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Summary 
 
The last decades are characterized by contrasting behaviors of the sea ice in the two polar 
regions of the Earth (Turner and Overland, 2009). While the sea ice in the Arctic has been 
largely shrinking, the extent of sea ice surrounding Antarctica displays an increase estimated 
to be between 0.13 and 0.2 million km2 between November 1978 and December 2012 
(Vaughan et al., 2013). The recent study of Eisenman et al. (2014) suggests that the 
magnitude of this positive trend may have been overestimated due to a change in the 
algorithm used to process the satellite data. However, even the lowest estimate of the trend 
in Antarctic sea ice extent over the last decades indicates a slight increase that is rather 
puzzling in a global warming context.  
 
The evolution of the Antarctic sea ice is driven by the combination of different mechanisms 
involving both external forcing and internal variability of the system. For instance, the 
stratospheric ozone depletion (Solomon, 1999) has been pointed out as a potential cause of 
the increase in sea ice extent. Nevertheless, this hypothesis is not compatible with several 
recent model analyses (e.g. Bitz and Polvani, 2012; Sigmond and Fyfe, 2010, 2013; Smith et 
al., 2012) and the response of Antarctic sea ice to ozone depletion may involve complex 
mechanisms that require further investigations (Ferreira et al., 2015).  
 
The observed evoution of Antarctic sea ice cover may be associated to changes in the 
atmospheric circulation or in the ocean stratification (e.g., Bitz et al., 2006; Goosse and Zunz, 
2014; Goosse et al., 2009; Holland and Kwok, 2012; Kirkman and Bitz, 2010; Landrum et al., 
2012; de Lavergne et al., 2014; Lefebvre and Goosse, 2008; Stammerjohn et al., 2008; 
Zhang, 2007). For instance, the melting of the Antarctic ice shelves (e.g., Pritchard et al., 
2012; Rignot et al., 2008; Shepherd et al., 2012; Velicogna, 2009) and the increase in 
precipitation at high southern latitudes resulting from the enhanced hydrological cycle (e.g., 
Liu and Curry, 2010) under global warming conditions may lead to a freshening of the 
surface of the Southern Ocean. This freshening induces a stronger vertical stratification of 
the ocean that in turn reduces the exchange of heat between the relatively warm 
intermediate layer and the colder upper layer of the ocean. This reduction of the vertical heat 
flux in the ocean favors the formation of sea ice at the surface and can thus account for the 
observed expansion of Antarctic sea ice.  
 
Those changes in oceanic and atmospheric circulation and in Antarctic sea ice cover have 
been tentatively attributed (at least partly) to the multi-decadal, internally driven, variability of 
the system (e.g., Gagné et al., 2015; Mahlstein et al., 2013; Polvani and Smith, 2013; Swart 
and Fyfe, 2012; Zunz et al., 2013). In particular, the observed increase in sea ice extent 
since 1979 may have been preceded by a large decrease in ice extent during the 1960‟s 
(e.g., Cavalieri et al., 2003; Cotté and Guinet, 2007; Curran et al., 2003; Gagné et al., 2015; 
de la Mare, 1997, 2009). This hypothesis is supported by the few observational data that are 
available prior to 1979. Nevertheless, the time period for which reliable observations of the 
Antarctic sea ice are available is too short to properly investigate the internally driven change 
in sea ice cover. In this context, the results of climate model simulations constitute a 
complete set of data that can compensate for the lack of observations. Unfortunately, climate 
models often display large biases in the Southern Ocean for both the mean state and the 
variability of the system (Arzel et al., 2006; Bracegirdle et al., 2008; Mahlstein et al., 2013; 
Zunz et al., 2013).  
 
The research activities undertook within the framework of the PREDANTAR project first 
aimed at making the most of imperfect models and incomplete observations in order to 
improve our understanding of the complex mechanisms that rule the changes in Antarctic 
sea ice and to perform better predictions. Coupled climate models are here used to identify 
the processes implied in the observed changes in the Southern Ocean. Through the present 
project, post-processing tools providing an assessment of model errors and corrections were 
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developed and applied for both simple models and more complex ones. Additionally, data 
assimilation techniques were implemented in order to obtain optimal reconstructions of the 
Antarctic sea ice cover. Those reconstructions constitute valuable estimates of the changes 
in the state of the ice cover in the Southern Ocean over the last 30 years that compensate for 
the lack of observations over that period. Based on this improved understanding of the 
drivers of the changes in Antarctic ice cover, a methodology has been developed in order to 
improve the predictions and the projections of the changes in that region. In particular, the 
impact of the initialization of prediction simulations with a state obtained thanks to different 
data assimilation techniques was assessed showing how a reasonable skill in predicting 
decadal trend in sea ice extent may be achieved. 
 
Calibration or post-processing aims at improving the predictions once they have been issued 
by the model. The purpose is to correct either the impact of model errors on the predictions 
and/or the evaluation of the uncertainty associated with these forecasts. These 
improvements are strongly related with the concepts of resolution and reliability, for which the 
predictions must be as close as possible to the truth (high resolution) and at the same time, 
their uncertainty estimation must be a good measure of the error (high reliability).  In the 
context of the project, calibration techniques have been developed for both deterministic and 
ensemble predictions and have been proven successful provided the correction is performed 
for skillful forecasts and for short times. Moreover, the linear post-processing approach 
enables us to disentangle the importance of model errors and their potential origin in short 
term predictions of the NEMO-LIM coupled ice-ocean model used to build a Southern Ocean 
re-analyses.   
 
These techniques have also been used in the perspective of the correction of long-term 
predictions under static or transient external climate forcing in both reduced-order idealized 
climate models and in an intermediate complexity climate model (LOVECLIM). As it turns 
out, transient dynamics of the external forcing are affecting considerably the possibility to use 
post-processing (bias correction or more sophisticated approaches) under strong climate 
changes, and care should be taken in using the approach that should be evaluated carefully 
on a case-by-case basis. Furthermore, a simple bias correction has been found to provide 
the dominant correction for model error for long-term predictions (annual, inter-annual and 
decadal time scales), while more sophisticated local and non-local techniques do only 
provide marginal corrections.      
 
In order to contribute to the understanding of the variability in the Southern Ocean, a 
reanalysis assimilating sea surface temperature, sea ice concentration and sea ice drift has 
been realised. As the sea ice drift is strongly related to the winds, a specific procedure for the 
ice drift has been adopted. The correlation between the 3-day mean surface wind field and 
the ice-drift is strong and this relationship was used to adjust the wind field using pseudo-
wind field observations based on sea ice drift data. The wind field corrections have been 
independently validated to show the efficiency of the approach. 
 
Based on this adjusted wind, a reanalysis using the coupled ice-ocean model NEMO-LIM2 
for the period 1985 to 2006 using 50 ensemble members has been performed. The 
reanalysis was validated using the World Ocean Database. As the focus of the reanalysis is 
the Southern Ocean, the impact of the assimilation on the ACC (Antarctic Circumpolar 
Current) was also assessed by comparing the mean sea surface height of the model to the 
mean dynamic topography derived from various observations. The assimilation improved the 
position and strength of the ACC. 
 
For such low resolution models a large part of the error is due to a bias. Exploratory 
approaches have been implemented in order to reduce the model bias by parameter 
estimation. The general idea to address this problem is to add a stochastic forcing (at first 
constant in time) to the dynamical equations and to estimate this forcing using data 
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assimilation. Simple tests with the Lorenz 96 model have confirmed the validity of this 
approach. Results of this approach with the NEMO-LIM2 model are also encouraging and 
show a possible way to reduce the bias of low resolution climate models. 
 
The analyses of the model results provided through the 5th Coupled Model Intercomparison 
Project (CMIP5) have highlighted systematic biases in the mean state and in the internal 
variability of the simulated Antarctic sea ice cover. Nevertheless, a positive trend in ice extent 
over the last three decades, although being rare among the CMIP5 historical simulations, is 
compatible with the internal variability simulated by the CMIP5 models. In those models, the 
heat supplied by both the ocean below and the atmosphere above the sea ice clearly 
impacts the sea ice cover. The relative contribution of those two mechanisms in determining 
the sea ice conditions is strongly model-dependent. Additional investigations based on the 
results of a model of intermediate complexity have allowed identifying a process related to 
ice-ocean interactions that potentially accounts for many characteristics of the recent 
observed changes in Antarctic ice cover. This mechanism consists of a stabilization of the 
water column due to the changes in the seasonal cycle of ice formation. 
 
The predictive skill of an Earth-system model of intermediate complexity for the Antarctic ice 
cover was first assessed in idealized conditions that allow getting rid of the model biases. In 
this idealized study, nearly no predictability was found for the Antarctic sea ice at interannual 
timescales, likely because of unpredictable atmospheric processes that dominate the signal 
at those timescales. Besides, relatively high predictability was highlighted for the trend in sea 
ice extent at multi-decadal timescales. An adequate initialization of the ocean underlying the 
ice, achieved thanks to a data assimilation procedure, has been identified as a key element 
to ensure satisfying predictions of the trends in ice extent. In realistic conditions, our results 
indicate that the initialization of the system through data assimilation can also improve the 
simulated trends in ice extent and concentration over the period 1980–2009.  
 
The Antarctic sea ice, although being a relatively small and thin ice blanket over the 
Southern Ocean, strongly impacts the Antarctic ecosystem and the evolution of the climate at 
both local and global scale. In particular, the Antarctic sea ice influences the oceanic heat 
exchanges, the carbon uptake and the sea level rise through interactions with the Antarctic 
ice sheet. Understanding its behavior and predicting its evolution thus constitute an issue of 
concern in a sustainable development context. The causes of the recent increase in Antarctic 
ice extent are still not firmly identified at this stage. Nevertheless, the knowledge related to 
the mechanisms that rule the Antarctic sea ice variability has been clearly improved thanks to 
the work carried out in the framework of the PREDANTAR project. This project also allowed 
testing different techniques, based on post-processing tools and on data assimilation 
procedure, aimed at improving the reconstructions and the predictions of the Antarctic ice 
cover. This will strongly contribute to improving future predictions and projections not only for 
the Southern Ocean but also at global scale. Furthermore, although this work was essentially 
focused on the sea ice in the Southern Ocean, the post-processing and data assimilation 
techniques implemented within the framework of PREDANTAR can be used to improve the 
predictability at decadal timescales in other regions and for other climate variables.  
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1. Introduction 
 
Over the period for which we have consistent satellite records, i.e., since November 1978, 
the sea ice extent (defined as the surface with the limit of the ice edge, taken as the zone 
where sea ice concentration reaches 15%) and the sea ice area (defined as the ocean 
surface covered by sea ice) in the Southern Ocean have slightly increased (Comiso and 
Nishio, 2008; Parkinson and Cavalieri, 2012). Between November 1978 and December 
2012, the increase in ice extent is estimated to be between 0.13 and 0.2 million km2 
(Vaughan et al., 2013). The recent work of Eisenman et al. (2014) suggests that the trend in 
ice extent may be in reality slightly smaller than the value reported in Vaughan et al. (2013), 
due to a change in the algorithm used to process the satellite records. Nevertheless, even a 
slight expansion of the Antarctic sea ice is in clear contrast with the behaviour of its Arctic 
counterpart (e.g., Turner and Overland, 2009) where the ice extent has decreased over the 
period 1979–2012 at a rate between 0.45 and 0.51 million km2 per decade (Vaughan et al., 
2013). The overall increase in Antarctic ice extent is the result of an increase in ice 
concentration in most parts of the Southern Ocean, particularly strong in the Ross Sea 
sector, and a decrease in some other sectors, especially in the Bellingshausen and 
Amundsen Seas (Figure 1).  
 

 
Figure 1 1979-2012 trends in annual mean sea ice concentration in the Southern Ocean, from data 

derived from the Nimbus-7 SMMR and DMSP SSM/I-SSMIS satellite observations (Comiso, 1999). 

 
The processes responsible for the positive trend in Antarctic sea ice extent observed over 
the last three decades are still not well known. Several hypotheses have been proposed to 
explain this positive trend, partly attributing it to changes in the atmospheric circulation or in 
the oceanic stratification that would impact the sea ice transport and the heat exchanges 
between the atmosphere, the ocean and the sea ice (Bitz et al., 2006; Goosse and Zunz, 
2014; Goosse et al., 2009; Holland and Kwok, 2012; Kirkman and Bitz, 2010; Landrum et al., 
2012; de Lavergne et al., 2014; Lefebvre and Goosse, 2008a; Stammerjohn et al., 2008; 
Zhang, 2007). However, no clear conclusion has been obtained yet regarding the relative 
importance of various mechanisms. 
 
Another key issue is to determine to what extent the observed changes in the Antarctic sea 
ice are driven by anthropogenic forcing or are part of the natural multidecadal variability of 
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the system. In response to the increase in greenhouse gas concentrations in the atmosphere 
and to the decrease in stratospheric ozone concentration, general circulation models (GCMs) 
simulate a quite robust increase in the Southern Annular Mode (SAM) index and 
modifications of the surface pressure in the Bellingshausen-Amundsen sector (e.g., Arblaster 
and Meehl, 2006; Turner et al., 2009). Their response to the greenhouse gas forcing also 
implies an increase in precipitation at high latitudes that influences stratification there. In the 
simulations provided by coupled GCMs, the sea ice response to the increase in greenhouse 
gas forcing is mainly characterized by a reduction of the extent over the last three decades 
(e.g., Arzel et al., 2006; Mahlstein et al., 2013; Parkinson et al., 2006; Turner et al., 2013; 
Zunz et al., 2013). However, the observed positive trend in ice extent is compatible with the 
natural variability simulated by those GCMs (e.g., Mahlstein et al., 2013; Polvani and Smith, 
2013; Zunz et al., 2013). 
 
Models that participated to the CMIP3 (3rd Coupled Model Intercomparison Project) had 
large biases in the Southern Ocean both for the mean state and the variability of the system 
(e.g., Arzel et al., 2006; Bracegirdle et al., 2008). Those biases remain present in more 
recent versions of the coupled climate models involved in the fifth phase of the 
intercomparison project, CMIP5 (e.g., Turner et al., 2013; Zunz et al., 2013). Those biases 
raise the question whether the models could reasonably be used to estimate the future 
changes in the Antarctic sea ice cover, at decadal and longer timescales. Improving the 
model physics is the most obvious way to reduce those biases. However, this is a long term 
goal. A complementary way is to try to reduce the error in predictions using available model 
results and observations. For instance, few attempts have been made to combine the 
projections provided by different models in order to reduce the uncertainties on future 
changes, giving to each model projection a weight related to the ability of the model to 
simulate the present state of the system (e.g., Bracegirdle et al., 2008).  
 
This problem is classical as any model-based forecast of environmental processes 
progressively degrades due to the presence of both model uncertainties and initial condition 
errors. This has been studied in detail in meteorology where, for instance, the combined 
effect of these errors has been recently investigated (Nicolis et al., 2009), with emphasis on 
the typical time scales at which the mean square error reaches its minimum and on the time 
at which the contributions of both errors are of similar magnitudes. Both errors are also 
affecting climate forecasts, at seasonal, interannual and decadal time scales (Meehl et al., 
2009). A solution proposed in Numerical Weather Predictions (NWP) to partly correct this 
decrease of skill, is to use post-processors based on (linear or nonlinear) statistical methods 
(see e.g., Wilks, 2006). These are usually referred to as Model Output Statistics (MOS) 
techniques. One of the most popular approaches in the context of weather forecasts consists 
in building a linear regression between a set of predictors provided by the NWP model and 
an observable at a certain lead time t, and to use this statistical relation to perform corrected 
forecasts of this observable at the same lead time (e.g., Taylor and Leslie, 2005). In this 
framework, several new approaches have been proposed in recent years for both single and 
ensemble forecasts (e.g., Vannitsem and Hagedorn, 2011; Vannitsem, 2009). However, such 
methods have not yet been applied to the climate predictions and more specifically for the 
Southern Ocean sea ice. 
 
MOS techniques are efficient tools to correct model prediction of future climate. For model 
simulations of the past climate, observations can be directly used to constrain the model 
using data assimilation. Ensemble assimilation schemes such as the Ensemble Kalman Filter 
(EnKF, Evensen, 2003) and the singular evolutive interpolated Kalman (SEIK) filter (Pham, 
2001) have been shown to be successful in the context of a coupled ocean-sea ice model 
(Lisæter et al., 2003, 2007; Rollenhagen et al., 2009). In particular, this approach can 
contribute to (1) the identification of error sources and (2) the derivation of an improved 
estimate, not only of the model state but also of the atmospheric forcing fields and uncertain 
model parameters. A better estimate of the state of the system is essential to analyze the 
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mechanisms, while optimizing uncertain model parameters will have also the potential to 
improve model predictions for which there are obviously no observations to constrain the 
model results. 
 
As briefly presented above, our understanding of the complex mechanisms that rule the 
changes in Antarctic sea ice is still very fragmentary. Unfortunately, the small amount of 
observations of some variables like sea ice thickness and the large biases of general 
circulation models in the Southern Ocean reduce our ability to investigate the dynamics of 
the system and to propose reliable predictions and projections of the future changes in 
Antarctic sea ice. In this framework, we will use the term projections for estimates of the 
changes of the state of the system at the horizon of the 21st century while the word prediction 
will be applied for shorter term forecasts, at decadal scale. For projections, the uncertainties 
in the model formulation and model parameters as well as in the scenario of future 
concentration of greenhouse gases, aerosols, various pollutants in the atmosphere, land use, 
etc, play a large role in explaining the uncertainty range of the estimates. Besides, for 
prediction, the choice of the scenario plays a smaller role while internal variability (and thus 
the initial conditions of the forecast) could be a large source of uncertainty (e.g., Hawkins and 
Sutton, 2011). 
 
The goal of this project is firstly to improve our understanding of the mechanisms responsible 
for the recent changes in the Antarctic sea ice cover. Secondly, based on this improved 
understanding, a methodology designed to improve the predictions and the projections of the 
sea ice changes in the Southern Hemisphere is developed. Both predictions for the next 
decades and the projections for the end of the 21st century are investigated.  
 
These goals are achieved by  

i. Implementing and adapting Model Output Statistics techniques, providing an 
assessment of model errors in simulated variables, with a specific focus on Antarctic 
sea ice characteristics (Section 2.1); 

ii. Providing better estimates of the changes in the state of Southern Ocean sea ice 
cover over the last 30 years thanks to state-of-the-art techniques of data assimilation 
which are dynamically consistent and enable to obtain additional constraints on the 
atmospheric forcing of the sea ice cover and on the value of certain poorly known 
parameters (Section 2.2);  

iii. Analyzing observations, existing simulations with various types of models and new 
sensitivity studies (Section 2.3); 

iv. Analyzing the projected changes in the Antarctic ice cover over the 21st century and 
assessing the impact of the initialization method on the predictive skill of a climate 
model for the Antarctic sea ice at decadal timescales (Section 2.4). 
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2. Methodology and results 

2.1. Adaptation of post-processing tools 
  

Within the context of the PREDANTAR project a key challenge was to gain insight into the 
prediction improvement induced by calibration. Although nowadays climate-model calibration 
is a standard practice, much insight is still lacking, mostly due to insufficient observations that 
could be used to assess different calibration approaches for climate purposes. Therefore the 
issue is approached from a different perspective by use of twin experiments whereby both 
model predictions and observations are taken from climate models. Moreover a climate 
model of intermediate complexity, LOVECLIM (Goosse et al., 2010), is used that allows long 
climate integrations. Such approach allows one to draw firm statistical conclusions. An 
attempt to calibrate sea-ice model predictions using LOVECLIM based on observations of 
the satellite era was unsuccessful due to limited predictability.  
 
However, as described in Section 2.1.1, calibration techniques were successfully applied as 
a diagnostic tool to find model errors using the re-analysis produced within this project. In 
Section 2.1.2 the limits of post-processing are explored in the absence of climate change, i.e. 
using constant greenhouse gas forcing. Thereby the emphasis is on development of spatial 
calibration methods and their skill. In section 2.1.3, on the other hand, a strong change of 
greenhouse gas concentrations is assumed and assessed whether the assumptions 
underlying common calibration techniques remain valid under such circumstances. 
 
Calibration or post-processing aims to improve the predictions after they are produced by the 
model. Therefore it requires a definition of what is a good forecast. In this context, the 
concepts of resolution and reliability plays a prominent role. This means that the predictions 
must be as close as possible to the truth (high resolution) but, at the same time, the 
uncertainty estimation must be a good measure of the error (high reliability). Uncertainty 
estimation is of prominent importance both for numerical weather prediction and for 
climatological purposes. For instance initiatives such as the CMIP5 project are aimed to 
provide uncertainty estimates of the climate change by building a large multi-model 
ensemble. Different concepts of reliability exist for numerical weather predictions and 
climatology. In Sections 2.1.4.1 and 2.1.4.2 new calibration methods are presented that 
combine the different concepts of reliability. In Section 2.1.5 we also propose new verification 
methods for reliability in case uncertainty estimations are based on a single measure. The 
same reliability constraints played also an important role in Section 2.1.2 where new 
calibration methods for spatio-temporal fields are introduced. 
 
 
2.1.1. Post-processing as a diagnostic tool 
 
A technique is proposed that is able to identify model errors during the assimilation cycle as it 
is applied on the reanalysis for sea ice as proposed within the PREDANTAR project and 
discussed below in Section 2.2.1.3. This work is reported in Barth et al. (2015) that is 
currently under revision at Ocean Dynamics. 
 
It is known that model errors can be traced by considering how data assimilation pulls the 
analysis away from the background towards the observations (Klinker and Sardeshmukh, 
1992; Rodwell and Palmer, 2007). The problem is approached here from a different 
perspective.  
 
Following discussions between the different PREDANTAR partners, the idea came up to 
combine post-processing and data assimilation and to test it on the sea-ice reanalysis 
produced within the project. Although the main purpose of post-processing or calibration is to 
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improve the quality of model data, we try to go beyond that and use it as a diagnostic tool for 
pin-pointing model errors. In Vannitsem and Nicolis (2008) it is argued that Model Output 
Statistics (MOS) techniques can correct forecasts at small lead times subject to systematic 
model errors, as opposed to random initial conditions. MOS applies regression between 
observations (of sea-ice extent) and different model predictors. As a first predictor, the 
forecasted sea-ice extent is always used. The key point, however, is the consideration of an 
additional predictor which is strongly correlated to the model error present. In this work we 
thus sought for additional predictors that strongly correct the forecast. The finding of a good 
additional predictor may then lead to an increased understanding of the source of error.  
 
The data set considered consists of the ensemble-mean of the NEMO-LIM2 reanalysis 
(Barth et al., 2015) and the observations are taken from the OSTIA data set (Operational Sea 
Surface Temperature and Sea Ice Analysis, Roberts-Jones et al., 2012). In the present 
investigation, the error of the 5-day forecast for the total Antarctic sea ice area is found to be 
strongly reduced using the SST forecast as a second predictor (see Figure 2). Therefore SST 
is a predictor that is strongly affected by the modelling error. This finding constitutes a first 
step to the identification of the underlying modeling scheme at the origin of the model error 
affecting the forecast. Discussions between the project teams led to hypothesis that our 
findings might have to do with the parameterization of eddy-induced mixing at sub-grid 
scales, which, in NEMO LIM is done using the Gent-McWilliams scheme (Gent and 
Mcwilliams, 1990). This, however, needs further investigation.  
 
In order to disentangle model error and initial-condition error contributions, our technique was 
applied both at finite lead time (five days) and at lead time zero (analysis). No significant 
reduction of error was retrieved for the analysis, indicating that there is no obvious 
systematic error affecting the sea ice analysis.  
 

 
Figure 2 Root Mean Squared Error (RMSE) of the Antarctic sea ice area as a function of longitude for 
the uncorrected 5-day forecast and different forecasts corrected with post-processing techniques. The 
longitudinal spacing is 2° and the sea ice area at a certain longitude is the total sea ice area in a range 
of 2° East from that longitude (all south of 50°S). 
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2.1.2. Post-processing of climate data in a static environment 
 
Also, prior to investigating calibration, a limited study was performed of the predictability 
features of LOVECLIM, more specifically, on the error evolution of the temperature in the 
ocean as a consequence of small random perturbations of the atmospheric potential-vorticity 
field. The error growth rate against time is shown in Figure 3. It is observed that after the first 
few days of strong error growth a “linear regime” sets in featuring a constant error growth 
rate. This period ends after around thirty days, which coincides with the timescale of error 
saturation in the atmosphere. For longer lead times, nonlinear effects become important and 
the error growth rate smoothly vanishes.  
 

 
 
Figure 3 The error growth rate of the temperature in the ocean as a function of time using LOVECLIM 
as a consequence of an initial condition error in the atmosphere. 

 
 
It is a common practice to correct the bias of climate runs as a consequence of errors which 
are systematic in nature. Three types of errors can be identified: initial condition errors, 
forcing errors and model errors. Intense ongoing research focuses on improving initialization 
and forcings that most prominently deteriorate the forecasts at seasonal and decadal 
timescales, respectively (Meehl et al., 2014). Model errors, however, may be important at all 
timescales. It is known that in meteorology model errors can be corrected using post-
processing (Vannitsem, 2009b) but it remains unclear to what extent these tools can be 
extended for climate variables. 
 
Based on twin experiments we investigate the following questions: Can we improve upon the 
bias correction? Are spatially-averaged variables better corrected? Are monthly-averaged 
variables better corrected than yearly-averaged variables? Is it better to perform calibration 
based on local data than based on non-local data? What is correction dependence on lead 
time? 
 
In order to answer these questions a twin experiments is performed using LOVECLIM. 
Forecast and reference have identical initial conditions but slightly different model 
parameters. In the two proposed experiments, only deterministic experiments are 
considered: in experiment A, one thousand predictions with ten years of lead time are 
conducted using a model error in the radiation scheme. In experiment B, with one hundred 
forecasts of one hundred years of lead time there is a model error on the drag parameter that 
couples ocean and atmosphere. 
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The proposed calibration methods can be divided into local correction schemes and non-
local schemes. The former methods include bias correction and EVMOS and are local in the 
sense that they act on single quantities separately, without taking into account correlations 
with other. Two non-local methods are proposed using specific projections of the empirical 
orthogonal functions (EOF) and can be considered variants of the methods presented in Di 
Giuseppe et al. (2013). All methods correct both climate mean and variance and were 
applied on different averages of sea surface temperature (SST). The corrected variables are 
global means, latitudinal and longitudinal averages, averages over different sectors and 
finally, the fine-scale variables (grid-point values). Moreover for the purpose of estimating the 
calibration parameters, different of grid-point subsets are used. More specifically, the 
regression parameters are assumed identical for all spatial points, for all points of same 
latitude or longitude, for all points of same sector, and for the same location only.  
 
Verification was performed using cross-validation and analyzing the error growth and its 
correction on seasonal up to decadal scale using the mean squared error skill score shown 
in Figure 4 and Figure 5. As expected the skill gain is largest for globally-averaged quantities 
and smallest for the grid-point variables. However, improvements upon the bias correction 
are small but most prominent for the fine-scale variables. More specifically for the grid-point 
variables the first EOF correction method is the best only after a certain period (15 months in 
Figure 4c and 35 years in Figure 5b). The second EOF method gives equivalent results to 
EVMOS for seasonally-averaged SST. Note also that bias corrections are largest in the 
tropics while additional variance corrections are most pronounced at the poles. 
 
 
 
 
 

 
Figure 4 Mean squared error skill score against lead time for different spatial averages of temperature 
and for different correction methods. Positive values indicate improvements with respect to the 
uncorrected predictions. 
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Figure 5 Same as Figure 4. 

 
From this study it is concluded that improvements upon the bias correction are small overall 
but largest for local quantities. Skill gain is larger for global quantities and smaller for local 
quantities and corrections for monthly-averaged and yearly-averaged variables behave 
qualitatively similar. Unfortunately calibration based on non-local information are only better 
when taking correlations into account (EOF corrections) and only at larger lead times. Lastly 
the lead-time dependence of corrections is weak and mostly due to transient climate 
response. 
 
 
 
2.1.3. Post-processing in a changing environment 
 
Large discrepancies are found between model climatologies of General Circulation Models 
for the 20th century and the observed one. Therefore, upon consideration of future climate 
projections it is common to apply a bias adjustment, or, in other words, to consider only 
anomalies with respect to the different climatological averages (Meehl et al., 2014). Although 
useful, one must be aware of the underlying assumptions of bias correction. One such 
assumption is that the bias is stationary in time and is tested here in Section 2.1.3.1 using 
low-order models and in Section 2.1.3.2 using LOVECLIM.  
 
 
2.1.3.1. Studies with simple models 
 
Seasonal and climate forecasts are affected by errors originating from both the initial 
conditions and the model uncertainty, in particular associated with the coupling between the 
different climate components. We have first investigated the dynamics of both errors in the 
context of a low-order moist climate model, and identify the different error-growth regimes 
depending on the respective amplitudes of both errors. We also relate this dynamics to the 
Lyapunov instabilities of the system. The coupled atmosphere-ocean (slab) model used has 
been developed by Lorenz (1984). It is a low-order model containing only a few key 
processes essential in the dynamics of the climate of a global atmosphere. It is a moist 
general circulation model including total water as a prognostic variable. The surface is an 
ocean which exchanges water and heat through evaporation and precipitation. The 
circulation is driven by solar heating and the thermodynamics of water is included. The model 
is reduced to 27 variables. An analysis of the post-processing technique has then been 
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performed when the system is experiencing errors in the coupling parameter between the 
ocean and the atmosphere.  
 
The statistical and dynamical properties of bias correction and linear post-processing were 
investigated when the system under interest is affected by model errors and is experiencing 
parameter modifications, mimicking the potential impact of climate change. The analysis has 
been first performed for simple typical scalar systems, an Ornstein-Uhlenbeck process (OU) 
and a limit point bifurcation. It reveals system's specific (linear or non-linear) dependences of 
biases and post-processing corrections as a function of parameter modifications. The Lorenz 
„84 model has then be investigated, a low-order model of moist general circulation, 
incorporating several processes of high relevance in the climate dynamics (radiative effects, 
cloud feedbacks...), but still sufficiently simple to allow for an extensive exploration of its 
dynamics.  
 
The analysis of the post-processing technique performed using this model reveals that post-
processing can correct forecasts but up to about 10 days. This result suggests that indeed 
the post-processing can correct the error in this kind of system but it is limited in time for this 
kind of model error sources. The success is probably limited due to the relatively short time 
scales that are effectively involved in this system. 
 
Our analysis show that the bias or post-processing corrections display complicate variations 
when the system experiences temperature climate changes up to a few degrees. This 
precludes a straightforward application of these corrections from one system's state to 
another (as usually adopted for climate projections), and increases further the uncertainty in 
evaluating the amplitudes of climate changes. These results are reported in Vannitsem 
(2011). 
 
 
2.1.3.2. Studies with a climate model 
 
To what extent are the conclusions drawn for low-order models (Section 2.1.3.1) valid for 
higher-order models? More specifically: Are biases sensitive to climate changes induced by 
changes of greenhouse-gas concentrations? Are these changes monotonous with the 
concentration changes? Are bias patterns spatially similar between different climate 
regimes? Can transient climate changes be corrected? Details of this study can be found in 
Van Schaeybroeck and Vannitsem (2015a). 
 
A twin experiment was set up using the model LOVECLIM whereby the “reference” climate is 
a model run with a fixed parameter (expir, present in the radiative scheme) while this 
parameter is varied for the “model” climate. For each parameter value, a 8000-years long 
model climatology is determined with three different climate forcings, that is, different CO2  

concentrations. For the pre-industrial, the reference and future climate we use respectively a 
CO2 concentration of 276 ppm, 370 ppm and 740 ppm. 
 
The calibration techniques used are the simplest available: bias correction (BC) and change 
factor (CF), which both adjust the climatological mean and have a common underlying 
hypothesis. More specifically both assume that the bias is independent of climate, i.e. 
constant as a function of forcing CO2  concentration. 
 
It is found that this assumption is reasonably well satisfied for global-mean surface 
temperature and precipitation (see Figure 6a). However, for temperature, spatial bias patterns 
differ strongly (Figure 6b-d). For almost all other variables, for instance 10m U-V wind and 
sea surface salinity, the hypothesis underlying BC and CF is strongly violated. Also, bias 
changes are non-monotonous as a function of the forcing parameter and the model error. 
This is consistent with the conclusions drawn from the analysis with low-order models.  
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So far our conclusions were based on the equilibrium climate sensitivity in the sense that the 
“climate” is taken from equilibrated model runs with constant forcing. Therefore the influence 
of the transient climate response is neglected. In order to correct the bias under transient 
climate change, the bias evolution must be predicted. An approach based on linear response 
theory is presented. Thereby, based on the CO2 concentration and the climate from one time 
period (say past 30 years), the climate response to another (future) CO2 scenario can be 
reconstructed. However, our results indicate that the assumptions underlying the linear-
response theory must be checked case. For instance at intermediate times the theory seems 
to work reasonably well for global-mean precipitation but does not work for temperature. 
 
 

 
Figure 6 Panel a: the relative bias of global-mean surface temperature as a function of the model error 
for the three different CO2 forcings. Here “relative” means it is divided by the climate change signal. 
The bars show the standard deviations of the annual-mean climatological distributions. The changing 
slope of the three climates can be considered monotonous as a function of the CO2 concentration. 
Although global biases are relatively similar among the three climates, panels b-d show that their 
spatial patterns differ strongly. 
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2.1.4. Post-processing of ensemble predictions 
 
2.1.4.1. Ensemble post-processing: spread-conserving calibration 
 
Since long forecast calibration is a common practice for both numerical weather predictions 
(NWP) and climate predictions. The simplest calibration method for NWP is called Model 
Output Statistics (MOS) and is based on statistical features of a prior comparison between 
model output and observation (Glahn and Lowry, 1972). The most widespread approach 
LMOS applies ordinary least-squares regression to relate observations and model 
predictions. It corrects the mean but it tends to degrade the variability. Such degradation 
happens especially at long lead times when the observation and the prediction become 
largely uncorrelated. This feature precludes the application of LMOS for ensemble forecast 
but also for climate projections.  
 
In order to overcome this problem mostly “statistical” calibration approaches were proposed 
that involve drastic simplifications concerning the statistical properties of ensembles. A 
strong disadvantage of such “statistical” methods is the requirement of extra processing for 
reestablishing realistic (spatio-temporal) correlation structures.  Within the spirit of the older 
LMOS methodology and therefore without requirements of such extra procedures, Vannitsem 
(2009) proposed a new method called EVMOS that can be applied for both deterministic and 
ensemble forecasts. This method was tested on the ensemble forecasts of ECMWF 
(Vannitsem and Hagedorn, 2011b). Along the same lines of Van Schaeybroeck and 
Vannitsem (2011) introduced various post-processing techniques that use linear regression 
and assessed their quality based on different criteria. More specifically a EVMOS-corrected 
forecast satisfies the following constraints: the new forecast is unbiased and its variance 
agrees with the one of the observations. This last criterion is also called climatological 
reliability or marginal calibration. 
 
Note that post-processing software was developed and distributed among the project 
partners. Also, based on the ECMWF verification the operational implementation of the 
spread calibration of the ECMWF forecast at RMI, including the use of multiple predictors, 
has been approved and will soon be provided as a product to the forecasters (Van 
Schaeybroeck and Vannitsem, 2012). Moreover the techniques were used in two master 
theses at UCL. 
 
 
2.1.4.2. Ensemble post-processing: spread-adjusting calibration 

 
The different criteria for post-processing and different concepts of reliability led to an 
approach that is able to impose any (reliability) constraint desired for the calibrated 
prediction. This allowed introducing a constraint that affects the ensemble-spread reliability, 
or, in other words, the reliability of the predicted uncertainty estimation. A reliable ensemble 
forecast is characterized by the fact that the observation may be considered as a member of 
the ensemble forecast and hence has the same statistical properties including mean and 
variance. Therefore a general framework is devised by which, based on the different 
constraints imposed, an optimal correction is performed (Van Schaeybroeck and Vannitsem, 
2015b).  
 
Using simple models that exhibit chaotic behavior (the Kuramoto-Sivashinsky equation and 
the spatially-extended Lorenz „96 system) and using the ECMWF ensemble forecasts for 
Belgium, these methods were tested and the best among them were selected (Van 
Schaeybroeck and Vannitsem, 2013; Van Schaeybroeck et al., 2015). Like the EVMOS 
technique, all proposed methods are so-called member-by-member calibration methods, as 
opposed to the statistical calibration methods, in the sense that the different ensemble 
members are corrected separately. Therefore if one requires the combined calibration of 
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forecasts at different stations or lead times, the spatial or temporal correlation structure of the 
individual members is preserved. Hence no extra treatment for reestablishing realistic 
(spatio-temporal) correlation structures, rank structures and outliers is required, as opposed 
to forecasts corrected with “statistical” methods (Schefzik et al., 2013).  
 
Apart from these benefits, in terms of skill, our methods are at the same level as the state-of-
the-art statistical methods (Gneiting et al., 2005) and therefore much better than the 
traditional ensemble-mean correction schemes. Our technique has additional benefits: it 
avoids the under-correction of ensembles with small spreads, our approach is computationally 
cheap, it has the correct variance and no underlying Gaussian assumptions such that ensemble 
skewness and kurtosis are well preserved. Therefore, for practical purposes, member-by-
member methods are preferable over statistical ensemble methods. 
 
2.1.4.3. Calibration of ensemble predictions in a hydrological context 
 
An analysis of the correction of precipitation forecasts has been performed. Extended logistic 
regression is used to calibrate areal precipitation forecasts over two small catchments in 
Belgium computed with the European Centre for Medium-range Weather Forecasts 
(ECMWF) Ensemble Prediction System (EPS) between 2006 and 2010. The parameters of 
the post-processing are estimated from the hindcast database, characterized by a much 
lower number of members (5) than the EPS (51). The parameters have therefore to be 
corrected for predictor uncertainties. They have been fitted on the 51-member EPS 
ensembles, on 5-member sub-ensembles drawn from the same EPS, and on the 5-member 
hindcasts. For small ensembles, a simple “regression calibration” method by which the 
uncertain predictors are corrected has been applied. The different parameter sets have been 
compared, and the corresponding extended logistic regressions have been applied to the 51-
member EPS. The forecast probabilities have then been validated using rain gauge data and 
compared with the raw EPS. In addition, the calibrated distributions are also used to modify 
the ensembles of precipitation traces. The post-processing with the extended logistic 
regression is shown to improve the Continuous Ranked Probability Skill Score relative to the 
raw ensemble, and the regression calibration to remove a large portion of the bias in 
parameter estimation with small ensembles. With a training phase limited to a 5-week 
moving window, the benefit lasts for the first two forecast days in winter and the first five or 
six days in summer. In general, substantial improvements of the Mean Error and of the 
Continuous Ranked Probability Score have been put in evidence. This work is reported in 
Roulin and Vannitsem (2012, 2015). 
 
 
 
2.1.5. Reliability verification of ensemble predictions based on spread 
 
Ensemble forecasts are often reduced to two forecast identities: the “forecast” itself based on 
ensemble mean, and the uncertainty forecast based on ensemble spread. All other 
information is then left unused. It is known that ensemble forecasts improve upon 
deterministic forecast since the ensemble mean provides reduced forecast error as 
compared to deterministic forecast. However, the usefulness of spread as a measure of the 
forecast uncertainty is less clear as even the assessment of such usefulness, often called 
spread-skill verification, is itself still unsettled and forms the subject of intense ongoing 
research (Christensen et al., 2014; Grimit and Mass, 2007; Hopson, 2014). 
 
Therefore the following issues were addressed: Given only the ensemble spread, what is the 
best forecast for the uncertainty? Is spread sufficient as the sole measure of uncertainty or is 
there generally more information in the ensemble? How can one verify if spread is a good 
predictor of uncertainty? A manuscript (Van Schaeybroeck and Vannitsem, 2014) that is 
currently under review at Monthly Weather Review, describes the details of this work. 
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A theoretical framework is outlined to forecast the uncertainty or the error of the forecast, 
given the ensemble spread S only. Such prediction can be either deterministic or 
probabilistic. A deterministic prediction implies that the spread is the point-wise forecast for 
the error while a probabilistic uncertainty prediction is a distribution characterized by one 
variable (i.e. the spread) only. Three models are introduced for probabilistic uncertainty 
forecasts that are based on spread only. 
 
Given a series of forecasts for the error and their associated observed errors, verification of 
such series may then be done depending on the nature of the forecast of the error. The 
calculation of correlations (Grimit and Mass, 2007; Hopson, 2014) and Mean Squared Errors 
are common for deterministic forecasts but do not assess all forecast aspects. For 
probabilistic forecasts the use of standard verification measures like CRPS or Brier score are 
proposed. Their associated skill scores can then be used to compare the spread-based 
uncertainty forecasts with the full-ensemble forecasts and thus to quantify the presence of 
information loss when spread is used as the sole uncertainty measure. The application on 
ECMWF EPS, however, indicates very limited information loss and spread models even 
improve the uncertainty forecast for small ensemble size. 
 
It is common to perform spread-skill verification by showing ensemble spread against errors 
both using correlations or linear fitting. It is argued that such analysis is statistically 
unjustified since it violates the underlying statistical assumptions. However, after a 
logarithmic transformation of spread and error one can test if spread is good predictor for 
uncertainty. Application on the EPS of ECMWF shows near-perfect upper-air forecast 
reliability using geopotential height for lead times between two and seven days.  
 
 

2.2. Application of advanced data assimilation methods to study Southern Ocean sea 
ice cover 
 
2.2.1. Southern Ocean reanalysis using assimilation of sea surface temperature, sea 
ice concentration and drift 
 
Current ocean models have relatively large errors and biases in the Southern Ocean. The 
aim of this study is to provide a reanalysis from 1985 to 2006 assimilating sea surface 
temperature, sea ice concentration and sea ice drift. In the following it is also shown how 
surface winds in the Southern Ocean can be improved using sea ice drift estimated from 
infra-red radiometers. Such satellite observations are available since the late seventies and 
have the potential to improve the wind forcing before more direct measurements of winds 
over the ocean are available using scatterometry in the late nineties. The model results are 
compared to the assimilated data and to independent measurements (the World Ocean 
Database 2009 and the mean dynamic topography based on observations). The analysis 
procedure used to interpolate the observation on the ORCA2 model grid has been published 
in Geoscientific Model Development (Barth et al, 2014) and the reanalysis is currently under 
revision at Ocean Modelling (Barth et al, 2015).  
 
 
2.2.1.1. Model and observations 
 
The primitive-equations model used in this study is NEMO (Nucleus for European Modelling 
of the Ocean, Madec (2008)), coupled to the LIM2 (Louvain-la-Neuve Sea Ice Model) sea ice 
model (Fichefet and Morales Maqueda, 1997; Timmermann et al., 2005; Bouillon et al., 
2009). The global ORCA2 implementation is used, which is based on an orthogonal grid with 
a horizontal resolution of the order of 2° and 31 z-levels (Massonnet et al., 2013). The model 
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is forced using air temperature and wind from the NCEP/NCAR reanalysis (Kalnay et al., 
1996). Relative humidity, cloud cover and precipitation are based on a monthly climatological 
mean. The sea surface salinity is relaxed towards climatology with a fresh water flux of -27.7 
mm/day times the salinity difference in psu.  
 
Global foundation sea surface temperature from OSTIA (Operational Sea Surface 
Temperature and Sea Ice Analysis, Roberts-Jones et al., 2012) at an original resolution of 
0.05° was reduced to a resolution of 2° by averaging all temperature values within a 2° by 2° 
grid cell.  
 
Global sea ice fraction from the EUMETSAT Ocean and Sea Ice Satellite application Facility 
(OSI-SAF Roberts-Jones et al., 2012) was also reduced to a resolution of 2° and assimilated 
with an error standard deviation of 0.1. The OSTIA sea surface temperature and the OSISAF 
sea ice fraction are distributed by MyOcean.  
 
Daily sea ice drift from NSIDC (National Snow and Ice Data Center) is also assimilated in the 
ocean model. The sea ice drift is based on data from the Advanced Very High Resolution 
Radiometer (AVHRR), Scanning Multichannel Microwave Radiometer (SMMR), Special 
Sensor Microwave/Imager (SSM/I), and International Arctic Buoy Programme (IABP) data 
(Fowler, 2003). As the focus of this study is the Antarctic Ocean, only data from the southern 
hemisphere is used. The error standard deviation for the assimilation is assumed to be 0.1 
m/s. The value of this parameter was determined by a series preliminary experiments to find 
the right balance between correcting as much as possible the sea ice drift without degrading 
unobserved variables.  
 
 
2.2.1.2. Correcting wind field using sea ice drift  
 
Errors in the sea ice drift can be attributed either to errors in the winds fields, errors in the 
ocean currents or errors in the response of sea ice to external stresses. As winds and 
currents have two very different time scales, a two-step approach was adopted. First, the 
wind fields are adjusted using sea ice drift as described in this section. In a second step the 
sea ice drift is assimilated into the ocean-sea ice model in order to reduce errors due to the 
ocean currents.  
 
Relation between sea ice drift and wind 
 
The model sea ice drift is strongly related to the used wind forcing. To quantify the 
relationship between sea ice drift and wind fields, the complex correlation coefficient between 
the daily NEMO-LIM sea ice drift and daily NCEP winds has been computed by introducing 
the following complex currents (zonal component is the real part and the meridional 
component is the imaginary part).  
 
In order to maximize the correlation, we correlate the sea ice drift with different 
transformations of the wind field. More specifically, we use different combinations of lags and 
filters in time of the wind field. We use a time filter because we anticipate the sea ice drift to 
have a certain inertia and thus a memory of previous winds. The time lag and the temporal 
scale of the filter will be determined later. The time filter is implemented using an iterative 
diffusion scheme using a forward Euler step and a 2nd-order center diffusion operator. The 
complex correlation coefficient between sea ice drift and filtered and shifted wind fields has 
been computed. The absolute value of the complex correlation coefficient is maximized by 
changing the time-lag and time-filter. The complex regression coefficient derives an empirical 
relationship between the sea ice drift and the wind field. This relationship will be used later 
for wind field adjustment. The complex correlation and regression coefficients are used 
instead of the (real) correlation/ regression coefficient derived on the zonal and meridional 
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component individually because the complex coefficients can represent a rotation by a 
constant angle between the two vectors (as a result for the Coriolis force) and is thus 
commonly used to analyze horizontal velocities.  
 

 
 
Figure 7 Magnitude of correlation coefficient (for the year 2000) as function of time lag and filtering 
time scale (panel a). Panel b show the magnitude of correlation coefficient as a function of the time lag 
for a filtering time scale sets to 3 days (vertical dotted line in panel a) and panel c show represents the 
magnitude of correlation coefficient as a function of filtering time scale for a the time lag set to 0 days 
(horizontal dotted line in panel a). 

 

The correlation analysis showed a strong correlation with magnitude of 0.9363 and a phase 
of -19.52° between sea ice drift and 3-day average wind fields (panel (a) of  
Figure 7). This phase (which is also the phase of the complex regression coefficient) 
represents the angle between the sea ice drift vector and the wind vector. The maximum 
value was obtained with no time lag. These results did not confirm the initial expectation of a 
time lag between wind and sea ice drift as one could assume that the wind (the cause) 
precedes sea ice drift (the effect). The maximum of the correlation as a function of the time 
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lag is very well defined while the correlation as a function of the filtering time scale is a bit 
flatter (panel (b) and (c) of  
Figure 7). This strong relationship has been used to correct the surface winds. The general 
approach is to use the regression coefficient to transform the observed sea ice drift as 
pseudo wind observations and to attempt to improve zonal and meridional wind field 
components. In particular the following procedure has been adopted to compute the adjusted 
wind field: 

 the first guess wind field is the NCEP reanalysis 

 the model is run with this wind field (here for the year 2000) 

 the sea ice drift error is calculated by comparing model with observed sea ice drift 

 the sea ice drift error is transformed to “wind increment” using the regression 
coefficient 

 “wind increment” is analyzed with the tool divand (detailed in the next section) on 

the ORCA grid and the first guess (the NCEP reanalysis) is added 
 

While other calibration experiment are carried out for the year 1985, the wind field 
adjustments are first tuned for the year 2000 due to the availability of the Cross-Calibrated 
Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses (Atlas et al., 2011) which will 
be used to independently validate the results. 
 

Spatial analysis with divand 

 
The sea ice drift provides only information about the wind field where the model has ice. 
However, if the sea ice drift indicates that the model should be corrected at a particular 
location, one can expect that it should also be corrected in a similar way at neighboring grid 

cells (even if they are not covered by ice). The tool divand (Barth et al., 2014) (Data 

Interpolating Variational Analysis in n-dimensions) is used to spatially interpolate the “wind 
increment” derived from the sea ice drift on the full ORCA2 grid. An estimation of the 
background NCEP error standard deviation is necessary to define the data weight. In the 
present case, the pseudo observation (the wind information derived from the sea ice drift 
observation) error standard deviation is derived using the error standard deviation of the sea 
ice drift. The remaining parameter of the analysis, namely the correlation length scale and 
background NCEP error standard deviation, will be determined in the following. The 
correlation length controls the distance over which the information from the pseudo-wind 
observation is extrapolated spatially and the NCEP error standard deviation determines how 
close the analyzed field has to come to these pseudo-observations. 
 
 
Calibration 
 
The correlation length is varied from 300 km to 5000 km and the standard deviation error is 
varied from 0.1 m/s to 10 m/s. For each parameter 10 values are tested. These values are 

uniformly distributed in logarithmic space. For each of these parameters, the divand 

analysis is performed and the NEMO-LIM2 model is run simulating the year 2000 with the 
adjusted wind fields. Figure 8 shows the RMS error between the model sea ice drift obtained 
using the adjusted wind and the observed sea ice drift. This is not an independent validation 
since the observed sea ice drift is used to adjust the wind fields. This comparison is rather a 
confirmation that the adjustment works as expected. The RMS error between the model sea 
ice drift derived from the original (i.e. non-adjusted) NCEP forcing  and ice drift observations 
is 0.1235 m/s. The ice drift RMS error based on modified wind fields is indeed reduced 
thanks to the adjustment and, as expected, the lowest RMS error is obtained when using a 
large value of the standard deviation of the NCEP wind error. In this case, the adjusted wind 
will thus be forced to come closer to the pseudo-wind observations (based on sea ice drift). 
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As an independent comparison the CCMP Ocean Surface Wind Vector Analyses (Atlas et 
al., 2011) based on ERA-40 and observations such as QuickScat for the year 2000 south of 
60°S is used. Sea ice drift is not used in the CCMP product. For every tested correlation 
length scale and NCEP error standard deviation, the RMS error between the adjusted wind 
and the CCMP wind field is computed (Figure 7, panel b). This comparison shows that the 
wind field is indeed improved using the sea ice drift measurements. As before, the general 
tendency is that the RMS difference between the adjusted winds and CCMP winds 
decreases as the error standard deviation increases. This comparison shows that the optimal 
range of the correlation length scale is between 500 km and 1500 km. 
 

 
Figure 8 RMS difference of the model and observed sea ice drift (panel a), the analyzed winds and 
CCMP winds (panel b) and model and observed sea ice concentration (panel c) for different values of 
the correlation length and the NCEP wind error. 

 

The model sea ice concentration obtained by the adjusted wind is also compared to the 
OSTIA/OSI-SAF observations (Figure 9, panel c). In general the sea ice concentration varies 
only weakly by changing the parameter of the analysis. This suggests that only a small part 
of the RMS error in sea ice concentration can be attributed to the wind forcing and that sea 
ice concentration is mostly driven by thermodynamic forcings. Contrary to the previous 
comparison the error slightly increases for large values of the NCEP error standard deviation. 
Overall a large value of the background error improves sea ice drift and reduces the RMS 
error in comparison with CCMP winds but it degrades the sea ice concentration (if error 
standard deviation is larger than 5 m/s). Correlation lengths between 500 km and 1000 km 
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give acceptable results. By combining the results from the different comparisons, the wind 
fields have been adjusted using a correlation length of 700 km and a background error 
standard deviation of 2 m/s. 
 
2.2.1.3. Reanalysis using data assimilation 
 
The implemented data assimilation scheme is the Ensemble Transform Kalman Filter 
(Bishop et al., 2001). In ensemble-based assimilation schemes, the error statistics of the 
model state vector is estimated by perturbing uncertain aspects of the model. In the present 
configuration we perturb surface winds (10 m) and surface air temperature (2 m). The 
adjusted wind from the previous section are used. Atmospheric parameters coming from 
climatology are not perturbed. The data assimilation scheme employs an ensemble with 50 
members. Observations are assimilated every 5 days which is a compromise between 
available computer resources and maximizing the usage of the observations. 
 
The perturbation scheme is based on a Fourier decomposition (Barth et al., 2011). Only 
Fourier modes with a time period between 20 and 70 days are used for the perturbations in 
order to exclude the seasonal variations (which have a large variance and whose amplitude 
is not representative for its expected error) and short-scale variations which are not the 
primary focus of this study. Since the perturbation scheme is multivariate, the same range of 
time scales is used to perturb wind and air temperature.  
 
While the calibration of the assimilation setup was performed on a single year (2000), this 
section presents the model simulations with data assimilation from 1st January 1985 to 31st 
December 2006. The time period was determined to ensure the availability of all used data 
sets. 
 
Validation of the reanalyzed temperature and salinity fields 
 
All observations of ocean temperature and salinity from the World Ocean Database from the 
period 1st January 1985 to 31st December 2006 have been collected. The free-running 
model has the largest temperature error near the surface where the model has the most 
variability (Figure 9). As the model assimilates sea surface temperature, the largest impact of 
the assimilation is indeed at the surface where the RMS error and bias (which is partly 
included in the RMS error) are strongly reduced. The RMS error is improved by the 
assimilation over 200 m depth and the bias over 120 m. Below those depths there is a slight 
degradation of the temperature which is essentially a systematic error in form of a bias. One 
possible way forward for improvement of the assimilation scheme could be to include a 
temperature relaxation toward a climatology to control such error. As the ensemble is 
generated by perturbing the atmospheric fields, the resulting vertical correlation scale 
between the surface and the subsurface level is about 100 meters (as calculated by 
computing the standard deviation averaged over time and horizontal space of the analysis 
increment). As the error increase at depth is not introduced by the analysis step, it must be 
introduced by the model reaction to an analyzed initial condition. In fact, it is well known that 
sequential analysis can produce shocks after restarting the model from an analysis (e.g. Yan 
et al., 2014).  
 
The model does not assimilate salinity and therefore changes in salinity are only due to the 
covariance between the observed variables and salinity, and also due to the model 
adjustment after the analysis. The validation reveals that the assimilation reduces the salinity 
RMS error and bias everywhere with a diminishing impact at depth. Contrary to the 
temperature validation, no degradation at depth was observed. 
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Figure 9 Validation with World Ocean Database using all observation from 1985-2006. The x-axis is 
temperature (upper row) or salinity (lower row) and the y-axis is depth. 

 
 
Validation of reanalyzed mean sea surface height 
 
The mean model sea surface height was also compared with CNES-CLS09 MDT version 1.1 
(Rio et al., 2011). The model sea surface height is related to the mean currents by the 
geostrophic relationship. The CNES-CLS09 MDT is essentially based on in situ dynamic 
heights, drifting buoy velocities and the geoid model computed from GRACE (Gravity 
Recovery and Climate Experiment) data. It is thus an independent data set. As the focus of 
this study is the southern polar region, the comparison is limited to the area south of 40°S. A 
constant over this domain has been subtracted to remove any offset which is not dynamically 
significant. The (centered) RMS error between the free running model and the MDT over this 
area is 0.218 m which is reduced to 0.165 m between analysis and MDT. The RMS of the 5-
day forecast based on the analysis is essentially the same with 0.166 m. Overall the mean 
SSH gradient is more realistic in the analysis compared to the free model run leading to a 
more realistic representation of the Antarctic Circumpolar Current. The structure of the 
gradient is also more realistic in the model run with assimilation, especially in the Amundsen 
Sea and Ross sea sector.  
 
Assuming a jet with a Gaussian velocity profile, one can determine the characteristics of the 
polar front by fitting the error function on the mean sea surface height h (Gille, 1994). This 
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allows us to identify the position and the width of the front. This fit has been performed on the 
ORCA2 model grid (also for the CNES-CLS09 MDT) and repeated for all longitudes of the 
model grid. The model run without assimilation reproduces relatively well the position of the 
front (Figure 10). The RMS error of the position (averaged over all longitudes) is 1.70°. While 
the assimilation can locally degrade the position of the front, it reduces on average the RMS 
error to 1.61°. The overall structure of the width of the front agrees with the width determined 
from the CNES-CLS09 MDT. However, the width in the free model run is overestimated, 
indicating that the model is too smooth and the ACC (Antarctic Circumpolar Current) is too 
diffuse. While the width of the front in the analysis is still too large, the assimilation improves 
its representation and the RMS error is reduced from 5.96° to 3.27°.  

 
Figure 10 Position and width of the mean SSH front. 

 
 
Validation of reanalyzed sea ice coverage 
 
We compare the sea ice coverage data from the free and analyzed NEMO-LIM2 runs with 
observations from the Operational SST and Sea Ice Analysis (OSTIA) system. We will also 
compare the NEMO-LIM2 results with data from two other models: the Centro Euro-
Mediterraneo sui Cambiamenti Climatici - Climate Model without resolved stratosphere 
(CMCC-CM), and the same model with a resolved stratosphere (CMCC-CMS). Those 
models have been chosen as they both use the same ORCA2 grid as NEMO-LIM2. 
 
All sea ice coverage data available from the models are interpolated from their original 
ORCA2 grid on the grid of OSTIA observations. Using the same procedure, they are then all 
interpolated on the grid from OSTIA observations. This grid is constantly spaced with a 2° 
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resolution, giving a global coverage of 180 by 90 cells. The data sets cover a period of 21 
years, from January 1985 up to December 2005. Data from CMCC-CM(S) models are 
already monthly averages. Consequently, we took the monthly average for OSTIA 
observations and data from the NEMO-LIM2 free and analysed runs. We also decided to 
only consider the southern hemisphere for all the following comparisons since we are only 
interested in the sea ice coverage in the Southern Hemisphere.  
 
Seasonal Cycle 
 
First, we will be looking at the seasonal cycle of the models (Figure 11a). To obtain this figure, 
we first calculated the monthly sea ice area: 
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where the indices     refer to months and years respectively, and     to the spatial 

dimension.   is the area of the grid cell and SIC the sea ice concentration. We then averaged 
it for each month over the considered period, where   refers to the number of years in the 
1985-2005 period: 
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We can clearly see on Figure 11a that all models are globally able to reproduce the mean 
seasonal cycle of the sea ice area (SIA) over the Southern Ocean. All models underestimate 
the SIA during the summer period (December-March). Both the CMCC-CM(S) and the 
NEMO-LIM2 free run clearly tend to overestimate the sea ice area during the winter (July - 
September). The free run also overestimates the SIA during the autumn, starting from April, 
and performs better than the CMCC-CM(S) models during the winter. We can also note that 
the CMCC-CMS systematically performs worse than the CMCC-CM model. Finally, we find 
out that the assimilated NEMO-LIM2 run sticks to the OSTIA observations, as expected. 
Interestingly, it slightly underestimates the SIA throughout the whole year. This might be due 
to the fact that because of the assimilation, the data is smoothened through the whole 
domain. This tends to slightly reduce the SIC, thus SIA, of the NEMO-LIM2 Assimilated run. 
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Figure 11 Each image is for period 1985–2005. (a) Mean monthly seasonal cycle. (b) Mean monthly RMSE. (c) 

Mean RMSE of CMCC-CM. (d) Mean RMSE of CMCC-CMS. (e) Mean RMSE of NEMO-LIM2 analyzed run. (f) 
Mean RMSE of NEMO-LIM2 free run. 

 
 
 
We should also look at the Root Mean Square Error of the different models with the OSTIA 
observations, averaged over the 1985-2005 period (Figure 11b). First, we calculated the 
monthly sea ice area, averaged over the 1985-2005 period: 
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We then calculated the RMSE with the OSTIA observation over the domain: 

          √∑∑(                     )
 

  

 

 
Figure 11b represents the mean monthly RMSE of the models compared to the OSTIA 
observations. As expected, the RMSE of the NEMO-LIM2 analysed run is much lower than 
the other models, since it assimilates the data from which the RMSE is calculated. However, 
the NEMO-LIM2 free run performs overall similarly to the CMCC-CM(S) models. We can note 
that for all the models, the RMSE is at its lowest during the summer months, and at its 
highest during the winter. The biggest difference between the NEMO-LIM2 free run and the 
CMCC-CM(S) models is the period from February to May, where the former has a 
decreasing RMSE, whereas the later ones have an inscreasing RMSE. We note in particular 
the huge increase in March and April for the CMCC-CMS.  
 
From Figure 11a, we could have thought that the CMCC-CM(S) models would at least 
perform better during the summer, since they better reproduce the total SIA. However, this is 
not the case, and the NEMO-LIM2 free run has a RMSE similar to the CMCC-CM(S) models 
throughout the whole year. This difference could come from the fact that the NEMO-LIM2 
free run, though it does not reproduce the correct total SIA, is able to place the ice at better 
locations than the CMCC-CM(S) models, thus producing a smaller RMSE with OSTIA 
observations. 
 
This hypothesis is confirmed when looking at the mean spatial RMSE of sea ice 
concentration (SIC) of the models with the OSTIA observations. It is obtained by calculating 
the RMSE of the SIC of the models with OSTIA observations, but not averaging over the 
domain. First, we take the monthly mean state by averaging over the whole considered 
period: 
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Then, we compute the mean RMSE with OSTIA observations by averaging over a year: 
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Both CMCC-CM(S) models produce more localised, but larger errors in the sea ice area. 
Those errors are the strongest around the Lazarev and Riiser-Larsen seas for CMCC-CM 
(Figure 11c), and in the Amundsen sea for CMCC-CMS (Figure 11d). As expected, the NEMO-
LIM2 assimilated run (Figure 11e) performs very well, and has a nearly uniform RMSE over 
the whole sea ice domain. Finally, the NEMO-LIM2 Free run (Figure 11f) seems to perform 
rather well, with errors mainly located in the Somov and D'Urville seas, and along the coast 
of Graham land. 
 
Internal Variability 
 
We will now look at the respective internal variability of all the models. First, we calculated 
the mean RMS of the model compared to one particular reference year. We then did the 
same while considering all the years as reference year, and averaged the final result to get a 
monthly mean internal variability of the model: 
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We note from Figure 12a that all the models have the same order of magnitude for their 
respective internal variability. The variability of CMMC-CM(S) models is at its most 20% 
higher than that of the OSTIA observations. Interestingly, the NEMO-LIM2 assimilated run 
has a lower internal variability than the observations, but copies the exact same shape of the 
observations.

 
Figure 12 Each image is for the period 1985–2005. (a) Mean Monthly Internal Variability. (b-f) Spatial internal 

variability for September of CMCC-CM (b), CMCC-CMS (c), NEMO-LIM2 Free Run (d), NEMO-LIM2 Assimilated 
Run (e), OSTIA Observations (f). 

 



Project SD/CA/04A - Understanding and Predicting Antarctic sea ice variability at the decadal timescale “PREDANTAR” 

SSD - Science for a Sustainable Development - Climate, Antarctica  34 

We can also look at the spatial internal variability of one month in particular. We choose 
September, when the sea ice area is at its highest. This will enable us to locate the regions 
where the systematic bias appears in the internal variability. We do so as the previous 
equation, only not with the spatial sum: 
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For September, we then obtain the Figure 12b to f. 
 
We note that, for the CMCC-CM(S) models, the area where the internal variability is the 
highest tend to correspond with the area where the mean RMSE with Ostia observations 
were the largest (Figure 12b,c). This is especially true for the Lazarev and Riiser-Larsen seas. 
The NEMO-LIM2 Free and assimilated run seem to much better reproduce the internal 
variability of the Ostia observations.  
 
As expected, the NEMO-LIM2 analysed run reproduces exactly the behaviour of the OSTIA 
observation, since it assimilated those data. When comparing the performance of the NEMO-
LIM2 free run and the CMCC-CM(S) models, we conclude that though the former one has a 
worse total sea ice area estimation, it has a better localisation for the ice. Its mean spatial 
RMSE is thus lower than the one of the CMCC-CM(S) models. All models do reproduce the 
internal variability of the observations quite correctly. 
 
2.2.2. Reconstruction of sea ice thickness and volume using data assimilation 
 
The spatio-temporal structure of the variability of the ice cover in the Southern Ocean reflects 
changes in ice concentration, drift as well as ice thickness. While sea ice concentration and 
drift observations can be easily derived from satellite measurements, monitoring the ice 
thickness is challenging due to the difficulty of satellite signal to penetrate through the sea 
ice. In situ observations suffer from large spatio-temporal gaps due to the remote location of 
polar regions. As a consequence, the lack of sea ice thickness observations does not allow 
providing a long-term view on global and regional changes in Antarctic ice thickness. In this 
context, a reconstruction of the Antarctic sea ice thickness based on data assimilation of sea 
ice concentration is particularly valuable. The results discussed in detail in Massonnet et al., 
(2013) are summarized below and constitute one of the first attempt to reconstruct the 
Antarctic sea ice thickness and volume using data assimilation.  
 
As in the previous section, the global ocean-sea ice model NEMO-LIM2 forced by 
atmospheric reanalyses is used. An Ensemble Kalman Filter (EnKF) scheme is implemented 
in this model in order to assimilate observations of sea ice concentration from the OSI SAF 
(Eastwood et al., 2011) dataset. The data assimilation procedure consists of two steps and it 
is described in detail in Mathiot et al. (2012). First, at the forecast step, an ensemble of 25 
members is propagated forward in time with the model until observations are available. 
Second, at the analysis step, model error statistics are estimated from this 25-member 
sample. Together with observational errors statistics, they are used to weight the model and 
observational estimates of the system state. These weighted estimates are then combined 
as to provide a physically consistent analysis with minimum error. 
 
Two model simulations were started in January 1960. In the run ASSIM, the data assimilation 
procedure is applied, while it is turned off in the run FREE.  In a first step, the skill of ASSIM 
and FREE is assessed using (Cavalieri et al., 1996) sea ice concentration dataset. The sea 
ice concentration and extent conditions in the different sectors of the Southern Ocean, are 
better represented in ASSIM than in FREE both at seasonal and interannual timescales 
(Table 1).  
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Table 1 A. 1980–2008 trends of monthly anomalies of sea ice extent in different sectors of the Southern Ocean. 

For observations (Cavalieri et al., 1996), the ±2σ estimate on the trend is also provided. The modeled trends are 

in bold when they lie in the confidence interval of the observations. B. Correlations between observed and 
simulated 1980–2008 monthly anomalies of sea ice extent in the corresponding sectors. C. Mean absolute 
difference of sea ice thickness with respect to the ASPeCt (Worby et al., 2008) dataset between 1980 and 2008. 
In the table, FREE (ASSIM) refers to the run without (with) assimilation of ice concentration. Table from 
Massonnet et al. (2013). 

Sector A. Trends sea ice extent %/decade  B. Correlation of monthly anomalies  Mean thickness bias (cm) 
OBS FREE ASSIM  FREE ASSIM  FREE ASSIM 

Weddell Sea 1.60 ± 2.69 -2.18 2.15  0.57 0.96  29 23 
Ind. Ocean 1.93 ± 2.59 4.84 3.22  0.57 0.87  21 17 
Pacific Ocean 1.02 ± 3.96 5.71 3.84  0.62 0.88  38 30 
Ross Sea 4.46 ± 3.10 7.01 5.66  0.75 0.96  35 31 
Amund.-Bel Seas -5.41 ± 4.35 1.09 -3.01  0.67 0.93  26 17 
Southern Ocean 1.44 ± 0.82 2.41 2.66  0.53 0.81  30 25 

 
 
Given that the data assimilation technique applied here is multivariate, any variable of the 
state vector is updated as long as it covaries with the assimilated variable(s) (here, the sea 
ice concentration). In particular, the assimilation of ice concentration data also has positive 
impacts on the Southern Ocean sea ice thickness in ASSIM (Table 1C). The numbers are 
obtained by averaging, over all months between 1980 and 2008 and all grid cells falling in 
the corresponding sectors, the absolute difference („„bias‟‟) between (1) the available ASPeCt 
(Worby et al., 2008) sea ice thickness estimates interpolated on the model grid and (2) the 
model sea ice thickness at the corresponding locations. In ASSIM, the biases on sea ice 
thickness are reduced by ~20% on average compared to FREE. The sea ice thickness 
provided by the ASSIM run thus forms a fair basis to propose a reconstruction of the 
Antarctic sea ice volume and thickness. Additionally, this reconstruction of ice volume 
indicates that sea ice volume and thickness covary well with extent and concentration at the 
multi-decadal timescale in the Southern Ocean. The results also confirm that the Antarctic 
sea ice volume displays marked fluctuations up to the decadal time scale. 
 
 
2.2.3. Bias correction and parameter estimation using data assimilation 
 
Data assimilation is a widely recognized tool for state estimation. By augmentation of the 
state vector, it can also be used to estimate other characteristics, e.g. biases in the model or 
in the boundary conditions, or even model parameters.  
 
Bias correction techniques (Dee and Da Silva, 1998) have been proposed to estimate the 
model bias via data assimilation. However, these approaches do not correct the bias in the 
model. They estimate the bias as a separate field which is subtracted from the model results 
during assimilation and added back to restart the model. While this task was not initially 
foreseen in the proposal, we will attempt to treat the bias as an additive parameter (or spatial 
field) in the model equations and try to estimate this bias with data assimilation parameter 
estimation methods. 
 
The first step of this work consists in developing and testing the feasibility of this technique 
on a Lorenz-96 system (Lorenz, 1996). This technique is then applied for calibration of sea 
ice dynamic parameters in the ocean-sea ice model NEMO-LIM3. The results were first 
focused on the Arctic, because of the limited spatial availability of the data that we used. This 
latter work has been published in the Journal of Geophysical Research: Oceans (Massonnet 
et al., 2014). 
 
This part aims at developing a new method of bias correction using data assimilation by 
trying to estimate the origin of the bias instead of the bias of the model results. First, an 
estimate of the model‟s bias needs to be provided, in particular its possible sources. This 
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estimation will then provide a basis to create an ensemble of model runs with perturbations 
around the source of the bias. We use those perturbations as a control variable for data 
assimilation. With this ensemble, we assimilate observations either from the original run, of 
from an external source. This allows us to build a stochastic forcing which is directly injected 
into the model's modified equations. The model is then rerun with the bias correction, and we 
compare the new ensemble's behavior, to see if we are able to effectively correct the model's 
bias. The correction of the bias will thus be continuous during the forecast, providing an 
updated and more reliable analysis. First developed with a twin experiment on a Lorenz '96 
model (Lorenz, 1996), this new method is currently being applied and tested on the sea-ice 
ocean NEMO-LIM model. 
 
Lorenz '96 Model 
 
We first test our approach on a fully controlled mathematical model. In 1963, Edward Lorenz 
developed a simplified mathematical model aimed at reproducing atmospheric convection. It 
is notable for having chaotic solutions for certain parameter values and initial conditions 
(Lorenz, 1963). Originally, it consists of a system of three differential equations. In 1996, it 
was updated in its 40-variable form, known as the Lorenz '96 model (Lorenz and Emanuel, 
1998; Lorenz, 1996). It consists of a circular closed boundaries system with advection and 
diffusion properties. The system is described by the following equation:  
 

   

  
                          

 
that we slightly modified by taking a spatially changing forcing parameter    instead of a 
constant one for all the variables. 
 
This model has been widely used to test and improve data assimilation methods, ensemble 
filters or parameter estimation (Anderson, 2009; van Leeuwen, 2010; Li et al., 2009). Indeed, 
developing new methodologies relies on multiple specific procedures that need to be tested. 
This preparation work is better done beforehand on a very small model, which, even if it does 
not stand comparison with the complexity of realistic models, still enables us to correct the 
multiple issues we will be facing later on. Even if the Lorenz '96 model is not particularly 
complex, it still shows similar behavior with the ocean, in particular the chaotic behavior that 
makes forecasting a real issue.  
 
However, we will use the model in a different way than originally intended. Indeed, many of 
the previous works based on this model concentrate on the value of each variable during the 
model run. Since our aim is not to correct the specific value of the variables, but rather 
correct the bias that affects those variables, we will thus look at the mean value of those 
variables over a period of time.  
 
Therefore, we have first looked at the general behavior of the model when launched with a 
set of different initial conditions, and different    values. We have noted that, even though the 
model does show a chaotic behavior that highly depends on the initial conditions, the model's 
mean tends to stabilize itself after a certain amount of time. Lorenz and Emanuel (1998) 
already noted that if     , the waves can extract energy fast enough to offset the effect of 

the external forcing. When     , the model becomes completely chaotic over time and 
shows spatially irregular patterns. Even more, when      , the model becomes totally 
unstable and collapses.  
 
We have looked at the mean value of the model's variables over a certain period of time. We 
have noted that there is a significant relationship between the variables mean over time and 
the forcing parameter   . We choose k=1,..,40, and a time step of 0.05, which corresponds to 
about 6 hours in the atmosphere (Lorenz and Emanuel, 1998). We choose 30 evenly 
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distributed values for        . The model is then run with 15 different initial conditions for 

each   . We consider the 200 first time steps sufficient for the model to stabilize and dampen 
the initial conditions. We then take the mean of the model's variables for the last 800 time 
steps, and average it over the 40 variables to obtain the model's mean state.  
 

Two cases are studied: in the first, the    are constant for all the variables (Figure 13a). In the 
second, we add a random spatially correlated noise, with standard deviation equals 1, on the 
forcing parameter in order to obtain a different    for each    (Figure 13b). On both figures, 

    . 
 
We can clearly see from Figure 13a,b that there is a monotonic relationship between the 
system's mean and the forcing parameter, whether the later one is, or is not, constant. This 
supports the working hypothesis that even a fully non-linear system on a local scale can be 
expected to show a global simple behavior. This also confirms that even though the model's 
state at a specific point in time depends on the initial conditions, the time average of the 
model, when ignoring the first 200 time steps, does not depend on the initial conditions 
anymore. This is important, since our aim is not to predict the exact value of the system at a 
given point in time. We only aim at correcting the model's forcing parameter and the bias it 
causes on the model's mean state. 
 

 
Figure 13 (a) Lorenz '96 model mean state compared to a constant forcing parameter. (b) Lorenz '96 model 

mean state compared to a spatially variable forcing parameter. (c) Lorenz '96 model forcing parameter of the 
observation, ensemble mean ad assimilated ensemble mean runs. (d) Lorenz '96 model state temporal mean of 
the observation, ensemble mean and assimilated ensemble runs. 
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Lorenz '96 Twin Experiment 
 
We have tested our method with a Lorenz '96 model twin experiment. As shown before, we 

can consider the forcing parameter    to be directly linked with the model's mean over a 
period of time. First, we create a random, but spatially correlated        parameter with a 

mean       
´   , and with a standard deviation of 1. The model is then run once over 1000 

time steps, with 15 initial conditions. It is then averaged over time while ignoring the first 200 
time steps to avoid the initial conditions to strongly influence the model's mean. We follow the 
exact same procedure to generate an ensemble of 100 different       . Each one of them is 

run over 1000 time steps, with 15 initial conditions, and averaged without the first 200 time 
steps. We know that there is an effective bias present on the       , and we intend to find it, 

in order to correct the model's mean. We consider the reference run's mean        as the 

observations. We extend our state vector which consists of the ensemble's model's mean 
       with the ensemble's       . Using an ETKF analysis scheme, we obtain a new and 

updated       . We then rerun the model, and expect the ensemble model's mean reruns to 

improve and come closer to the reference run. The results of this procedure are shown on 
Figure 13c,d. 
 
The assimilation of observations on the model's mean allowed the correction of the bias on 
   (Figure 13c). The root mean square error on        before assimilation was 0.65371. After 

the assimilation, it has been reduced to 0.32254 for       , and it is already able to reproduce 

the global shape of the reference run. We need also to look at the model's mean (Figure 13d). 
The RMS on the ensemble mean        is 0.098660. However, we can clearly see that the 

model's rerun with the assimilated        gives much better results. The RMS on         is 

only 0.037679, and reproduces much better the shape of the observations.  
 
We aimed at correcting the bias on a specific parameter from the Lorenz '96 model. Testing 
this method with a twin experiment has proven to be successful. Not only did we estimate 
and improved the ensemble's mean       , but we were also able to rerun the model and 

obtain a much better model's mean state with the        . This means that we can interpret 

the physical behaviour of this model, and the correction on the bias that we were able to 
obtain, as a significant improvement on the model's climatology and global behavior, which 
we did not have before. 
 
The correction of bias with data assimilation parameter estimation having been succesfully 
tested on the Lorenz-96 model, it has then been applied to calibrate sea ice dynamic 
parameters in the NEMO-LIM3 model (Massonnet et al., 2014). Even though this study is 
focused on the Arctic, it constitutes insightful results in the framework of PREDANTAR and 
the main outcomes are thus presented below. 
 
First, biases and their origins need to be investigated. NEMO-LIM is a low resolution model 
and this resolution can hardly be improved due to the requirement to perform simulations 
over several decades. This causes a large bias in the area of strong currents that needs to 
be corrected. Since the currents are strongly related to the heat transportation, they greatly 
impact the sea surface temperature, and thus the ice concentration. 
 
Unlike for the tests on the Lorenz-96 model, physical constraints are to be applied on the 
correcting term in order for the model to be realistic. Indeed, spurious gravitational waves or 
any kind of physically non-existent processes should be avoided. Therefore, the stream 
function is chosen as a starting point, since it is by construction non divergent. Using the first 
simulations of NEMO, the yearly-mean turbocline is estimated, which allowsto force only the 
currents at the surface, above the turbocline. Taking the derivatives from the stream function 
provides us U and V velocity fields, which are directly added to the momentum equation in 
NEMO. 
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Preliminary tests show that the model remains stable with forcing terms that are of the same 
magnitude as the acceleration in a non-forced run. Several different values of correlation 
length in the forcing term have been tested. There is a spatially coherent covariance between 
the forcing term and the sea surface temperature, showing that the bias on the current has a 
direct impact on the sea surface temperature bias.  
 
For the assimilation of parameters, three steps were achieved (Massonnet et al., 2013): 

1) Adaptation of  the EnKF code to include a global parameter analysis 
We completed the traditional EnKF state estimation with an analysis of parameters. Because 
parameters are not dynamically evolving, this latter step can be conducted sequentially, 
either before or after state estimation.  

2) Calibration of parameters in twin experiments 
We first assimilated model sea ice drift, but starting with an incorrect value of parameters,, in 
order to test the successful convergence of the ensemble of parameters. Figure 14 reports 
the time evolution of the ensemble (here, 25 members) of parameters. The original set of 
parameters is retrieved within the first year of simulation. 

3) Calibration of parameters with real data 
We then assimilated real data of sea ice drift. We found that the joint estimation of the two 
parameters Cw and P* yielded the most significant improvements. Simulations with the 
calibrated values show a clear shift in the statistical distribution of simulated sea ice speeds, 
towards higher values (Figure 15) and thus in better agreement with observational data. 
 

 
Figure 14 Convergence of parameters in the case of "twin experiments" 
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Figure 15 Frequency distribution of the observed (top) and modeled (middle and bottom) Arctic sea ice speeds 

between 2007 and 2012. 

2.3. Understanding the changes in the sea ice cover over the last decades 
 
2.3.1. Comparison of reconstructions and simulations of past changes 
 
Disentangling the contribution of the external forcing and the internal variability in the positive 
trend in ice extent observed during the last three decades is an important issue. Given that 
the available observations of the sea ice cover are too sparse in space and time, the climate 
models constitute adequate tools to gain insight about the evolution of sea ice at multi-
decadal timescales. In that context, a pragmatic approach lead us to focus on the question 
whether the positive trend in Antarctic sea ice extent observed over the last three decades is 
compatible with a combination of the forced response and the internal variability of the 
climate system as simulated by current general circulation models. This issue had been 
raised in several studies (e.g., Arzel et al., 2006; Lefebvre and Goosse, 2008b) but the 
systematic analysis of the internal variability of the Antarctic sea ice simulated by current 
general circulation models proposed in the PREDANTAR project is a clear addition to 
previous knowledge. 
 
In the framework of PREDANTAR, the results of simulations performed with general 
circulation models involved in the 5th Coupled Model Intercomparison Project (CMIP5) have 
been systematically analyzed and compared to the available observations. Those analyses 
have been discussed in detail in a peer-reviewed article published in the journal The 
Cryosphere (Zunz et al., 2013). The main outcomes are summarized below. 
 
The results of historical simulations performed with 24 general circulation models have been 
analyzed. The CMIP5 historical simulations generally span the period 1850-2005. Those 
simulations do not take into account any observations of the atmosphere, sea-ice or ocean 
state but they are driven by natural and anthropogenic variations in the external forcing. Each 



Project SD/CA/04A - Understanding and Predicting Antarctic sea ice variability at the decadal timescale “PREDANTAR” 

SSD - Science for a Sustainable Development - Climate, Antarctica  41 

historical simulation is an ensemble simulation whose size varies from one model to the 
other. The total number of historical simulations analyzed here equals 85. 
 
The analyses were performed over the years 1979-2005, i.e. the time period for which 
reliable observations of the Antarctic sea ice cover are available. For each model, the 
seasonal cycle of the sea ice extent has been computed and the interannual variations in ice 
extent has been estimated on the basis of the standard deviation of each month of the year 
(Figure 16). On average over all the models, the seasonal cycle of the ice extent is in good 
agreement with the observations. Nevertheless, the multi-model average hides the wide 
range of behaviors simulated by each individual model. Indeed, the amplitude of the 
seasonal cycle as well as the timing of the minimum and maximum of sea ice extent strongly 
differ from one model to the other and barely fits the observations (Figure 16a).   
 
The monthly standard deviation of the sea ice extent also displays a large discrepancy 
among the 24 models (Figure 16b). On average over all the models, the monthly standard 
deviation is higher than the one of the observations, especially during winter months. In 
February, 15 models display a standard deviation higher than the observed one. In 
September, all of the 24 models overestimate the standard deviation. In some models, the 
standard deviation displays a seasonal cycle that results from a significantly higher 
interannual variability during winter months than during summer months.   

 
Figure 16 (a) Monthly mean of Southern Ocean sea ice extent, computed over the period 1979–2005. 
(b) Standard deviation of detrended Southern Hemisphere sea ice extent, computed over the period 
1979–2005 for each month of the year. Colours correspond to the ensemble mean of historical 
simulations from 24 different models. Orange bold line is the multi-model mean. Black bold line refers 
to observations (Cavalieri and Parkinson, 2008). Figure from Zunz et al. (2013). 

The trends in Antarctic sea ice extent over the period 1979-2005 as simulated by the models 
have also been analyzed and compared to the observations. For each model, the trends 
were computed for each member of the ensemble simulation. Given that the interannual 
variability strongly varies from one season to the other in some models, the analyses of the 
trends were performed for summer (JFM) and winter (JAS) mean rather than for annual 
mean.     
 
Observations show that both summer and winter sea ice extent expanded between 1979 and 
2005, at a rate of 149 000 km2 and 86 000 km2 per decade respectively. For both seasons, 
most of the analyzed simulations display decreasing trends in ice extent. Nevertheless, the 
trends provided by the different members belonging to one model simulation can reach a 
wide range of values, including positive ones relatively close to the observations (Figure 17). 
Among all the simulations analyzed, 12 members over 85 have a positive trend between 
1979 and 2005 in summer and 10 over 85 have a positive trend in winter. Therefore, positive 
values such as the observed one appear as relatively rare events, but the observed values 
are within the range of the internal variability simulated by the models. Nevertheless, it has to 
be kept in mind that our analyses have also highlighted biases in the interannual variability 
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simulated by the models. Because of those biases, the link between the internal variability in 
the Southern Ocean and the observed increase in sea ice extent cannot be confidently 
established.  
 

 
Figure 17 Ensemble mean, minimum and maximum value of the sea ice extent trend for the period 
1979–2005 over the whole Southern Ocean for summer (a) and winter (b). The different colours 
correspond to the historical simulations from the 15 models that have at least 3 members in their 
ensemble. Dots refer to the ensemble means of the trends. Horizontal bars show the minimum and the 
maximum value of the trend reached by the members of one model ensemble. Solid black line is for 
the trend of the observations  (Cavalieri and Parkinson, 2008) surrounded by 1 standard deviation 
(dark grey shade) and 2 standard deviations (light grey shade). The computed standard deviation of 
the observed trend takes into account the autocorrelation of the residuals (see for instance Santer et 
al., 2000; Stroeve et al., 2012). Figure from Zunz et al. (2013). 

We went a step further in the investigation of the potential link between the internal variability 
and the observed positive trend in sea ice extent through the analyses of hindcast 
simulations performed in the framework of CMIP5. Unlike a historical simulation, a hindcast 
simulation is initialized through data assimilation of observations, i.e. its initial state is 
synchronized with the observed state. If the link between the internal variability of the climate 
system and the observed positive trend in ice extent exist and if the internal variability is 
predictable, an adequate initialization of the simulation should improve the simulated 
evolution of the Antarctic sea ice. This aspect has been investigated in the results of 30-year 
hindcast simulations from 10 models, initialized in 1980. Our analyses did not point out any 
clear improvement in the simulated ice extent in the hindcast simulations compared to the 
historical simulations. This lack of improvement could be due to some misrepresentations of 
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processes in the models but also to the initialization procedure that generally relies on simple 
methods in the CMIP5 hindcast simulations.  
The mechanisms that rule the decadal variability of the Antarctic ice cover have been 
investigated in the framework of the PREDANTAR project and the results are summarized in 
Section 2.3.2. Further work has also been devoted to the assessment of the impact of the 
initialization through more sophisticated data assimilation methods in an idealized and in a 
realistic framework (Section 2.4.2).  
 
 
2.3.2. Analysis of the mechanisms ruling decadal variability 
 
The Antarctic sea ice is characterized by a large internal variability (e.g., Mahlstein et al., 
2013; Polvani and Smith, 2013; Swart and Fyfe, 2013; Zunz et al., 2013). Numerous studies 
have investigated the response of the sea ice to the dominant modes of atmospheric 
variability in the Southern Ocean (e.g., Holland and Raphael, 2006; Lefebvre et al., 2004; Liu 
et al., 2004; Simpkins et al., 2012; Stammerjohn et al., 2008; Zhang, 2007). Besides, the 
mechanisms responsible for the large Antarctic sea ice variability at multi-decadal timescales 
have not been firmly identified yet. A part of the research undertook in the framework of the 
PREDANTAR project was intended to address this important issue.  
 
 
2.3.2.1. Antarctic sea ice variability and mixed layer properties in CMIP5 models 
 
The drivers of the Southern Ocean mixed layer variability and their link with the sea ice cover 
were investigated in simulations performed in the framework of CMIP5. This research work 
has been presented in detail in a peer-reviewed article published in the Journal of 
Geophysical Research: Oceans (Close and Goosse, 2013).  
 
Simulations performed with 7 CMIP5 models under the representative concentration pathway 
(RCP) 4.5 scenario were analyzed. This forcing scenario represents a medium mitigation 
situation (Taylor et al., 2011). In addition, the chosen simulations provide relatively long time 
series (2006-2100) that are valuable to study processes of multi-decadal lengths. Here, only 
the first member of each model ensemble simulation was taken into account in the analyses. 
 
To understand the processes that govern ocean-sea ice variability, it is necessary to 
determine which mechanisms exert the primary controls on the variability of the upper ocean 
(in particular, on salinity, which dominates the equation of state in the Southern Ocean 
region). The contributions to the salinity budget from the evaporation-precipitation balance, 
horizontal (Ekman and residual) advective fluxes, diffusive processes, vertical and lateral 
entrainment and brine/meltwater input from the sea ice formation cycle are thus estimated 
using: 
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where    represents the salinity of the mixed layer,   denotes evaporation,   is precipitation, 
   and   represent Ekman velocity and residual (non-Ekman) horizontal component of the 

velocity respectively,    denotes the entrainment velocity,     is the salinity difference 
across the base of the mixed layer,    signifies the mixed layer depth,    and    denote 
mixed layer density and sea ice density respectively.  
 
The response of the hydrographic properties of the upper Southern Ocean under the RCP4.5 
forcing scenario exhibits a number of robust features. The mixed layer is characterized by a 
strong freshening tendency, accompanied by a corresponding increase in buoyancy and a 
weak temperature response in the ice-covered region. At lower latitudes, strong near-surface 
warming is evident. Whilst the models do not agree well on the magnitude of the changes, 



Project SD/CA/04A - Understanding and Predicting Antarctic sea ice variability at the decadal timescale “PREDANTAR” 

SSD - Science for a Sustainable Development - Climate, Antarctica  44 

there is good agreement on the sign of both the salinity and density tendencies, with the 
mixed layer tending to shoal in all of the models. Sea ice loss over the 100 year run is 
evident in all models except one (GFDL-ESM2G). The upper ocean buoyancy loss occurs at 
a faster rate than that of the underlying ocean, thus leading to a decoupling of the mixed 
layer, as noted in the previous CMIP3-based analyses of Capotondi et al. (2012). This 
decoupling suggests an important role of surface processes in driving the observed 
freshening tendency, and further credence is added to this notion by the evaluation of the 
individual terms of the salinity budget. 
 
The magnitudes of the various terms of the salinity budget vary strongly amongst models, 
and, due both to the small sample size and presence of outliers, the median and interquartile 
range was used in our analysis in order to reduce bias in the results. The analysis of the 
individual terms indicates that component of salinity change driven by the evaporation- 
precipitation balance is very consistently represented amongst the models. When 
considering the model-median of the absolute values of the various terms, the dominant 
contributions to the salinity budget south of 60°S are supplied by entrainment and the 
meltwater input/brine rejection associated with the formation cycle of sea ice. This hypothesis 
is supported by the vertical distribution of the salinity change since the freshening signal is 
the strongest adjacent to the continent and weakens as the anomaly is advected northward 
and subducted into the interior ocean.  
 
The dominant role of entrainment in effecting mixed layer salinity change that is surmised 
above is consistent with the changes observed in the ocean interior, where increased heat 
storage at depth is evident in all models. The approximately density-compensated nature of 
this change in temperature indicates that it is not surface forced, but rather related to interior 
dynamics. This entrainment-modulated restriction of the supply of heat to the surface is 
consistent with the previous work of Bitz et al. (2006) and Zhang (2007), with increased 
(reduced) supply of upwelled oceanic heat limiting (promoting) sea ice growth at the surface. 
 
To permit assessment of the relative dependence of sea ice formation on the heat supplied 
from the ocean against that of the heat supplied by the atmosphere, time series of the 
oceanic heat content of the 500-1000m layer have been calculated. Considering the median 
field spatial distribution, sea ice thickness is significantly correlated with surface air 
temperature at the 95% level (r=-0.87) and heat change at depth at the 90% level (r=0.74). A 
multiple linear regression was performed to determine the dependence of sea ice thickness 
on the two forcings. The relative influence of the two mechanisms is strongly model-
dependent. Whilst all models demonstrate a decrease in sea ice in response to increased 
surface air temperature (Figure 18), the decrease in sea ice thickness in response to 1°C of 
warming at 65°S varies from ~18cm (NorESM1-M) to ~1cm (IPSL-CM5A-LR and CanESM2). 
The response to changes in oceanic heat content is perhaps even more disparate, with one 
model (CSIRO- MK3.6.0) demonstrating a decrease in sea ice in response to increased heat 
storage at depth (corresponding to a uniform warming of the upper kilometer of the water 
column), whilst the remaining six models demonstrate an increasing tendency. The extent of 
dependency of sea ice thickness on mid-depth/deep ocean heat storage is linked to the 
change in the rate of entrainment exhibited by the models, with models that exhibit the 
greatest change in entrainment velocity also showing the strongest relationship between heat 
storage at depth and ice thickness (Figure 18c). 
 



Project SD/CA/04A - Understanding and Predicting Antarctic sea ice variability at the decadal timescale “PREDANTAR” 

SSD - Science for a Sustainable Development - Climate, Antarctica  45 

 
Figure 18 Change in reconstructed zonal-mean sea ice thickness at 65°S derived from multiple-linear 
regression between sea ice thickness and (a) surface air temperature and (b) mean potential 
temperature over the depth range 500–1000 m. Colored dots show pentannual averages (see text). 
(c) Dependence of the strength of the relationship between potential temperature at depth and ice 
thickness on entrainment. The gray line shows the linear regression of change in entrainment rate on 
the gradient of the ice thick- ness / potential temperature regression. Figure from (Close and Goosse, 

2013). 

 
2.3.2.2. Decadal trends in Antarctic sea ice extent and ice-ocean interactions 
 
The analyses of the CMIP5 simulations under the RCP4.5 forcing scenario have highlighted 
the key role played by both the heat supplied by the atmosphere and the entrainment-
modulated supply of heat by the ocean below the mixed layer in determining the sea ice 
conditions at the surface. In the framework of PREDANTAR, we went a step further and we 
investigated ice-ocean interactions that could lead to an increase in Antarctic sea ice extent 
similar to the one observed over the last three decades. This has been achieved thanks to 
the analysis of simulations performed with the climate model LOVECLIM (Goosse et al., 
2010), an Earth-system model of intermediate complexity. This study has been published as 
a peer-reviewed article in the journal The Cryosphere (Goosse and Zunz, 2014). 
 
A 5000-year control simulation, using a constant forcing corresponding to pre-industrial 
conditions, has been performed with LOVECLIM. The last 1000 years of this experiment 
display a stable climate and were analyzed in order to identify the dominant processes 
controlling the decadal trends in sea ice extent. To that purpose, 11 periods characterized by 
an increase in ice extent larger than 105 km2 per decade for each calendar month, during a 
minimum of 30 years, were identified. This value was selected as it is close to the increase 
observed over the period 1979-2010 (Parkinson and Cavalieri, 2012). 
 
The trend in 12 different ocean variables, on average over the 11 selected periods, have 
been investigated and discussed in detail in Goosse and Zunz (2014). Only 4 of those 
variables are presented here for brevity (Figure 19). As expected, the periods of large positive 
trends in ice extent display an increase in ice concentration, uniformly distributed around the 
continent (Figure 19a). Those periods are also characterized by a decrease of the vertical 
oceanic fluxes in ice-covered area (Figure 19b). This reduction in the upward heat flux is 
associated with a decrease in the depth reached by convection (Figure 19c). During the 
periods of increase in ice extent, the net sea ice production increases inside the pack (Figure 

19d) because of the colder air and the lower oceanic flux. This increase in ice production 
results in a net northward export of ice that melts once it reaches lower southern latitudes, 
resulting in a net sea ice production decreases close to the ice edge.  
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Figure 19 Trends in annual means averaged over the 11 periods showing a large increase in Antarctic 
sea ice extent scaled to represent 30 year changes of (a) ice concentration, (b) vertical oceanic heat 
flux at the ocean surface (positive upward, Wm-2), (c) depth reached by oceanic convection (m) and 
(d) net sea ice production (production minus melting) (cm year

-1
 water equivalent).The hatched areas 

represent the regions for which the average trend over the 11 periods is not significantly different at 
the 95% level from the mean trend in periods of identical length but not showing a large increase in ice 
extent. Figure from Goosse and Zunz (2014). 

The sea ice transport of ice thus plays an obvious role in the expansion of the pack and the 
stabilization of the water column close to the ice edge (Figure 20a). Besides, the stabilization 
of the water column inside the pack was attributed to a positive feedback associated with the 
seasonal cycle of ice formation (Figure 20b). In winter, brine is released through the formation 
process of ice and it is mixed over a deep layer. On the contrary, during summer, the melting 
of ice releases freshwater that is included in a shallow layer. On average over a year, the 
cycle of ice formation and melting thus results in a net downward transport of salt and the 
ocean gets more stratified. Because of this stronger stratification due to the presence of sea 
ice, more heat is stored at depth in the ocean and the vertical oceanic heat flux is reduced, 
which contributes to maintain a higher ice extent. This mechanism can be illustrated by a 
simple 3-level model (see Goosse and Zunz, 2014).  
 

 
Figure 20 Schematic representation of the stabilization of the Southern Ocean by sea ice processes. 
Figure from Goosse and Zunz (2014). 

The relationship between the increase in ice extent and the atmospheric circulation has also 
been investigated through the analysis of the trend in geopotential height at 800 hPa in the 
individual periods characterized by a large increase in ice extent (see Goosse and Zunz, 
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2014). Nevertheless, as the spatial patterns of the trend in geopotential height are very 
different in the 11 periods, the increase in ice extent could not be associated to one specific 
atmospheric circulation pattern. Besides, many regional changes in ice concentration can be 
attributed to the atmospheric circulation, as pointed out in numerous studies (e.g., Goosse et 
al., 2009; Holland and Kwok, 2012; Lefebvre and Goosse, 2008a; Liu et al., 2004; Simpkins 
et al., 2012). 
 
In order to assess the compatibility between the ice-ocean positive feedback identified in the 
long control simulation and the behaviour of the Antarctic ice cover over the last 30 years, a 
simulation performed with LOVECLIM and constrained by surface air temperature 
observations through a data assimilation procedure were analyzed. This latter analysis 
indicate that, at least in some sectors the simulated results over the last 30 years are 
compatible with a shallower mixed layer and an increase in heat content below the mixed 
layer (see Goosse and Zunz, 2014). The mechanism proposed to explain the natural 
variability in LOVECLIM is thus consistent with our simulation with data assimilation. 
Nevertheless, this encouraging result does not constitute a definitive proof that the 
stabilization of the water column associated with ice is the dominant mechanism that control 
the recent changes as other processes may also contribute to positive ice-ocean feedback. 
 

2.4. Projections and predictions 
 
2.4.1. Analysis of the changes for the end of 21st century 
 
The results provided by 29 general circulation models involved in CMIP5 were investigated. 
Changes in sea ice extent over the period 1850-2005 in historical simulation and over the 
period 2006-2100 in projection simulations under the forcing scenarios RCP2.6 and RCP8.5 
were analyzed. Antarctic sea ice extent simulated by the 29 CGCMs analyzed shrink in 
response to the 21st century greenhouse gas loading (Figure 21). The decrease of the 
ensemble mean ranges from 15 % in scenario RCP2.6 to 52% in scenario RCP8.5 in 
summer and between 9% and 25% in September for those two scenarios, but high 
uncertainties remain. These uncertainties reflect both the strong decadal variations in single 
model realizations and a large inter-model scatter. Additionally, the confidence in these long-
term projections is to be questioned as the same models poorly simulate the recent trends of 
sea ice extent in Antarctica  
 



Project SD/CA/04A - Understanding and Predicting Antarctic sea ice variability at the decadal timescale “PREDANTAR” 

SSD - Science for a Sustainable Development - Climate, Antarctica  48 

 
Figure 21 Anomalies in Southern Hemisphere sea ice extent in (a) February and (b) September. The thick blue 

lines are the observed anomalies. The thick black lines are the anomalies of the multi-model mean of 29 CMIP5 
models over the historical period, up to 2005. The red (resp. green) thick lines are the anomalies of the multi-
model mean of the CMIP5 models under the high-emission RCP8.5 (resp. low-emission RCP2.6) scenarios. The 
number of models used for averaging is indicated in parentheses. Shading denotes ± 1 standard deviation 
obtained from the model distribution around the multi-model mean.  

Because of the very limited skill of the current systems for decadal predictions in the 
Southern Ocean, no attempt has been performed to use them without adequate corrections 
as tools to estimate future changes.  
 
 
2.4.2. Improvement of the decadal forecasts 
 
The analyses of the CMIP5 historical simulations presented in Section 2.3.1 indicated that 
the observed increase in Antarctic sea ice extent is compatible with the internal variability 
simulated by the models. Besides, systematic biases in the internal variability represented by 
those models were pointed out. Nevertheless, if the link between positive observed trend in 
ice extent and the internal variability of the system is confirmed and if this variability is 
predictable, an adequate initialization of the simulation should improve the modeled trend in 
ice extent.  
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Recent idealized studies have pointed out potential predictability in the Southern Ocean 
(Pohlmann et al., 2009), in particular for the position of the ice edge (Holland et al., 2013). In 
a realistic setup, our analyses of the hindcast simulations performed with the models 
involved in CMIP5 indicated that the initialization methods implemented in those models do 
not systematically improve the simulated evolution of the Antarctic ice extent. As those 
initialization procedures generally rest on simple data assimilation methods, the improvement 
that could be achieved thanks to more sophisticated data assimilation had to be examined. 
 
In the framework of PREDANTAR, research has been undertook in order to systematically 
assess how the predictability of Antarctic sea ice depends on the data assimilation method 
that is used to initialize the model simulation. The analyses were based on the results 
provided by the model of intermediate complexity LOVECLIM. This research work was 
presented in detail in 3 peer-reviewed articles (Dubinkina and Goosse, 2013; Zunz and 
Goosse, 2015; Zunz et al., 2015) and is summarized below.  
 
 
2.4.2.1. Antarctic sea ice predictability in an idealized framework 
 
The analyses were first performed in an idealized framework. This approach consists of 
using pseudo-observations instead of actual observations for both the initialisation and the 
verification of the hindcasts. The pseudo-observations are obtained from a reference 
simulation performed with the same model as the one used to generate the hindcasts. 
 
Three data assimilation methods were implemented in the model LOVECLIM (Dubinkina and 
Goosse, 2013): a simple one, based on a nudging procedure, and two more sophisticated 
ones, based on a particle filter (PF or SIR for Sequential Importance Resampling particle 
filter) and on a combination of a particle filter and a nudging (the nudging proposal particle 
filter, NPPF). Here, those three methods assimilate anomalies of surface air temperature. We 
assess these methods for reproducing the climate of the high latitudes of the Southern 
Hemisphere during the past 150 years. All the simulations consist of 96-member ensemble. 
 
The nudging (e.g., Kalnay, 2007) is a data assimilation technique commonly used in decadal 
climate prediction studies. It consists of adding to the model equations a term that pulls the 
solution toward the (pseudo-) observations. In LOVECLIM, the nudging term corresponds to 

an additional heat flux between the atmosphere and the ocean 
         

   
).      and      

are the monthly mean surface air temperature simulated by the model and from the (pseudo-
) observations respectively. γ determines the relaxation time and equals 120 W m−2 K−1.  
 
The particle filter is an ensemble data assimilation technique that consists of the following 
steps (Dubinkina et al., 2011; van Leeuwen, 2009). Starting from a set of different initial 
conditions, an ensemble of simulations is propagated forward in time with the model for a 
period of prescribed duration, here 3 months. A member of the ensemble (called particle) 
differs from another only due to slightly different initial conditions. After the propagation step, 
a weight is attributed to each particle. This weight is computed based on the agreement 
between the surface air temperature estimated by the particle and the (pseudo-) 
observations (the better the agreement, the larger the weight). Then, particles are 
resampled: particles with small weights are eliminated while the ones with large weights are 
kept and duplicated in proportion to their weights, maintaining the total number of particles 
constant. A small perturbation is added to the duplicated particles in order to obtain initial 
conditions different from each other. The particles are then again propagated for 3 months 
using the model, and the whole procedure is repeated until the end of the period of interest.  
 
All three data-assimilation methods provide with good estimations of surface air temperature 
and of sea ice concentration, with the nudging proposal particle filter obtaining the highest 
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correlations with the pseudo-observations. When reconstructing variables that are not 
directly linked to the pseudo-observations such as atmospheric circulation and sea surface 
salinity, the particle filters have equivalent performance and their correlations are smaller 
than for surface air temperature reconstructions but still satisfactory for many applications. 
The nudging, on the contrary, obtains sea surface salinity patterns that are opposite to the 
pseudo-observations, which is due to a spurious impact of the nudging on vertical exchanges 
in the ocean, see Figure 22 and Dubinkina and Goosse (2013). 

 
Figure 22 Correlations between first principal components of the pseudo-observations and projections 
of the model simulations onto the corresponding first EOFs of the pseudo-observations for different 
variables: st is for surface temperature, sic is for sea ice concentration, sss is for sea surface salinity. 
EOFs are computed for May–October of twenty-four 21-yr periods over the area southward of 60°S. 
The circle is the mean correlation for simulations without data assimilation; the star is the mean 
correlation for the model simulations using the nudging; the square is the mean correlation for the 
model simulations using the particle filter; the cross is the mean correlation for the model simulations 
using the nudging proposal particle filter. Error bars correspond to one standard deviation.  

The impact of the three data assimilation methods on the quality of decadal predictions in an 
idealized framework was then assessed. Every 5 years between 1900 and 1990, the values 
of the state variables of the model are extracted from the data assimilation simulations and 
are used to initialise 30-year long hindcast (i.e. a forecast over a past period) simulations. 
Each hindcast consists of a 96-member ensemble simulation. Two datasets were used as 
pseudo-observations: one in which data are available everywhere (dense pseudo- 
observations) and the other one for which some data have been voluntary removed (sparse- 
pseudo-observations), in order to mimic the lack of observations encountered in real 
conditions.  

The quality of the prediction was assessed through two indices. (1) The prognostic potential 
predictability (PPP) tells us how the members belonging to one ensemble are spread, in 
comparison to the climatological variance. A PPP close to 1 indicates a small spread of the 
ensemble and is interpreted as a low uncertainty on the ensemble mean. On the contrary, a 
PPP close to or smaller than 0 corresponds to a large uncertainty. (2) The correlation 
between the hindcasts ensemble means and the corresponding pseudo-observations was 
used to assess the accuracy of the prediction. The predictive skill provided by different 
initialisation methods was assessed for the sea ice extent at interannual timescale (from one 
month to 10 years ahead) and at multi-decadal timescale (from 10 to 30 years ahead). 
Similar diagnostics were also applied to the ice edge location (see Zunz et al., 2015).   

For any data assimilation methods used here to initialise the hindcasts, the use of dense 
pseudo-observations systematically leads to a higher PPP than if sparse data are 
assimilated, at both interannual (Figure 23a,b) and multi-decadal (Figure 24a,b) timescales. 
This is due to the stronger constraint applied on the ensemble through the initialisation with 
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dense data, implying a slower scatter of the members during the integration. At interannual 
timescale, the PPP of summer sea ice extent decreases sharply during the first 2 years of 
integration and falls below the 95% level of significance around the 3rd year, for any 
initiasation method (Figure 23a). The PPP of winter sea ice extent remains statistically 
significant during more than 3 years for the hindcasts initialized with dense pseudo- 
observations through the particle filters (Figure 23b). The larger PPP of the sea ice extent at 
interannual timescales in winter is provided by the ocean. Thanks to its inertia, it can store 
the information provided at the initialisation and brings them back to the surface during 
winter, when the vertical mixing is stronger due to the surface cooling and the brine rejection 
triggerred by the sea ice formation.  

At interannual timescales, a slight gain of correlation of the sea ice extent between the 
hindcasts and the pseudo-observations is provided by the initialisation with pseudo- 
observations during the first 4 years of integration (Figure 23c,d). In addition, the correlation 
is slightly larger in winter than in summer. Nevertheless, the correlation barely outstrips 0.5 
and most of it is ensured by the external forcing. At multi-decadal timescales, the correlation 
of the trend in sea ice extent between the hindcasts and the pseudo-observations is clearly 
much higher in the hindcasts initialised with pseudo-observations (Figure 24c,d). The larger 
correlation found in initialised hindcasts at multi-decadal timescales is due to a better 
initialisation of the ocean below the sea ice when pseudo-observations are taken into 
account (not shown).  

 

Figure 23 Prognostic potential predictability (a, b) and anomaly correlation coefficient (c, d) for 
summer (left column) and winter (right column) sea ice extent. The different colours correspond to 
different initialisation methods. Coloured solid lines correspond to an initialisation with dense data, 
while coloured dashed lines correspond to an initialisation with sparse data. The dashed black lines 
show the 95 % significant level. For the PPP, the 95 % significant level is higher for winter (b) than for 
summer (a) sea ice extent. This is due to the slightly larger persistence characterising winter sea ice 
extent leading to a fewer number of degrees of freedom used to perform the significance test. The 
grey line in (a) and (b) corresponds to the square of the autocorrelation that indicates the predictability 
arising from the persistence. Figure from Zunz et al. (2015). 
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Figure 24 Prognostic potential predictability (a, b) and correlation with the pseudo-observations (c, d) of the 

trends in summer (left column) and winter (right column) sea ice extent, for increasing length of the time period 
over which the trends are computed. The different colours correspond to different initialisation methods. The 
dashed black lines show the 95 % significance level. For the PPP (a, b), this significance level varies with the 
length of time period because it takes into account the autocorrelation of the trends computed over successive 
time periods used to compute the climatological variance of the trend. This autocorrelation depends on the length 
of the time period used to compute the trends.  

 

2.4.2.2. Antarctic sea ice predictability in a realistic framework 
 
Having assessed the predictive skill that can be achieved in an idealized framework thanks 
to different initialization procedures, we logically undertook some work to check whether our 
results remain valid in realistic conditions (Zunz and Goosse, 2015). Given that our idealized 
study demonstrated that the predictive skill for the sea ice extent is higher at multi-decadal 
timescale than at interannual timescale, we focused on the predictability of 30-years trends in 
ice extent and concentration in a realistic framework. Reliable satellite observations of the 
Antarctic ice cover being available from 1979 onwards only, our diagnostics were limited to 
that time period.  

In addition to the impact of the initialization method, the role played by a freshwater input in 
the observed trend in ice extent and concentration was also investigated. Indeed, several 
recent studies have proposed a link between the melting of the Antarctic ice sheet and the 
observed expansion of ice cover in the Southern Ocean (e.g., Bintanja et al., 2013; Hellmer, 
2004; Swingedouw et al., 2008). Nevertheless, deriving the magnitude of the freshwater 
input derived from the Antarctic ice sheet mass imbalance requires data that are not 
available for the whole period spanned by our simulations. Furthermore, the estimate of the 
changes in mass imbalance for future projections would require a comprehensive 
representation of the polar ice sheets in climate models. The present study is based on 
results provided by the model LOVECLIM in a configuration that does not include an ice 
sheet component. Nevertheless, an estimate of the magnitude of the freshwater input was 
obtained through the data assimilation procedure. 

Two simulations with data assimilation based on a nudging proposal particle filter 
(DA_NOFWF and DA_FWF) were first carried out with LOVECLIM over the period 1850-
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2009. The assimilated data are surface air temperature anomalies from the HadCRUT3 
dataset (Brohan et al., 2006). The data assimilation procedure is applied every three months. 
Both DA_NOFWF and DA_FWF consist of an ensemble of 96 simulations. In DA_FWF, an 
additional random freshwater flux following an autoregressive process was applied on each 
member of the ensemble. The additional freshwater flux is computed every three months, i.e. 
at the same frequency as the data assimilation (for details, see Zunz and Goosse, 2015). 
This additional freshwater flux increases the range of the solutions reached by the ensemble 
and can randomly pull some of the members towards the observation, leading to an 
improvement of the efficiency of the particle filter. A weighted (i.e., taking into account the 
weight of each particle) average of the additional freshwater flux received by each particle of 
the ensemble provides an a posteriori estimate of the freshwater that is more likely to provide 
a state compatible with the observations. The results of the two simulations with data 
assimilation DA_NOFWF and DA_FWF were compared to the results of a simulation that 
does not include any information from the observations (NODA) and to the available 
observations.       

The spatial distribution of the observed trend in ice concentration is characterized by a 
decrease in ice extent in the Bellingshausen and Amundsen seas and an increase 
elsewhere, particularly strong in the Ross Sea (Figure 25a). This spatial structure is not 
reproduced by the simulation NODA (Figure 25b). Beside, in the two simulations with data 
assimilation, a spatial pattern of the trends in ice concentration similar to the observed one 
emerges (Figure 25c,d). 
 

 
Figure 25 Trend in yearly mean sea ice concentration between 1980 and 2009, shown for (a) the 
observations (Comiso, 1999), (b) the model simulation without data assimilation (NODA), (c) the 
model simulation that assimilates anomalies of surface air temperature (DA_NOFWF) and (d) the 
model simulation that assimilates anomalies of surface air temperature and that is forced by an 
additional autoregressive freshwater flux (DA_FWF). Hatched areas highlight the grid cells where the 
trend is not significant at the 99 % level. The shaded grey areas correspond to the land mask of the 
ocean model. Figure from (Zunz and Goosse, 2015). 
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The observed trend in ice extent over the period 1980-2009 derived from the version 2 of the 
Bootstrap data (Comiso, 1999) equals 19.0 x 103 km2 yr-1. The simulation NODA provides a 
trend in ice extent over that period equal to –15.5 x 103 km2 yr-1, a negative value that is 
mostly due to the simulated response to the external forcing. Besides, the two simulations 
with data assimilation provide trends in ice extent that are much closer to the observed one, 
–3.0 x 103 km2 yr-1 in DA_NOFWF and –2.8 x 103 km2 yr-1 in DA_FWF, though those 
simulated trends are still slightly negative. In addition, the distribution of the trends in ice 
concentration is also in better agreement with the observations in the two simulations with 
data assimilation compared to the simulation without data assimilation. In the simulation 
DA_FWF, the analyses of the ocean heat and salt contents in the top 100 m of the ocean 
and in the layer between –100 and –500 m indicates that the ocean in the 1970‟s is 
characterized by a warm and salty surface layer, a cold intermediate layer and strong vertical 
mixing. From the early 1980‟s onward, this state evolves towards a stabilization of the ocean 
column involving a fresher and cooler ocean surface that favors the formation of sea ice.  
 
Hindcast simulations were then performed with LOVECLIM over the period 1980-2009. One 
hindcast was initialized from a state extracted from the simulation DA_NOFWF 
(HINDCAST_1) and three hindcasts from the simulation DA_FWF. Those latter three 
hindcasts differ from each other in the additional freshwater flux they received: no additional 
freshwater flux (HINDCAST_2.1), time evolving (HINDCAST_2.2) and constant freshwater 
flux (HINDCAST_2.3). The hindcast initialized from DA_NOFWF fails in simulating a trend in 
ice extent close to the observations. Besides, the three hindcasts initialized from DA_FWF 
provide trend in ice extent and concentration that roughly fit the observations (Figure 26). 
  

 
Figure 26 Boxplots showing the trends in annual mean sea ice extent in ensemble simulations. The 
edges of the boxes are the 1

st
 and 3

rd
 quartile while the central mark in the box is the median. The 

beginning (end) of the whisker corresponds to the 1st (3rd) quartile minus (plus) 1.5 times the 
interquartile range. The crosses denote the outliers. The black vertical line corresponds to the 
observed value of the trend (Comiso, 1999), surrounded by one standard deviation shown as the grey 
shaded rectangle. 

In DA_FWF, the state of the ocean in the late 1970‟s is characterized by a relatively warm 
and salty surface layer and a cold intermediate layer (for details, see Zunz and Goosse, 
2015). The surface layer then freshens and cools down during the following years, leading to 
an increase in ice formation at the surface. This specific state in the late 1970‟s was likely 
achieved thanks to the combination of the data assimilation with the additional random 
freshwater flux. Besides, the additional freshwater flux does not seem essential during the 
following years since a hindcast simulation initialized with an adequate state can reproduce a 
positive trend in ice extent without any additional freshwater flux (HINDCAST_2.1 in Figure 

26). Overall, our results confirm the conclusion of recent studies about the important role 
played by the ocean in controlling the state of the sea ice at the surface (e.g., Bintanja et al., 
2013; Hellmer, 2004; de Lavergne et al., 2014; Swingedouw et al., 2008). Here, we went a 
step further and pointed out that an adequate initialization of the ocean could improve the 
simulated trend in ice extent and concentration over the past three decades. Those results 
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are rather encouraging and open perspectives to predict the Antarctic sea ice over the next 
decades. Nevertheless, it has to be kept in mind that our tests in realistic conditions were 
carried out over the only 30-year period for which reliable observations of the sea ice cover 
are available. Furthermore, some of the key ice-ocean processes may be missing or 
misrepresented in climate models used to perform decadal predictions and this issue should 
be addressed in future work. 
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3. Policy support 
 
Hugues Goosse is contributing author of the IPCC AR5, in charge in particular of the future 
changes in the sea ice cover and in the Southern Ocean. 
  
Hugues Goosse is co-author of the update of the ACCE report (Antarctic Climate Change 
and the Environment ) performed in December 2012 : Turner J., N. Barrand, T. Bracegirdle, 
P. Convey, D. Hodgson, M. Jarvis, A. Jenkins, G. Marshall, H. Roscoe, J. Shanklin, J. 
French, H. Goosse, M. Guglielmin, J. Gutt, S. Jacobs, C. Kennicutt, V. Masson-Delmotte, P. 
Mayewski, F, Navarro, S. Robinson, T. Scambos, M. Sparrow, K. Speer, C. Summerhayes, 
D. Thompson, A. Klepikov, 2014. Antarctic Climate Change and the Environment – An 
Update. Polar Record 50, (3) 237-259 DOI: 10.1017/S0032247413000296. 
  
Those reports will be important elements for the scientific basis of any decision making 
related to future climate changes. 
  
Hugues Goosse is member of the „OCNexus Statement drafting group experts‟ that has been 
asked by the European Marine Board to prepare a document describing the critical role of 
ocean science in responding to climate change. This document will be presented at the 
European Parliament on 21 October 2015 in the context of the upcoming COP21 United 
Nation Climate Conference that will be held in Paris in December 2015. 
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4. Dissemination and valorization 
 
In addition to the point raised in the section 3 „policy support‟, the results obtained specifically 
within the framework of PREDANTAR have been reported in detail in more than 20 scientific 
articles published in peer-reviewed journal (see Section 5). The results achieved during this 
project were also regularly presented in more than 50 oral and poster contributions in 
international conferences. Information related to PREDANTAR is archived in the website of 
the project (www.climate.be/PREDANTAR). A workshop presenting the main results of the 
project and discussing the perspectives, with 20 participants from Belgium, France, United 
Kingdom and Norway was held May 21-22 2015 in Brussels. The project website also 
proposes an outreach section where the mechanisms related to the interactions between the 
sea ice and the ocean are explained in a movie showing simple experiments and a report 
describing the main conclusions of the project in a way adapted to a large audience. This 
report is presented as an annex to this document. 
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