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1 Introduction and scope 

1.1 Rationale behind the BOREAS project 

The new Climate Action – Energy for a Changing World of the European Commission 

proposed several measures to fight climate change and promote renewable energy. One of those 

measures includes legally enforceable targets to increase the share of renewable in the energy 

mix of each Member State. The target of the renewable share in the European Union is set to 20% 

by the year 2020, and the European Commission has set individual targets for every Member 

State. In the case of Belgium, the target is set to 13%, whereas the renewable share in 2008 was 

only 3.3 % (Eurostat, 2010). 

Basically, this is the consequence of the (post)-Kyoto-agreements. But apart from this, 

consumption of energy is increasing year by year whilst it is proving increasingly difficult to find 

and extract sufficient fossil fuels to cover the annual increase in consumption. Contributions to 

the share of renewables are required from various sources, such as biomass, wind, hydropower 

and solar energy. In particular, offshore wind has boosted during recent years. 

Offshore wind energy is now at a stage where it is becoming a competitive energy source. 

The cost of power generated from onshore wind farms in the most interesting locations is now 

reaching the level of most fossil fuel sources. During recent years a number of wind farms have 

been developed in shallow seas around the European coasts. Offshore developments give larger 

sites and the advantages of economies of scale. Offshore sites also have the advantage of being 

“out of sight, out of mind“, in addition to providing higher and more regular wind energy 

resources. However, offshore wind developments are facing a number of technological challenges 

specifically related to turbine tower foundations, and maintenance of the installations. 

Ocean energy is an unexploited source of offshore energy, and is getting more attention of 

technology developers and policy makers. The main forms of ocean energy are wave energy and 

tidal current energy. They both have several advantages over wind energy such as: higher energy 

density, more predictable resources and less visible than windmill farms. Wave energy is also 

more persistent than wind: waves will transfer energy from windier areas to coastal zones and 

remain long after the wind has dropped. Tidal current energy is extremely predictable, as the 

most important driving force is the astronomical tide.  

Consequently, a number of different technologies for wave and tidal current energy 

conversion have been developed, but up to now few of them have resulted in commercial 

development beyond the prototype stage. BOREAS (Belgian Ocean Energy Assessment) made an 

overview of the current technologies, and their possible applications on the Belgian Part of the 

North Sea (BPNS). 

1.2 BOREAS project 

1.2.1 Main themes 

So far, the OPTIEP report (Mathys et al. 2010), also funded by BELSPO, was the only study to 

made a first assessment of the resource of the wave and tidal current energy climate on the 

entire (BPNS). BOREAS is building further on this study and aims at being a comprehensive study 

regarding wave and tidal energy applications on the BPNS. 
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This project assessed this potential and involved 5 main themes: 

 Making an overview of existing wave or tidal current converters (“long-list”) based on 

scientific literature and publically available information provided by the device 

developers or third parties such as, Ocean Marine Energy Centre (EMEC), Ocean 

Energy Systems Implementing Agreement (IEA-OES), Electric Power Research 

Institute (EPRI) and The Carbon Trust. A selection of the most appropriate converters 

for the specific conditions on the BPNS (“short-list”) will be discussed in detail. 

 Assessing the wave and tidal current climate, and hence the available potential. This 

assessment will be based on numerical results from the coupled WAM-COHERENS 

model, that allows both wave and tidal current modelling. Based on a 10 year hind 

cast, it will be possible to determine yearly, seasonally and monthly variations. 

Furthermore, the results will be verified against other numerical models (both for 

wave and tidal energy). 

 Selection of interesting sites. Based on the current or expected space claims on the 

BPNS (either fixed, such as navigation ways or non-fixed such as fishery) and the 

knowledge of the available ocean energy potential, a selection and description of the 

most promising sites on the BPNS can be made.  

 Assessing the extractable potential, based on the limitations of the converters (the 

“short-list”) and the optimal sites. Starting from the extractable potential, an 

estimation of the cost of the electricity for several converters can be established. 

Based on the extractable potential, a possible synergy between offshore wind, wind 

and/or tidal current energy can be assessed.  

 Further recommendations for the further deployment and potential exploitation of 

wave and tidal current energy on the BPNS. 

UGent Afdeling Weg- en Waterbouwkunde (hereafter ‘AWW’) was the overall coordinator of 

the BOREAS-project. Together with the expertise of the Management Unit of the North Sea 

Mathematical Models (hereafter ‘MUMM’), the Katholieke Universiteit Leuven (hereafter ‘KUL’) 

and Flanders Hydraulics Research (hereafter ‘FHR’), the project consortium can present a broad 

expertise in hydrodynamic knowledge. 

Every individual Work Package (hereafter ‘WP’) was led by a so called WP-leader, who was 

the contractor and main responsible for a specific task. Every WP also had at least one WP-reviser. 

The task of the WP-reviser was mainly to internally verify the methodology and results (Figure 1).  

The numerical modelling with the state-of-the-art coupled WAM-COHERENS and SWAN-

COHERENS models (operated by K.U.Leuven and MUMM) formed the core of the assessment of 

the potential ocean energy.  The prefix ‘coupled’ indicates the fact that the wave models SWAN 

and WAM interacted in both ways with the hydrodynamic model COHERENS. The numerical 

approach was clearly the most appropriate, as it could provide a continuous and coherent 

dataset, both in time and in space.  

The wave model WAM used a grid of approximately 1 km by 1 km, which is quite coarse in 

the near-shore area. It is clear that this near-shore area was quite interesting, since visual 

nuisance of wave and tidal current energy converters is not an issue compared to windmill farms. 

So, a complementary numerical model or method to quantify the wave climate in the near-shore 

was used. These complementary methods or numerical models were executed by the project 

partner FHR. In order to verify the near-shore wave climate (ranging from approximately 20km 

offshore to the nearshore region), FHR operated the so-called Transformation Matrix. 



Project SD/NS/13 - Belgian Ocean Energy Assessment "BOREAS" 

 

SSD - Science for a Sustainable Development - North Sea  15 

The hydrodynamic model COHERENS was not optimized for the Scheldt Estuary, as the grid is 

too coarse, not curvilinear and the model physics did not take into account the salt gradient due 

to the fresh water discharges. Once again, a complementary numerical model or method, which 

was capable of describing the local effects in the Scheldt Estuary was used. In order to verify the 

tidal current climate in the Scheldt-Estuary, FHR operates the hydrodynamic-morphological Long-

Term-Vision Mud (LTV Mud) model. 

The model results were then processed by AWW (Ghent University) to calculate the 

resources and to perform the economical models. 

1.2.2 BOREAS reports 

This final report is a summary of the following reports: 

1. BOREAS Intermediate report – Wave and tidal energy convertors and their suitability 

fof the Belgian Part of the North Sea (Mathys et al. 2011a); 

2. BOREAS Technical report – Wave modelling (Fernández et al. 2010); 

3. BOREAS Technical report – A comparison of numerical wave data at the Belgian Coast 

(Delgado et al. 2010); 

4. BOREAS Technical report – Tidal current modelling (Van den Eynde et al. 2010); 

5. BOREAS Technical report – A comparison of numerical tidal models of the Belgian 

Part of the North Sea (Dujardin et al. 2010b); 

6. BOREAS Technical report - Summary of model set-up and validation (Mathys et al. 

2011c);  

7. BOREAS Technical report – Wave and tidal current resource assessment (Mathys et 

al. 2011b); 

Only this final report is publically available. 
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Figure 1: Boreas workpackages and project overview, indicating the WP leaders and revisors and the 
interaction between the different workpackages. 
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1.2.3 Link international programmes 

Since wave and tidal energy technologies are new technologies, there were intensive and 

simultaneous, but independent, research projects during the execution of the BOREAS project. 

These were financed both by the private as well as the public sector. In the latter case, two 

European funded projects are worthwile mentioning within the BOREAS framework. These 

projects are Equimar and Waveplam.  

The EquiMar website states (EquiMar 2010): “The aim of EquiMar was to deliver a suite of 

protocols for the equitable evaluation of marine energy converters (based on either tidal or wave 

energy). These protocols have harmonised testing and evaluation procedures across the wide 

variety of devices presently available with the aim of accelerating adoption though technology 

matching and improved understanding of the environmental and economic impacts associated 

with the deployment of arrays of devices. EquiMar has assessed devices through a suite of 

protocols covering site selection, device engineering design, the scaling up of designs, the 

deployment of arrays of devices, the environmental impact, in terms of both biological & coastal 

processes, and economic issues. The series of protocols has be developed through a robust, 

auditable process and disseminated to the wider community. Results from the EquiMar project will 

establish a sound base for future marine energy standards. The project had a formal liaison with 

IEC TC 1141 and many of the protocol authors are technical experts on the teams developing 

individual standards”.  

During the execution of BOREAS, two reports were of particular interest since they presented 

protocols for wave and tidal current resource assessment (EquiMar et al. 2010; EquiMar et al. 

2011). 

The website of the other relevant European funded project, Waveplam, defines the project as 

follows: “The purpose of WAVEPLAM is to develop tools, establish methods and standards, and 

create conditions to speed up introduction of ocean energy onto the European renewable energy 

market, tackling in advance non-technological barriers and conditioning factors that may arise 

when these technologies are available for large-scale development, by means of a series of 

activities geared towards supporting creation of an ocean energy market that will harness the 

great potential of this kind of energy that exists in Europe, contributing to decrease European 

external energy dependency and leading to a reduction in greenhouse gas emissions.” Waveplam 

furthermore made a template to describe wave energy convertors, this was used as well for the 

BOREAS project (Waveplam 2009). 

1.3 Report structure 

Chapter 1 of this report describes the context of the BOREAS (Belgian Ocean Energy 

Assessment project) and states the main themes and the expected results and outcomes of the 

project. 

Chapter 2 introduces the reader to wave energy convertors (WEC) and tidal current energy 

convertors (TEC). An overview of the design requirements for marine energy convertors is given, 

both wave and tidal. The concept of the Technology Readiness Levels (TRLs) is explained, 

including the difficulties experienced when assessing different technologies based on partial 

information when no standards or protocols are developed yet. In the last part of this chapter, 

                                                           
1
 International Electrotechnical Commission – Technical Commitee 114 on Marine Energy, which is 

setting out standards for the marine energy technologies. 
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WEC and TEC that show interesting features for deployment on the Belgian Part of the North Sea 

(BPNS) are listed. Furthermore, the efficiencies of the devices are discussed in the form of the 

power matrix (WEC) and power curve (TEC). These will be used in chapter 5 to assess the 

extractable resource. 

Chapter 3 provides an overview of a previous study on the wave power resource based on 

buoy data. It gives the reader an introduction in the methodology and also provides wave powers 

at buoy locations in the southern part of the North Sea. 

Chapter 4 introduces the reader briefly to the main numerical models that were used for the 

resource assesment, and the main results of the validation excercises. 

Chapter 5 is summarizes the results of the available and extractable wave and tidal current 

resource assessment. The methodology is described and the assumptions are discussed. In the 

case of wave power, yearly and monthly trends are presented. 

Chapter 6 makes a quantitative economical feasibility study of a hypothetical wave or tidal 

current project. The methodology is the same as in the OPTIEP study for offshore wind (Mathys et 

al. 2010), but adapted for wave and tidal current energy, based on the results from chapter 5. 

Chapter 7 describes qualitatively possible synergies between wave and tidal current energy 

with e.g. offshore wind. 

Chapter 8 concludes this report (and the other BOREAS reports) and gives recommendations 

to support the wave and tidal current energy sector in Belgium. 

The last 3 chapters are giving supplementary information. Chapter 9 is an appendix with 

yearly or monthly wave power maps that were not listed in the main report. Chapter 10 describes 

the economical formulas used in chapter 6. Chapter 11 contains the references that were used for 

this report. 
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2 Wave and Tidal Energy Convertors on the BPNS 

This chapter briefly introduces wave and and tidal current energy convertors (respectively 

WECs and TECs) and their conversion mechanisms. Some WECs and TECs that show interesting 

features for deployment on the BPNS are presented. In order to calculate the extractable 

ressources, the power matrices for 3 different WECs and one power curve for a generic TEC are 

presented and discussed.  

2.1 Introduction Wave Energy Convertors (WEC) 

The main classification in WECs is based on their conversion technology. This conversion 

technology transfers the hydrodynamic energy of the waves over mechanical or hydraulic energy 

into electrical energy. 

2.1.1 Conversion Technology 

Before the description of the conversion technologies, the 6 so called degrees of freedom of 

floating objects are explained. The motion of a rigid body is characterised by six components 

corresponding to six degrees of freedom or modes of (oscillatory) motion (Figure 2). These modes 

describe for example the 6 forms of ship movements (elongated body, with the main axis 

according to x). For an axi-symmetric body (like most point absorber buoys), surge and sway are 

ambiguous, just like roll and pitch. However, in order to remove this ambiguity, the x-axis can be 

orientated along the incident wave. Note that with long crested waves, coming from the same 

direction, a 2D approximation can be used by neglecting the y-movement. The resulting 3 degrees 

of freedom are surge, heave and pitch (Falnes 2002). These 3 modes describe several WECs. 

Examples are: oscillating wave surge convertor (e.g. Aquamarine Oyster), a heaving point 

absorber (e.g. Wavebob) or the pitching absorbers (e.g. the Salter Duck, which was one of the 

earliest WECs developed in the early 80’s).  

The 6 main conversion types for WECS are shown in Table 1. The variety amongst these 

technologies is again clear. Examples of the devices can be found in the factsheets in the 

Appendix (§ 9.1 and 9.2). 

 

Figure 2: The six degrees of freedom of a ship, and by extension of a floating object (Falnes 2002). 
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Table 1: Conversion Technologies of Wave Energy Convertors, definitions and pictures cited from 
(CarbonTrust 2005; Aquaret 2008; EMEC 2010). 

  

Attenuator – This is a long floating device 
which is aligned perpendicular to the wave 
front. The device effectively rides the waves 
and captures the energy as the wave moves 
under the floaters or tubes of the device, 
forcing the hinges to flex. A current example 
for the attenuator is the Pelamis. 

(Axisymmetrical) Point Absorber – This is a 
floating structure that absorbs wave energy in 
all directions by virtue of its movements at or 
near the water surface. It has small dimensions 
compared to the typical wavelength, tending 
to have diameters of a few meters. One crucial 
aspect of a point absorber is its ability to focus 
energy onto itself. To do this the device 
radiates waves, which in part cancels the 
incoming waves (Falnes 2002), this effect is 
called the antenna effect. 

  

Oscillating Wave Surge Converters 
(OWSC) – This is a near-surface collector, 
mounted on an arm pivoted near the seabed. 
The arm oscillates as an inverted pendulum 
due to the movement of the water particles in 
the waves. 

Oscillating Water Column (OWC) – This is a 
partially submerged, hollow structure, which is 
open to the sea below the water surface so 
that it contains air trapped above a column of 
water. Waves cause the column to rise and 
fall, acting like a piston, compressing and 
decompressing the air inside the chamber. This 
air is channeled through an air turbine to 
produce power. When properly designed for 
the prevailing sea state, OWCs can be tuned to 
the incident wave period in order to resonate.  
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Overtopping Device – This consists of a 
slope that maximizes the wave overtopping. 
The water is collected in a storage reservoir. 
The incoming waves create a head of water, 
which is released back to the sea through 
conventional low-head turbines installed at 
the bottom of the reservoir. An overtopping 
device may use collectors to concentrate the 
wave energy. 
Overtopping devices are typically large 
structures due to the space requirement for 
the reservoir, which needs to have a minimum 
storage capacity.  

Submerged Pressure Differential – This is a 
submerged device typically located near shore 
and attached to the seabed. The motion of the 
waves causes the sea level to rise and fall 
above the device, inducing a pressure 
differential which causes the device to rise and 
fall with the waves. 

 

Based on these conversion technologies, WECs convert the hydrodynamic energy of the 

waves over mechanical or hydraulic energy into electrical energy. Depending on the conversion 

technology and Power Take Off (PTO), several options are possible. Figure 3 shows some options 

of the conversion of the energy.  

Notice the variety of technologies, and the introduction of storage of energy early in the 

conversion chain. Storage of electricity is necessary both on the short term (order of wave periods 

5-12 seconds) and in the long term (minutes, up to hours). The short term storage (in the order of 

20-100 seconds) is typically integrated into the device by means of build up of hydraulic pressure 

(e.g. Pelamis) or hydraulic head (e.g. WaveDragon), by using mechanical solutions (like flywheels) 

or using electrical capacitors. 
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Figure 3: Converter schematics (a) Pico Oscillating Water Column WEC of IST (b) the original 
submerged pressure differential WEC (2004) of AWS (c) Point Absorber WEC of Finavera AquaBuOY 
(d) Overtopping WEC of WaveDragon (e) Attenuator WEC of Pelamis. Abbreviations: PM: Permanent 
Magnet (IEA-OES et al. 2009b). 

2.1.2 PTO (Power Take Off) 

The second conversion step, from mechanical or hydraulic energy into electricity, is 

determined by the PTO. A PTO exists out of many individual components, but not all components 

listed below are present in one PTO.  
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This is again an illustration of the variety of the different concepts that developers can use. 

The main possible components of the PTO are: 

- The driveshaft 

- Gearbox  

- Freewheel 

- Permanent magnet (linear or cage) generators; 

- Turbines: 

o Air turbines (OWC), a Wells turbine (which rotates in the same direction 

independent of the air flow); 

o Hydraulic turbine (hydraulic motor); 

o Low head water turbines (Kaplan or propeller type); 

- Storage systems: 

o Flywheel (rotating systems) 

o Reservoir (water or hydraulic) to keep the head or the pressure respectively 

stable 

o Capacitors 

- Electronic components 

o Transformator 

o Capacitor  

- Connection plug for grid connection. 

2.1.3 Mooring or anchoring 

The mooring is the connection between a reference point and the PTO of the WEC. Fixing a 

WEC to a certain reference point is a design issue that has a strong mutual influence on the power 

absorption.  

Let’s consider a point absorber, that always moves up and down. In this case, there is no 

resulting force and hence, no power production. However, in the case where the wave created by 

the buoy cancels out the incident wave, the power absorption (and hence power production) is 

maximal. The moorings and the PTO play an important role to achieve this so-called resonance 

state. 

WECs can be: 

- Moored to the seabed, different mooring options exist (Figure 4): 

o Catenary or slack moored: the mooring cables have a slack, the weight of the 

cable provide freedom of movement for the WEC until the cable becomes under 

tension; 

o Taut-moored: the mooring cables have a pretension, the elasticity of the cable 

provides freedom of movement for the WEC; 

- The mooring cable fixed at the seabed can be attached to: 

o Directly to the floating WEC; 

o A submerged inertia plate, this inertia plate is then connected to the floating 

WEC; 

o A submerged buoy, which is then connected to the floating WEC. 
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- The anchoring in the seabed can be: 

o A gravity based anchor, mostly made of concrete; 

o A monopile or jacket structure; 

o A specific type of anchor, depending on the bottom substrate. 

 

Figure 4: Mooring options for WECs, depending on their location (see § 2.1.4). Abbreviations: OWC: 
oscillating Water Column, OTD: overtopping devices, WAB: Wave Activated Bodies, these might be point 
absorber- , attenuator- or submerged pressure differential-WECs (Harris et al. 2008). 

2.1.4 Location 

According to the characteristics of their deployment sites, wave energy technologies are 

frequently divided into shoreline (or coastal), near-shore and offshore devices. The physical 

conditions (e.g. water depth, power level, directionality, and hydrodynamics) relevant for wave 

energy conversion are different according to the water depth and distance from shore.  
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The waves travel in deep water almost without energy loss across the ocean, which is why 

floating technologies moored in deep water are expected to have the largest potential for large-

scale implementation. Typical water depths for offshore technologies are in the range of 50m. 

These water depths cannot be found on the BPNS. In shallower water, the waves suffer 

increasingly from bottom friction, making such sites less interesting from an energetic viewpoint. 

However as these are closer to shore ('near-shore'), mooring and grid connection costs decrease, 

and become more viable. Finally shoreline devices, which are typically integrated in the shoreline 

or into an artificial coastal defense structure, have lower incident power levels available but 

facilitated access and different structural solutions. They can be integrated in new breakwaters, 

like the OWC in Mutriku in Spain. 

2.2 Introduction Tidal current Energy Convertors (TEC) 

Like WECs, it is difficult to classify TECs based on one single criterion. The main criterion is 

again the conversion technology.  

2.2.1 Conversion technology 

TECs show a wide range of conversion technologies. The main technologies are based on 

turbine design, but other, non-turbines designs exist. A classification based on a review of the 

conversion technologies identified 10 conversion technologies (Khan et al. 2009), see Table 2 for 

examples: 

- Turbine Systems: 

1) Axial (Horizontal): Rotational axis of rotor is parallel to the incoming water 

stream (employing lift or drag type blades), better known as Horizontal Axis Tidal 

Turbine (HATT); 

2) Vertical: Rotational axis of rotor is vertical to the water surface and also 

orthogonal to the incoming water stream (employing lift or drag type blades), 

better known as Vertical Axis Tidal Turbine (VATT), see also Figure 5 for 

subclasses of the VATT; 

3) Cross-flow: Rotational axis of rotor is parallel to the water surface but orthogonal 

to the incoming water stream (employing lift or drag type blades); 

4) Venturi or ducted systems: Accelerated water resulting from a choke system 

(that creates pressure gradient) is used to run an in-built or on-shore turbine; 

5) Gravitational vortex: Artificially induced vortex effect is used in driving a vertical 

turbine; 

- Non-turbine Systems: 

6) Flutter Vane: Systems that are based on the principle of power generation from 

hydroelastic resonance (flutter) in free-flowing water, flutter is basically a 

resonance phenomenon with 2 degrees of freedom; 

7) Piezoelectric: Piezo-property of polymers is utilized for electricity generation 

when a sheet of such material is placed in the water stream; 

8) Vortex induced vibration: Employs vibrations resulting from vortices forming and 

shedding on the downstream side of a bluff body in a current; 

9) Oscillating hydrofoil: Vertical oscillation of hydrofoils can be utilized in generating 

pressurized fluids and subsequent turbine operation. A variant of this class 

includes biomimetic devices for energy harvesting; 
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10) Sails: Employs drag motion of linearly/circularly moving sheets of foils placed in a 

water stream. 

Of these 10 conversion technologies, the VATT, (ducted) HATT, cross-flow or hydrofoils (Table 

2 and Figure 5) are common and several device developers use this principle. Some TECs are 

developed not only for tidal currents, but also for river currents (sometimes with small 

modifications in the design or anchoring). 

Table 2: Main conversion technologies of TECs (Aquaret 2008; Blanco 2009; IEA-OES et al. 2009a; EMEC 
2010). 

  

Horizontal axis turbines work much the same as a 
conventional wind turbine and some look very 
similar in design. A turbine is placed in a tidal 
stream which causes the turbine to rotate and 
produce power. This is achieved by pitching the 
blades to a certain angle, whereby an incoming 
current creates a lift force. 

Vertical axis turbines use the same principle as 
the horizontal axis turbines (the lift force), but the 
blades are placed parallel with the axis instead of 
perpendicular. A turbine is placed in a tidal 
stream which causes the turbine to rotate and 
produce power. Originally developed for 
capturing wind energy, these device are also 
called Darrieus turbines. 

 

 

 

 

 

 

Reciprocating devices (oscillating hydrofoils) have Venturi effect (ducted) tidal stream devices – The 
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hydrofoils which move back and forth in a plane 
normal to the tidal stream, instead of rotating 
blades. The oscillation motion used to produce 
power is due to the lift created by the tidal stream 
flowing in either side of the wing. One design uses 
pistons to feed a hydraulic circuit, which turns a 
hydraulic motor and generator to produce power. 

tidal flow is directed through a duct, which 
concentrates the flow and produces a pressure 
difference. This causes a secondary fluid flow 
through a turbine. The resultant flow can drive a 
turbine directly or the induced pressure 
differential in the system can drive an air-
turbine. 

 

 
Open centre tidal turbine. This device relies on the 
same principle as the HATT, but it has a ‘virtual’ 
horizontal axis, whereby the blades are connected 
at the tips with the foundation. Developers of 
these devices claim this concept has two 
advantages: the blades are located to generate a 
higher torque on the PTO and it facilitates the 
passing marine species without damaging them. 

Cross-Flow turbine. This device relies on the 
same principle as the VATT, but it can differ in 2 
ways: the axis can be placed horizontally and/or 
the blades can be curved along the periphery of 
the device. In the latter case, this device is then 
called a Gorlov turbine. 
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Figure 5: Different types of VATT (vertical axis tidal turbines) (Khan et al. 2009) . 

 

2.2.2 Power take off (PTO) 

Similar to wave energy, the conversion to electricity is a multistep conversion from 

hydrokinetic power over mechanical into electrical power. Hydraulic conversion steps are rare in 

TECs. Figure 6 represents some possible conversion steps of TECs (refer to Figure 3 for WECs).  
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Figure 6: Possible conversion steps for TECs a) HATT (SeaGen, Marine Current Turbines), b) Cross-flow 
turbine (Kobold), c) Ducted HATT (Clean Current). Abbreviations: PM: permanent magnet generator; DFIC: 
Double Fed Induction Generator (IEA-OES et al. 2009b). 

 

Most TECs use PTO technologies similar to the ones that are used in wind turbines. They can 

consist out of a shaft, gearbox, freewheel, generator as the main components. 

2.2.3 Mooring or anchoring 

TECs can be fixed to the seabed in different ways (EMEC 2010): 

- Seabed Mounted / Gravity Base: the TEC is physically attached to the seabed or is fixed 

by virtue of the weight of the foundation. In some cases there may be additional fixing to 

the seabed. 

- Pile Mounted: This principle is analogous to that used to mount most large wind turbines, 

whereby the device is attached to a pile penetrating the ocean floor. Horizontal axis 

devices will often be able to yaw about this structure. This may also allow the turbine to 

be raised above the water level for maintenance. 

- Floating (with three sub-divisions): 

o Flexible mooring: The device is tethered via a cable/chain to the seabed, allowing 

considerable freedom of movement. This allows a device to swing as the tidal 

current direction changes with the tide. 
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o Rigid mooring: The device is secured into position using a fixed mooring system, 

allowing minimal leeway due to the absence of cable slack. 

o Floating structure: This allows several turbines to be mounted to a single platform, 

which can move in relation to changes in sea level.  

- Hydrofoil Inducing Downforce: This device uses a number of hydrofoils mounted on a 

frame to induce a downforce from the tidal current flow. Provided that the ratio of 

surface areas is such that the downforce generated exceeds the overturning moment, the 

device will remain in position.  

2.3 Design requirements  

2.3.1 Generic requirements for WECs and TECs 

The design criteria for marine energy convertors (WECs or TECs) are quite extensive. The 

reason for this is the character of the resource, which is variable, and the harsh environment for 

operation (corrosive seawater, wave impact during storms). This is a big difference with 

conventional power plants, where the process control is not always easy, but at least more 

predictable and controllable.  

Of course, every design criterion comes with a cost. Although it is difficult to give generic 

requirements, the following basic design criteria are valid for all marine energy convertors:  

- Cost of electricity (CoE) needs to be low, the CoE is of course the prime driver; 

- Survivability and structural design has to take into account the extreme wave forces: due 

to the high impact of waves (and to a lesser extent, currents), the structural integrity is of 

extreme importance. Special attention should be given to the effects of corrosion, 

biofouling and tear & wear to maintain the structural integrity and hull worthiness at sea.  

- Quality, smoothing and storage of electricity output: due to the temporal variability of 

these energy resources (wave periods in the order of 6-10 seconds but also seasonal 

variability, tidal currents in the order of 6 hours) energy storage and smoothing is critical 

for injection into the grid; 

- Easy installation and maintenance; preferably with existing infrastructure (existing tug 

boats and barges, in order to keep mobilisation/demobilisation costs low). If possible, 

keep critical components easily accessible or removable (“cartridge” system) to do as 

much as possible onshore. 

- Tuneable to a wide range of power conditions: being able to exploit a wide range of wave 

heights or tidal currents optimally; 

- In order to assure an efficient manufacturing and good operation and maintenance, the 

supply chain of components needs to be secured. Limiting the use of newly developed 

components will benefit operation and maintenance. Using components from maritime, 

offshore oil and gas industry is an advantage. 

- Compatible with exisiting grid infrastructure, but ready for new grid developments, such 

as offshore interconnectors, coupling with energy storage, new trends in ‘intelligent’ 

grid,... 

- Synergies with other energy technologies, such as offshore wind, but also parallel 

production of e.g. potable water, or aquaculture. 

- Visible (marker buoys) for navigation purposes and to avoid damage due to ship 

collisions; 
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- Low environmental impact, which has quite a broad meaning: 

o Use of environmentally friendly materials like biodegradable oils, or anti fouling 

devices that do not have toxicological effects; 

o Small footprint or space occupation, both at the surface or at the seabed bottom 

in case of pile or anchors; 

o Avoidance of underwater noise during installation, operation and maintenance 

(marine mammals). 

2.3.2 Requirements specific for WEC 

Most WECs are placed at the sea surface, in order to capture the wave forces as much as 

possible. However, in storms, the wave forces are extremely high and the WEC has to withstand 

these forces. This consideration brings us to the first design requirement: 

- Survivability at the sea surface during storms . This can be achieved in several ways . 

Some devices have inherent different characteristics (like Pelamis, which ‘dives’ under 

the big waves due to hydrostatic clipping (Cruz 2008)), others are controlled by their PTO, 

either passive or active, others are (partially) submerged in order to avoid the spil and 

impact forces of breaking waves. 

- Flexibility to the tidal range: in regions with a high tidal range, the mooring has to flexible 

to account for the tidal variation. 

2.3.3 Requirements specific for TEC 

In the framework of this project, only tidal energy current convertors based on kinetic energy 

(so current energy) are considered, and not the ones based on potential energy (head difference 

due to low and high water). Further in this report, TECs are defined as tidal energy current 

convertors, unless stated otherwise. TECs differ fundamentally from WECs in the fact that the 

blades need to submerged to extract the energy. TECs have the most of their components 

underwater. This is a disadvantage for maintenance: maintenance has to be done by (expensive) 

divers or Remotely Operated Vehicles (ROVs) or the components have to be lifted above the 

water. However, the advantage is that TECs will experience lower wave impacts, since the wave 

forces decrease with depth. The following requirements are specific to TECs: 

- Easily accessible for maintenance, by lifting the whole TEC above the water line (like 

Marine Current Turbines); by lifting the critical components of the TEC above the water 

line with a barge or maintenance ship and do maintenance onshore; by ROVs (highly 

depending on tidal windows, since these ROVs have to operate in strong currents), or 

otherwise. 

- Avoidance of cavitation: typically, WECs have rotating blades. The speed at the tips of 

these wings can be high enough to induce cavitation. This induces vibrations and material 

fatigue and hence decreases the lifespan of the blades. 

- Avoidance of biofouling: Many devices installed in the sea become artificial reefs, 

attracting a wide variety of marine organisms. These cover the structures and can cause 

significant fouling. Fouling of moving parts could affect the performance of devices. This 

can be especially an issue in the shallow waters of the BPNS. Beside the obviuous 

disadvantage that shallow waters provide less place for a tidal turbine, it is also more 

exposed to sunlight, which promotes biological growth.  
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2.4 The long list factsheet 

In the Boreas intermediate report ‘Wave and tidal energy energy convertors and their 

suitability for the Belgian Part of the North Sea’ (Mathys et al. 2011a) an overview of the most 

common WECs and TECs is presented, based on information template that was adapted and 

extended from the Waveplam project (Waveplam 2009). This template enables a standardized 

and synoptic way of describing the devices (see Table 3 for the template and Appendices 9.1 and 

9.2), instead of describing it in full text. Notice that not all fields are as detailed across the 

different devices for two reasons: 

- Some developers give more detailed information than others; 

- Some devices are still in a conceptual phase, whereas others are further developed, up to 

level of demonstration or pre-commercial phase. 

The authors chose to describe some WECs or TECs that are industry leaders or WECs or TECs 

which show interesting features for deployment on the BPNS. In the latter case, these devices will 

form the basis of the further short list. Contrarily, some developers give so little information 

about their device or concept, that it is hard to make any assessment. These devices were 

identified, but not necessarily described in the long list. 

Environmental effects were not defined as a criterion, for several reasons. All the device 

developers make claims about environmental friendliness, such as the use of biodegradable oils, 

but these claims are difficult to assess in such an early development status. The most obvious 

(local) environmental impact is the additional presence of hard substrate such as steel and 

concrete (Langhamer 2009). These effects are likely to be similar to the effect of the introduction 

of offshore windmill farms that were observed for the C-Power offshore windmill farm (Degraer S. 

et al. 2009). An important aspect is however the spatial occupation or footprint, this is given in 

the dimension field. Some device developers have published environmental reports (enquiry 

taken at the end of 2008, (USDOE 2008), these are:  

- TECs: Marine Current Turbines, Ocean Renewable Power Company, Tocardo BV Tidal 

Energy, IHC Engineering business, Verdant Power; 

- WECs: AW Energy, Ocean Power Technologies, Seabased, Wavedragon. 

The long list factsheet does not pretend to be exhaustive, and doesn’t want to criticize nor 

judge any of the devices that are currently under development and are solely based on 

information that is available in the public domain. 
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Table 3: Template for the description of the WEC/TEC longlist. 

Current corporate profile 

Name of the company Name of the WEC or TEC 

Official website of the company Foundation year and nation 

Company profile: describing the company (e.g. small 
independent research groups, contains sometimes historical 
facts, etc.) 

Projected Cost of Electricty, as 
given by the developper (No 
third party verification) 

Origin, and if possible names, of investors 

 
Pictures 
Pictures of the device, concept or installation 
(in most cases official pictures from websites) 

Additional picture 

Caption of the picture Caption of the picture 

 
 

Device Development history and future strategy 
Field describing the history and prospects of the convertor, by means of their phases as defined by 
the Technology Readiness Levels (TRLs), see explanation below 

 

Device evaluation 
Device evaluation by the authors of this report 

 

Suitability for the BPNS 
Suitability for the BPNS, according to the authors of this report (partially based on the requirements 
that the device developers provide on their website, partially based on own judgement) 

 

The wave and tidal current energy market experienced a high pressure to produce electricity. 

Due to this high pressure and the lack of standards, developers sometimes went too fast to the 

open sea, with sometimes disastrous consequences. Examples are the sinking of the 2MW 

Archimedes Wave Swing in 2004, the Finavera Aquabuoy 2.0 in 2007 and more recently the 

sinking of the Oceanlinx precommercial prototype in 2010. 

Although marine energy can only become a reality following full scale testing of WECs or TECs 

at sea it is important that the correct engineering procedures are followed leading up to the first 

sea trials. Although difficult, political and business concerns must resist applying pressure to 

deploy new devices prematurely. Therefore, the Hydraulics and Maritime Research (HMRC) 

applied the TRL (Technology Readiness Level) schedule to Wave energy (Holmes 2009).  

Device specifications 

Conversion technology Power Take off (PTO) 
information 

Mooring or anchoring 
characteristics 

•Unique features according to the developpers (no third party 
verification) 

Required water depth 

Dimensions of Full prototype 
(size and weight) 

Information about the Power 
Matrix (no third party 
verification) 
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This approach is becoming more popular as it provides the current “best practices” in marine 

energy development. TRL development programmes are standard approaches for product 

advancement in established industries such as NASA and American military equipment industry. It 

must be stated that HMRC is not the only institution that is involved in the development of the 

TRLs. Furthermore, the TRLs can provide a blueprint for the international standards. However, it is 

unsure if these TRLs as such will be integrated in the international standards (Nadeau 2010). The 5 

main TRL phases are (Holmes 2009): 

1. TRL 1: Proof of concept: provide the basic concept of the proposed WEC in regular 

waves and obtain an estimate of its power performance in irregular, real sea waves. 

2. TRL 2: Part-scale (Tank): Testing of 1:10 (approximately) scale model in a wave flume 

that allows component testing in more seaways, including those expected to be used 

at the sea trial test. There are less design options to investigate than in TRL1. 

3. TRL 3: Part-scale (Sea): Testing of 1:4 scale model in a benign offshore location. This 

device should be a fully operational unit, but the required budget should be an order 

of magnitude less. 

4. TRL 4: Full-scale – Prototype model: Prototype testing, which enables a full 

assessment of the so called ‘wave-to-wire’ performance. At this stage, the required 

investment rapidly increase. It is however not expected here that for this single (or 

perhaps 2-3) unit(s), the project can make profit at this stage. Test centers and 

external funding are almost essential to pass this TRL. 

5. TRL 5 : Full-scale – Precommercial model: when a device successfully completes the 

rigorous technical sea trials, the solo pre-production converter of TRL 4 should have 

evolved into a pre-commercial machine ready for economic demonstration in TRL 5.  

2.5 Conversion efficiencies: power matrix (WEC) and power 

curve (TEC) 

2.5.1 Power Matrix for WEC 

The translation from wave climate (wave height and period), and hence available wave 

power, to produced extractable power is done by the so-called power matrix (see also § 5.2.1). 

The power matrix gives the relation between the wave height and period with the produced 

power. If the produced power is at its maximum, the so-called ‘rated power’ is achieved. 

This power matrix can thus be used to translate the resource into produced power. An 

example is given in Table 4 (Pelamis WEC). The rated power is achieved at 750 kW. Below 0.5 m 

wave height, no power is produced. Below 1 m wave height a small amount of power is produced 

between a wave period of 5.5 and 11.5 seconds. The wave height is clearly the dominant factor, 

the period is of secondary importance (this is also reflected in the available wave power 

calculation, see § 5.1). Table 5 and Table 6 give the power matrices for the Prote ch Straumekraft 

25 kW point absorber and a single floater of a Wave Star WEC. 
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Table 4 : Power matrix used for Pelamis,rated 750 kW. (Dalton et al. 2009; Pelamis Wave Power 2010) 

 Tm-1,0 

Hm0 3 4 5 6 7 8 9 10 11 12 13 

0.5 0 0 0 0 0 0 0 0 0 0 0 

1.0 0 0 0 29 37 38 35 29 23 0 0 

1.5 0 0 32 65 83 86 78 65 53 42 33 

2.0 0 0 57 115 148 152 138 116 93 74 59 

2.5 0 0 89 180 231 238 216 181 146 116 92 

3.0 0 0 129 260 332 332 292 240 210 167 132 

3.5 0 0 0 354 438 424 377 326 260 215 180 

4.0 0 0 0 462 540 530 475 384 339 267 213 

4.5 0 0 0 544 642 628 562 473 382 338 266 

5.0 0 0 0 0 726 707 670 557 472 369 328 

5.5 0 0 0 0 750 750 737 658 530 446 355 

6.0 0 0 0 0 750 750 750 711 619 512 415 

6.5 0 0 0 0 750 750 750 750 658 579 481 

7.0 0 0 0 0 0 750 750 750 750 613 525 

7.5 0 0 0 0 0 750 750 750 750 686 593 

8.0 0 0 0 0 0 0 750 750 750 750 625 

8.5 0 0 0 0 0 0 0 750 750 750 750 

9.0 0 0 0 0 0 0 0 0 750 750 750 

9.5 0 0 0 0 0 0 0 0 0 750 750 

10.0 0 0 0 0 0 0 0 0 0 0 750 

10.5 0 0 0 0 0 0 0 0 0 0 0 

 

It is important to stress that this extractable resource is valid for a single WEC at a specific 

site, since the current methodology doesn’t allow to take into account the interaction between a 

WEC and waves, or between one WEC with another WEC (like in a WEC farm).  

The Prototech Straumekraft WEC is based on a computer model, and thus doesn’t represent 

experimentally proved power production. In the original reference for Wave Star (Marquis et al. 

2010a; Marquis et al. 2010b), not the power matrix but a power curve (produced electricity in 

function of the wave height for an average wave period of 4.5 seconds) is given. 

There are already some remarkable differences when comparing power productions based 

on typical wave conditions for an average day on the BPNS (assume a Hs of 1.25 m and a Te of 5 

seconds, which corresponds with a common sea state at Westhinder (Beels 2009)). Pelamis would 

be producing 16kW (interpolated value), whereas the Straumekraft would produce 3.1 kW and 

the Wave Star 7.75 kW. The Pelamis is clearly developed for higher wave climates than the BPNS.  
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Table 5 : Power Matrix for Protech Straumekraft. (rated 25 kW, based on computer simulations by the 
developer and Prototech (Straume 2010). 

 Tm-1,0 

Hm0  0 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 

0 0 0 0 0 0 0 0 0 0 

0.25 0 0 0 0 0 0 0 0 0 

0.75 0 0.1 0.3 0.4 0.4 0.3 0.3 0.3 0.3 

1.25 0 0.5 2.1 3.2 3 2.7 2.3 2.1 2 

1.75 0 1.6 6.8 10 9.7 8.6 7.4 6.9 6.6 

2.25 0 0 8.7 15 15 14 13 12 10 

2.75 0 0 9.9 19 20 20 18 16 14 

3.25 0 0 0 22 24 25 23 20 18 

3.75 0 0 0 22 25 25 25 23 21 

4.25 0 0 0 24 25 25 25 25 24 

4.75 0 0 0 0 25 25 25 25 24 

5.25 0 0 0 0 25 25 25 25 25 

5.75 0 0 0 0 25 25 25 25 25 

6.25 0 0 0 0 25 25 25 25 25 

6.75 0 0 0 0 0 25 25 25 25 

7.25 0 0 0 0 0 25 25 25 25 

7.75 0 0 0 0 0 25 25 25 25 

8.25 0 0 0 0 0 25 25 25 25 

8.75 0 0 0 0 0 0 25 25 25 

9.25 0 0 0 0 0 0 0 0 0 

 
Table 6 : Power Matrix for a Wave Star (37 kW rated for a single buoy the only data given by Wave Star are 
the produced power for a period with 4.5 seconds (indicated in bold, (Marquis et al. 2010a)). The other 
values of the power matrix are filled in by the authors based on the comparison with the Protech 
Straumekraft and Pelamis Power Matrix trends). 

 Tm-1,0 

Hm0 0 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 

0 0 0 0 0 0 0 0 0 0 

0.5 0 0 0 1 1 1 1 1 1 

1.0 0 1 2 4.5 6 8 6.5 4.5 4.5 

1.5 0 2 6 9.5 11 12 11 9.5 9.5 

2.0 0 5 13 17 17 17 14 11 9 

2.5 0 0 20 27 27 27 25 20 15 

3.0 0 0 0 37 37 37 37 37 37 

3.5 0 0 0 0 37 37 37 37 37 

4.0 0 0 0 0 0 37 37 37 37 

4.5 0 0 0 0 0 0 37 37 37 

5 0 0 0 0 0 0 0 0 0 
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The power matrix is thus a crucial aspect to assess the power production. However, only a 

few device developers have published their power matrices. Furthermore, since no standards 

exist to make this power matrix, it is extremely difficult to compare these power matrices over 

different devices and evaluate them. Applying these power matrices to the wave conditions on 

the BPNS is necessary to obtain an extractable wave power, but Pelamis was never developed to 

be installed in wave conditions that are similar to the ones at the BPNS. 

2.5.2 Efficiency & power curve for TECs 

The power curve2 for a TEC gives the relation between the current velocity and the electrical 

output power (see also § 5.3.2). It is the multiplication of the kinetic power associated with the 

undisturbed flow at the centre of the device with the efficiency curve. The mathematical 

formulation of the available tidal current energy is discussed further in the paragraph of the 

calculation of the available tidal power (§ 5.3). 

Figure 7 shows an idealized efficiency curve for a generic tidal kinetic energy converter 

(neglecting the influence of the current direction and thus assuming a 0° angle of attack). The 

term efficiency curve is used here to refer to the relationship between the power generated by 

the device and the kinetic power associated with the undisturbed flow at the centre of the device. 

For this hypothetical device, the efficiency is zero for flow speeds below 0.5 m/s and above 3.6 

m/s, and varies between 30% and 43% over the range in velocity from 1.5 to 3.5 m/s. The peak 

efficiency of 43% coincides with a flow speed of 2.75 m/s. This idealized efficiency curve was 

developed for high velocities to demonstrate the prediction of generated power from the time 

series of current speed (Cornett et al. 2010). It might not be the idealized efficiency curve for the 

conditions on the BPNS, because the maximum currents determined by previous studies indicate 

relatively low flow currents at spring tide, in the order of 1.7 m/s (Van Lancker et al. 2007) 

The term ‘cut-in’ speed can be easily derived from Figure 7. It is the threshold speed to start 

the turbine and generator (or more general the PTO). Similarly, the ‘cut-off speed’ is the upper 

limit to produce electricity. Above this upper limit, the TEC tries to avoid possible damage due to 

high forces and torques and does not produce electricity. Similar efficiency curves exist for wind 

energy turbines. 

                                                           
2
 Note the term ‘curve’ here instead of ‘matrix’: for tidal energy the power curve is a fuction of only 

one variable (the current velocity), whereas the power for wave energy is a function of both wave height 
and wave period. 
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Figure 7: Efficiency curve for a generic energy convertor (so developed for higher currents than that 
occur at the BPNS). Source: (Cornett et al. 2010). 
 

2.6 Suitable WECs for the BPNS 

As mentioned in § 2.5, 3 WECs were selected due to the availability of their power matrix, 

without specifically taking the suitability for the BPNS into account (Pelamis is not suited, Wave 

Star and Protech Straumekraft are better). In this paragraph, WECs that show interesting 

characteristics for deployment on the BPNS are briefly discussed. However, no currently existing 

WEC can be taken ‘off the shelf’ for deployment on the BPNS, therefor the conditions on the BPNS 

are too specific. 

In the OPTIEP-BCP report, 3 WECS were presented that showed interesting features for 

deployment on the BPNS (Mathys et al. 2010). These were Wave Star, Power Buoy and the B1 of 

Fred Olsen. After the analysis of BOREAS, other WECs were selected, due to new concepts, 

developments or insights. Wave Star is still discussed here and the B1 of Fred Olsen is replaced by 

the FlanSea buoy (which is an indirect continuation of the project SEEWEC). Power Buoy is 

however replaced by Seabased and Wavetreader (Point Absorbers). Seabased was preferred due 

to the simple concept and development in the Swedish coast (with similar wave powers as on the 

BPNS) and Wavetreader was selected due to their synergetic effects with offshore wind 

foundations. This is again an example of the rapid development that characterizes this market. 

The WECs presented here are: 

1. Seabased: a PA buoy developed by the Electrical department of Uppsala University Sweden. 

It is a simple mechanical system, putting more design effort in the electrical design and 

control; 

2. Wave Treader: a point absorber which is explicitly designed to be attached to monopile 

foundations of windmill farms; 

3. Wavegen: an OWC integrated in a breakwater in Mutriku, Spain. 

4. Wave Star: a jack-up structure with individual point absorbers attached.  

5. FlanSea: a point absorber buoy that is explicitly designed for low too moderate wave 

conditions. The project team consist of DEME Blue Energy, Electrawinds, Cloostermans, 

Spiromatic, the harbour of Oostende, Contec and 4 research groups of the Ghent University;  
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2.6.1 Seabased WEC – Lysekill (Sweden) 

2.6.1.1 Introduction 

Seabased is a spinoff of the Uppsala University from Sweden. They developed a point 

absorber with a linear generator, without gearboxes and few moving parts. The developers thus 

chose to have a very simple mechanical system, but a rather advanced electrical system (since it 

was the Electrical department of Uppsala who started the development). 

2.6.1.2 Concept and design 

A unique feature of their design is the fact the PTO module is not situated in the buoy, 

instead it is mounted directly on the gravity based anchor plate. The PTO is a direct-driven, linear, 

synchronous three-phase generator. The technology of the linear generator was assumed to be 

somewhat depth independent and the unit size of 10 kW for power conversion was assumed to 

match a significant wave height in the range of 2 m, found in near shore and sheltered waters 

typical for Swedish conditions. However, the generator and the mechanical structure of the 

generator are designed to handle great over-loads in terms of electrical power and mechanical 

strains. This makes it possible to e.g. change the buoy to a buoy with larger diameter in the 

offshore experiments without damaging the WEC (Leijon et al. 2008). 

The PTO is a linear generator with little moving parts apart from a cable and a permanent 

magnet. The concept of the PTO remained the same during the test period, but the shape and 

draft of the buoys did change. Four different buoys were tested, one of them was a donut shaped 

buoy. 

 

 
 

Conceptual drawing of the Seabased PA WEC deployed at Lysekill, 

Sweden (Leijon et al. 2008) 

The linear generator, 

mounted on a gravity 

based anchor. 

Figure 8: Concept (left) and picture (right) of the PTO of Seabased. 
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Furthermore, the Lysekill project executed environmental studies from the beginning of the 

project, and all the results of the environmental monitoring are documented (Langhamer 2009). 

2.6.1.3 Considerations for deployment on the BPNS 

The Lysekill testsite has similar wave conditions of those on the BPNS. The Lysekill testsite has 

an average wave power of 2.6 kW/m, a depth of 25 m, a significant wave height with 100 year 

return period of 4m, and a maximum wave height with a return period of 100 years of 6.2 m 

(Waters et al. 2009). These characteristics, especially the wave power, are representative for the 

conditions on the BPNS. The developers chose this site because of the existing research 

infrastructure nearby Lysekill: “Due to its relatively low energy flux, the wave climate at the Lysekil 

test site would not be ideal for commercial wave power production. That was, however, not the 

motive for choosing the site; it was chosen due to its proximity to the marine research.” (Leijon et 

al. 2008). 

However the tidal range is less than 25 cm, which is in sharp contrast with the BPNS where 

the tidal range is up to 4.5m. The latter is a disadvantage for deployment on the BPNS, as the tidal 

range uses the full stroke length of the generator. An alternative could be to install a drum in the 

buoy to account for the stroke length differences caused by the tidal range. 

Other problems that can expected based on their design are: 

- the friction and heating of the cable, and consequently, tear and wear of this cable; 

- the sealing of the chamber has to be extremely good, since maintenance is only possible 

with divers, ROVs, or lifting the whole PTO with its foundation outside the water. 

2.6.2 Wave Treader WEC (Green Ocean Energy 2010) 

2.6.2.1 Introduction 

Wave Treader is a unique wave energy device which is attached to the supporting pile of an 

offshore wind turbine. Combining Wave Treader to an offshore wind farm shares the offshore 

infrastructure and also increases the yield from the sea area. According to Green Ocean Energy, 

Wave Treader also assists in power smoothing in the offshore wind farm and offers improved 

personnel access to the turbine (claim by developer), both of which are major benefits to site 

developers. 

2.6.2.2 Concept and design 

Wave Treader concept utilizes a fore and after arm and sponson which react through an 

interface structure onto the foundation of an offshore wind turbine (Figure 9). Between the arms 

and the interface structure hydraulic cylinders are mounted and as the wave passes the machine 

first the forward sponson will lift and fall and then the after sponson will lift and fall each stroking 

their hydraulic cylinder in turn. This pressurizes hydraulic fluid which is then smoothed by 

hydraulic accumulators before driving a hydraulic motor which in turn drives an electricity 

generator. The electricity is then exported through the cable shared with the wind turbine. 
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Figure 9: Conceptual design of the Wave Treader of Green Ocean Energy, attachted to the monopole of an 
offshore windmill.. 

Periodically the interface structure moves vertically to allow for the effects of tidal range, and 

it also can rotate to ensure that the sponsons are optimally aligned with the wave direction. 

An initial study3 commissioned by the company indicates that the additional loads placed on 

the foundation of an Offshore Wind Turbine from Wave Treader are relatively small, and 

therefore Wave Treader will not adversely affect the stability of the Wind Turbine. However, this 

point will certainly need further 3rd party verification. 

2.6.2.3 Future market deployment 

Wave Treader is primarily aimed at the UK Round 34 and Scottish Territorial Water offshore 

wind farm sites. The company estimates that between 2015 and 2023 7,500 to 8,300 offshore 

wind turbines will be installed in the UK waters and claims that their device can also be retrofitted 

to existing windmill foundations. The company is building a full scale prototype in 2011-2012 for 

deployment at a UK test centre. The Green Ocean Energy indicates on their website that they 

want to develop the same technology further for standalone WECs, so independent of the pile of 

offshore windmills. 

2.6.2.4 Considerations for deployment on the BPNS 

The Wave Treader device has one obvious advantage: it connects to an offshore windmill 

pile, but, although the Green Ocean Energy claims to make an easily accessible Wave Treader, 

they do not specify how they would implement this.. According to the BOREAS authors, adding a 

                                                           
3
 Wave Treader did not mention the reference for this study. 

4
 This is the new tender round for granting offshore windmill parks in Scottish waters. 
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structure to an existing windmill foundation would just make accessibility harder.  So, the claim by 

Green Ocean Energy of enhanced accessibility needs further verification. Wave Treader does 

make use of the infrastructure of windmill farms (foundation, grid connection, etc.). Furthermore, 

it also can profit from the time lag and intermittent character of both wave and wind energy. High 

windspeeds and big waves do not always occur simultaneously, especially in exposed locations. 

However, even in the sheltered BPNS, the waves continue to go on after the wind drops. Equally 

important in a Belgian context, is the fact that it makes an optimal use of space possible.  

However, some disadvantages need to be mentioned as well. This device is developed for, 

highly energetic, Scottish seas and has a rated power of 500 kW, so scaling down will be 

necessary. How much scaling down is hard to tell, but the Wavetreader should be more or less in 

equilibrium with the installed power of a windmill. Combining a 10 kW Wavetreader with a 5 MW 

windmillfarm does not seem very logical, because it adds complexity to the structure, operation 

and maintenance (boat access) with only a little marginal energy production. Adding the 

Wavetreader to existing piles (‘retrofitting’) will most likely not be possible, as the added 

geotechnical and structural requirements were not foreseen in the design of the current 

windmills.  

2.6.3 Wavegen Voith OWC WEC– Mutriku breakwater 

2.6.3.1 Introduction 

In the Basque county in Spain, a new breakwater was designed for the small harbour. EVE 

(Ente Vasco de la Energia) chose to integrate 16* 18.5 kW OWC turbines into the design of the 

breakwater, by building the air compression chambers in front of the breakwater (Figure 10). 

 

 

Figure 10: Construction of the Mutriku breakwater and air compression chambers (left). 
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2.6.3.2 Concept 

The Mutriku breakwater is a nice example of a combined use of a breakwater: on the one 

hand it protects the harbour against waves, on the other hand it is a 300 kW OWC wave energy 

converter. Originally the plan for the breakwater was a ‘normal’ breakwater, without the OWC, 

but soon after the first concept, the idea of an OWC was integrated.  

The waves at a location in front of Mutriku in deep water contains approximately 26 kW/m of 

wave energy, with a seasonal variation of 44 kW/m in winter, 19 kW/m in spring or autumn and 9 

kW/m in summer. Just in front of the breakwater (30 m deep) the wave climate is 18 kW/m in 

winter, 8.8 in spring or autumn and 4.4 in summer. It is expected that this installation can produce 

600 MWh/year, corresponding to the energy requirements of 250 households in the Mutriku 

town. According to the investor, the civil costs are estimated at 4.4 mio €, the electromechanical 

costs at 1.5 mio €, and the other costs (licensing, etc.) are estimated at 0.5 million € (Yago 2009). 

2.6.3.3 Considerations for deployment on the BPNS 

The double function of a combined breakwater and energy production is in principle an 

interesting feature for deployment on the BPNS. However, the capital cost of these projects are 

high. It is therefore unlikely that these projects can be retrofitted to the existing coastal defence 

structures nearshore. An interesting and somehow visionary project is the project ‘Vlaamse 

Baaien’. It is an integrated future vision on the development of the BPNS in terms of (navigational 

and coastal) safety, sustainability, attractiveness, environmental and general development 

(Vlaamse Baaien 2010). Ten projects were presented as ideas to support this future vision. One of 

them, the idea of a multifunctional island at the Gootebank, could be combined with this 

technology. It is conceived as a test site for sustainable marine energy, a shelter harbor, offshore 

services or transfer of bulk materials. The integration of different functions is interesting and can 

only be achieved if the initial design does take into account this function. Furthermore, the 

Gootebank is situated in a zone outside the Flemish banks, and experiences higher wave energy 

than nearshore. The project team behind the Vlaamse Baaien gives an indicative framework of 

2020-2050 for this island. 

2.6.4 Wave Star WEC 

2.6.4.1 Introduction 

Wave Star is currently one of the very few devices that actually provides electricty to the grid 

with a 2 float (each 5m diameter) 110 kW test unit. The price of the electricity produced is not yet 

competitive to the market according to Wave Star, but the next steps, two full scale units 

(Marquis et al. 2010b), one 600 kW with 20 floats of 5m diameter (for water depths from 10-15m 

and a Hs of 2.5m) and the second a 6 MW unit with 20 floats of 10 m diameter (for water depths 

from 20-30m and a Hs of 5m)  each should significantly drop the electricity price (Figure 11). This 

price projection is based on 3 parameters: increasing energy production, decreasing investment 

cost and decreasing maintenance. Interesting to see in the roadmap is that in 2010 Wave Star is 

producing electricity at around 1000 €/MWh, whereas in 2019 it drops below 100 €/MWh 

(although the latter comes of course with higher uncertainties). 
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Furthermore, Wave Star has a very transparant and open communication strategy. According 

to Wave Star, over 500 visitor visited the Wave Star test unit at Roshage, in close collaboration 

with the Danish Wave Energy Center. 

 

 

Figure 11: Road map for cost of energy for Wave Star WEC (based on average energy potential at European 
sites, WEC lifetime: 20 years, interest of investment: 9%). Source: (Marquis et al. 2010b). 

2.6.4.2 Concept and design 

Wave Star is using the point absorber technology, but integrates it in a unique jack-up 

platform. Most other ‘clustered’ wave point absorbers (like the old SEEWEC Buldra platform) are 

based on floating platforms which are moored and anchored to the seebed. In the full scale 

design, it is the intention that a jack-up platform will hold 2 rows of 10 floats each (acting as 20 

point absorbers). All electromechanical moving parts are located on the platform, which remains 

at all time above the waterline. In storm survival mode, the Wave Star can lift the floaters also out 

of the water into a safety position. The PTO system is hydraulic, whereby each float is pumping 

hydraulic fluid to a hydraulic motor, which drives a generator. Instead of having 20 small hydraulic 

circuits for each float, a combined hydraulic PTO is used, to smooth out hydraulic peak pressures. 

2.6.4.3 Considerations for deployment on the BPNS 

A general disadvantage for deployment on the BPNS, is the jack-up structure to hold the 

floaters, because it increases capital cost. It is unlikely that these devices can be combined with 

with offshore windmill foundations, and Wave Star have not explicitely released information 

about research in that direction.  
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Remark that Wave Treader ( § 2.6.2) and Wave Star share similar concepts. However, Wave 

Star uses an array of buoys instead of a sponson. Another company, the Israeli company SDE, uses 

a similar technology but attaches its sponsons to breakwaters instead of windmill monopiles. 

They tested a 40 kW prototype in Jaffa, Israel for 1 year. However, since 2007, the company has 

not released any news so it is unclear if the development stopped or not.  

2.6.5 FlanSea 

2.6.5.1 Introduction 

Although the development of the FlanSea point absorber buoy just started in 2010, it is 

worthwhile to mention this technology because it will be specifically developed for low to 

moderate wave climates, like the conditions that can be found on the Southern North Sea (and 

thus the BPNS). The FlanSea project is an indirect continuation of the SEEWEC project (which was 

coordinated by AWW - Ghent University). The project team consists of both industrial partners, as 

well as 4 research groups of Ghent University. The industrial partners are DEME Bleu Energy, 

Cloostermans, Electrawinds, Spiromatic, the Harbor of Ostend and Contec. The project has 

received funding from the Flemish Agency for Innovation and Technology. 

2.6.5.2 Concept and design 

The FlanSea wave energy converter is based on the so-called “point absorber” technology. 

These point absorbers keep track of and react in synchronization with wave motions, whereby 

their movements relative to the seafloor as a fixed point of reference can be converted to 

electrical power. The generator will be mounted on/inside the buoy itself. Moreover, inside the 

buoy there is a winch with a cable wind around it. The other, far end, of the cable is fixed into the 

seafloor. The buoy will use the rising and falling motions of the waves to wind or unwind the cable 

on the winch, thus producing electrical power (Figure 12). 

During the first two years of the project, the expertise within the team will be directed 

towards conducting a thorough study (hydraulic, mechanical, electrical) of developing and 

building a wave energy converter, and conducting tests in laboratory conditions. During the 3rd 

and final year of the project, a wave energy converter will be positioned at approximately 1 km 

outside the port of Ostend. This wave energy converter will feature different measurement and 

registration devices meant to provide scientists with insights into production capabilities 

(efficiency) and the loads and the strength and resistance (survivability) of the system. During this 

phase, the converter will not be connected to the electrical distribution grid.  
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Figure 12: Concept of the FlanSea point absorber WEC, specifically designed for low to moderate wave 
climate conditions found on sheltered seas, like on the BPNS.  

2.6.5.3 Considerations for deployment on the BPNS 

Although the FlanSea buoy is still in an early development phase, it is one of the very few 

devices known to the authors that is explicitly designed for low to moderate wave climates. The 

Seabased technology (see § 2.6.1) is perhaps the direct competitor, as it is also conceived as a 

simple and robust design, but it cannot account for the different water levels causes by the tidal 

range found on the BPNS. 

2.7 Suitable TECs for the BPNS 

As mentioned in § 2.5, one ‘generic’ TEC was selected due to the absence of device specific 

power  curves. In this paragraph, TECs that show interesting characteristics for deployment on the 

BPNS are briefly discussed. However, no currently existing TEC can be taken ‘off the shelf’ for 

deployment on the BPNS, therefore the conditions on the BPNS are too specific. 

In the OPTIEP-BCP report, 3 TECS were presented that showed interesting features for 

deployment on the BPNS (Mathys et al. 2010). These were Davis Hydro Turbine, the cross flow 

TGU Turbine from Ocean Renewable Power and the SmarTurbine from Free Flow Power. After the 

analysis of BOREAS, only the Davis Hydro Turbine remained of these three.   TGU Turbine has 

changed its concept and is no longer a cross flow turbine.  Free Flow Power is now focussing on 

river applications (and classical hydro-energy and storage) and no longer on open sea 

applications. Just, as in the case with the changed WEC selection, this is again an example of the 

rapid development that characterizes this market.  

For the TECs, only some ‘niche’ devices were selected.  The majority of the TEC market 

consists of HATTs (Horizontal Axis Tidal Turbines).  The HATTs that are currently developed aims 

for high tidal current climates, and is therefore less suitable for the deployment on the BPNS 

today. The TECs presented here are: 

 

1. VIVACE: a special TEC,based on resonance effect instead of using a turbine. 
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2. Ecofys: a Dutch ‘wave rotor’, which is a hybrid technology to capture both wave and tidal 

current energy. 

3. Davis Hydro: a VATT which is designed for construction e.g. with bridges. 

2.7.1 VIVACE TEC (Vortex Hydro Energy) 

2.7.1.1 Introduction 

Vortex Hydro Energy (VHE) is a spinoff of the Michigan University and developed a TEC based 

on vortices, which absolutely need to be avoided in classical (civil) engineering constructions. 

Vortices are vibrations that can cause accelerated material fatigue in industries like civil and 

maritime construction. The system of VHE is based to maximize these vortices in a way that they 

induce a controlled up and down movement of cylinders that are orientated perpendicular to the 

incident flow. 

2.7.1.2 Concept and design 

The physical phenomenon of the Vortex Induced Vibrations (or VIVs as they are called by 

VIVACE) and the concept is shown in Figure 13. The interaction between the fluid and the 

structure occurs because of nonlinear resonance of cylinders or spheres through ‘vortex shedding 

lock-in’. That is, the period at which vortices are formed and shed becomes synchronized with the 

side-to-side motion of the bluff body, and thus the motions become amplified over time. As a 

reflection of this, the phenomenon can be characterized as vortex induced vibration, wake 

synchronization, vortex shedding lock-in, or nonlinear resonance. 

  

Visualization of the induced vortices behind a 

cylinder in a laboratory wave flume. 

Concept of the VIVACE, with the cylinders 

moving up and down. 

 

Working principle and the ‘vortex lock in’ phenomenon in the wake of cilinder, which forms the 

basis of the power production for VIVACE 

Figure 13: Vortices induced by a cilnder placed in a current (left) and concept of VIVACE (right). 
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A small converter with 180 5-meter cylinders operating in 5 meters of water could generate 

100 kW at 1.5 m/s. Such a converter would have a footprint of about 300 m². The design 

parameters that Vortex Hydro is now focusing on, are the diameter/length ratio, and the optimal 

configuration of multiple cylinders in order to maximize the energy production. 

2.7.1.3 Market and future development 

VIVACE already deployed a single test unit in a river to test in real conditions (Port Huron, 

Michigan in 2010). They are aiming both at the river currents and tidal current market. Although 

their website does not mention projected prices of the COE, the Chief Technology Officer (CTO)  

of the company said in an interview that the estimated price would vary around $ 55/MWh 

(Schwartz 2008). 

2.7.1.4 Considerations for deployment on the BPNS 

VIVACE is interesting for deployment on the BPNS for several reasons: 

- VIVACE has a very low cut-in speed: from 0.5m/s on, the cylinders start moving and the 

electricity production starts, most turbine based TECs (HATTs of VATTs) have cut-in 

speeds of 0.7 – 1.0 m/s; 

- Despite the fact that is has no gearbox or pitching blades (like HATTs of VATTS typically 

have), they can still produce energy in a wide range of operational conditions. This is due 

to the vortex-shedding synchronization (the physical phenomenon that drives the 

cylinder up and down) occurs over a broad and continuous range of frequencies, not just 

at natural frequency, as in linear resonance (Raghaven et al. 2007). This in sharp contrast 

with e.g. point absorber WEC, where resonance and hence the control algorithm is an 

absolute condition to optimally extract power. 

- Although it is not the primary research focus at this moment, Vortex Hydro is one of the 

many developers who are looking synergies with offshore wind; their concept is shown in 

Figure 14. 
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Figure 14: Vivace technology combined under a floating windmill (ASME 2010). 

2.7.2 Ecofys waverotor (combined TEC/WEC) 

2.7.2.1 Introduction 

Ecofys is a Dutch company specialized in sustainable energy and energy efficiency is currently 

test a unique grid-connected 'wave rotor' at Borssele in the Scheldt Estuary. Note that this is a 

combination of a WEC and TEC, which will be explained further. The original concept came from a 

Danish partner Eric Rossen and was tested in Nissum Bredning, Denmark.  

2.7.2.2 Concept and design 

The Wave Rotor works based on simple wind turbine principles and is capable of converting 

wave and tidal energy directly into electrical power. This is realized without the need of 

intermediate transmission steps.  

Ecofys’ wave rotor has the unique feature that it can exploit both wave and tidal energy. 

Although the name says wave rotor, it is listed here as a TEC since the deployment at the pier at 

Borssele is conceived as a TEC. Rather than looking at the up and down movements of waves 

there is also considerable energy to be captured from the circulating water particles in the waves 

creating local currents. The waverotor uses the circular currents to directly drive a rotor to 

produce electricity directly (without a hydraulic circuit or other intermediate step). In order to tap 

energy directly from both the up and down and back and forward currents, two types of rotors 

were combined on the same axis of rotation( Figure 15):  

- Darrieus rotor (see Figure 6), consisting of the vertical blades on the figure. The tidal 

currents in the horizontal direction make the rotor turn; 
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- Wells rotor, consisting of the horizontal and inclined blades on the figure. The Wells rotor 

is turned by the up- and downward component of the orbital movement of the water 

particles; 

These are respectively omni- and bi-directional rotors, which can operate in currents of 

changing directions. Another advantage of this simple, light but strong structure is that it is 

expected to better withstand storm conditions than other systems, because of the minimal 

exposed surface area. The ‘swept’ area is approximately 25 m². 

 

 

Figure 15: Inspection of the Ecofys Waverotor blades (Borssele, the Netherlands), Picture by Peter 
Scheijgrond. 

2.7.2.3 Considerations for deployment on the BPNS 

Ecofys waverotor has some interesting features for deployment on the BPNS: 

- It is the only device that combines the energy from both wave and tidal currents. This 

combination has both advantages and disadvantages.  

Disadvantages are: 

o One can argue that the individual efficiency of one of the rotors may be low 

compared with a device that is a pure TEC or WEC.  

o Locations where both the tidal current and the wave current are high, are rare. High 

currents typically occur at locations with disturbances in the geometry or depth, 

whereas high waves typically occur at deep water. 

Advantages are: 

o The joint wave and tidal current energy extraction could provide benefits in reducing 

capital and operational costs. This can be even increased by using windmill 

foundations, thus combining 3 types of renewable energy (Figure 16). 

o More constant energy producing by relying on 2 energy sources. 
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o The current testsite is located at Borssele in the Scheldt estuary at a location where 

the currents are high. Although this zone belongs to the Dutch Continental Shelf, the 

vicinity of this test site is useful in term of contact with the developers and ease of 

access. 

If the results are promising, a pre-commercial 50 kW demonstration unit will be built. 

Meanwhile the ideas have been patented. In the future 0.5 MW mono-pile units are envisioned 

which are mounted in arrays on the seabed.  

 

  

Configuration with the main focus on the 

Darrieus rotors, and consequently, tidal 

energy. 

Configuration with the main focus on the Wells 

rotors (with the blades just below the surface, 

where the orbital velocity of the waves, and 

consequently, wave energy is the highest). 

Figure 16: Two conceptual Ecofys waverotor configurations attached to a monopile windmill farm. 

2.7.3 Davis hydro (TEC Blue Energy Canada) 

2.7.3.1 Introduction 

Cross-flow turbines are a good option to be placed in shallow waters, due to the compact 

rotors. These turbines have in general lower cut-in speeds than propeller type turbines, and can 

be placed in ducts or be attached to floating structures. Most of them are highly modular, due to 

the rectangular cross-sections, whereas propeller type turbines typically have circular cross 

sections. Here the Davis Hydro turbine is presented, but it is stressed that other devices with 

similar characteristic are under development, like the Gorlov Helical Turbine of Lucidenergy and 

the Proteus of Neptune Renewable Energy. Furthermore, the same group that developed the 
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Seabased WEC (the electrical department of the Uppsala University), is currently developing a 

cross flow turbine in collaboration with Current Power AB. They use a very basic design for the 

rotor and the blades and put more development focus in the generator. This approach is quite 

unique, since most developers try to design new blades or rotors for a given (commercially 

available) generator.  

2.7.3.2 Concept and design 

The basic idea of the Davis Hydro Turbine is a VATT, combined in an array to be mounted 

under a bridge over an estuary, or the ‘Blue Energy Tidal Bridge Power System’, as Blue Energy 

calls it themselves. A specific advantage is the accessibility, since the bridge will provide easy 

access for all kinds of equipment. Not only Davis Hydro seeks such a synergy, Teamwork 

technology, a Dutch company, tested their Tocardo HATT on the ‘Afsluitdijk’. 

This synergy is not directly useful for the BPNS, but Davis Hydro is presented here based on 

the conversion technology, and the fact that the PTO or generator are above the waterline, and 

thus easily accessible. Furthermore, a floating unit with ducts is possible, as indicated in Figure 17. 

 

 
 

Schematic design Floating Davis Hydro turbine 

Figure 17: Conceptual designs of the Davis Hydro Turbine. 

2.7.3.3 Considerations for deployment on the BPNS 

As mentioned above, the Davis Hydro turbine is a vertical axis (ducted) floating turbine. All 

the critical components can be located above the water, making the installation and maintenance 

rather easy. Blue Energy Canada claims to have a lower cut-in speed than a typical HATTs. 

However, little information is available on their overall performance and efficiency. 

 

2.8 Conclusion 

Most WECs and TECs described here have interesting characteristics for the BPNS, but none 

of them can be taken ‘off the shelf’ for immediate deployment on the BPNS. Most of them were 
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just not developed for the specific conditions on the BPNS, with the exception of the FlanSea 

concept. The latter is however still in an early development phase, so reaching pre commercial 

demonstration projects (TRL-5) will take some years. 
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3 Overview of previous wave energy resource 

assessment based on buoy data. 

3.1 Data source and methodology 

The Belgian Part of the North Sea (BPNS) is small part (0.5 %) of the whole North Sea. Waves 

are modified when they travel to the coast and enter in shallower waters. The direction of waves 

changes when approaching the coast oblique to the depth contours. Furthermore, waves loose 

energy through bottom friction and depth induced wave breaking. In order to characterize the 

wave climate on the North Sea, and the Belgian Part of it, several national hydrographic institutes 

deployed buoys. The BPNS has a high density of buoys and some of them were already deployed 

in the mid 80’s. The analysis of these buoy data makes the assessment of the wave climate - and 

hence the wave power resource - for a specific point location, reliable and straightforward. 

The first calculations of the wave power resource based on buoy data for the BPNS were 

performed by dr. ir. Beels (Beels 2009). The following paragraphs present a short overview of the 

methodology and results obtained.  

On the BPNS wave measurement buoys were deployed in varying water depths on various 

distances from the coast. The properties of six wave measurement buoys (Westhinder, ZW-

Akkaert, Trapegeer, Oostende, Wandelaar and Bol van Heist) are given in Table 7. 

Table 7: Properties of wave measurements on the BPNS.  The wave data intervals represent the availability 
of the wave data which where used in the study of Beels 2009). 

 

 

In the case of the time domain analysis, the mean wave period (Tm) is determined by dividing 

a certain time of observations over the total number of down crossings of the water surface 

during that period. The significant wave height is the average of the 33% highest wave heights 

during this time (Figure 18). 
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Figure 18: Determination of the mean wave period and significant wave height (based on zero-down 
crossing) on a water surface time series.  

The measurements of a Wavec and Directional Waverider are analyzed in the spectral 

domain, whereby the calculation of the integral wave parameters (height and period) is based on 

the moments of the spectral density (Eq 1). 

0

( )n

nm f S f df  

 

Eq. 1 

With  mn is the nth
 moment of spectral density 

  f= frequency (Hz) 
  n = order (-) 

S(f)= the spectral energy distribution (which gives the energy density for a certain 
frequency)  
 

In the North Sea, the spectral density for developed sea states is characterized by a Jonswap 
spectral density.  An example is given in Figure 19. 

 

Figure 19: Theoretical shape of the spectral energy distribution of a Jonswap spectrum with different peak 
enhancement factors (gamma).  Note that the m0, the zeroth order moment, represents the area under the 
spectrum (Beels 2007). 

  

Thus, in the frequency domain Hs = Hm0 and Tm = Tm0,2 as defined in the following equations 

(Eq. 2 and 3). 
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Eq. 3 

 

Tm0,2 is obtained with the second moment of spectral density (Eq. 3) and as a result may be 

sensitive to high-frequency (low period) low energy variations in the wave spectrum. Therefore 

sometimes Tp or Te, instead of Tm0,2, is given in a scatter diagram. The energy period Te is defined 

as equation Eq. 4, and is equal to the spectral wave period Tm-1,0. 

1
1,0

0

e m

m
T T

m
 

 

Eq. 4 

 

 

Te depends mainly on the lower frequency band of the spectrum (that contains most of the 

energy) and is therefore a more stable parameter than the traditional mean period Tm0,2. The peak 

period Tp is the inverse of the peak frequency that corresponds to the highest spectral density. 

The relation between Te and Tm0,2 is depending on the shape of the energy spectrum and Tp . 

For a Jonswap spectrum with the peak enhancement factor γ = 3.3. For a Tp between 3 and 15 s 

the average relationships are  given by Eq. 5a and b: 

0,21.155e mT T  

 

Eq. 5a 

 

0,21.286p mT T  

 

Eq. 5b 

 

Buoys typically measure directly movement parameters, like heave, pitch, roll, etc. based on 

a sensors like a gyrocompass or accelerometers.  These raw measurements are transformed by 

means of on board processing into integral wave characterizing parameters like wave height and 

period (based on time domain analysis) or wave spectra (based on the frequency domain 

analysis). The integral wave characterizing parameters are further verified by Flemish Ministry of 

Transport and Public Works (Agency for Maritime and Coastal Services - Coastal Division) and 

transformed into directional or omni-directional scatter diagrams, for the total measurement 

period of each buoy. The scatter diagrams show the average frequency of occurrence (in %) of 

different sea states for one or more year(s), or one specific month, and a given directional sector 

(or omnidirectional if they are averaged over all the directions). A sea state derived from buoy 

data measurements is defined by a combination of significant wave height Hs and mean wave 

period, Tm (time domain analysis) or Hm0 and Tm0,2 (frequency domain analysis). Notice that for 

wave power calculations, Tm-1,0 is the recommended wave period  parameter, however historically 

most scatter diagrammes contain Tm0,2 (Table 8). 
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For every combination of Hs and Tm, the wave power is calculated with the correct 

formulation based on the energy spectrum (Eq. 6). This is done by assuming a parameterized 

Jonswap spectrum. Further background and details of this methodology is described in (Beels 

2009)5. 

0

( )gP g c S f df  

 

Eq. 6 

 

  

Table 8: Average annual scatter diagram for all wind directions at Westhinder, based on 
measurements from 1-7-1990 until 30-6-2004 (Source: Flemish Ministry of Transport and Public 
Works (Agency for Maritime and Coastal Services – Coastal Division)), cited from (Beels 

2009).  

 

The analysis of these buoy data makes the assessment of the wave climate, and hence the 

wave power resource, reliable and straightforward. Unfortunately, it only provides information at 

the location of the buoy itself. 

3.2 Results 

Table 9 shows the average annual available wave power for different locations in the North 

Sea and surroundings. On the BPNS, the average annual available wave power ranges from 1.5 

kW/m, approximately 3 km offshore, until 4.6 kW/m, approximately 30 km offshore. 

Characteristic sea states for Westhinder and ZW-Akkaert are given in Table 10 and Table 11. For 

Westhinder, the most representative sea state is sea state 3 (see Table 10), with a wave power of 

4.29 kW/m. 

Furthermore, monthly and yearly variations were assessed, which is shown in Figure 20 and 

Figure 21 respectively. As expected, the winter months, with January on top, yield the highest 

wave powers. The yearly results also show variations, ranging from 2.6 to 6.8 kW/m.  

                                                           
5
 Further this formula will be generalized for the two dimensional case (see eq. 11). 
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The primary reason is the occurance of big storms, with low probability but with high wave 

power; so increasing the wave power. A secondary reason is missing buoy data. For some years, 

buoy data is missing in winter (e.g. 2003), in other years buoy data is missing in summer (e.g. 

2007).  Table 12 gives an overview of the missing buoy data per year and month during the period 

2000-2008. 

Table 9: Wave power resource at different locations over the North Sea and surrounding based on buoy 
data with the exception of the ‘points’ on the Danish and the Norwegian Continental Shelf, and all locations 
of the UK Continental Shelf (Beels 2009). 
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Table 10: Characteristic sea states for Westhinder. 

 

 

Table 11:Characteristic sea states for ZW-Akkaert. 

 

 

 

Figure 20: Variation of the monthly available wave power for Westhinder and ZW-Akkaert (1990-2004), 
(Beels 2009). 
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Figure 21: Variation of the yearly available wave power for Westhinder and ZW-Akkaert (1990-2007), (Beels 
2009).Summary and main conclusions of technical notes 

 

Table 12: Overview of the percentage of time where buoy data is missing in the buoy dataset.  100% 
indicates no buoy data during that month, 1% indicates no buoy data during 1% of the time. 

Month/ 

Year 

1 2 3 4 5 6 7 8 9 10 11 12 Total 

2000 1.2 6.9 1.2 3.3 2.8 7.5 4.0 1.2 0.4 0.8 4.6 40.7 6.3 

2001 52.4 35.3 21.0 17.9 12.9 10.0 12.9 6.5 2.5 2.0 0.0 3.2 14.6 

2002 2.0 9.4 95.2 79.2 31.0 5.4 6.5 1.6 5.4 21.4 23.8 22.2 25.3 

2003 30.6 53.6 45.2 72.1 71.8 27.5 45.6 4.0 0.0 4.4 28.8 61.7 37.0 

2004 37.9 64.7 8.9 1.7 0.4 0.8 1.2 0.8 6.3 3.2 4.2 0.8 10.7 

2005 1.6 17.0 26.2 12.5 11.7 5.0 13.7 17.3 7.1 8.5 26.3 8.1 12.9 

2006 28.2 9.8 14.9 13.3 0.0 1.3 32.3 51.2 0.8 2.4 1.3 0.0 13.1 

2007 22.2 14.3 54.8 100.0 100.0 100.0 100.0 63.3 0.4 9.7 1.3 0.0 47.4 

2008 13.3 7.3 13.7 8.8 7.3 9.6 4.4 20.2 2.1 13.7 14.2 12.1 10.6 

Total 19.0 21.9 28.1 30.9 23.8 16.7 22.1 16.6 2.5 6.6 10.4 14.9 17.8 
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4 Wave and tidal current numerical models 

In the previous chapter, an overview was presented how buoy data can be used to assess the 

wave climate at specific locations. However, having a full geographical coverage of the wave 

climate is not possible with only buoy data. Therefore the numerical models, validated with buoy 

data come into place. The original set-up of the models, the calibration and validation and 

performance are described in detail in the following separate reports. 

- The set-up, simulation and model results of the wave energy climate (performed by 

KULeuven (Fernández et al. 2010)); 

- The set-up, simulation and model results of the tidal current energy climate 

(performed by MUMM (Van den Eynde et al. 2010)); 

- The validation of the Wave model by means of the Transformation Matrix (performed 

by Flanders Hydraulics Research (Delgado et al. 2010)); 

- The validation of the Tidal current model by means of the LTV (Long Term Vision) 

Scheldt model, (performed by Flanders Hydraulics Research (Dujardin et al. 2010b)). 

In this chapter, the main conclusions of these reports are presented. The first paragraph 

shows an overview of the points of interest. The second paragraph provides the reader with an 

overview of the different numerical models and tools, and their intermittent relationship. From 

there on the wave model results and validation are presented, followed by the tidal model 

results. 

4.1 Zones of interest 

BOREAS is investigating the wave and tidal current climate on 2 geographical scales. The first 

is a general overview of the whole Belgian Part of the North Sea. The results of the analysis on the 

whole BPNS will be maps with available and technical resources. However since some zones are 

more interesting than other zones6, it was decided to define points of higher interest, for which 

2D wave spectra were stored (Figure 22).  In total 50 points were selected, of which 46 are located 

on the finest wave model (BSB model).  The 4 points outside this model were the Dutch buoy 

locations Euro, LEG, K13 and an output point of the Anemoc database.  Out of of the 46 points 

that were located on the finest grid, 28 points were selected of primary interest (domain 

concession zone, location of buoy data, etc…).  

                                                           
6
 Furthermore, saving all the ouput information (especially the timeseries of the full 2D wave spectra 

for all the grid points) was not possible, due to storage (and processing) limitations. 
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Figure 22: Points of interest for the wave modeling. The big dots with the indication of names are identified 
as zones of interest within this project, the small crosses were chosen for other reasons, like comparison 
with other models. 

4.2 Introduction to the numerical models 

Nine numerical models (10 if one also takes into account the Transformation Matrix as a 

numerical model) were used to set up the full model train and validation, but the further analysis 

was based on the 2 most detailed models. The wave model train consists of 3 nested models. The 

finest model, BOREAS-SWAN-BCS, is validated with buoy data and the Transformation Matrix. The 

tidal current model train consists of 4 models. The finest model, BCF-Fine, is validated against 

ADCP measurement and the independent hydrodynamic model LTV (Long Term Vision) Scheldt. 

An overview of the relationship between all the models, and their spatial resolution is given in 

Figure 23. 
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Figure 23 : Overview and interaction of the different numerical models that were used for the BOREAS 

project. The purple boxes indicate the models on which resource assessment was based (the BSB 
model for waves and the BCS-Fine for tidal currents). 
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4.3 Wave Modeling BOREAS-SWAN-BCS (‘BSB’ operated by 

K.U.Leuven) 

4.3.1 Model set up 

In order to have sufficient spatial coverage, it was decided to use a suite of numerical wave 

models in order to come up with wave information on a grid of about 1kmx1km. Wave boundary 

conditions for the zone of interest (Belgian Part of the North Sea) were generated using a nested 

WAM-model set-up. On the BPNS itself, an implementation of the wave model SWAN was 

preferred. SWAN (Delft University of Technology 2008) is a third-generation wave model for 

obtaining realistic estimates of wave parameters in coastal areas, lakes and estuaries from given 

wind, bottom and current conditions. The SWAN version 40.72 has been used for all of the 

computations in this study. The model is based on the wave action balance equation. Wave action 

is conserved in the presence of currents, which makes this model formulation very suitable for 

applications where current field information is available. Although there is still active 

development, this model is considered as the standard model for shallow water applications and 

is the most widely used model for such applications. It also has a more extensive list of model 

options and output parameters compared to the WAM model. 

4.3.1.1 Wave model grid in space and bathymetry used 

The bathymetry used for the SWAN grid, is the same grid as the OPTOS-BCS-Fine model of the 

COHERENS v2 code (Giardino et al. 2000). To make clear that this bathymetry is used, this SWAN 

model implementation is called BOREAS-SWAN-BCS (BSB).  

4.3.1.2 Boundary conditions and/or model trains 

In order to provide the wave boundary conditions for the BOREAS-SWAN-BCS model a set of 

nested wave model grids has been set up (Figure 24).  

First a coarse WAM grid (CMS or Continental Shelf Model) provides boundary conditions for 

an intermediate resolution nested WAM model (the intermediate WAM model grid 

N1_24_SWANB). The coarse grid WAM model extends until 70°N in order to catch the waves that 

are generated in this area and travel (as swell) towards the Belgian coast. Westward extension is 

limited since the Southern North Sea is sheltered by the British Isles. The Intermediate WAM 

model grid (N1_24_SWANB) then in turn provides boundary conditions for the BOREAS-SWAN-

BCS model.  
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Coarse and intermediate grid Boundary output points from the intermediate grid 

to the fine grid, which forms the model grid for the 

BSB model. 

Figure 24: Overview of the coarse, the intermediate and the fine wave model grids. 

 

The WAM-model version used, is the WAM Cycle 4.5 version (Günther, personal 

communication). It permits use of parallel computing and also allows a number of the features 

introduced in the WAM-Cycle4 (Monbaliu et al. 2000). However it does not allow dynamic 

coupling with a hydrodynamic model as described in (Ozer et al. 2000) and was therefore 

considered less suitable for wave modeling in the Belgian Coastal Zone. To drive the WAM wave 

models, 6-hourly UKMO wind data received from MUMM were used.  

4.3.1.3 Modeled processes 

The SWAN model (version 40.72) has been set up to run with a spectral grid of 25 frequencies 

logarithmically spaced between 0.05 and 0.5 Hz and with 30 directions (with a resolution of 12⁰). 

The SWAN model was run in third generation stationary mode using the Westhuysen formulation 

for white-capping together with the corresponding wind input term. A JONSWAP bottom friction 

term was used (with coefficient 0.067). Default breaking conditions were applied. The triads were 

not activated. 

Since tidal influence on the BPNS is substantial, varying water levels and currents need to be 

taken into account. To that end the SWAN model has been coupled to a hydrodynamic model on 

the BPNS. The water levels and currents obtained from the Coherens optos_bcz model 

implementation have been used as input to the wave model.  

The BOREAS-SWAN-BCS implementation takes into account all important processes including 

varying water level and currents. It is therefore well suited to assess the wave climate on the 

Belgian Part of the North Sea. 
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4.3.1.4 Temporal resolution 

As mentioned above, the SWAN model is used in stationary mode. This means that it is 

assumed that the boundary conditions supplied by the WAM model can be considered as quasi-

steady. The model was run every 3 hours. This is sufficient to get a reliable estimate of the wave 

climate, and still feasible in terms of data storage. 

Note that the wind speed and direction is kept constant over the domain. The values used are 

the wind speed and direction at the WHI location as used in the WAM model.  

4.3.2 Model output 

4.3.2.1 Full grid output: integral parameters 

The main important parameters like significant wave height Hs, frequency weighted periods 

and wave power in W/m are saved at every spatial grid point and at every (3-hourly) time step.  

The native dimension for wavepower for the model is W/m, further results are presented in 

kW/m. 

4.3.2.2 28 Points of interest 

Full 2D spectra were stored at about 50 points.  However, only 46 of them were on the BSB 

grid (see Figure 22). They were saved to assess the difference between the correct spectral 

calculation of the wave power with the approximation of the deep water assumption (see § 

5.2.1).  Of these 46 points, 28 were defined as points with a high interest (see Figure 22). 

4.3.2.3 Problems encountered and workarounds 

As mentioned, UKMO wind data were received from MUMM for the above period. There 

were problems with a limited number of wind records. The problematic records were replaced 

with the nearest ‘non-problem’ wind field in time. Since just a few records are affected (on 

average about 1 day per year or less than 0.3%), this replacement procedure was considered 

acceptable. It should have no consequences for the accuracy of the wave climate to be 

determined from the simulation. Processing of the large amount of data required a considerable 

amount of extra programming effort.  

4.3.3 Model performance/validation with buoys 

Buoy data were obtained in two ways: 1) wave buoy spectra from Monitoring Network 

Flemish Banks (received directly from Maritieme Dienstverlening en Kust, Afdeling Kust); these 

data have been transformed in Statistical Moment data for comparing with models results and 

will be called ‘buoy-moments’ in the following graphs, and 2) Integral parameters from the 

Monitoring Network Flemish Banks downloaded via the VLIZ website, which will be called ‘MNFB’. 

Data from Westhinder and Bol van Heist buoys have been used for comparison processes. 

The raw buoy data were used to compute the different moments, which were then compared 

with the obtained buoy integral parameters and with the model (WAM and SWAN) results. The 

main reason to do this is that through the VLIZ interface only a limited number of integrated 

parameters are available. 
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The following widely used statistical parameters were considered for comparisons between 

model results and buoy data (Eq. 7 till 10): 

- The Root Mean Square Error (RMSE) provides information about the average 

magnitude of the error arising from the deviation of buoy data (‘y’) with respect to 

the model results (‘x’). The smaller the RMSE is the better the prediction. 

- The Bias is an evaluation of the difference between the model data and the buoy 

data. Positive values indicate that the model data is higher than the buoy data, 

negative values indicate that the buoy data is higher than the model data. 

- The Scatter Index is a normalization of the RMSE with the absolute value of the mean 

observed or reference value. In other words, it is the ratio of the RMSE to the average 

value of the series considered. Therefore, the higher the Scatter Index the more 

uncertainty in the results. 

- The Correlation Coefficient measures the direction and consistency of a possible 

linear relationship between two variables, in this case, predicted vs. measured or 

reference values. In an ideal case, the correlation coefficient should be equal to one. 

Negative values indicate that the values of one variable increase as the values of the 

other variable decrease. 
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Eq. 10 

 

With: ‘x’ is the model data and ‘y’ is the buoy data. The index ‘I’ indicates individual model or buoy 

data, the overline indicates the average of all corresponding model or buoy points.  ‘N’ indicates the 

total number of points. 

In the next figures the results for the BOREAS-SWAN-BCP (BSB) are given at Westhinder for 

January 2005. The good agreement of Hm0 at Westhinder (Figure 25) illustrates that the boundary 

conditions between the 3 wave models are properly transferred. The model is capable of 
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reproducing the integral parameters (wave heights and periods). Some deviations on the wave 

period can occur as illustrated in the last figure (Figure 26), in particular for the wave period at low 

wave heights. Locally generated waves in the SWAN run can introduce some energy at higher 

frequencies, which would lower the wave period. The statistical indicators at the Westhinder 

location are typical for wave hind cast calculations using the 6-hourly UKMO wind fields. 

 

  

(HS-WHI) - Buoy MNFB – BOREAS-SWAN-BCS. 

 January 2005 

(HS-WHI) - Buoy Moments – BOREAS-SWAN-BCS 

 January 2005 

Figure 25: Comparison of the significant wave height (Hm0) between the model data (‘SWAN’) and the 
buoy measurements (Westhinder). 

 

 
 

(TM02-WHI) - Buoy MNFB – BOREAS-SWAN-BCS. 

 January 2005 

(TM02-WHI) - Buoy Moments – BOREAS-SWAN-BCS 

 January 2005 

Figure 26: Comparison of the wave period (Tm02) between the model data (‘SWAN’) and the buoy 
measurements (Westhinder). 

 

For the location Bol van Heist , the statistical indicators are still acceptable, but not as good as 

at Westhinder (results not shown). There are a number of reasons for this. First of all the 
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deviations at Westhinder, will also be transferred to near shore locations such as Bol van Heist. An 

additional ‘error’ at near shore locations will be introduced due to the time lag between the 

measurements and the arrival of the waves applied at the boundary (violation of the quasi-steady 

assumption). It is believed that this violation is on the one hand relatively small and on the other 

hand not systematic. This should therefore have little or no influence when model output is used 

to look at the wave climate. 

Overall, one can conclude that the wave height Hm0 is modeled very well, with an overall 

bias for the 10 year period of -3.7 cm. The wave period Tm-1,0 is modelled with an overall bias for 

the 10 year period of -0.25 seconds. These results are considered as acceptable and comparable 

to other numerical model results. In the later analysis of the wave power resource, these biases 

will be used to correct the model results to better reflect the wave buoy data. This means that the 

modeled wave height and period will be increased by 3.7 cm and 0.25 seconds respectively. 

4.3.4 Transformation Matrix: characteristics (operated by FHR) 

The transformation matrix is a database containing results of wave calculations initially based 

on the third-generation wave propagation model SWAN (version 40.11, TUDelft). The original goal 

of the transformation matrix was to speed-up the conversion of off-shore wave conditions to 

near-shore conditions, at the -5 and -10m TAW depth line, using wind measurements obtained 

also at the coast. The wave characteristics at Westhinder, the input area, are transformed to wave 

characteristics at other locations of the Belgian coast by means of a so called transformation 

matrix (which is based on SWAN model results). Other inputs are the water levels, measured at 

Oostende, and the wind speeds, 90 minutes averaged using measurements at Wandelaar. It is 

important to notice that the Transformation Matrix itself is not a numerical model, but a rather a 

multilinear interpolation tool based on a numerical model7. 

The differences in wave characteristics calculated with the Transformation Matrix depend on 

the imposed conditions, namely, wave conditions at input area (Westhinder), wind and water 

levels. Any combination of these three is obtained by applying a multi linear interpolation 

between the parameters contained in the transformation matrix. The transformation includes a 

structured discretization of significant wave height (Hs), peak periods (Tp), wave direction (°), wind 

speed and direction, and water levels. For each combination of these variables, a SWAN 

simulation is performed and the results brought together in the matrix and linked to a particular 

location. For further information the reader is referred to the technical reports of the 

Transformation Matrix (Doorme et al. 2006; IMDC 2006; IMDC 2008; IMDC 2009). 

The Transformation Matrix was compared with the —independent— BSB model of this study 

as a supplementary validation besides the wave buoy data validation (Delgado et al. 2010). This 

was done for 5 selected points, as shown in Table 13. Bias results for the Hs (Hm0) and for the Tm (= 

Tm-1,0) are given (Figure 27). The results for the other periods (Tm01 and Tm02) have a larger bias 

(results not shown), but are not used for the calculation of the wave power and therefore less 

relevant. 

                                                           
7
 The Transfomation Matrix entry values were used as boundary condition for a SWAN model run; 

model output was stored for these conditions and afterwards measured conditions were used to know the 
interpolation weights in the multilinear interpolation. 
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Table 13: The 5 output locations for the comparison between the wave model and the transformation 
matrix. 

Name ID Location Type Depths (m) Easting  Northing 

- 10west_123 Point 7.55 507563 5697875 

Akkaert P10_ZWAkkaert Buoy 20.55 486324.4 5695221.9 

Bol van Heist BVHD08 Buoy 9.38 513579.6 5693213.9 

Oostende OSTG Buoy 5.71 494516.2 5676794.6 

Trapegeer TRGG08 Buoy 4.14 470825.9 5665198.3 

 
 

 
Figure 27: Bias for the SWAN-BSB model and Transformation Matrix in comparison with the wave buoy 
data (Hm0 and Tm-1,0). 
 

Both the Transformation matrix and the BOREAS-SWAN-BCS (BSB) model give an accurate 

approximation to wave conditions at the Belgian Coast. The agreement between the 

Transformation Matrix and the results from the BOREAS-SWAN-BCS model is good, especially for 

the wave height Hs, the most important parameter for the assessment of wave energy. The bias in 

this case is only 5 cm for year 1999. These good results explain the excellent agreement with the 

results of the Transformation Matrix, presenting a deviation of only 1 cm from measured data for 

the same year. Such a low bias is not surprising if we take into account that actual wave data is 

used as input for the Transformation Matrix at Westhinder. For this point, located inside the 

domain of interest, the correlation is 100% and includes extreme conditions which are difficult to 

calculate by spectral models. This fact can explain many of the differences observed between the 

transformation Matrix and the BOREAS-SWAN-BCS.  
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The Transformation Matrix is proven to be a good validation tool that can provide quickly 

accurate estimations of the wave conditions at the Belgian Coast. The main disadvantage of this 

tool for operational resources assessment is the need of wave conditions input at the input 

location inside the area of interest. This is required to perform the multilinear approximation 

resulting in wave parameters at the different output locations.  

The BOREAS-SWAN-BCS (BSB model) does not depend on discrete points of the area of 

interest and therefore can provide accurate wave parameters with full spatial coverage without 

needing actual area specific wave data as input. The model outputs do not present data gaps. 

These facts, together with the good results presented and discussed in the comparison report 

(Delgado et al. 2010) make the BOREAS-SWAN-BCS (BSB) model, together with the buoy data, a 

suitable tool for the resource assessment. 

4.3.5 Conclusion Wave modeling 

A numerical wave database has been set-up for the whole Belgian Part of the North Sea. The 

period covered is 1999-2008. Wave information is available every 3 hours with a spatial resolution 

of the order of 1 km x1 km. The model results of the BSB model provides a coherent dataset with 

10 year of wave modeling, with a consistent temporal and spatial resolution 

The model results have been validated using buoy data from the Monitoring Network of the 

Flemish Banks. The model data compare quite well with the buoy data (good agreement with Hm0, 

slight underestimation of Tm0,2). Main advantages of the model data are 1) that they provide a 

continuous and consistent data record, and 2) that they provide information on all the locations 

on the BPNS whereas buoy data often have gaps. Still great care and caution is needed when 

using the wave model data, especially in locations with limited water depth (close to the coast). 

The resolution (and accuracy) of the bathymetry used, is not sufficient to provide accurate 

estimates in the shallow areas and deviations from real conditions have to be expected in these 

shallow areas.  

The comparison with both buoy data and the Transformation Matrix, indicate a reasonable 

level of accuracy, which makes it a very powerful and useful tool to further assess the wave 

energy resource. Since the buoy data are considered as the reference point, the biases for Hm0 

and Tm-1,0 will be used and a correction will be made for the different effect of the bias at wave 

heights above 1m.  

There are however, some limitations. Although the grid is quite fine local effects like time 

varying bathymetry (sand dunes) can influence waves. The dataset also provides an estimate of 

the wave climate before the implementation of wave energy convertor farms. A - hypothetical- 

massive WEC farm placed at the BPNS, would influence the waves due to wave interactions like 

absorption, diffraction, refraction, etc... In the assessment of the extractable wave energy 

resource, this must be approached in a pragmatic way. 



Project SD/NS/13 - Belgian Ocean Energy Assessment "BOREAS" 

 

SSD - Science for a Sustainable Development - North Sea  74 

4.4 Tidal Current modeling 

4.4.1 OPTOS-BCS-Fine (operated by MUMM) 

 

This paragraph gives an overview of the tidal current modeling. The two finest models, BCF 

and BCF-fine, are discussed (Figure 23), the two coarser models are not discussed here (see Figure 

23 for the overview of the models). These models, which are operated by MUMM and 

implemented in the Coherens software, were validated with a numerical model operated for the 

Scheldt Estuary (operated by FHR and implemented in Simona software, see (Dujardin et al. 

2010a)). 

4.4.1.1 Model set up 

The state-of-the-art three-dimensional hydrodynamic model COHERENS (Luyten et al. 1999; 

Luyten et al. 2011) calculates the currents and the water elevation under the influence of the 

tides and the atmospheric conditions. A train of models is set up to provide good boundary 

conditions for the model, applied at the Belgian Part of the North Sea (see Figure 23).  

4.4.1.2 Grid and bathymetry 

The OPTOS-BCS-S is implemented on the Belgian Continental Shelf on a grid with a resolution 

of 42.86” = 1/84° in longitude (817 – 833m) and of 25” = 1/144° in latitude (772m). The extent and 

the bathymetry of the model are presented in Figure 28. The model has 20 σ-depth layers (σ  

indicates evenly distributed over the height).  

 
Figure 28: Bathymetry and extent of the BCS model, with an indication of the output points that were 
used. 
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4.4.1.3 Boundary conditions and/or model trains 

Along the open boundaries, the BCS model is coupled with two regional models. The OPTOS-

CSM model comprises the entire Northwest European Continental Shelf and is driven by the 

water elevation at the open sea boundaries, at the 200m isobaths. The model takes into account 

four semi-diurnal and four diurnal constituents. The OPTOS-CSM model calculates the boundary 

conditions of the North Sea model OPTOS-NOS, which has the same resolution but only covers the 

North Sea. This model OPTOS-NOS is a three-dimensional model with 20 σ-layers over the 

vertical. The boundaries of the OPTOS-BCS model are calculated from the OPTOS-NOS model 

results (Figure 23).  

4.4.1.4 Modeled processes 

The hydrodynamic model solves the momentum equations and the continuity equation with, 

if activated by the model, equations for the sea water temperature and salinity. For the BOREAS 

project, however, the calculation of sea water temperature and salinity is not taken into account. 

COHERENS disposes over several turbulent closures. A good description of the turbulence is 

necessary for a good simulation of the vertical profile of the currents. In the current application, 

an equation for the turbulent kinetic energy is combined with a length scale formulation.  

4.4.1.5 Temporal and spatial resolution 

The time step of the two-dimensional model of the OPTOS-BCS-fine model is 4 seconds, while 

the time step of the three-dimensional model is 120 seconds. The rather small time step in the 

model is due to the explicit numerical scheme, used in the model. When atmospheric conditions 

are taken into account, the model is using the 6-hour UKMO wind data that MUMM is receiving in 

operational mode.  

4.4.1.6 Model output 

The main output of the model are the water elevation, or total actual water depth, and the 

current profiles. In the framework of this project, also the tidal energy is important. This tidal 

energy can be calculated from the current as: 

31
v

2

P

A
 

With P the tidal energy through a water section of 1 m², ρ the water density, A the vertical 

swept area and v the current speed. To verify the results of the model, the tidal energy is 

calculated at the water surface, (i.e. using the current speed in the highest level in the water 

column), at the bottom  (i.e. using the current speeds in the lowest level in the water column) and 

using the depth-averaged current speeds. Note that in the final tidal current energy assessment, 

the average tidal current power over the 4th till 9th depth layer was used (so the upper half layer of 

the water column, but with a top clearance layer, see § 5.3.2.1). Also the total tidal energy, 

integrated over the entire water column, is calculated.  
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4.4.2 OPTOS-BCS-fine (operated by MUMM) 

The OPTOS-BCS-fine (short: BCS-Fine) model is a finer version of the OPTOS-BCS model 

described above, but with only 10 depth layers instead of 20 due to computational limitations. 

The model set-up is similar to the OPTOS-BCS model, which provides the boundary conditions for 

the BCS-fine model. 

4.4.2.1 Grid and bathymetry 

The OPTOS-BCS-fine is implemented on the Belgian Continental Shelf with on a grid with a 

resolution of 14.28” = 1/252° in longitude (272 – 278 m) and of 8.33” = 1/432° in latitude (257 m). 

The extent and the bathymetry of the model are presented in Figure 29. The model has 10 σ-

depths layers.  

 
Figure 29: Bathymetry of the OPTOS-BCS-fine model. 

4.4.2.2 Boundary conditions and/or model trains 

Along the open boundaries, the OPTOS-BCS-fine model is coupled with the OPTOS-BCS 

model, which is described above.  

4.4.2.3 Modeled processes 

The same processes are modeled as in the OPTOS-BCS model, with a higher spatial 

resolution.  
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4.4.2.4 Temporal and spatial resolution 

The 2D time step op the OPTOS-BCS model is 4 seconds, while the 3D time step of the model 

is 120 seconds. The rather small time step in the model is due to the explicit numerical scheme, 

used in the model. When atmospherically conditions are taken into account, the model is using 

the 6-hour UKMO wind data that MUMM is receiving in operational mode.  

4.4.2.5 Model output 

The same output is provided as the OPTOS-BCS model.  

4.4.3 Results for the OPTOS-BCS and OPTOS-BCS-fine models 

The validation of the OPTOS-BCS model has been executed, amongst others, in the 

framework of the MAREBASSE project (Van Lancker et al., 2004). The main conclusions are 

presented here again. First some general figures are presented. Figure 30 shows the maximum 

velocities that occur during 2 consecutive spring neap cycles, whereas Figure 31 shows the 

average velocities. Maximum velocities are found around the harbor of Zeebrugge and up to 1.8 

m/s. Figure 32 shows the time series for the Belwind output point (indicated bel in Figure 28) for 

respectively the depth averaged velocity current. Note the difference between the 2 tidal cycles. 

The further analysis was based on these 2 tidal cycles. Considering more than 2 tidal cycles took 

more processing time and did not increase the accuracy (results not shown, but available in the 

technical note (Van den Eynde et al. 2010)). 

 

Figure 30: Depth-averaged, maximum (over 2 tidal cycles velocity) vectors and magnitude, as modeled with 
the BCS-fine model. One vector of 64 (8*8 output points) is shown in the plot. 
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Figure 31: Mean current speed, averaged over two spring-neap tidal cycles, as calculated with the BCS-fine 
model.  

 

 

Figure 32: Depth average current velocity at Belwind during 2 spring-neap tidal cycles (m/s on y-axis, time 
step for every 30 minutes on the x-axis). 
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4.4.4 Model performance/validation with ADCP 

4.4.4.1 OPTOS-BCS 

The BCS model was validated extensively, using 400 hours of current profiles on the Belgian 

Part of the North Sea, measured with a bottom mounted Acoustic Doppler Current Profiler 

(ADCP). These ADCP data were taken over various places on the Belgian Part of the North Sea, 

near the coast (e.g. B&W Oost, Zeebrugge Oost), or more offshore (Kwintebank, Vlakte van de 

Raan, Sierra Ventana).  

Some statistical calculations, like the Root-Mean-Square-Error (RMSE), bias, correlation, and 

scatter index, have been carried out in order to apprehend the differences in the absolute value ( 

or modulus8) and direction of the currents between model simulation results and ADCP 

measurement data. The RMSE, which gives a global indication of the error, of the amplitude of 

the currents is situated between 5 and 15cm/s (except for campaign 2003/04 where it attains 

30cm/s). The error varies in general relatively little with water depth. There exist however 

significant differences between the campaigns. The currents in the ‘deep’ water campaigns are, 

particularly well represented by the model, whereas in shallow waters the results are less good. 

These areas are usually characterized by highly variable bathymetry on small horizontal scale 

(sand dunes), which cannot be represented accurately on the model grids. The precision of the 

model results depends also on the precision of the meteorological data used in the model run.  

The validation exercise led to the conclusion that the magnitude and the direction of the 

current profiles are satisfactory represented by the 3D hydrodynamic model. The RMSE of the 

modulus of the currents is usually less than 15cm/s and the error in direction usually is less than 

20°, except during some of the simulation where specific problems occurred.  

4.4.4.2 OPTOS-BCS-fine 

A validation of the OPTOS-BCS-fine model was executed in the framework of the Marebasse 

project (Van Lancker et al. 2007). The model was used for the calculation of the effects of sand 

extraction on the sediment transport on the Kwintebank and a validation was performed. The 

results are reported in a separate technical report (Van den Eynde et al. 2010). 

For the validation, measurements from a bottom mounted ADCP were used, which were 

executed on the Kwintebank, during two measuring campaigns. The RMSE are presented in Table 

14. For the longer March 2004 period, the RMSE of the modulus of the depth-averaged currents 

calculated by the BCS-fine model is around 0.072 m/s, which is clearly satisfying.  

 
Table 14: RMSE of the U-component (RMSE U), RMSE of the V-component (RMSE) and RMSE of the 
modulus of the depth-averaged current (RMSE) for the BCS-fine model. 

Start of campaign Period 
RMSE U 

(m/s) 

RMSE V 

(m/s) 

RMSE 

(m/s) 

11/06/2003 25h 0.140 0.119 0.127 

02/03/2004 216h 0.069 0.083 0.072 

 

                                                           
8
 Since the velocities are given in x, y (and in case of 3D modelling, z direction), taking the modulus (this 

is the absolute value of a vector) of the x and y direction gives the overall velocity magnitude. 



Project SD/NS/13 - Belgian Ocean Energy Assessment "BOREAS" 

 

SSD - Science for a Sustainable Development - North Sea  80 

An additional validation was executed in the framework of the BOREAS project by 

comparison with the LTV model and with ADCP measurement.  

4.4.5 Model performance/validation with LTV-Sludge model 

(operated by FHR) 

The LTV model is a three-dimensional hydrodynamic model consisting of six layers with an 

approximate logarithmic distribution (top to bottom 10, 20, 30, 20, 15 and 5% of total water 

depth). This gives the model results the necessary vertical resolution near the bottom, while 

maintaining a sufficiently small layer at the top for comparison with satellite measurements (van 

Kessel et al. 2010). The model is nested in the ZUNO-grof model, as shown in Figure 33. The 

nesting is performed using a combination of two velocity boundaries perpendicular to the coast, 

and a Riemann boundary parallel to the coast. The 3D hydrodynamic model is implemented in 

TRIWAQ, a module of SIMONA (Spee 2010) . Meteorological influences are taken into account, 

both in the LTV model as in the ZUNO-grof model. The grid is curvilinear, whereas the two models 

of MUMM are rectilinear grids. For a comprehensive description of the hydrodynamic model, the 

reader is referred to (van Kessel et al. 2010). 

 
Figure 33: Geographical extent and nesting of the LTV Scheldt in the ZUNO-grof model. 

4.4.5.1 Comparison OPTOS-BCP-fine and LTV sludge with ADCP measurements 

The main conclusions are given in brief. For a full discussion, the reader is referred to the full 

report (Dujardin et al. 2010b). 

4.4.5.1.1 Results: ADCP measurements in comparison with LTV and the OPTOS models. 

The ADCP profiles at the stations “MOW0 – Wandelaar” and “MOW3 – Bol van Heist” have 

been processed by the “Vlaamse Hydrografie” in such a way that time series with a 10 minutes 

interval are obtained in 6 bins. These are: 

 Bin 1: 10 minutes averaged surface velocity; 

 Bin 2: 10 minutes averaged velocity between 2.5 and 5.0m below the water surface; 

 Bin 3: 10 minutes averaged velocity between 5.0 and 7.5m below the water surface; 

 Bin 4: 10 minutes averaged velocity between 7.5 and 10.0m below the water surface; 
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 Bin 5: 10 minutes averaged velocity between 10.0 and 12.5m below the water surface; 

 Bin 6: 10 minutes averaged velocity between 12.5 and 15m below the water surface. 

In a separate technical BOREAS report (Dujardin et al. 2010b) it is shown that the current in 

the upper bin is significantly higher than in the other bins and has a high variability (standard 

deviation). On the other hand, the current in bin2 is significantly lower than the current in all 

other layers. The same behaviour was already reported (Doorme et al. 2006) or measurements at 

the Thornton bank, and could only partially be explained by the influence of waves. Therefore, the 

velocity data in the upper two bins, describing the upper 5m of the water column, will not be 

taken into account for this comparison. 

Still, for these two stations, measurement data at four levels in the water column will be used 

in this report: at 6.25m, 8.75m, 11.25m and 13.75m below the water surface, in accordance to the 

centre of the bin locations. It is possible, especially at low water, that there is not enough water 

above the sensor to calculate averaged velocities in bin6, and sometimes even in bin5 (Dujardin et 

al. 2010b). 

However, during data processing it has been noticed that during certain moments in the tidal 

cycle ADCP measurements exist on depths up to 13.75m under the free surface, while the 

bathymetry in the models is shallower (see table 15).  

Table 15: Depth at the monitoring station in the different models 

 OPTOS-BCS OPTOS-BCS-fine LTV 

Bol van Heist 10.90m 11.32m 11.56m 

Wandelaar 12.80m 12.01m 13.56m 

 

These differences in depth are not unexpected. The bathymetry in the models gives one 

mean value for an area of approximately 825 by 775 meters for the OPTOS-BCS model and 

approximately 250 by 250 meters for the OPTOS-BCS-fine and LTV models, while the ADCP 

equipment is placed at a precise location. As the area around these measurement locations 

(“MOW0 – Wandelaar” and “MOW3 – Bol van Heist”) is characterised by the appearance of large 

dunes (Lanckneus et al. 2001), local bathymetry can easily vary up to two meters on a horizontal 

scale much shorter than the grid resolution of the models. Unfortunately the actual depth, as 

measured by the ADCP, is not included in the data files delivered by the “Vlaamse Hydrografie”. 

In order to make an extensive comparison of modelled and measured velocities possible, a 

vertical shift has been applied on the ADCP measurements in such way that the lower bin of the 

ADCP is matched with the bathymetry of the models.. 

Even with this vertical shift applied, it was found that the results, obtained in this test, are not 

as good as the results obtained in previous validation exercises with the OPTOS-BCS and the 

OPTOS-BCS-fine models.  

4.4.5.1.2 Results: Water levels 

The LTV model underestimates the water levels. The modelled water levels for the OPTOS-

BCS and OPTOS-BCS-fine models are nearly identical (results not shown here).  

Both BCS models have a smaller bias in water level than the LTV model. The LTV model 

underestimates the water level, with biases between -14cm and -4cm. 
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On the other hand, the LTV model shows slightly better RMSE values, which could indicate 

that the LTV model reproduces the intra-tidal water level variations better. Although both BCS 

models have quasi identical biases (between -6cm and +2cm), the OPTOS-BCS-fine model has 

consistently higher RMSE values than the coarser OPTOS-BCS model. 

The reproduction of high water is better in the LTV model than in the other two models, both 

for level and timing. On the other hand, the LTV model shows a clear underestimation of the low 

water. Whereas the RMSE of the low water levels in the LTV model is slightly better than in both 

BCS models, the timing of the low water is reproduced better by the latter. 

4.4.5.1.3 Current velocities 

Only three velocity measurement locations are available. Unfortunately, run simG19 of the 

LTV model only produces output at the locations “MOW0 – Wandelaar” and “MOW3 – Bol van 

Heist”, reducing the number of stations usable for comparison between measurements and the 

different models. A vertical shift was applied on the ADCP measurements at these locations. 

In almost all models and all stations, bias (absolute values) and RMSE values increase with 

depth. Only in “A2B-boei” RMSE values clearly show the opposite behaviour (result not shown 

here, for technical note for further reference (Dujardin et al. 2010a)) . 

In general, all models underestimate the velocities. The OPTOS-BCS model produces the 

smallest bias, followed by OPTOS-BCS-fine and LTV. RMSE values are similar in all models, ranging 

from 0.15m/s up to 0.22m/s for “Bol van Heist” and “A2B-boei” and 0.12m/s up to 0.16m/s at 

“Wandelaar”. Overall the OPTOS-BCS-fine model seems to give the best results at “Bol van Heist”, 

while the LTV model give better results at “Wandelaar”. 

The results, obtained in this test, are clearly not as good as the results obtained in previous 

validation exercises with the OPTOS-BCS and the OPTOS-BCS-fine models. Together with the 

uncertainty about the vertical level of the measurements bins, this can raise some questions on 

the quality and practicability of the measurements at locations “MOW0 – Wandelaar” and 

“MOW3 – Bol van Heist” for the validation of numerical models. Remark that when the vertical 

shift in the measurements in these stations is not applied, both the bias and RMSE values 

increase, as should be expected. 

4.4.6 Overall conclusion tidal current modeling 

Biases between measured and modelled water levels are between +8cm and -2cm for the 

OPTOS-BCS and OPTOS-BCS-fine models. Although the underestimation of the water levels is (on 

average) stronger in the LTV model, it shows slightly better RMSE values than both OPTOS-BCS 

and OPTOS-BCS-fine models (Table 16). 

Table 16: Bias and RMSE0 between observed and modelled water levels for all stations (straight setup). 

 range of bias [m] RMSE0 [m] 

OPTOS-BCS +0.07 -0.02 0.27 

OPTOS-BCS – fine +0.08 -0.02 0.29 

LTV +0.14 -0.04 0.24 
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The underestimation of the water levels in the LTV model is presumably due to the way 

meteorological conditions are taken into account. Harmonic analysis shows a slight 

overestimation of the amplitude in the LTV model, for all major harmonic components. 

In general, all models underestimate the velocities, bias (absolute values) and RMSE values 

increase with depth. On average, RMSE values range from 0.12m/s at “Wandelaar” to 0.21m/s at 

“Bol van Heist” (Table 17). 

 
Table 17: Bias and RMSE between observed and modelled tidal velocities (straight setup). 

 range of bias [m/s] range of RMSE [m/s] 

OPTOS-BCS +0.12 -0.03 0.12 0.21 

OPTOS-BCS – fine +0.14 -0.02 0.12 0.22 

LTV +0.15 -0.04 0.12 0.21 

 

These values are not as good as the results obtained in previous validation exercises with the 

OPTOS-BCS and the OPTOS-BCS-fine models. Together with the problems concerning the 

measured velocities in bin1 and bin2 (upper layers of the ADCP measurements) and the 

uncertainty about the actual vertical level of the measurements bins, this can raise some 

questions on the quality and practicability of the measurements at locations “MOW0 – 

Wandelaar” and “MOW3 – Bol van Heist” for the validation of numerical models. 

The harmonic analysis of the currents (results not shown) shows that the model results of the 

OPTOS-BCS, OPTOS-BCS-fine and LTV models give similar results in the open sea stations (results 

not shown). The velocity output in the stations near the coasts has not been considered here 

because the different grid setups (curvilinear for the LTV model, Cartesian for the OPTOS-BCS and 

OPTOS-BCS-fine models) near the model boundaries influences the results too much. 

At the location at Belwind windmill park, the modelled velocity currents in the upper half of 

the water column vary between 0.2 and 1.05 m/s. The OPTOS-BCS model was validated with 

ADCP measurements during the MAREBASSE project, showing RMSE between 5 to 15 cm/s for 

most measuring campaigns.  

Overall, one can conclude that the OPTOS-BCS, OPTOS-BCS-fine and LTV model give 

satisfactory results and that the models are well suited to be used for the calculation of the tidal 

current climate on the Belgian Part of the North Sea and can be used for the assessment of good 

sites for exploitation of tidal current energy. In the case of specific project location, it is however 

advisable to verify velocity currents with ADCP measurement over longer periods. 
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5 Wave and tidal current resource  

5.1 Protocols for wave and tidal resource assessment and 

BOREAS methodology 

 

At the start of the BOREAS project, there was no international consensus, guidelines or 

standardization for the protocols or methodologies for wave and tidal resource assessment. Many 

different methodologies and criteria existed, making an intercomparison between resources, and 

the expected energy production by convertors difficult. The different approaches that were used 

weren’t beneficial for the credibility of the claims that were made by potential investors. Many 

research groups (amongst them the Hydraulic Maritime and Research Centre of Cork University, 

EMEC and DTI) emphasized the importance of a generalized protocol to asses both the wave and 

tidal energy climate, and the performance of wave and tidal current convertors.  

To tackle this, the European funded Equimar was launched. Its main focus was the equitable 

testing and evaluation of marine energy extraction devices in terms of performance, cost and 

environmental protection. 

Although most of the (final) Deliverables were only launched at the end of 2010 or 2011 (and 

thus the end phase of the BOREAS project), the BOREAS project methodology is in line with the 

recommendations. It is therefore that the recommendations from Equimar are used here to 

provide an introduction and rationale for the wave and tidal energy resource assessment. 

Equimar defined 3 levels of operational resource assessment steps (Figure 34), which are: the 

early stage, the project development & project feasibility and the operational phase. The 

definition for the early stage wave energy assessment is (EquiMar et al. 2011): 

 ‘Resource characterization should provide an estimate of the annual resource along with 
quantification of the seasonal and inter-annual variability. This assessment should be 
conducted over a period of 10 years with the data provided by hind cast modeling and/or 
existing data.’  

For tidal wave energy assessment it is:  

‘Resource characterization should estimate the peak resource along with the seasonal 

variability. This may be achieved using tidal stream atlases or shelf tidal models. Coarse 

grid models and area models may also be utilized’. 

BOREAS is clearly set up as an initial assessment (early phase), with some aspects towards a – 

generic – project development. The main summary methods that are required during the early 

(and later) phase(s) are outlined in Figure 35.  
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Figure 34 : The stages of a marine energy project, and how resource assessment will be utilised during 
each stage (EquiMar et al. 2010; EquiMar et al. 2011) . 

 

 
Figure 35 : Summary of the methods and data required for resource assessment at each stage of a 
wave energy development (EquiMar et al. 2010; EquiMar et al. 2011). 
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It should be emphasized that Equimar doesn’t necessarily suggest the use of spectral wave 

information for an early wave energy assessment9. The wave power, or energy flux per unit of 

crest length, is described by its directional variance spectrum and is given by Eq. 11 (which is 

basically the two dimensional version of the one-dimensional spectral density as given by Eq. 6): 

2

0 0
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Eq. 11 

 

With:  ρ= density of sea water (1025 kg/m³) 

 g= gravitational acceleration (m/s²) 

 cg = group velocity (= ‘celerity’), m/s 

 f = frequency 

 d= depth 

 E =directional variance density spectrum (m²/Hz/rad)10 

However, as Equimar suggests, deep water approximations, based on the integral parameters 

Hm0 and Tm-1,0, are sufficient for a first order wave resource assessment. Hm0 and Tm-1,0 can be 

derived based on the spectrum by spectral moment analysis. 

2
2

0 1,0
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dp m m

g
P H T  Eq 12 

 Notice that (Beels 2009) based the wave resource analysis on scatter diagrammes and did 

not have the directional variance density spectrum E. Furthermore Beels (2009) used the same 

method of (Goda 2000), but with the formula of Eckart instead to solve cg (see also § 3.1). 

Therefore the author assumed a parametric Jonswap spectrum (Beels 2009).  

However, since a big part of the Belgian Part of the North Sea is rather shallow (especially the 

nearshore location), Eq 12 isn’t always valid under any circumstances. The two-dimensional 

spectral data were saved at 46 points, due to storage and processing limitations. Consequently, 

the resource was based on the integral parameters for the full grid (Eq 12), but with a correction 

factor based on 46 points where the full 2D spectra were available and the correct formulation of 

Eq. 11 could be used. 

                                                           
9
 For further (mathematical) background the reader is referred to reference books like Holthuijsen, L. 

H. (2007). Waves in Oceanic and Coastal Waters. 
10

 Note that S in eq. 6 is used for the one dimensional variance density spectrum and that S is only a 
function of f and not of Ɵ. 
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5.2 Available wave power resource 

5.2.1 Methodology 

5.2.1.1 BOREAS-SWAN-BCS numerical model (BSB) and the corresponding dataset 

The output of the BSB wave model is a database on 2 levels: data stored at the full grid and 

data stored at 46 specified points of interest. 

On the full grid (131*141 rectilinear grid), every timestep (3 hours) contains the following 

relevant parameters: Hm0 and Tm-1,0. This allows to use the deep water approximation for the wave 

power calculation as defined in Eq. 12. 

For the points of interest as defined in Figure 22, the database contains the full two 

dimensional spectra. This allows to calculate the -correct- wave power as defined in Eq. 11. In 

order to solve this equation, the spectrum is first integrated over the direction (30 directional 

sectors, every 12°) to obtain the one dimensional spectrum. The actual depth for the point is 

obtained by linear interpolation of the depths that are given on the output grid. Then the group 

velocity cg is calculated for every frequency bin based on the formula of (Goda 2000). Since the 

energy variance spectrum E(f,θ) is given by the SWAN model, the integration over the 25 frequency 

bins can be executed. However, this information was only stored for 46 selected points of 

interest, due to storage and processing limitation. Hence, the integral parameters Hm0 and Tm-1,0 

were used to calculate the wave power by means of the deep water formula (Eq 12).  

Wavepower is expressed in kW/m and should be interpreted as the amount of energy that is 

available per m wavecrest. However, just multiplying the width of a WEC with the available power 

does not yield in the extractable wave power. Conversion efficiencies and resonance effects 

(Falnes 2002) influence the extractable power to a large extent.  

The maps with the wave power are based on Hm0 and Tm-1,0 of the full grid and the 10 year 

timeseries and calculated using Eq 12, but 3 corrections were applied, which are discussed 

hereafter.  

5.2.1.2 Buoy data correction 

In order to account for the difference between the observed buoy data and the numerical 

model, the bias11 for Westhinder, both for Hm0 and Tm-1,0, was applied to the modeled SWAN 

results for the full grid and the 10 year dataset. The rationale behind is that Westhinder is the 

buoy with the most reliable and longterm results, and therefore is a reference point for the wave 

parameters, and hence the wave statistics. This correction provides good results at intermediate 

and deep waters offshore (like at Westhinder and the domain concession). Since the main focus is 

the domain concession zone, it was chosen to apply this correction. Thus, the model results Hm0 

were increased with +0.037 m and Tm-1,0 increased with +0.25 seconds (which correspond to the 

10 year bias between buoy data and model results for Westhinder). This will be annotated in the 

titles of the figures with ‘buoy data correction’. 

                                                           
11

 Missing buoy data was excluded for the determination of the bias. 
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5.2.1.3 Deep to spectral correction 

In order to account for the difference in methodology between the correct spectral (Eq. 11) 

and the approximate deep water methodology (Eq 12), a correction map was based on the 

bathymetry and the correlation between the bathymetry and difference between deep and 

spectral wave power. For th  e 46 points where the spectrum was available, both the wave 

powers based on equations 11 and 12 were calculated, and plotted in function of the bathymetry, 

whereby the correction factor is given by: 

Correction factor (%) = 100* (WPsp-WPdeep)/WPdeep 

With WP = wave power with the indices indicating the used equation (sp stands for Eq. 11 and 

deep stands for Eq 12). The correlation factor found was (Mathys et al. 2011b):  

Correction factor (%) = - 0.24*Depth(m) +13 

The obtained correction factor was in line the results of the French Anemoc Study (Mattarolo 

et al. 2008). 

5.2.1.4 Seventeen year correction 

Although the BOREAS project used a ten year wave hindcast (1999-2008), results for longer 

periods based on buoy data were available (Beels 2009). In the latter study, the covered period is 

longer (1991-2007) than in the BOREAS model (1999-2008), and is therefore assumed to be more 

reliable. The study of Beels (2009) assessed the wave period for Westhinder at 4.68 kW/m for the 

reported period (1991-2008). However, when this dataset was reanalyzed for the BOREAS period 

(1999-2007), the wave power dropped to 4.35 kW/m. Thus, taking a longer (and thus more 

reliable) period into consideration (17 years instead of 10 years), corresponds with an increase of 

7.6%. Therefore, the results of the hindcast of the BOREAS model were increased with 7.6. This is 

indicated with the annotation ’17 year average wave power’ instead of ’10 year average wave 

power’. 

5.2.2 Longterm 

The wave power resources are given, as the original model results and the 3 corrections that 

were chronologically applied: 

1. The model output (as described in § 5.2.1), at Westhinder, the wavepower is 3.98 

kW/m, the average of all model points within the domain concession is 4.88 kW/m. 

2. The model output, corrected with the buoy data correction (described in § 5.2.1.2), at 

Westhinder, the wavepower is then 4.37 kW/m, due to the higher wave height and 

period (positive biases applied to the whole time series) , the average of all model 

points within the domain concession is 5.32 kW/m;  

3. The model output, corrected with the buoy data correction (applied first) and the 

deep to spectral correction (applied secondly), the wavepower at Westhinder is thus 

4.37* 1.0665 (see § 5.2.1.3) = 4.66 kW/m, the average of all model points within the 

domain concession is 5.66 kW/m; 
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4. The model output, corrected with the buoy data correction (applied first), the deep 

to spectral correction (applied secondly) and the 17 year period correction (applied 

thirdly) give the final result shown in Figure 36. The wavepower at Westhinder is thus 

4.66kW/m *1.076 (see § 5.2.1.4) = 5.01 kW/m, the average of all model points within 

the domain concession is 6.08 kW/m . 

The final available resource map, taking into account these 3 corrections (Figure 36), shows 

consistently higher wave powers compared to previuos buoy data studies at Westhinder. The 

study from Beels (2009) found 4.64 kW/m, whereas in this study 5.01 kW/m was found (Table 18). 

The wave powers at ZW-Akkaert and Wandelaar are higher for the BOREAS study than for Beels 

(2009). At the domain concession zone, the wave powers are ranging from 5.5 (South) to 6.4 

(North) kW/m. 

Table 18: Comparison between the wave powers from BOREAS and (Beels 2009). 

Buoy BOREAS final wave power Beels (2009)
12

 with indication of the 
considered period 

Westhinder 5.01 4.64 (’90-04) 
 4.68 (’90-’08) 

ZW-Akkaert 4.95 3.64 (’84-’04) 

3.68 (84’-’08) 

Trapegeer 1.65 1.51 (’94-’04) 

Oostende 2.00 1.66 (’97-’02) 

Wandelaar 3.8 2.63 (’95-’04) 

Bol van Heist 2.92 2.54 (’85-’04) 

Average on domain concession 6.08
13

 NA 

 

The difference between the results from the BOREAS study and the buoy data study from 

Beels (2009) could be explained by the following arguments: 

 The buoy data study (Beels 2009) used discrete classes of wave height and periods in 

the scatter diagramme (see (Mathys et al. 2011b)for an example at Westhinder). In a 

sea state between 1 to 1.5 m all points are considered as having a wave height of 

1.25m. However, the model data was based on continuous wave heights and periods, 

and used the actual modeled wave data and heights. 

 Another possible source for the difference could be the data gaps in buoy data due to 

for example maintenance or transmission problems (as was shown in Table 12). The 

model results provide a continuous dataset. 

 Lastly, the methodology of the buoy data study is different (assumption of 

parametrized Jonswap spectrum for (Beels 2009) versus the deep water 

approximation with corrections that was used in BOREAS). 

                                                           
12 The original study from Beels (2009) calculated the wave powers based on a paramatrized 

JONSWAP parameter, derived from the integral parameters. The deep to spectral correction was not 
applied on these values, but cited from the original reference. 

13 Average of all the model output points within the domain concession zone. 



Project SD/NS/13 - Belgian Ocean Energy Assessment "BOREAS" 

 

SSD - Science for a Sustainable Development - North Sea  91 

These arguments are plausible to explain the difference. Concluding, one can state that the 

model results, with the corrections, give the best available wave power resource map with the 

current methodology. 

The three available output points of the French Anemoc study (Anemoc 2011) gave 

comparable wave powers (indicated with white ‘o’ symbols) in Figure 37. The only point available 

from Anemoc in the domain concession zone gives a wave power of 6.6814 kW/m, whereas in this 

study 6.48 kW/m was found. Another point (4.31 kW/m) lies just North of the 4 kW/m contourline 

and thus seems in line.  A third point (4.42 kW/m), laying outside the BPNS, apparently 

underestimates the values obtained by the BOREAS project (5 kW/m contourline).   The Anemoc 

study was based on a 23 year hindcast of waves with the spectral wave model TOMAWAC 

(Mattarolo et al. 2008). 

The results from the UK Wave Atlas are also shown (indicitated with ‘*’) in Figure 37. At the 

western zone of the model grid, the 5 kW/m contourline of the BOREAS study is in line with 

approximately kW/m of the UK Wave Atlas point. At the NE zone of the BPNS, the 6kW/m 

countourline of the BOREAS project is in line with the UK Wave Atlas points. The agreement with 

the UK Wave Atlas is strikingly good, although the latter used a much coarser grid than the 

BOREAS model. In the study of the UK WAVE Atlas a ‘good agreement between modeled and 

observed data was found: within 10% of significant wave height and 20% of wave power’ 

(ABPMER Ltd et al. 2008b).  

The Anemoc and UK wave Atlas points at the western part of the model grid (outside the 

BPNS) gives respectively 4.98 and 4.42 kW/m, which corresponds to a 11% difference, between 

the French and UK wave model. 

Overall, one can conclude that the available wave power (Figure 37) is inline with the UK 

Wave Atlas and Anemoc study (Figure 37), and that the errors between the model results of 

BOREAS, Anemoc and UK Wave atlas studies are of a similar order of magnitude to the errors 

found between the numerical models and observations15 within these 3 studies (Mattarolo et al. 

2008).  

 

 

 

                                                           
14 This was calculated based on the scatterdiagrammas of Hm0 and Tm-1,0 of the Anemoc study, using 

the deep water formulation (Eq. 12), without any corrections. 
15

 Observations are dependent on the study: in most cases buoy data where used, but also lightships 
were used as a measuring platform in the UK Wave Atlas study. 
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Figure 36: Final wave power resource: 17 year average wave power (kW/m) with buoy data and deep 
to spectral correction (all 3 corrections). 

 

Figure 37: Comparison of the final wave power resource climate in kW/m of BOREAS (background, 
contourlines and white boxes, same as Figure 36,but extended to the full model grid), the French 
Anemoc data points (white o) and the UK Wave Atlas points (*). Sources: (ABPMER Ltd et al. 2008a; 
Anemoc 2011). 
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5.2.3 Monthly trends 

The monthly available wave power resources are presented here in the ‘final’ way, thus with 

the 3 corrections applied. 

The results for the Months January (Figure 38), April (Figure 39), July (Figure 40) and October 

(Figure 41) are given. The other months are given in the Appendix (§ 9.3). There is, as expected, a 

strong variation between the wavepowers. The maximum is obtained in January, where the wave 

power is about 10.7-9.03 kW/m in the domain concession zone, with the lower values in the 

Southern part of the domain concession zone. This monthly maximum is of course due to higher 

winds in the storm season. In the summer months July the wave power drops to values around 

2.6-2.9 kW/m in the domain concession zone. 

 

Figure 38: Final Average wave power (kW/m) for the month January (final, with the 3 
corrections). 
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 Figure 39: Final Average wave power (kW/m) for the month April (final, with the 3 
corrections). 

 

Figure 40: Final Average wave power (kW/m) for the month July (final, with the 3 
corrections). 
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 Figure 41: Final Average wave power (kW/m) for the month October (final, with the 3 
corrections). 

 

5.2.4 Yearly Differences 

The yearly available wave power resources are presented here in the ‘final’ way, thus with 

the 3 corrections applied. 

The year with the highest and lowest annual wave powers are given in Figure 42 (1999) and 

Figure 43 (2003) respectively (the other years are given in the Annex). For Westhinder, the long 

term yearly average is 5.01 kW/m, the yearly average is 5.82 kW/m in 1999 and the minimum 

3.69 kW/m in the year 2003. The long term average for Westhinder is 5.01 kW/m and for ZW-

Akkaert 4.95 kW/m. 

For the years 2001 (Figure 78), 2003 (Figure 43), 2004 (Figure 80), 2005 (Figure 81) and 2007 

(Figure 83) the wave power at Westhinder is lower than at ZWAkkaert. 
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Figure 42 : Average wave power (kW/m) year 1999 (final, with the 3 corrections). 

 
 Figure 43 : Average wave power (kW/m) year 2003 (final, with the 3 corrections). 
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5.2.5 Extractable wave power resource 

The assessment of the extractable wave power resource is based on the combination of the 

available resource and a conversion efficiency, in this case represented by a power matrix, which 

gives the relation between the wave height and period with the produced power. 

5.2.5.1 Methodology 

The extractable resource was calculated based on available power matrices for 3 WECs: the 

750 kW Pelamis, the Protech Straumekraft 25 kW point absorber and a single 37 kW floater of a 

Wavestar WEC. The extractable resource was calculated by combining the power matrix of the 

respective WEC with the combination Hm0 and Tm-1,0 (with the buoy data correction) for every 

timestep of the 10 year hindcast. For every combination of the wave height and period the 

produced power production was linearly interpolated on the given power matrices (Table 4, Table 

5 and Table 6). Most power matrices just indicate Hs or Te (respectively significant wave height 

and energy period). It is assumed here that Hm0 as given by the model (frequency domain analysis) 

equals Hs (from the power matrix) and Tm-1,0 equals the period (from the power matrix). After this 

calculation, an extractable resource was produced (expressed in kW), after which the 10 to 17 

year correction was applied. 

The extractable power is thus based on Hm0 and Tm-1,0 of the wave model. The buoy data 

correction was used, since this correction directly applies to Hm0 and Tm-1,0. The deep to spectral 

correction was not applied. The ‘deep to spectral’ correction is not necessary as the power matrix 

requires the integral parameters Hm0 and Tm-1,0 directly and not the spectral data. The 10 to 17 

year correction was also applied. 

It is important to mention that this extractable resource is valid on placing a single WEC at a 

specific site, since the current methodology doesn’t allow to take into account the interaction 

between a WEC and waves, or between one WEC with another WEC (like in a Wave Energy 

Convertor farm).  

The first available power matrix is the one of Pelamis, given in Table 4. The Pelamis is 

developed for higher wave climates than the BPNS. Two other power matrices are given for the 

Protech Straumekraft point absorber WEC (Table 5) and for a single floater of a Wave Star WEC 

(Table 6). The Protech Straumekraft is based on a computer model. Pelamis’ power matrix was 

originally published before a full scale device was deployed, so their power matrix is also based on 

a computer model (it is likely however that it was validated by Pelamis themselves with scale 

model results, due to the long development track and scale testing Pelamis performed). For the 

Wavestar WEC, experimentally proven power outputs are given. However, not the power matrix 

but a power curve (produced electricity in function of the wave height for an average wave period 

of 4.5 seconds) is given (Frigaard et al. 2010).  

In this study the term ‘rated power’ is assumed to be equal to the maximum produced power 

within the power matrix. Furthermore it is assumed that this ‘rated power’ equals the ‘installed 

power’, which will be used for the economical assessment in chapter 7. 
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5.2.5.2 Results  

The average produced electricity during the 10 year hindcast of single WEC is given in Figure 

44 (Pelamis), Figure 45 (Straumekraft Protech) and Figure 46 (single floater of a Wavestar). 

The results for the Pelamis (Figure 44) , which is a 750 kW device and developed for high 

wave climates like the coast of Portugal, Ireland, UK, etc.., show that a Pelamis WEC is by a large 

extent overdimensioned for the conditions on the BPNS (which was expected). If the Pelamis 

would be placed in the domain concession zone (average on the domain concession zone is 45.5 

kW), the capacity factor is only 45.5/750 = 6.1%. The annual production for a single unit would be 

399 MWh (=45.5kW*365days *24hrs/day). This is approximately 2/3 of the lowest production 

found in another case study, which looked at higher energetic zones (Dalton et al. 2009). 

 

 
 Figure 44 : Longterm average electricity production of a single 750kW Pelamis WEC (kW). 

 

For the Straumekraft (Figure 45) which is a point absorber with a rated power of 25 kW, the 

capacity factors are higher. Straumekraft would produce in the order of 4.48 kW on average at 

the domain concession zone and hence the capacity factor would be 17.9% and the yearly 

produced electricity for a single unit would be 39.2 MWh (= 4.48 kW*365days*24hrs/day).  

The results for a single floater of the Wavestar are shown in Figure 46. The capacity factor 

would then be 22.4% (8.28 kW on average on the domain concession/37kW), so higher than 

Straumekraft, corresponding with yearly 52.7 MWh production for a single floater But the power 

matrix of the Wavestar is already confirmed and therefore more reliable. Furthermore, Wavestar 

is trying to improve their production with advanced control strategies and optimal damping 

parameters.  The results for a full Wavestar unit is easily obtained by multiplying the values in 

Figure 46 with a factor 20, since a  complete jack-up platform consists of 20 floaters. 
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Figure 45 : Longterm average electricity production of a single 25kW Straumekraft WEC (kW). 

 
Figure 46 : Longterm average electricity production of a single 25-50kW floater of a Wavestar 
WEC (kW). 
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5.3 Tidal current resource  

5.3.1 Physically available resource 

5.3.1.1 Methodology 

The calculation of the available tidal current resource is very straightforward. The current 

velocities are given in an x,y and z-component. The z-component is not considered as these 

velocities were not contributing to the wave power (< 0.001 m/s) in comparison with the x and y 

component. In a first step these velocities are converted to current velocities and directions, and 

centered and interpolated to the same gridpoint. This step is necessary to carry on with the next 

calculation steps, since the output grid is a staggered Arakawa C-grid (Luyten et al. 2011). Then, 

for all the gridpoints (381*345 gridpoints, including the dry land cells), all the half hourly 

timesteps and all the 10 depth layers, the tidal current resource is calculated by means of Eq. 13. 

31
v
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Eq. 13 

 

The results are then averaged over the total depth and time to obtain the available physical 

resource. 

5.3.1.2 Results 

The variations in the tidal currents are highly dependent on the bathymetry, and hence the 

available sandbanks.  The bathymetry, and the names and location of these sandbanks is given in 

Figure 47.  The available wave power is given in Figure 48. The results are in line with the 

expectations and previuous results from the OPTIEP study (Mathys et al. 2010). In general, the 

bathymetry, especially around the bigger sand banks offshore like Oostdyck, Noordhinder, 

Oosthinder and Blighbank can be distinguished. Furthermore, the harbor around Zeebrugge, and 

in a lesser extent the harbors of Ostend, Nieuwpoort and Blankenberge16. 

The model used for BOREAS has a finer grid than used for OPTIEP and is therefore more 

suited to give insight in local peaks of tidal current power. The peak tidal current resource is 

therefore higher than reported in the OPTIEP study. The OPTIEP study defined 4 zones: 

1) Zone West, formed in the south by the Oostdyck bank, delimited at the west side by the 

border with the French Part of the North Sea. Whereas OPTIEP reported peaks at 

Westhinder around 140 and 194 W/m² at the Fairybank, the results found in BOREAS are 

higher (up to 250 W/m²). The higher values found in BOREAS are due to the finer grid of 

BOREAS (in comparison with the OPTIEP grid)., Local stronger currents are better 

detected in a finer grid and not lost in the geographical averaging over a coarser grid. 

 

                                                           
16

 The harbor of Ostend was modelled in the old version, so not with the new breakwaters that were 
under construction. It is expected that the new construction would increase the velocities at the 
breakwaters, similar to the observations in Zeebrugge. However, since the breakwater does not extend as 
far as in Zeebruges, the increase in current velocity, and hence tidal current power, will be in a lesser 
extent. 



Project SD/NS/13 - Belgian Ocean Energy Assessment "BOREAS" 

 

SSD - Science for a Sustainable Development - North Sea  101 

 

Figure 47: Overview of the sandbanks on the BPNS (Mathys 2009). 

2) The two zones around the DC zone, one at NW part of the DC zone (between the westerly 

tips of Noord- en Oosthinder) and the other at the Bligh Bank. Whereas in OPTIEP these 

zones were questioned, they are now confirmed with a detailed bathymetry.  

3) The harbor of Zeebrugge, and especially the zone around the NW breakwater (Figure 49), 

is identified as the zone with the highest tidal current potential. The tidal current 

ressource goes up locally to 330 W/m², whereas in OPTIEP an upper limit of 240 W/m² 

was detected (this is again due to the finer resolution of the BOREAS grid). However, the 

increased currents found here are very local, and the grid resolution of the model used 

was still too coarse to consider the harbor of Zeebrugge in full detail. A detailed model of 

the harbor of Zeebrugge, like the µ-Heist model from the BMM could provide very 

detailed information about where exactly the peak currents (and hence powers) occur 

(Van den Eynde et al. 2007). These peak currents then need to be confirmed by ADCP 

measurements. 
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Figure 48: Depth (all depth layers) and time averaged available tidal (based on 2 spring-neap tidal 
cycles) current power for th BPNS and the DC zone (W/m²). 
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Figure 49: Depth (all depth layers) and time averaged available tidal (based on 2 spring-neap tidal cycles) 
current power for the region around the harbor of Zeebrugge (W/m²). 

 

4) The navigation channel Scheur is confirmed as a zone with high energetic outputs. 

However,as this is a very dense shipping lane, this zone is excluded. The filling and 

emptying of the Scheldt Estuary, along with the presence of the shallow Vlakte van de 

Raan, is the cause of these higher tidal current powers. 

The Domain concession zone has an available resource between 55 and 155 W/m² on most 

locations the resource varies between 90 and 110 (Figure 48). The highest available resource is 

found at the Bligh Bank (concession granted to Belwind) and varies between 130-140 with a peak 

of 155 W/m². 

5.3.2 Extractable resource 

5.3.2.1 Assumptions 

The extractable tidal current resource is based on the available resource. In order to make a 

distinction between the total tidal current resource and the part that is extractable, the following 

assumptions are made: 

- The turbine is horizontal axis tidal turbine with no in- or outlet structures to focus the tidal 

current stream. The effect of the angle of attack is neglected, so it is assumed that the 

currents are perpendicular to the blades. 

- No wake interactions are considered, nor interactions with currents or waves. 

- The generic efficiency curve is presented in Figure 50, which is essentially a smoothed version 

of the original efficiency curve presented in Figure 7 (Cornett et al. 2010). The available 
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power is indicated in the blue thick line (left axis), which is related to the cube of the current 

velocity. The efficiency curve (from TEC to wire, so overall TEC efficiency) is shown on the 

green dashed line on the right axis. Notice the cut-in speed: below 0.5 m/s no electricity is 

produced. Above 0.5 m/s the efficiency rapidly increases to a maximum of ca 43 % at 2.5 

m/s. Notice that 2.5 m/s does not occur on the BPNS, the maximum speeds are to be found 

around Zeebrugge and going locally up to approximately 2 m/s. By multiplying the available 

power with the efficiency curve, the extractable power is achieved (thin blue line on right 

axis). Figure 51 illustrates this methodology for the location Westhinder for the upper half of 

the water column.  

- The usable depth is given by the total bathymetry minus the half of the waveheight which is 

exceeded during 5% of the 10 year wave hindcast17, minus the lowest low water. After 

obtaining this ‘usable depth’, 1.5m bottom and 1.5 top clearance is added. In this way the 

maximum diameter of a tidal turbine can be assessed and it is possible to determine the 

order of magnitude of the technically extractable resource (See Figure 52 and Figure 53) . 

- Since the current velocities vary with the depth, either the depth averaged current in the 

upper half is used for the further calculations (from depth layer 4 till 9 and not 5-10 since this 

would involve the surface layer as well, which should be avoided to provide clearance for 

wave throughs, debris and ship hulls). It should be interpreted as the current velocity that is 

present in the water column from 40% to 90% above the bottom. 

                                                           
17

 The hindcast of the waves as described in the previuous chapter was used. The 5% percentile was 
chosen to allow enough clearance for the tips of the turbine to avoid exiting the water (with possible 
cavitation and damage to the blades). 
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Figure 50: Relation between the available power (kW or W/ per m² swept turbine area), the 
efficiency (from water to wire, so overall efficiency, in %) and the extractable power (kW or W/m² 
swept turbine area). Top: overview; bottom: detail of current velocities between 0.5 and 1.5 m/s. 
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Figure 51: The current velocity (top figure) and available and extractable tidal current power 
(bottom figure), all for the 4

th
 till 9

th
 depth layer at Westhinder. 

 

 

Figure 52: The half of the wave heights Hs exceeded during 5% of the 10 year wave hindcast (m). 

 



Project SD/NS/13 - Belgian Ocean Energy Assessment "BOREAS" 

 

SSD - Science for a Sustainable Development - North Sea  107 

 

 

Figure 53: The absolute maximum turbine size diameters using the full wet height of the watercolumn, 
minus 1.5 m bottom clearance and 1.5 m top clearance. 
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5.3.2.2 Results 

Figure 54 shows the result of the averaged extractable tidal current power under the 

assumptions mentioned in § 5.3.2.1. The result is low compared to the available tidal current 

power as presented in Figure 48. In the domain concession zone, the available tidal current 

resource on most locations (which was depth averaged over the full water column) is in the order 

of 90-110 W/m² (Figure 48), whereas the extractable tidal current power (averaged over the 4th 

till 9th depth layer) drops to 7-12 W/m² (Figure 55), which is drop by a rough factor of 10.. There is 

one big exception, which is the harbor of Zeebrugge. Due to the big disturbance in the current 

streamlines due to the harbor, high peak velocities are observed around the breakwaters (up till 

110 W/m² extractable (Figure 55) of the 330 W/m² available at the very best location (Figure 49), 

which is a drop by a factor 3 only). A detail of the harbor of Zeebruges is shown in Figure 55. 

Previous studies reveiled high tidal currents around these breakwaters and showed the existence 

of an erosion gully at the western breakwater (Van Lancker et al. 2007; De Vos et al. 2009; Van 

Damme et al. 2009). Furthermore it is expected that, locally, even higher currents can be 

observed when using a finer resolution model or ADCP measurements, since the grid used to 

asses the local current around the breakwater of Zeebruges is still too coarse. 

However the low result at the BPNS is remarkable and needs further explanation. When 

looking at the efficiency curve (Figure 50), no power is produced below 0.5 m/s and hence this 

part is not contributing to the average extractable power. Furthermore, just above 0.5 m/s, the 

efficiency remains low. Figure 56 shows the percentage of the time where the depth averaged 

current over layers 4 till 9 is below 0.5 m/s. This varies from 25 to 100%, an order of magnitude on 

most locations on the BPNS of 40 till 50%. The 100% values are found in the coastal zone and next 

to the harbor of Zeebrugge. The sandbanks are an exception with 25-30%. This means that on 

most locations a TEC is not producing electricity for 40-50 % of the time since the cut-in speed is 

not achieved. Even at the most feasible locations (in terms of operational time), like Oostdyck 

bank, TECs would not produce electricity for 25% of the time. Note that around Zeebrugge, the 

turbines are not delivering power for 35-45% of the time (although this is on the very edge of the 

model grid, so results should be carefully interpreted). A possible explanation could be that during 

ebb, the high energetic zones west of Zeebrugge are shielded by the breakwaters, whereas during 

flood, they are fully exposed. This causes high peak powers, after which a drop in peak power 

occurs.  

Since the TECs would not be turning at standstill, algae growth and biofouling are very likely 

on the blades and the turbines, and thereby negatively influencing the hydrodynamic efficiency. 

This is clearly a design issue if the cut-in speed remains at 0.5 m/s, and if the TEC is deployed at 

shallow locations (due to the penetrating sunlight promoting biological growth). 

To further illustrate the difference in available and extractable tidal power resource, the 

example of Westhinder is used: 

- The available tidal power (full water depth) is 140 W/m² (Figure 48); 

- The timeseries of the tidal current velocities and extractable power (Figure 51) show the 

variable power outputs depending on the flood-ebb and neap-springtide tidal cycles: the 

available power varies roughly 40 to 900 W/m², whereas the the extractable power varies 

from 0 (39% of the time, see Figure 56) to 180 W/m² (Figure 51),  

- The average extractable tidal current power at Westhinder is then 18.4 W/m² (Figure 54). 

This is due to the observed velocities (Figure 51, top), the used effiency curve (Figure 50) and 
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only considering the 4th till 9th depth layer (representing the upper half layer of the 

watercolumn). 

 

 

 

Figure 54: The extractable tidal current power (W/m²) in the upper half of the water column (depth 
layers 4 till 9), taking into account a cut-in speed of 0.5 m/s and the efficiency curve described in Figure 
50 for the BPNS and the DC.  
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Figure 55: Detail of the extractable tidal current power around the breakwater of Zeebruges, maximum 
extractable tidal current power is 112 W/m². 

 

By multiplying the tidal extractable current power (Figure 54) with the swept areas of the 

TECs, as calculated from the turbine diameters (Figure 53), the extractable tidal current power for 

a TEC taking the full water column is obtained ( Figure 57). This figure should therefore be 

interpreted as the maximal average power produced for a single TEC with a maximal diameter for 

the turbines blades, and is therefore un upper limit of average production. 

Figure 57 and Figure 58 show the average extracted tidal current power (W) for a turbine 

taking up the full usable depth of the watercolumn, respectively the yearly produced electricity 

(kWh).  

However, taking the full usable watercolumn is not very realistic. Therefore,Figure 59 

represent the same parameters for an (arbitray) swept area of 1m². In the Domain concession 

zone, the highest value can be found on the Bligh Bank with approximately 150 kWh/m² swept 

area (Figure 59). If a turbine of 10m diameter (and hence a swept are of 78.4m²) would be placed 

there, it would produce 11.8 MWh/year. The average produced power would be 17 W/m² (Figure 

54) *78.4m² = 1333 W. But in order to capture this power, the TEC should be dimensioned to the 

peak loads, since these contain virtually all the energy. Therefore Figure 60 gives the ratio of the 

maximum extractable power and the average extractable power. For this region on the Blighbank, 

the ratio is approximately 10. Thus the installed capacity should be 1333*10 W =13.3 kW. Or in 

other words: in order to fully exploit the extractable tidal current resource at this site, the 

capacity factor would be roughly 1/10 or 10 %. Notice that due to the intermittent and peaked 

availability of the tidal resource, the dimensioning of the turbine was done on the peak load, in 

order to produce as much electricity as possible with one turbine. The more commonly used 

approach is however to find the economical optimum between power production and installed 

capacity.  
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Figure 56: Percentage of the time where the velocity current in the upper half of the water column 
(depth layers 4-9) are below 0.5 m/s, and hence the generic TEC would not produce electricity. 
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Figure 57: Average power production (W) for a TEC taking the full water column. This map is the product 
of the tidal current power from Figure 53 and the turbineareas given by Figure 54. 

 



Project SD/NS/13 - Belgian Ocean Energy Assessment "BOREAS" 

 

SSD - Science for a Sustainable Development - North Sea  113 

 
 

 
 

Figure 58: Yearly produced electricy (MWh) for a single TEC (varying turbinediameters depending on 
location), obtained by multiplying Figure 57 with 365*24 hours/1000000. 
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Figure 59: Yearly produced electricy (kWh) for a turbine with a swept area of 1m². Multiplying the values 
with the swept area gives the annually produced power. 
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Figure 60: Ratio of the maximum/average extractable tidal current power in the upper half (depth layers 
4-9) of the water column. 
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6 Economical analysis 

In order to asses the feasibility of a wave or tidal current energy project on the BPNS, an 

economic analysis by means of the Net Present Value (NPV) is presented here. The methodology 

used in this chapter is analogue to the economical analysis for offshore wind that was performed 

in the OPTIEP study (Mathys et al. 2010). In the OPTIEP study the input parameters (both 

technical and economical) were taken from publically available literature. For tidal current and 

wave energy, economical relevant information concerning cost prices and revenues are much 

more scarce. If no update on the economical parameters was found, they were taken from the 

OPTIEP study, as will be discussed in § 6.1.1. 

In this study, hypothetical WEC or TEC farms were placed on the domain concession zone. It 

was assumed that the implementation of the windmills did not impose restrictions on the placing 

of the WEC of TEC farm. The most obvious implementation would be to place the WEC or TEC in 

between windmill farms (staggered lay-out). Once more: in this first generic assessment, it is not 

possible to assess interactions between the foundations of windmills, the TECs or WECs, nor their 

interaction between the tidal current and or wave climate. This is a stringent assumption, but 

other studies had to base their economical analysis on the same assumption. The scope of this 

exercise is to provide order of magnitudes for the Net Present Value (NPV) of a hypothetical and 

generic WEC or TEC farm. In case of a specific project design, detailed information (finer 

bathymetry resolution, in-situ measurements and detailed geometry and design of the planned 

structures) and the efficiencies of the proposed devices are needed to look at the specific project 

feasibility. 

6.1 Economic analysis WEC 

6.1.1 Methodology 

The input variables of the economical input parameters are taken over from the OPTIEP study 

and are listed in Table 19 (see Appendix for the definition of the economical parameters used). 

The Tradable Green Certificate or TGC is given by the Decree of 8 May 2009 regarding the general 

energy policy (90 €/MWh, guaranteed for 10 years). However, for this study 20 years was used, 

similar as the garantueed support period for offshore wind. The electricity price is taken over 

from the OPTIEP study and fixed during the project span at 55€/MWh (BELPEX 2009; Mathys et al. 

2010). 

Three WECs are considered for which publically available power matrices were available: 

- The Pelamis (or ‘sea snake’), which is an attenuator and one of the fore front runners in the 

WEC market, with a published power matrix that has been sited in many publications. The 

main costs were taken from another study (Dalton et al. 2009). 

- Straumekraft: a Norwegian concept, based on the point absorber technology. This device was 

chosen due to the availability of their (projected) power matrix for a small point absorber 

buoy. No information was available on the costprice, but this was taken over from the 

SEEWEC study (SEEWEC et al. 2009), which uses a similar technology (but SEEWEC did not 

publish a power matrix for their B1 buoy). 
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- The Wavestar: a WEC consisting of a jack-up structure with floaters based on point absorber 

technology, with a well documented and excellent track record. Furthermore Wavestar 

published cost prices in term of the development of their WEC. These cost prices are 

amongst the highest that are publically available, and therefore Wavestar deserves credit as 

probably publishing the most realistic cost prices.  

Table 19: Input variables for the economical analysis, cited from the OPTIEP study. 

 Value  Value 

 TGC 90 €/MWh
18

 , guaranteed for 
20 years 

 CP (own capital) 25% 

Electricity price 55 €/MWh  

 

 D (Debt share) 75% 

Investment cost WEC or 
TEC 

Variable €/kW  

 

 T (Corporate tax) 33,33% 

Investment cost cable k€ 433 /km
19

 (10 kV), see 
Table 20 

 R (Interest rate) 6% 

 Depreciation (%)  60% (40%+20%)  kcp (Return on equity) 13,5% 

Maintenance cost 2% of investment cost   Inflation 2% 

Park size variabel MW R (Disconto rate after inflation) 8,61% 

Capacity factor Variable, see § 5.2.5.2 Project duration 20 year 

The evolution of the investment cost is variable and based on a previous study of the 

economical assessment of the Pelamis (Dalton et al. 2009). In the latter study a cost price of 1533 

k€20 for a single 750 kW Pelamis is given for the year 2004, for 2008 the costprice rose to 4599 k€ 

due to highly fluctuating steel prices. In 2011, the steel price (SBB word steel price tracker) is 

approximately in between the levels of 2004 and 2008 (SBB 2011), and therefore the average 

price is used for BOREAS. This corresponds with an initial price of 4088 €/kW installed at the 2011 

level. Since steel is a major component of most WECS, especially for the large constructions like 

Pelamis, the steel price has a major influence on the WEC price. They used a sliding scale to 

estimate the costs with increasing number, based on the learning curve. A factor for the mass 

production was not introduced in the equation, since, according to the cited study, WEC 

production is not supposed to reach the scale of automotive mass production. The formula for the 

the learning curve is :  

(ln( ) / ln(2))tf

scalingP A  Eq. 14 

With Pscaling the % scaling, A the number of WECs and tf the technology factor, chosen at 0.9 

(Dalton et al. 2009). If the original unity price of the first unit would be 100%, 5 units would cost 

78% of the unity price, 10 units would cost 70%, 50 units 55% and so on.  

                                                           
18

 http://navigator.emis.vito.be/milnav-consult/consultatieLink?wettekstId=31931&date=06-05-
2011&appLang=nl&wettekstLang=nl, Decree of 8 May 2009 concerning the general energy policy, Art. 7.1.6 
(in Dutch), but the period was extended to 20 year instead of 10 year, similar to offshore wind. 

19 For Pelamis and Wavestar, 4km was assumed to interconnect the 5-6 MW WEC farm.  For 
Straumekraft 12km cable was assumed, due to the higher number of devices.  Note that the cable cost price 
and grid lay-out together determine the total cable cost price.  For the 50 and 200 MW WEC farm, a 
reduction of 33% in this cost price was assumed (based on €/kW). 

20 This costprice was calculated originally from k$ 1565 for the WEC + k$ 850 for the steel sections, 
and converted to Euros with conversion rate of 1.57 in July 2008. 

http://navigator.emis.vito.be/milnav-consult/consultatieLink?wettekstId=31931&date=06-05-2011&appLang=nl&wettekstLang=nl
http://navigator.emis.vito.be/milnav-consult/consultatieLink?wettekstId=31931&date=06-05-2011&appLang=nl&wettekstLang=nl
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Figure 61: Overview of the Pelamis (top), the Straumekraft concept (middle) and the Wavestar (bottom). 
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Figure 62: Unity price (expressed in €/kW) of a Pelamis in function of the number of devices (Dalton et 
al. 2009). 

 

The cable cost is given by Table 20. Based on the capacity factors and choosing a park size of 

approximately 5 MW, 4 km of 10 kV cables should be sufficient to interconnect the WEC farm 

internally. This 4 km was pragmatically chosen to interconnect the WEC farm internally..The 

transport to land is assumed to take place by the existing offshore wind electricity cables. It is 

assumed that the cable is connected to the transformator of the offshore windmill foundations or 

transformation hub and that the (long distance) transport of electricity onshore are covered by 

this cable, and therefore, no additional cost is implemented. 
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Figure 63: Unity price (expressed as €/kW) in function of the number of Straumekraft WECS. Since the 
Straumekraft point absorber uses as similar conversion technology as the SEEWEC device, the initial 
costprice was taken over from this study (5000 €/kW for 20 WECs produced in 2008). The same price 
was taken for 2011 and is presented in the top figure (SEEWEC et al. 2009). The unity price of 25 kW 
Straumekraft WECS in function of the number of devices is shown on the bottom figure. 

 



Project SD/NS/13 - Belgian Ocean Energy Assessment "BOREAS" 

 

SSD - Science for a Sustainable Development - North Sea  122 

 

 

Figure 64: Projected cost price for a jackup platform with 20 floaters of the Wavestar (Frigaard et al. 2010) 
(top), and costprices used in this study (bottom). The platform would be rated at 20*37kW= 740 kW, and 
this lies between the first and second benchmarks on the Wave Star Energy Roadmap (top figure). The 
corresponding unity price for the 500 kW design is 15000€/kW, for the 800 kW it is 9625 €/kW. The 
corresponding 20*37kW (=740kW) can thus be interpolated and determined as 10700 €/kW for the first 
unit. 
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Table 20: WEC power output, corresponding cable kV and relevant cost in €/km (Dalton et al. 2009) 

 

 In the same study (Dalton et al. 2009), the operation and maintenance cost was 

implemented as a  percentage of the capital cost of 1,2 or 3%. In BOREAS, 2% was used. The used 

capacity factors were the capacity factors calculated from § 5.2.5.2 (6.1% of the Pelamis, 17.9 % 

for the Straumekraft, and 22.4% for the Wavestar). Size of the park is in the order of 5 MW, which 

is the order of magnitude of the first really commercial planned projects. 

6.1.2 Results 

The input parameters based on the WEC specific properties and the results (presented here 

as NPV or as the necessary TGC price for the project to achieve a zero NPV) are given in Table 21. 

The necessary TGC price to achieve a zero NPV can be interpreted as the break even point for 

feasibility with the technology knowledge of today and the assumptions used in this report. 

It must be stressed that there is a big uncertainty on the initial cost prices of the WECs 

presented, as they are very hard to assess or verify (claims based on publically available data). 

However the expected produced power levels (used here in the form of capacity factors) are 

based on the 10 year hindcast and are the best possible capacity factors that could be used, if the 

power matrices of the devices are reliable (see §  5.2.5.2 and 5.3.2).  

When looking at the results (Table 21), it is clear that Pelamis is well overdimensioned for 

application on the BPNS, which is no surprise. Even though the investment cost is only 39 % of the 

Wavestar, the necessary TGC to achieve a zero NPV (856 €/MWh) would be almost double the 

price of the initial Flemish TGCs for solar energy (450 €/MWh). The main reason is the low 

capacity factor of 6.1%, which is again caused by the fact that the Pelamis is dimensioned for 

higher wave climates. 
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Table 21: Results of the economic analysis of a Pelamis, Straumekraft and Wavestar arbitrary WEC farm in 
the order of 5-7MW with the expected power production in the domain concession zone. It is assumed that 
the cable cost is only in the order to connect the WEC park to the transformator hub of the offshore 
windmill parks, from whereon the transport to land is foreseen. 

Value Pelamis Straumekraft Wavestar 

Size 8*750 kW= 6MW 200*25kW = 5 MW 7*(20*37kW)21 = 

5.18 MW 

Capacity factor22 at the 

domain concession zone 

(see § 5.2.5.2) 

6.1 %  17.9 % 22.4 % 

Initial Cost for the first 

WEC (€/kW) 

408823 €/kW  

(Figure 62) 

7883 €/kW24 

(Figure 63)  

10700 €/kW 

(Figure 64) 

Technology factor tf, 

Pscaling (%) ( according to 

Eq. 14) and resulting 

initial capital cost for 

the WEC park (€/kW) 

0.9 (-) 

72.9% 

2980 €/kW 

0.9 (-) 

44.7% 

3523 €/kW 

0.9 (-) 

74.4% 

7960 €/kW 

Cable cost 1733 k€  5200 k€25 1733 k€ 

Maintenance cost  2% of capital cost of 

WEC and mooring 

2% of capital cost of 

WEC and mooring 

2% of capital cost of 

WEC and mooring 

Final investments cost, 

including O&M (based 

on the investment cost) 

and cable cost 

3335€/kW 4654 €/kW 8460 €/kW 

Net Present Value with 

a TGC of 90 €/MWh 

- 15 639 k€ -14 150 k€ -29 752 k€ 

Necessary TGC for the 

NPV to become 0 

856 €/MWh 379 €/MWh 575 € /MWh. 

Wavestar has a high investment cost, but may be more realistic than the, perhaps, over 

optimistic initial investment costs of e.g. the Pelamis. This is noticeable when comparing the initial 

                                                           
21

 A single floater of a Wavestar is ‘clustered’ in a jack-up platform with 20 floaters, thereby reducing 
the cable cost for connecting to the grid. 

22
 These capacity factors were based on the 10 year hindcast, assuming full time operationability. 

23
 This price was cited from the study of Dalton 2009 but seems very low compared to other 

technologies. 
24

 This was recalculated based, on a projected price of 5000€/kW for 20 SEEWEC devices and a tf of 0.9 
(SEEWEC 2009). 

25
 Connecting 200 small buoys with cables with less capacity would increase the cost for the overall 

grid connection (a factor 3 was used here in comparison with Pelamis and Wavestar). 
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cost prices for the maturing offshore wind energy. The range found in literature for offshore wind 

was 2300-3000 €/kW (Mathys et al. 2010), but an extra scenario with 3500 €/kW was assessed to 

better reflect the Belgian conditions. The necessary TGC level of support for Wavestar would be 

575 €/MWh. This is due to the high investment cost (but fortunately Wavestar has a high capacity 

factor).  

The small scale Straumekraft point absorbers achieve a zero NPV with a TGC of 379 €/MWh, 

which is high compared to offshore wind, but lower with the Flemish solar TGCs that were 

implemented until 2010.  This assumes a constant technology factor of 0.9 up to 200 devices. 

 From the comparison between the 3 WECs, two important implementation criteria for WEC 

deployment on th BPNS can be derived: 

- Big (support) structures are to be avoided (this is the case for Wavestar and Pelamis ), since 

they increase the investment cost, more and smaller WECs seem to be favorable; 

- The WEC needs to be able to capture the low energetic waves for the BPNS, and hence WECs 

should be specifically designed for these conditions, which would result in high capacity 

factors (Straumekraft and Wavestar have acceptable capacity factors for the early technology 

WECs). 

In the case of the implementation of bigger wave energy farms (order from 50 to 200 MW), 

scale advantages are expected.  A similar calculation was thus performed for a 50 MW wave 

energy farm (tf 0.91) and a 200 MW (tf 0.92).  The results are shown in Table 22 and Table 23.  

The necessary TGCs to achieve a zero NPV drop to 278 and 420 €/MWh for Straumekraft and 

Wavestar respectively in the 50 MW scenario.  In the 200MW scenario, the costs drop further to 

265 and 376 €/MWh for Straumekraft and Wavestar respectively. 

Designing and scaling a device to meet the conditions found on the BPNS should lead to an 

increase increase in the capacity factor of the device. Table 24 shows the economic parameters in 

case the capacity factor increases, which can be interpreted as a WEC that is more suited to the 

conditions on the BPNS, or alternatively: a sensitivity analysis of the capacity factor.  So, if the 

costs would remain the same (200 MW park), but the capacity factor would increase to 25% or 

30% the necessary TGC support for a zero NPV would drop to be respectively 331 and 267 €/MWh 

for WaveStar, and to 174 and 136 €/MWh for the Straumekraft. 
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Table 22: Results of the economic analysis of a Pelamis, Straumekraft and Wavestar arbitrary WEC farm in 
the order of 50MW with the expected power production in the domain concession zone.  It is assumed that 
the tf factor changed to 91% instead of 90%.  The capacity factors, initial costs remained the same as in 
Table 22. 

Value Pelamis Straumekraft Wavestar 

Size 67*750 kW = 50.25 

MW 

2000*25kW = 50 MW 67*(20*37kW) = 49.6 

MW 

Technology factor tf, 

Pscaling (%) ( according to 

Eq. 14) and resulting 

initial capital cost for the 

WEC park (€/kW) 

0.91 (-) 

56.4% 

2307 €/kW 

0.91 (-) 

35.6 

2802 €/kW 

0.91 (-) 

56.4% 

6038 €/kW 

Cable cost26 10 780 k€ 38 992 k€ 11 113 k€ 

Maintenance cost  2% of capital cost of 

WEC and mooring 

2% of capital cost of 

WEC and mooring 

2% of capital cost of 

WEC and mooring 

Final investments cost, 

including O&M (based on 

the investment cost) and 

cable cost 

2550€/kW 3569 €/kW 6415 €/kW 

Net Present Value with a 

TGC of 90 €/MWh 

- 92 752 k€ -91 910 k€ -201 095 k€ 

Necessary TGC for the 

NPV to become 0 

642 €/MWh 278 €/MWh 420 € /MWh. 

                                                           
26

 Cable Cost was assumed tob e 2/3 of the cost prices of the corresponding 5-6 MW wave farms due 
to enhanced cable lay-out. 
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Table 23: Results of the economic analysis of a Pelamis, Straumekraft and Wavestar arbitrary WEC farm in 
the order of 200 MW with the expected power production in the domain concession zone.  It is assumed 
that the tf factor changed to 90% instead of 92%. 

Value Pelamis Straumekraft Wavestar 

Size 267*750 kW = 200.25 

MW 

8000*25kW =  

200MW 

270*(20*37kW)27 =  

MW=199.8 MW 

Technology factor tf, 

Pscaling (%) ( according to 

Eq. 14) and resulting 

initial capital cost for the 

WEC park (€/kW) 

0.92 (-) 

55.7% 

2277 €/kW 

0.92 (-) 

33.9% 

2674 €/kW 

0.92 (-) 

50.9% 

5456 €/kW 

Cable cost 38 543 k€ 138 646 k€ 44 730 k€ 

Maintenance cost  2% of capital cost of 

WEC and mooring 

2% of capital cost of 

WEC and mooring 

2% of capital cost of 

WEC and mooring 

Final investments cost, 

including O&M (based on 

the investment cost) and 

cable cost 

2519€/kW 3434 €/kW 5793 €/kW 

Net Present Value with a 

TGC of 90 €/MWh 

- 363 921 k€ -343 049 k€ -703 907 k€ 

Necessary TGC for the 

NPV to become 0 

633 €/MWh 265 €/MWh 376 € /MWh. 

 

Table 24: Sensitivity analysis of the influence of the capacity factor on the NPV and TGC for the same 
assumptions as for the 200 MW WEC farm. 

Capacity Factor 

(%) 

Net Present Value (k€) with a TGC of 

90 €/MWh 

Necessary TGC for the NPV to 

become 0 (€/MWh) 

Straumekraft Wavestar Straumekraft Wavestar 

25 -230 071 -666 877 174 331 

30 -150 509 -583 101 136 267 

                                                           
27

 A single floater of a Wavestar is ‘clustered’ in a jack-up platform with 20 floaters, thereby reducing 
the cable cost for connecting to the grid. 
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6.2 Economic analysis TEC 

6.2.1 Methodology 

Initial investment costs of TECs are difficult to find, but in most studies the intial investement 

cost of a TEC is approximately 40-70 % of WEC costs (Carbon Trust 2006; Allan et al. 2011). This is 

represented in Figure 65. The first production models of initial TECs are expected to be around £ 

1400-3000 £/kW installed, whereas for WECs these cost would vary around £1700 to 4300/kW 

installed. The ratio of the middle of these bandwidths would be 2200/3000 = 73% (Carbon Trust 

2006). Another study mentions £ 1641/kW installed for TECs, and £ 3622/kW for WECs (2006 

levels), giving a ratio of 45% (Allan et al. 2011). The latter study also breaks up the cost in different 

components (Table 25). For a WEC, the PTO or Power Take Off (PTO) takes 51% of the total capital 

cost, whereas for TEC the foundation and subsea cable installation takes up 48% of the cost. From 

this break-up, it can be derived that for a TEC, not the device itself, but the installation and grid 

connection is the big cost component.  

From both studies, an initial cost price for a TEC of 57%28 of a WEC seems logical. Thus 

averaging the costprice of the Pelamis, Straumekraft and Wavestar, and applying this 57% ratio, 

an initial cost for the first TEC of 4307 €/kW installed is used in the generic TEC cost assessment. 

In § 5.3.2.2, it was calculated that a turbine of 10 m diameter to be deployed on the Bligh Bank 

(highest tidal current power in the domain concession zone), would need a rated capacity of 13.3 

kW. Installing a 5-7 MW TEC farm seems exaggerated, due to the small zone where these highest 

tidal currents occur. Therefore it is suggested to install 40 turbines of 13.3 kw each, giving an 

installed capacity of 0.532 MW. It is reminded that due to the high cut in speeds and low 

efficiencies, the capacity factor was 10 % (see § 5.3.2.2). Similar to the WEC cost assessment, a 

decreasing unity price was used based on the technology factor (Figure 66). 

 

Figure 65: Capital costs of first prototypes and first production models (Carbon Trust 2006) 

 

                                                           
28

 Determined as the average of the bandwith of 40-70 and 45-73%. 
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Table 25: Components costs for a generic 1 MW WEC or TEC, in 2006 prices, and the % of the total costs 
(Allan et al. 2011) 

 

 

 

Figure 66: Unity price of a 36 kW generic TEC (expressed as €/kW installed) 
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6.2.2 Results 

The result for a generic 40*13.3 kW TEC park to be deployed at the best location on the domain 

concession zone (Bligh Bank) is shown in Table 26. The swept area of this 10 m diameter turbine 

would be 78.5 m² and the combination of the swept area with the rated power of 13.3 kW was 

discussed in § 5.3.2.2. The ratio rated power/swept area is thus 0.17 kW/m². It should be noted 

however that the commercial SeaGen (Marine Current Turbines) has a twin rotor design with a total 

swept area of 2*200m² has a rated power of 1.2 MW, or equivalently 3kW/m². This reflects the high 

energetic zone where this SeaGen is located, namely at the inlet-outlet of Strangford Lough, with 

local currents up to 3m/s. This means that the blades of the generic TEC turbine for deployment on 

the BPNS would need larger swept areas (factor 17-18) for the same installed capacity than with the 

commercial available technologies (which makes smaller, but stronger blades as they are exposed to 

higher tidal currents). 

When this TEC would be deployed under these conditions, the NPV would be -11 727 k€, and 

the TGC to achieve a zero NPV is 446 MWh, which is in the same order of magnitude for the initial 

Flemish TGC for solar energy and is in the same order of Straumekraft. Notice however that due 

to the high technology factor (0.9) and taking 40 units, a price reduction per unit of 43% (100-

57%, see Table 26) can be expected. 
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Table 26: Results of the cost assessment of a generic 36 kW TEC to be deployed on the Bligh Bank. 

Value Generic 13.3 kW TEC (10 m diameter), see § 5.3.2.2 

Size 40*13.3 kW =0.532 MW 

Capacity factor at the DC Zone (see § 

5.3.2.2) 

10 %  

Initial Cost for the first WEC (€/kW) 4307  

(Figure 62) 

Technology factor tf, Pscaling (%) ( 

according to Eq. 14) and resulting 

initial capital cost for the WEC park 

(€/kW) 

0.9 (-) 

57.7% 

2458 €/kW 

Cable cost 419 €/kW (20% of Investment cost, see Table 25) 

Maintenance cost  2% of capital cost of TEC and mooring 

Final investments cost, including 2% 

O&M (based on the investment cost) 

3009 €/kW 

Net Present Value with a TGC of 90 

€/MWh 

-11 727 k€ 

Necessary TGC for the NPV to 

become 0 

446 €/MWh 

6.3 Comparison with TGC support of other technologies 

It is usefull to compare the necessary TGCs to obtain a zero NPV with the current legislation 

and the support level of offshore wind. For offshore wind, the first 206 MW within a single 

concession zone installed gets a TGC of 107 €/MWh (Table 27). Above the 206 MW, the TGC drops 

to 90 €/MWh. The guaranteed period is 20 years. In the current federal legislation, there is a TGC 

for (‘waterpower’) of 50 €/MWh guaranteed for 10 year, without specifying ‘waterpower’. 

According to the knowledge of the authors, no claim has been made for wave or tidal energy on 

the BPNS, so it is unclear if ‘waterpower’ also covers wave or tidal current energy.  

The Flemish Electricity Decree foresees a TGC of 90 €/MWh for tidal current or wave energy, 

garuanteed for 10 years. However the BPNS belongs to the federal jurisdiction, so it is unclear if 

these TGCs are applicable. 
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Table 27: Level and garanteed period of TGC support (Federal level)
29

. 

Energy source TCG support level 
(€/MWh) 

Guaranteed term 
(year) 

Offshore-wind, first 216 MW 107 20 

Offshore-wind, above 216 MW within 
the same concession zone 

90 20 

Onshore-wind 50 10 

Solar 150 10 

Waterpower 50 10 

Others, (eg. Biomass) 20 10 

 

Table 28: Level and garanteed period of TGC support (Flemish level)
30

. 

Energy source TCG support 
level 

(€/MWh) 

Guaranteed 
term 
(year) 

Solar – fading out mechanism to 2016 350  90 20/15 (?) 

Hydropower, wave, tidal, earth heat, on shore wind, 
solid or liquid biomass, biomass waste, biogas 

90 10 

Biogas from wastewater sludge, incineration of waste 60 10 

Biogas from manure, vegetables, fruits or garden 
waste 

100 20 

Others 60 10 

 

                                                           
29

 Federal law of 5 October 2005 (BS 14.10.2005) — Koninklijk besluit tot wijziging van het koninklijk 
besluit van 16 juli 2002 betreffende de instelling van mechanismen voor de bevordering van elektriciteit 
opgewekt uit hernieuwbare energiebronnen. In Dutch. 

30
 Flemish decree of 8 May 2009: Elektriciteitsdecreet (Decreet van 17 juli 2000 houdende de 

organisatie van de elektriciteitsmarkt), consolidated version Octobre 2011.  In Dutch. 



Project SD/NS/13 - Belgian Ocean Energy Assessment "BOREAS" 

 

SSD - Science for a Sustainable Development - North Sea  133 

7 Synergies 

The combination of different offshore renewable energies (wind, wave and tidal) can have 

multiple advantages.  

- It can reduce cabling costs, due to the common grid connection; 
- It can provide a more constant and smooth output, which is important of balancing the electricity 

grid 
- It can make optimal use of the existing space. 

Therefore the most promising locations to combine combinations of offshore wind, wave and 

tidal are presented. Therefore, one should combine the resource maps of wind, wave and tidal 

and detect possible zones with common high ressources. The available wind resource, shown as 

wind velocities, is cited from the OPTIEP study and shown in Figure 67.  

 

Figure 67: Average windspeeds at 70 m above sealevel (Mathys et al. 2010). 

 

The extractable wave and tidal current resource are given in Figure 45 for the extractable 

power of the Straumekraft WEC (see Figure 46 for Wavestar) and Figure 57 for the extractable 

power of a generic TEC that exploits the full water depth. The situation of the sandbanks was 

shown in Figure 47. 

For offshore wind (Figure 67) , the trend is very clear: the more offshore, the better, although 

the gain in wind speed beyond 15km of the coast line is small. But for reasons of visual hindrance, 

offshore wind is not accepted nearshore on the BPNS. 

For wave, a similar trend is noticeable. But the available wave power resource shows that 

around the Westhinder-Oosthinder banks the influence of the British coastline becomes visible 

and wave power does not further increase with distance from shore.  
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This is however less noticeable for the extractable wave power resource, as Straumekraft and 

Wavestar can capture this smaller wave energy resource a bit more efficient, and in that way 

makes up the difference in wave power resource. The offshore sandbanks Oostdyck, Westhinder, 

Oosthinder and to a lesser extent the Fairybank and Noordhinder show a smaller extractable 

wave power resource then the immediate surroundings. Although smaller depths would make the 

installation and mooring easier, the wave climate is a bit lower. The highest wave powers are 

found in the north of the BPNS and the northern zone of the domain concession zone (up 6.4 

kW/m).  

For tidal current energy, the picture looks different. The location of the sandbanks is reflected 

very well in the available tidal current power, since these disturbances in the natural flow pattern 

make the current velocity increase. The nearshore sandbanks, like Wenduinebank, Stroombank 

and Nieuwpoortbank, show a slightly higher tidal current resource than the immediate 

surroundings. Since these banks are orientated along the coast (west-south-west to east-north-

east), and hence along the major flood-ebb currents (Figure 68), a part of the tidal currents are 

going around these sandbanks instead of over (this is however a very local effect which cannot be 

seen on Figure 68). The offshore sandbanks, like Westhinder, Oosthinder, Noordhinder and 

especially Oostdyck are orientated more towards south-west to north-east, but most of the tidal 

ellipses are still orientated west-south-west to east-north-east, thereby forcing the flood-ebb 

currents (partially) over the sandbank instead of around. The currents over the sandbank increase 

the available tidal current resource, making them thus interesting for both installation of 

foundation and/or mooring (wind or tidal) and a possible combination of combining wind and 

tidal energy. 

 

Figure 68: Tidal ellipses of the tidal currents on the BPNS (MUMM 2009). 
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So, when putting the above consideration together, the following synergies are possible: 

- For the domain concession zone:  

o Wave energy resource is quite homogenuous on the domain concession zone and 

amongst the best locations to be found on the BPNS, especially in the northern 

concession zones (the available wave energy resource varies from 5.5 till 6.4 kW/m, 

or in the case of the extractable wave energy: a Straumekraft 25kW WEC would 

produce 4 to 4.1  kW on average, and a single 5m floater of the Wavestar would 

produce up to 8.6 kW); 

o Tidal energy: more heterogenouous than wave energy due to the changing 

bathymetry. The best locations are the Bligh Bank (up to 17 W/m² swept area 

extractable, depth is however a limiting factor for large turbines) or the region South 

of the Thornthon Bank (up to 15 W/m² swept area, deeper location than the Bligh 

bank). 

- In general, the south-west region of the harbor of Zeebrugge seems favorable for the 

deployment of tidal current energy, especially if this could decrease the transverse flow in 

the navigation channel, making the entry and exit to the harbor easier and less dependent on 

tidal current windows. This nearshore region is however not interesting for wave energy. 

- A new promising region, for offshore wind and tidal current is the Oostdyck bank (see Figure 

47 for the location). It provides shallow waters, making installation and mooring relatively 

cheap, and has a good wind resource and acceptable tidal current resource. Wave power is 

relatively low compared to the more favorable conditions on the BPNS, but at the outer edge 

of the sandbank (especially at the north-west side, so orientated to the incoming waves) 

wave power exploitation might be possible.  

- For the nearshore sandbanks, the Smalbank has the best extractable tidal current resource, 

in the order of 11 W/m², which is similar to most locations of the domain concession zone 

(excluding the Bligh Bank and the region south of the Thornton bank). However, depth is a 

limiting factor for bigger turbines, and offshore wind deployment is unlikely due to the 

proximity of the coastline. 
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8 Conclusions and recommendations 

This chapter provides the overall conclusion of the BOREAS project, and concludes this 

report, and the (internal) intermediate reports. 

The first intermediate report (Mathys et al. 2011a) gave an overview of the state of the art of 

wave and tidal current energy convertors. The convertors were assessed for their suitability on 

the BPNS. Only publically available information was used for this assessment. 

In order to do so, the generic and specific requirements for both WECs and TECs were listed. 

In order to assess the development of a specific WEC or TEC, the TRL (Technology Readiness 

Levels) methodology was used. Five TRL phases, ranging from conceptual phase to a pre-

commercial phase were used according to the methodology proposed by HMRC (Holmes 2009) 

and were adopted by European research projects like Waveplam. The number of devices which 

have reached TRL5, the pre-commercial phase, are still limited. Recent studies showed that it took 

the wave energy pioneering companies a least 15 years to reach the pre-commercial phase, due 

to a combination of technical , financial and political reasons (e.g. few interest in renewable 

energy due to cheap oil after the first oil crisis). The leading technologies of today, indeed started 

their research several years ago. A lot of technologies are struggling in phases 3-4, to overcome 

both the technical problems as well getting funding for further deployment. Even the technology 

leaders with a high publicity exposure are all having difficulties to find funding to start 

demonstrator projects. 

Some trends became clear during the study of the state of the art of wave and tidal current 

energy convertors: 

- With the exception of the real industry leaders (like Pelamis and Marine Current 

Turbines), a lot of device developers are looking for synergies with offshore windenergy. 

Some do this very explicitly, like Ocean Green Renewables with Wavetreader, others just 

mention it as supplementary claim over the existing (production) claims. Some try to look 

for other synergies, like integration within coastal defence systems, or road or rail bridges 

over rivers or tidal estuaries. Another synergy is the production of desalinated water. 

- The UK, and more specific Scotland, is the European country were most developments 

occur, without minimizing the efforts in other countries. Gifted by nature with an 

immense marine energy resource, the UK has awarded lease options of 1.2 GW in 

Pentland Firth and Orkney waters. Most developments occur there, this can be seen in 

the number of developers and devices, the (public) funding, the number of research 

institutes involved, and the very ambitious policy plans for marine energy. 

- The number of test sites is growing rapidly, however a lot of test sites that should have 

been fully operational in 2010, aren’t due to a variety of reasons. Problems with 

consenting and licensing, funding (underestimating the required budget, especially the 

submarine cable), withdrawal of some device developers delayed these test sites. 

- International standards are not yet established, but are under construction. The 

standards shouldn’t form at threat to the further development, but should be an 

opportunity to increase the credibility about the efficiency and production claims 

towards investors.  

- Only few devices showed some interesting features for deployment on the BPNS. None of 

them were specifically designed for the conditions on the BPNS, since the resource is low 

to moderate and most devices focus on the high energetic environments. Very little 
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information on the performance and efficiencies of the devices is available. No existing 

device can be deployed as-is on the BPNS. For wave energy, Straumekraft Protech, the 

Seabased point absorber or the WaveStar show interesting features and might be 

scalable to the conditions to be found on the BPNS. The FlanSea project, which, 

specifically targets the BPNS, sounds a promising solution, but it is still in a early phase of 

development. For tidal energy, stand-alone systems will be unlikely. The solution of 

Ecofys’ waverotor is a nice example of a combined exploitation of marine energy 

resources. 

When the first intermediate report was written, end 2010, a lot of milestone projects for 

many developers were well underway. Any observer who looks at the current developments, 

must admit that the interest in marine wave energy has exponentially increased. This is reflected 

in the number of developers, the number of patents with regard to marine energy, the 

investments both from public and private funding and the interest from policy makers. 

Expectations are very high towards the cost competitiveness of these renewable energy source. 

Some developers may have made quite bold claims about their cost price of electricity or more 

general their cost competiveness and development time, in order to gain interest with investors 

and policy makers. The next 2-3 years will be crucial for the further development of the whole 

sector. If the marine energy sector cannot provide cost competitive success stories (supported 

with any form of subsidy), it is likely that investors and policy makers will lose interest and focus 

on other renewable energy sources.  

The technology leaders will have to proof that their devices (and by extension, marine energy 

as a whole sector) can provide electricity with an acceptable Cost of Electricity (COE). ‘Acceptable’ 

in this context means a COE which that will be initially higher than current conventional (or even 

other renewable) energy technologies, but low enough to become ‘competitive’ in time due to 

the learning effect and scaling and competition advantage. The technology leaders are almost 

exclusively focused on the highly energetic zones, and none of them have explicitly 

communicated that they will develop – or scale down – their devices for conditions that can be 

found on the BPNS. However, while the technology leaders have the difficult task to prove the 

commercial viability of the marine energy sector as a whole (and not just for their own 

technology), new and interesting niche technologies are being developed at research groups who 

started later than the technology leaders. These ‘niche’ developers realize that it will be hard to 

make up the lag with the technology leaders. In this perspective, the BPNS can be seen as a niche 

market, due to the low to moderate marine energy resource. It is therefore unlikely that a 

contribution towards marine energy deployment will come of the industry leaders of today. It is 

more likely that this contribution will come from the niche developers, but this will take still some 

years to develop. 

The second intermediate report (Mathys et al. 2011c) was a technical summary of four 

technical reports (each describing the set-up, calibration and validation of the numerical models). 

In case of the wave modelling (Fernández et al. 2010), the model results of SWAN provides a 

coherent database with 10 year of wave modeling, with good temporal and spatial resolution. 

Furthermore, the comparison with both buoy data and the Transformation Matrix (Delgado et al. 

2010), indicated a reasonable level of accuracy, which makes it a very powerful and useful tool to 

further asses the wave energy resource. There are however, some limitations: 

- Although the grid is quite fine, local effects, such as local sand dunes or artificial 

structures like harbors are not modelled and may influence the waves. 
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- This dataset provides the wave climate before the implementation of wave energy 

convertor farms. A ‐ hypothetical‐ massive WEC farm placed at the BPNS, would influence 

the waves and vice versa. In the assessment of the extractable wave energy resource, this 

must be approached in a pragmatic way. 

For the tidal current modelling, two spring-neap tidal cycles of tidal currents were validated 

(Van den Eynde et al. 2010). This model was compared with another model (LTV model) to verify 

its validity (Dujardin et al. 2010b). One can conclude that the numerical model gives satisfactory 

results and that the model is well suited to be used for the calculation of the tidal current climate 

on the BPNS and can be used for the assessment of good sites for exploitation of tidal current 

energy.  

The third report (Mathys et al. 2011b) assessed the available and extractable wave and tidal 

current resource on the BPNS and made an economical analysis. This was based on numerical 

models, validated with buoy data.  

The wave model consisted of 10 year hindcast between 1999-2008, which allowed to 

calculate the available wave power (Figure 36). Three corrections were applied to increase the 

accuracy of the results. These corrections were: buoy data correction, deep to spectral correction 

and the 17 year period extension. The available wave power in the domain concession zone varies 

from 5.5 kW/m (Southern part of the zone) to 6.4 kW/m (Northern part of the zone), and varies 

from 9 to 10.7 in January (Figure 38) till 2.2-2.9 kW/m in July (Figure 40). During the 10 year 

hindcast, yearly differences were observed, with an annual maximum of 6.4-7.5 kW/m in 1999 

and an annual minimum of 4.3-4.9 kW/m in 2003. A good agreement with other studies (namely 

Anemoc and the UK Wave Atlas) was found (Figure 37). 

 Three power matrices of WECs were coupled to the wave model dataset of wave height and 

period (with buoy data correction), in order to obtain the extractable wave power. The three 

WECs were Pelamis (Figure 44), Straumekraft (Figure 45) and Wavestar (Figure 46) and had a 

respective capacity factor in the domain concession zone of  6.1, 17.9 and 22.4% based on the 10 

year hindcast and assuming they were operational all time. The capacity factor is defined as the 

average production over the total installed capacity. The obtained capacity factors show clearly 

what we have to expect. The Pelamis is designed for higher sea states e.g. rough wave climate.  

The Pelamis, in its actual design, is not to be placed on the BPNS.  The Straumekraft and Wavestar 

with a capacity factor around 20% may be interesting for the BPNS. Probably, adaptation to the 

local wave climate is advisable, in order to increase the capacity factor. 

The tidal current model consisted of a detailed three-dimensional hydrodynamic model for a 

period of two tidal cycles in October 2006 (Figure 48). The available tidal current power over the 

full water column is 90-120 W/m² swept area in the domain concession zone. The harbor of 

Zeebrugge has the highest power with locally 330 W/m² at the western breakwater. The Oostdyck 

bank was detected as an interesting zone, with available powers up to 140 W/m². 

The power curve of a generic TEC (Figure 50) was coupled with the tidal current model 

dataset to obtain the extractable tidal current power (Figure 54). In the domain concession zone, 

the extractable tidal current power in the upper half of the water column ranged from 2 to 17 

(Figure 54) W/m² swept area. If a generic turbine would be deployed on the Bligh Bank (most 

favorable zone in the domain concession zone) in this upper half of the column and with 10 m 

diameter blades, the rated power would have to be 13.3 kW, dimensioned on peak load (not the 

economical optimum, as this is very technology specific). In this case, a capacity factor for the 

domain concession zone of 10% was obtained, assuming full time operationability. A higher 
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capacity factor is expected around the harbor of Zeebrugge, however the grid resolution, 

bathymetry and possible boundary effects of the currently used model did not allow a detailed 

analysis.  Therefore, it is suggested to use a finer tidal current model (like the mu-Heist model of 

MUMM), to determine the capacity factors at the harbor of Zeebrugge.  

The cost assessment methodology was similar to the OPTIEP study for offshore wind (Mathys 

et al. 2010). Although the current support for wave and tidal Tradable Green Certificate (TGC) is 

restricted to 10 years, it was assumed that the TGC support would be guaranteed for 20 year. The 

results are shown for a 5-6 MW WEC park or a generic 0.5 MW TEC park (Table 29). The difference 

in capacity factors again show the importance of a design that is capable of capturing the 

moderate wave (or tidal current) climate on the BPNS. Pelamis is designed for high wave climates, 

and has a capacity factor of only 6.1 %. On the other hand, Straumekraft and Wavestar achieve a 

capacity factor of 17.9 and 22.4% respectively. Wavestar gives a high initial investment cost, but 

these are likely very realistic whereas other costprices may be too optimistic. In order to achieve a 

zero Net Present Value (NPV), the necessary TGC support varied from 379 till 856 €/MWh. This is 

influenced by the fact that a very small WEC farm is considered. 

 

Table 29: Summary table of the cost assessment. 

Value Pelamis Straumekraft Wavestar Generic 13.3 

kW TEC  

Size 8*750 kW= 

6MW 

200*25kW = 5 

MW 

7*(20*37kW)31 = 

5.18 MW 

40*13.3 kW 

=0.532 MW 

Capacity factor at 

the domain 

concession zone  

6.1 %  17.9 % 22.4% 10 %  

Final investments 

cost 

2904 €/kW 4654 €/kW 8420 €/kW32 4307 €/kW 

Net Present Value 

with a TGC of 90 

€/MWh (20 year) 

- 15 639 k€ -14 150 k€ -29 752 k€ -11 727 k€ 

Necessary TGC for 

the NPV to become 

0 (20 year) 

856 €/MWh 379 €/MWh 575 € /MWh. 446 €/MWh 

 

                                                           
31

 A single floater of a Wavestar is ‘clustered’ in a jack-up platform with 20 floaters, thereby reducing 
the cable cost for connecting to the grid. 
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It is likely that if the technology development leads to feasible WECs, bigger WEC farms will 

be built. The analysis for bigger wave energy parks, up to 50 -200 MW is shown in Table 30.  It 

clearly shows that Pelamis (in its actual design), due to the low capacity factor, would need 

unreasonably high support to become competitive.  In all Straumekraft scenario’s, the necessary 

TGC to achieve zero NPV is below the initial Flemish support for solar energy (450 €/MWh). 

When increasing the installed capacity  and simultanuosly increasing the technology factor tf 

(or in other words: decreasing learning rate which is defined as 1-tf), the level of TGC support to 

achieve a zero NPV for Wavestar (420 €/MWh) drops below the initial support that was foreseen 

for solar energy (450€/MWh). Increasing even further, to 200 MW, the effect becomes small for 

Straumekraft (265 compared to 278 €/MWh) but still significant for Wavestar (420 to 376).   

Table 30: Level of necessary TGC support (20 year) to make the NPV zero, when all input parameters are the 
same except for the technology factor and the cable cost (33% reductions in cost, based on €/kW installed, 
for both the 50 and 200 MW scenario compared to the 5-6 MW scenario). 

Installed capacity 

(MW) 

Technology 

factor tf (%) 

Pelamis TGC 

(€/MWh) 

Straumekraft TGC 

(€/MWh) 

Wavestar TGC 

(€/MWh) 

200 92 633 265 376 

50 91 642 278 420 

5-6 90 856 379 575 

Scaling a device to meet the conditions found on the BPNS means increasing the capacity 

factor of the device.  So, if the costs would remain the same (200 MW park), but the capacity 

factor would increase to 25% or 30% the necessary TGC support for a zero NPV would drop to be 

respectively 331 and 267 €/MWh for WaveStar, and to 174 and 136 €/MWh for the Straumekraft. 

However, supporting wave and tidal current energy technologies with TGCs is most relevant 

in a later commercial stage. The main focus in the short term should be to fund research and 

development projects who specifically target the low to moderate wave and tidal current climate 

conditions that can be found on the BPNS. Currently, the available market technologies are 

developed for high energetic zones (both wave and tidal). These conditions are not present on the 

BPNS. Technologies that specifically aim this market would have a relatively moderate power 

production compared to the mainstream technologies, but, as mentioned before, capital costs 

would be lower because these convertors don’t need to be extremely robust to withstand high 

storm forces.  

Furthermore, synergies, especially in combining foundations, transformators and cabling 

need to be investigated in detail. This allows also the optimal use of the domain concession zone. 

These technologies are not solely usable for deployment on the BPNS, as other regions have 

similar power resources, for example the wave power at the Swedish western coast.  

It is only in a second phase (precommercial phase), in the mid term, that higher TGC support 

would be recommended in order to support these pre-commercial technologies that are aimed 

for low to moderate wave or tidal current climates. It is certainly wishable that the guaranteed 

period would be extended to 20 years and that the level of TGC follows a high initial support, 

decreasing with time. In the OPTIEP report, the German system to support offshore wind (which 

takes into account the date of deployment, distance to shore and water depth) was presented as 



Project SD/NS/13 - Belgian Ocean Energy Assessment "BOREAS" 

 

SSD - Science for a Sustainable Development - North Sea  142 

a source of inspiration for the future offshore wind policy in Belgium. This system could also be 

used as a blueprint for the wave or tidal energy TGC policy in Belgium. And, a similar decreasing 

support system is already implemented for solar energy in Flanders.  

 Belgian companies already played a pioneering role in the construction of the so called ‘far-

shore’ windmillparks in deep waters. Further research and development for conversion 

technologies for low to moderate wave and tidal current convertors is highly recommended, and 

could generate innovative knowledge to Belgian companies. Furthermore, synergetic effects by 

using combined foundations or electrical components could further reduce the overall capital 

cost, whilst insuring a more continuous supply of energy. This is due to the intermittent character 

of these renewable resources.  Wave energy shows a phase shift on wind energy, which makes a 

very interesting source to be added to existing (offshore) windenergy.  Tidal current energy has 

the very unique characteristic that it is completely predictable (with neglectable variations due to 

meteo effects) and is the only renewable source with this characteristic. 

Today, with the current technology, it is still unlikely that wave or tidal current energy will be 

contributing significantly to the energy production in Belgium within the next 5 years. However, 

internationally big progress is made in the research of marine energy and demonstration sites are 

well underway. In the mid term (5-10 years), wave or tidal current energy (developed for 

moderate wave or tidal current climates) could contribute to the energy production, but only with 

the necessary investment in R&D for specific conversion technologies in a first phase, and a 

suitable TGC support level in a second phase. 
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9 Appendix 

9.1 Factsheets of selected WECs 

The Factsheet template was described in § 2.4. The first two presented WECs here, were 

selected because they have power matrices available (Pelamis and Wavestar).  Note that for 

Straumekraft, very little information was available apart from the power matrix, so no Factsheet 

was made.  The others WECs were selected because they show interesting features for 

deployment on the BPNS (Seabased, WaveTreader and Wavegen). 

9.1.1 Pelamis 

Current corporate profile 

Pelamis Wave Power Pelamis 

http://www.pelamiswave.com/ 1998, UK 

• Over 70 employees, arguably the biggest pure wave energy developper 
worldwide 

• Technology leader, however problems with a financial partner (Babcock and 
Brown) with the Agucadouro demo projext made bad publicity 

 

Quoting Pelamis: "lowest on the 
market", without exactly specifying 

Norsk Hydro, Technology VCs, Scottish Enterprise,… 

 

Pictures 

  

The second prototype of Pelamis, called P2 The second prototype of Pelamis, called P2 

 
 



Project SD/NS/13 - Belgian Ocean Energy Assessment "BOREAS" 

 

SSD - Science for a Sustainable Development - North Sea  144 

Device Development history and future strategy 

• Phase 1: 1:80 Edinburgh Uni. Scotland ('98-'01) 

• Phase 2: 1:35 Edinburgh Uni. Scotland ('99-'01) 

• Phase 3: 1:7 ECN, Nantes, France ('01-'03) 

• Phase 3: 1:7 Firth of the Forth, Scotland ('01-'03) 

• Phase 4: 1:1 EMEC, Scotland 750 kW ('04-'07) 

• Phase 5: 1:1 Agucadoura, Portugal 3 x 750 kW ('08-'09) 

• Phase 5: 1:1 EMEC, Orkney (EON + SPR),  1+1 x 750 kW ('10-) 

• Commercial plans: Bernera Wave Farm (20 MW, Shetland, '13-'14) and Farr Point Wave Farm (50 MW, date unknown) 

 

Device evaluation 

• Agucadoura was the first commercial grid connected wave power plant at full scale (3* 0.75 kW) 

• Commercially ready, although the new design (P2) will be further modified 

• Broad project portfolio: P2 is currently at sea at EMEC for E.ON (Scotland); 20 MW ongoing in Shetland (Scotland), 
secured a tender from the UK Crown Estate for the Farr Point Wave Farm (UK) with at first phase of 7.5 MW and optionally 
a second phase of 50 MW; secured a second tender at Marwick Head (UK) for 50 MW 

• Pelamis is now in a difficult and somehow ambigiuous position: on the one hand they are commercializing their device, 
but questions remain about the performance. An example is there participation cancellation in the Wavehub project to 
'focus on testing' 

• Pelamis was, and still is, an absolute forefront runner in the Wave Energy Industry, despite the problems at Agucadoura 

• Other developers may catch up with Pelamis' leading position 

 

Suitability for BPNS 

• Very unlikely, depth requirements, developped for high wave climates 

 

Device specifications 

AT Hydraulic Anchored, quick release connection 
for towing back to harbour 

• Shallow draft 

• Good survivability due to hydrostatic clipping: Pelamis dives 'under' big waves 

• Emergency release connection, device can be towed in harbor and dry docked 

 

50-70m 

180m long, 3 m dia, 859 ton 

Yes, full power matrix available, giving 
Power output for a 750 kW device in 
function of Tp and Hs 
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9.1.2 Wavestar 

Current corporate profile 

Wave Star Energy ApS Wave Star 

http://www.wavestarenergy.com/ 2003, Denmark 

• Independent, 27 employees mostly engineers 

• Can be considered as one of the leading developpers 

NA 

The owners of Wavestar A/S are the brothers Jørgen Mads Clausen, Henrik Mads Clausen and Peter Johan Clausen of the 
Danfoss family 

 

Pictures 

 

 

 

Prototype of the Wavestar (with 2 of the 20 foreseen 
buoys). The platform can be  lifted up for maintenance or 
survival 

Concept of a full scale Wavestar 

 

Device Development history and future strategy 

• Phase 1, 1:40, Aalborg University Danmark, ('04-'05) 

• Collobaration with the Horns Rev windmillpark for further projects 

• Phase 3, 1:10, Nissum Bredning, Denmark, 5.5 kW ('06-'10) 

• Phase 4  1:1, First section of the 500 kW design (only 2 of 20 floaters), '09, full device (20 floaters) by '11-'12 

 

Device specifications 

PA Hydraulic Jackup platform 

• Provides smooth output 

• Using existing technology and knowledge from offshore industry 

• Proven efficient storm resistance (14 storms during 3 year operation with 1:10 
prototype) 

Limited by jackup platform 

70 long, 6m height 

NA, 25-50 kW production per floater in 
2.5 m Hs 
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Device evaluation 

• Excellent track record, with clear milestones 

• Requires (expensive, but easily accesible) jackup platform 

• Dependent on wave direction 

 

Suitability for BPNS 

• Originally developped for a higher wave climate, so probably  only in a scaled down or remodified design 

 

9.1.3 Seabased AB - Linear generator (Islandsberg project) 

Current corporate profile 

Seabased AB Linear generator (Islandsberg project) 

http://www.seabased.com/ 2001, Sweden 

• Spin-off of the Uppsala University, originally a 'sleeping' company to host the IP 
generated by the Uppsala University research 

NA 

• Investments from utilities like Vatenfall, Fortum, Statkraft and other private companies 

• The Swedish Energy Agency and Fortum granted a 10 MW wave farm in Sotenas, Sweden 

 

Pictures 

  

 

Concept of the Seabased buoy, showing the linear generator 
PTO, mounted at the bottom 

 

 
 



Project SD/NS/13 - Belgian Ocean Energy Assessment "BOREAS" 

 

SSD - Science for a Sustainable Development - North Sea  147 

Device Development history and future strategy 

NA 

 

Device evaluation 

• Long time development at Uppsala university (ongoing) 

• All power producing component underwater make maintenance virtually impossible or extremely expensive 

• Linear generator takes the full load during storms 

• Simple conversion step to electricity 

• Strong environmental monitoring programme, both at Lysekill (Sweden) and Ronde (Norway) 

• Highly scalable and modular design 

 

Suitability for BPNS 

• Possibly: highly scalable and simple, but the tidal variation on the BPNS may form a a problem for the stroke length of 
the linear generator 

Device specifications 

PA Linear generator (connected to 
bottom anchor) 

Anchor, gravity based 

• Simple conversion step to electricity NA 

3m dia, 8m high 

NA 
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9.1.4 GreenOcean energy Ltd - Wave Treader 

Current corporate profile 

GreenOcean energy Ltd Wave Treader 

http://www.greenoceanenergy.com/index.php/wave-treader 2005, Scotland 

• Spin off of engineering company consultancy firm NA 

Not really specified, but partners include private companies like John M Henderson & Co Ltd, Prospect, Monitor Systems & 
Cadherent; investmunt funds likeNpower Juice Fund;  reasearch instutions like NA-ME, EMEC, NaREC & Robert Gordon 
University and govern 

 

Pictures 

 

 

 

Concept of the WaveTreader Concept of the WaveTreader 

 

Device Development history and future strategy 

• Phase 1: 1:50: Proof of Concept at NA-ME ('07); 

• Phase 2: 1:12.5: Prototype testing at Narec ('09); 

• Phase 3: 1:1 Construction of prototype in '10, to be deployed in '11 

 

Device evaluation 

• Explicitly designed to be designed on jacket foundations of offshore windmill farms; this provides a very unique 
characteristic; 

• Seems to have a local (Scottish) network from private companies, research institutions and governments, so strong 
'backbone'; 

 

Device specifications 

PA NA Monopile of windmill foundation 

• Explicitly designed for connection to offshore windmill foundations 

 

NA 

NA 

NA 

Suitability for BPNS 

• Connection to offshore windmill foundation sounds promising, however claim for accesibility needs verification.  No 
information on efficiencies. 
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9.1.5 FlanSea 

Current corporate profile 

Flansea Flansea 

NA 2010, Belgium 

• Colloboration between Belgian industrial partners and the University of Ghent in 
order to apply the know-how obtained by the SEEWEC for moderate wave climates 
like the Belgian coast 

NA 

IWT, DEME Blue Energy, Cloostermans, Electrawinds, Harbour of Ostend and Contec 

 

Pictures 

 

 

 

Concept of the Flansea buoy, the red buoy holds the 
electricity cable whereas the straight rope is the anchoring 
cable which is attached to a drum inside the buoy 

 

 

 

Device Development history and future strategy 

• Phase 1-2-3: SEEWEC project, European funded, (’05-’09).  

• Phase 1-2: ’11-’12: testing and development in Flanders. 

• Phase 3: ’12-’13: testing foreseen nearby the harbor of Ostend 

 

Device evaluation 

• Still in conceptual phase, since new design is under development  

 

Suitability for BPNS 

• Main design criterium is the low to moderate wave climate, and testing and optimization will be done at the BPNS, so yes 

Device specifications 

PA Mechanical or electrical Anchored, slack mooring 

• Explicitly developed for wave climates like the BPNS 10-25m 

NA 

NA 
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9.1.6 Wavegen (Siemens) – Limpet - Mutriku 

Current corporate profile 

Wavegen (Siemens) Limpet 

http://www.wavegen.com/ UK 

• Originally Applied Research & Technology ltd NA 

• Acquired by Voith Siemens Hydro in '05 

 

Pictures 

  
 

Onshore 500 kW OWC of Wavegen at Limpet, Islay, Scotland Detail of the impuls air turbine 

 

Device Development history and future strategy 

• Phase 4, 1:1, Dounreay, Scotland, 2 MW, '95 

• Phase 3, 1:1.75, Islay, Scotland, 75 kW, ('88-'99) 

• Phase 4, 1:1, Islay, Scotland, 500 kW, ('98-'07) 

• Phase 5, 1:1, Mutriku, Spain, 16*18.5 kW ('98-'10), technically operational but administrative problems hindered the 
startup 

• Phase 5/Commercial, 1:1, Siadar active breakwater, 4MW, planned 

 

Device evaluation 

• Long operational time, but tuneability remains difficult (achieving resonance conditions with a fixed air inlet chamber) 

• Power producing components outside the water, but may suffer from seawater spray and corrosion 

• Possible noise hindrance due to 'whistle' effect of the turbine: in Mutriku the noise was a design criterium 

 

Device specifications 

OWC Impuls air turbine Anchored of onshore 

• Completely accesible from land, independent on weather conditions 

• Built in breakwaters or coastal defence structures 

• Alternatively, separate structures can contain the OWC turbines, like the 
granted SIADAR project (Scotland) 

 

 

NA, but website contains technical 
reports on the efficiencies and 
conversion losses of the components 
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Suitability for BPNS 

• Unlikely: tidal variation at BPNS is to high to be implemented onshore, nearshore versions will require high capital 
investments 

• If the turbines can be scaled down, and use existing structures to reduce capital costs, then perhaps possible 

 

9.2 Factsheet of selected TECs 

The Factsheet template was described in § 2.4. The 3 selected TECs discussed here were the 

ones that were selected because they show interesting features for deployment on the BPNS. 

None of these TECs gave a power curve (a generic efficiency curve was used to assess the 

extractable wave power). 

 

9.2.1 Vortex Hydro Energy - VIVACE (Vortex Induced Vibrations 

Aquatic Clean Energy) 

 

Pictures 

 

 

Conceptual, modular design of a Vivace park Test set-up of 4 wave cilinders in a wave flume 

 

Current corporate profile 

Vortex Hydro Energy VIVACE (Vortex Induced Vibrations Aquatic 
Clean Energy) 

http://www.vortexhydroenergy.com/ 2004, USA 

• Spinoff of Michigan University $ 55/MWh, quoted from an 
interview with the CTO, but not on 
the offical webpage 

Privately held 
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Device Development history and future strategy 

• Phase 1: Michigan University, '06-'07 

• Phase 2: Michigan University, wave flume testing of 4 cilinders, '09-'10 

• Phase 3: Open water test at St Clair river, '10 

 

Device evaluation 

• No information on the future plans or the further development, still in research phase, not in a commercialization phase 

 

Suitability for BPNS 

• Likely, compact design, low cut-in speed and wide operating range are the most interesting features 

 

Device specifications 

Other, based on Vortex induced 'lock-
in' phenomenon 

NA Gravity based 

• Very compact design 

• Very wide efficient range, due to the underlying 'vortex lock in' phenomenon, 
which occurs over a wide range of flow characteristics 

wide range 

NA 

NA 
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9.2.2 Ecofys Wave Rotor 

Current corporate profile 

Ecofys Wave Rotor 

http://www.ecofys.com/com/news/pressreleases2002/pressrelease02aug2002.htm The Netherlands 

• Now member of Eneco, which is one of the 3 leading energy utilities in the Netherlands NA 

• Subsidiary of Econcern, which was taken over after by Eneco after bankruptcy in may 2009 

  

Pictures 

  

 

Concept of the Ecofys Waverotor Waverotor prototype at Borssele, the Netherlands 

 

 

Device Development history and future strategy 

• Phases 1-2:  serveral wave tank testing in Scotland and Denmark ('95 - '02)  

• Phase 3: 1:10 scale model tested at Nissum Bredning ('02) 

• Phase 3: 1:10, 30 kW, at Borssele (Scheldt Estuary) grid connected 

 

Device specifications 

Other, based on a Wells turbine, also 
captures tidal energy 

Direct driven generator Mounted on piles 

• Can convert both wave and tidal current energy, in a single step by means of 
the wave 'rotor', which is a combination of a omnidirectional Darrieus rotor and 
a bi-directional Wells rotor. 

• Can be lifted up to account for difference in tidal range 

NA 

NA, prototype has a swept area of 
25m 

NA 
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Device evaluation 

• Currently seeking funding for furhter deployment 

 

Suitability for BPNS 

• Combining wave, tidal current and wind energy could be very interesting in terms of optimal use of space 

 

9.2.3 Blue Energy Canada Inc. - Davis Hydro Turbine 

Blue Energy Canada Inc. Davis Hydro Turbine 

http://www.bluenergy.com/ Canada 

NA NA 

Private 

 

Pictures 

 

 

Concept of a floating Davis Hydro Turbine: Blue Energy 
turbines can be built in smal units. Blue Energy has 
developed a small modular 125KW design that can be 
combined into arrays of up to 4 units and used in free 
stream applications to provide community power. 

Turbine schematics: Four fixed hydrofoil blades of the Blue 
Energy Turbine are connected to a shaft that drives a 
variable speed electrical generator assembly. This rotor is 
mounted in a durable concrete marine caisson which 
anchors the unit to the ocean floor, directs the water flow 
through the turbine and supports the coupler, generator, 
and electronic controls above it in a dry, climate controlled 
machinery room above the water surface. The hydrofoil 
blades employ a hydrodynamic lift principle that causes the 
turbine foils to move proportionately faster than the speed 
of the surrounding water. The turbine is designed to work 
through the entire tidal range with a typical cut-in speed of 
1 m/s. 
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Device Development history and future strategy 

NA 

 

Device evaluation 

• Currently seeking capitcal with World Energy Research to build a 200 MW commercial dam 

• The company has identified potential interesting sites, but no concrete plans are announced so far 

• Two indepenent engineering firms, Halverson and RW Beck, assessed the Davis Hydro Turbine and were positive about 
the technology 

 

Suitability for BPNS 

• Focus on integrating tidal turbines in bridges over large estuaries, so not suitable for Belgium. 

 

Device specifications 

Ducted VATT ("Tidal Bridge")  Floating or fixed 

• Scalable 

• Machinery and controls above the water 

• Strong potential synergy with bridges for road transport 

• High extraction efficiency 

NA 

NA 

NA 
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9.3 Monthly wave powers not shown in report 

 

Figure 69: Average wave power (kW/m) for the month February (final, with the 3 corrections). 
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Figure 70: Average wave power (kW/m) for the month March (final, with the 3 corrections). 

 

Figure 71: Average wave power (kW/m) for the month May (final, with the 3 corrections). 
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Figure 72: Average wave power (kW/m) for the month June (final, with the 3 corrections). 

 

Figure 73: Average wave power (kW/m) for the month August (final, with the 3 corrections). 
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Figure 74 Average wave power (kW/m) for the month September (final, with the 3 corrections). 

 

Figure 75: Average wave power (kW/m for the month November (final, with the 3 corrections). 
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Figure 76 Average wave power (kW/m) for the month December (final, with the 3 corrections). 
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9.4 Yearly wave powers not shown in report 
 

 

 
Figure 77: Average wave power (kW/m) for the year 2000 (final, with the 3 corrections). 
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Figure 78: Average wave power (kW/m) for the year 2001 (final, with the 3 corrections). 

 
Figure 79: Average wave power (kW/m) for the year 2002 (final, with the 3 corrections). 
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Figure 80: Average wave power (kW/m) for the year 2004 (final, with the 3 corrections). 

 
Figure 81: Average wave power (kW/m) for the year 2005 (final, with the 3 corrections). 
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Figure 82: Average wave power (kW/m) for the year 2006 (final, with the 3 corrections) . 

 
Figure 83: Average wave power (kW/m for the year 2007 (final, with the 3 corrections). 
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Figure 84: Average wave power (kW/m) for the year 2008 (final, with the 3 corrections). 
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9.5  Economical parameters (Mathys et al. 2010) 

The Net Present Value (NPV) is calculated as: 

0

1 (1 )

T
t

t
t

F
NPV I

r
 

With : 

- I0  : Initial investment or capital cost  

- Ft  : Cash flows at time t (excluding the initial investment)  

- t : Time 

- T : Project time 

- r : Disconto rate 

A project may be accepted when the NPV > 0, and should be rejected when NPV < 0. When 

the NPV = 0, the project adds no monetary value to the investor. Decision should be based on 

other criteria, e.g. strategic positioning or other factors not explicitly included in the calculation 

(Wikipedia 2011). 

The discontorate is determined as the WACC, of Weighted average of cost capital, which is 

the rate that a company is expected to pay on average to all its security holders to finance its 

assets:  

DCP

D
Rt

DCP

CP
kr cp )1(  

With :  

- CP  : Equity [%] 
- D  : Debts [%] 
- t  : Tax rate [%]  
- R  : Interest rate on debts [%]  
- kcp  : cost of equity in the absence of debt  

fmfcp RRRk  

With (according to the Capital asset pricing model) :  

- Rf  : rate without risk [-]  
- Rm  : expected return on market [%] 

-  : systematic risk [-]  

After the determination of the discount rate, the inflation needs to implemented. The 

inflation is taken at 2.1% (based Eurostat data for ’98’-’08 and based on STATBEL data for the 

period ’85-’09 (EUROSTAT 2007; Eurostat 2009; NBB 2009). Hence the discontorate after inflation 

is calculated as: 

after_inflation before_inflation(1 ) (1 ) 1r r Inflation  

For the system of TGC the rate was calculated at 8.61% after inflation .
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