blooms release toxins in water
- Other **problems** due to malodorant compounds, inaesthetic aspect, clogging, anoxia
- Cyanotoxins: *hepatotoxins* and *neurotoxins* most frequent.
 Cause death of animals that drink the concentrated scums.
 Human casualties: only dialysis patients in Brazil.
- WHO guideline value = $1.0 \mu g/L$ microcystin-LR
- Recent evidences that nuisance blooms are probably widespread in Belgium

Context

• Environmental conditions include

- high nutrient
- low N:P ratio
- high pH (low CO₂)
- stability and long water residence time
- List of toxic cyanobacterial taxa increasing Most well-known: • *Microcystis*
 - Planktothrix
 - Anabaena
 - Aphanizomenon
 - Nodularia
- Strains of the same species or samples from the same bloom may vary in toxin production
 ⇒ need of molecular markers

Taxonomic molecular markers are generally based on ribosomal DNA sequences

Toxicity molecular markers can be based on recently discovered operons encoding the microcystins

Shirai M. J. Biochim. 126 (1999): 520-529.

RNA WWW server

Objectives

 Document the extent, nature (diversity of organisms and toxins) and phenology of algal blooms in Belgian lakes and ponds

b database **BLOOMBASE**

2) Contribute to the development of predictive models based on monitoring of the ecological conditions linked to bloom formations

• ANN model **BLOOMODEL**

 Develop tools (information, sampling protocols and kits, models, molecular markers) to create a national network for monitoring (**BLOOMNET**) and allow the rapid detection and identification of blooms

Research Partners

1) ULg, Centre d'Ingénierie des Protéines, Institut de Chimie B6, 4000 Liège Dr. Annick WILMOTTE, Christophe BOUTTE Subcontractor: CRITT-Bioindustries, Toulouse, France

2) FUNDP, Unité de Recherche en Biologie des **Organismes** rue de Bruxelles, 61 - 5000 Namur

Prof. Jean-Pierre DESCY, Dr. Véronique GOSSELAIN

3) UG, Sectie Protistologie & Aquatische Ecologie, Krijgslaan 281, S8, 9000 Gent Prof. Wim VYVERMAN, Dr. Koenraad MUYLAERT

Methodology (1)

1) Monitoring of reference lakes (FUNDP, UG) Regular sampling and determination of classical physicochemical parameters of the Lac de l'Eau d'Heure (FUNDP) and Blaarmeersen (UG)

2) Analysis of samples (ULg, FUNDP, UG)

- **Pigments** (HPLC with 'photodiode array', software CHEMTAX) (FUNDP, UG)
- Microscopy (ULg, FUNDP, UG)
- Isolation of cyanobacterial strains from blooms (ULg)
- Identification and measurements of **cyanotoxins** (assays & HPLC) (CRITT Bioindustries, subcontractor ULg)
- **Genotypic diversity** of bloom cyanobacteria (ULg, UG) (rDNA analysed by DGGE and clone libraries)
- Molecular diversity of **cyanotoxin genes** and detection by PCR (Polymerase Chain Reaction) (ULg)

Methodology (2)

3) Database, network and website (ULg, FUNDP, UG)

- Creation of a national network of bloom observers and samplers **BLOOMNET** (ULg, FUNDP, UG)
- Design and creation of a database using Microsoft ACCESS, BLOOMBASE (FUNDP)
- Design and creation of a website **BLOOMWEB** giving access to BLOOMBASE and information from BLOOMNET (Ulg, FUNDP, UG)

4) ANN Modeling (FUNDP)

- Construction of an ANN (Artificial Neural Network) model to identify and predict blooms (**BLOOMODEL**)
- Coupling of **BLOOMODEL** with watershed models for the Lac de l'Eau d'Heure

Expected results

- gather data on extent and characteristics of the algal blooms in Belgium
- create a national network **BLOOMNET** and a permanent database **BLOOMBASE** about algal proliferations in freshwaters
- integrate our country into European research activities (networks and integrated projects) and international studies
- design a predictive model (of the Neuronal Network type) for blooms, **BLOOMODEL**
- help Flanders and Wallonia to implement the EC Water Framework Directive, because they will have to monitor the freshwater quality in lakes (including biological parameters like algal blooms)

Valorisation of data

- Website **BLOOMWEB**
- Publications in peer-reviewed international journals
- Communications in national and international congresses
- Help to implement the EC Water Framework directive and to design policies concerning freshwater quality
- Use of **BLOOMBASE** and **BLOOMODEL** for later studies (global change, etc)