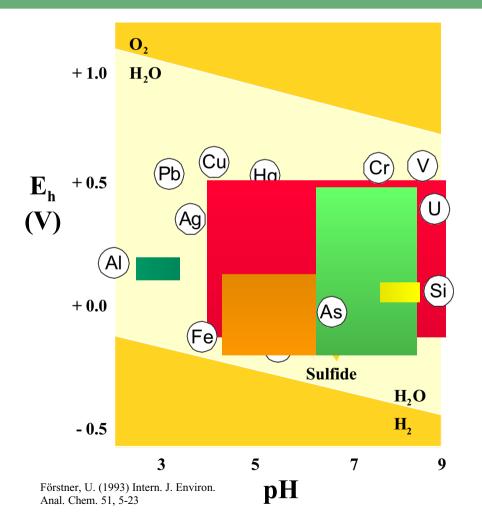


Changes in Metal Biogeochemistry Resulting From Wetland Creation: Bioavailability, Toxicity and Risk

Prof. Filip Tack, UGent Prof. Patrick Meire, UIA Prof. Colin Janssen, UGent

Wetlands

- Key element in Integral Water
 Management
 - prevent floodings of inhabited areas: natural storage of water during high water events
 - increase valuable ecosystem area: nature development
 - ecology
 - biodiversity


"Wetland Creation"

Selection of suitable areas

Development scenarios: different flooding regimes

Selected area may be contaminated with metals

Heavy Metal Mobility as a Function of pH and Redox

Aims of this Project

- To contribute to management-oriented models to predict pollutant behaviour upon changing flooding regimes
- To develop criteria to appraise the risk arising from the creation of wetlands in metal contaminated areas

WETMAT - Wetland Management Tools

Scientific Goals

- Bioavailability and bioaccumulation of metals in soil, sediment and biota
- Ecotoxicological effects on different key species (reed plants, invertebrates)
- Models predicting metal behaviour as a function of applied flooding regime
- Developpement of guidelines for assessing risks arising from wetland creation in contaminated areas

Research Partners

Prof. Patrick Meire

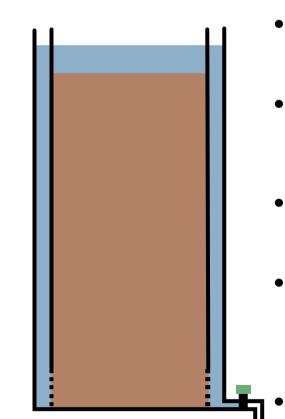
University of Antwerp Research Group Ecosystem Management

Prof. Filip Tack

Ghent University Laboratory of Analytical Chemistry and Applied Ecochemistry Coordination

> Prof. Colin Janssen Ghent University Laboratory of Environmental Toxicology and Aquatic Ecology

Methods


Experimental trials: laboratory and greenhouse

Data and process information

- behaviour of trace metals in abiotic and biotic compartments
- ecotoxicity
- ecosystem development

Modelling

Pilot scale validation

Experimental Trials

- Barrels filled with sediment
- Moisture regime can be controlled
- Equilibration over extended periods
- Changes in soil physicochemistry
- Metal total and speciation analysis, mobility, transfer to plant
- Contaminant effects to plants and biota

Treatments

Substrates

• Water

- Uncontaminated soil
- Contaminated soil
- Scheldt river sediment
- Saline water (16 mS cm⁻¹)
- Brackish water $(3 5 \text{ mS cm}^{-1})$
- Sweet water (0.5 mS cm⁻¹)

- Moisture regimes
- Planted and not-planted

- Continuously inondated
- Periodically inondated

Pilot Scale Experiment

- Installation flooded by Scheldt river (UIA)
- Four tanks

Expected Outcomes

- Contribute towards development of management-oriented models: predict whether and under which conditions ecosystem development may still be acceptable in terms of environmental quality and public health
- Criteria to appraise the risk arising from the creation of wetlands in contaminated areas

Exploitation

- Wetland creation/management: also account for metals present!
- Wetlands for flooding control (EU Directive 2000/60/EC Framework for community action in water policy)
- Wetlands for water treatment (EU Directive 2000/60/EC)
- Creation, protection and conservation of valuable ecosystem areas (RAMSAR Convention; Natura 2000)