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ABSTRACT: A comparison of the benefits of post-processing ECMWF ensemble forecasts based on a deterministic-like
and a regression technique is performed for Belgium. The former is a Linear Model Output Statistics technique (EVMOS)
recently developed to allow provision of an appropriate ensemble variability at all lead times, and the latter is the Non-
homogeneous Gaussian Regression, NGR. The training of the post-processing techniques is based on the reforecast dataset
of ECMWF which covers a period from 1991 to 2007. The EVMOS approach is mainly providing a correction of the
systematic error and does not enhance substantially the variance of the ensemble. The application of the NGR method
provides an ensemble which encompasses the observations, unlike the EVMOS scheme. However, by taking into account
the observational error, the analysis suggests that the ensemble based on the EVMOS post-processing scheme is also found
to be consistent. This apparent contradiction is clarified and it turns out that both schemes are valuable depending on the
specific purpose, the evaluation of the uncertainty of large scale flows or the downscaling of the temperature uncertainty
at the level of the local observations. Copyright © 2010 Royal Meteorological Society
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1. Introduction

Ensemble forecasts have been an integral part of the
forecasting suite for almost 20 years at the European
Centre for Medium-Range Weather Forecasts, ECMWF,
and at the National Center for Environmental Prediction,
NCEP (Molteni et al., 1996; Toth and Kalnay, 1997).
Today about 10 global ensemble prediction systems
provide probabilistic forecasts on an operational basis
(Bougeault et al., 2009). Together with the prediction of
the potential evolution of the current weather situation,
they provide information on the uncertainty of a forecast
issued at a specific date. Even if many modifications of
the design of ensemble forecasts have allowed for an
improvement of the probabilistic skill of the ensemble,
some robust deficiencies are still present, amongst others
the underdispersive character of the ensemble and/or
the presence of systematic errors (Buizza et al., 2005;
Doblas-Reyes e al., 2005; Bechtold et al., 2009). In this
context it is not easy to disentangle the respective roles
of the sources of errors, which can be either from a
modelling origin or from the mis-specification of the
initial condition ensemble, or both.

Beyond the natural tendency in improving these fore-
casts by modifying the physics of the model or the way
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the initial ensemble is built, there is a growing interest
in applying post-processing techniques to the ensembles.
Two main approaches were followed. The first consists
in performing a regression of a probability density on
the whole ensemble or a kernel density smoothing of
each ensemble member. The advantages and drawbacks
of several variants of theses methods were thoroughly
reviewed in Wilks (2006a), and it was found that one
of the best approach is the Non-Homogeneous Gaussian
Regression method (NGR) proposed by Gneiting et al.
(2005). The second main approach is to apply the post-
processing technique developed for single forecasts to
the ensemble directly. This approach was at first sight
discarded because the most popular post-processing tech-
nique introduced in the 1970s (see Glahn and Lowry,
1972) has the tendency to converge to the climatolog-
ical mean for long lead times (e.g. Wilks, 2006b). This
approach is based on a linear regression between forecasts
and observations and is referred hereafter as the Linear
Model Output Statistics (LMOS). Recently, a modifica-
tion of this approach has been proposed which is strongly
related to the ensemble kernel density smoothing (Glahn
et al., 2009; Unger et al., 2009), which allows alleviation
of this problem.

An alternative approach has also been recently pro-
posed which consists in modifying the linear regres-
sion itself (Vannitsem, 2009). The idea behind this new
approach is to incorporate in the fitting the natural
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fact that the forecasts are displaying errors, an assump-
tion not present in the LMOS approach. It has been
shown that this simple consideration allows for keep-
ing natural variability to the corrected forecast. This in
turn allows its use for ensemble post-processing as has
been demonstrated on a low order system (Vannitsem,
2009). This approach is hereafter referred as EVMOS
(Error-in-Variables MOS).

In the present work, the latter approach is compared
to the NGR method, which is believed to be one of
the most performant ensemble regression techniques
(Wilks, 2006a) in an operational environment. Since the
decision whether a post-processing method should be
implemented operationally at a national meteorological
service depends on the local results for their specific
area, here the respective advantages and drawbacks of
both post-processing methods for Belgium, as a specific
example, are analyzed. To this aim, the 2 m temperature
reforecasts now operationally produced and archived at
ECMWEF for the calibration of the operational Ensemble
Prediction System (Hagedorn, 2008; Hagedorn et al.,
2008) is used to train the EVMOS equations and the NGR
calibration. The resulting coefficients are then applied to
the operational 2 m temperature ensemble. Two sets of
data will be used as reference, (1) eight synoptic stations
located in Belgium, and, (2) the Eta-interim re-analyses
(Simmons et al., 2007).

In Section 2, the post-processing approaches are
described, while the data sets are presented in Section
3. The properties of the corrected ensemble forecasts are
then discussed in Section 4. The conclusions are drawn
in Section 5.

2. The post-processing schemes

2.1. The EVMOS technique

One of the central difficulties in using the Linear Model
Output Statistics (LMOS) technique for ensemble correc-
tion in its classical formulation (Glahn and Lowry, 1972)
is related to the fact that the LMOS correction converges
toward the climatological mean for long lead times. In the
present section the new scheme proposed in Vannitsem
(2009), in which this constraint is relaxed, is described
briefly.

The Linear approach consists in building a linear
combination of a set of model observables (or predictors),
Vi(t),i = 1,...,n,ata certain lead time ¢ of the forecast:

Xc®) =a()+ Y Bi@)Vi()

i=1

D

in order to provide a corrected forecast, Xc(¢) (or
predictand), for a specific reference variable X (¢). The
parameters «(t) and S;(¢) are estimated using a set of
K past forecasts by minimizing a cost function, J(¢),
measuring the distance between the observations and the
corrected forecast. In the classical approach, the basic
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assumption is the fact that the input observables are
supposed to be error free, but not the observations. The
cost function displays, therefore, a very simple form:

K n 2
> |:{a(t) + Y BOVii)} - Xk(r)} )

k=1 i=l

When this basic error-free assumption is relaxed, the
cost-function for one model observable (EVMOS1) reads:

K

e + BOVD) — X, ()]
10 =2, o3 (t) + B0 (1)
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where 0)2( (t) and 0‘2, (t) are the variance of X and V, at
lead time ¢. After minimization, one arrives at:
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2
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For two model observables (EVMOS2), relation (3)
can be easily modified by inserting in Equation (3) a
linear relation of the form V;; 4 8V, in place of V.
The minimization of this modified relation leads then to
the estimation of the three parameters (see Vannitsem,
2009).

In the classical LMOS approach, one central feature
is the progressive decrease of the variance of the cor-
rected forecasts, implying that for long lead times the
corrected forecasts are converging towards the climato-
logical mean. This feature could be useful when using
single forecasts because the climatological mean is better
than any single forecasts when they become completely
uncorrelated with the actual atmospheric situation (see
Wilks, 2006b), but once the interest is placed on the
evaluation of the uncertainty of the forecasts based on
ensembles this feature is a drawback which is easily alle-
viated by using the EVMOS approach since the variance
of the corrected forecasts is now equal to the variance of
the observations.

2.2. The NGR method

This method is a regression technique aimed at providing
probabilistic forecasts, related to the classical LMOS
technique in the sense that a linear regression of the
ensemble mean is performed. The regression residuals are
then supposed to be normally distributed with a variance
linearly related to the variance of the ensemble itself. In
this case the corrected ensemble forecast is given by:

Xe,j(t) = a(t) + bV () + (1) (©6)
with,

gj(t) € N{0,c(t) +d(t)oz, (1)} (7)
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where V() and oens(f) are the ensemble mean and
spread of the ensemble at lead time ¢, respectively. The
parameters a, b, ¢ and d should be estimated through
the minimization of a cost function. The one proposed
by Gneiting et al. (2005), also used subsequently in
several applications, is the average Continuous Ranked
Probability Score defined as:

CRPS(F, q) =

» i /w (Fi(s)— His —g)fds  (8)
K . i i

where F; denotes the probability distribution issued for
the ith observation, ¢;, and H(s — ¢;) is the Heaviside
function. For a Gaussian distribution of the form (7), this
cost function reduces to:

K
= E Z\/C(l) + d(t)aenst( )

[z 20z — 1y +2¢(Z) — 77 9)

where, .
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zi=1
Je +d@a, o)

(10)

and ¢ and @ are the probability density and probability
distribution of the standard Gaussian distribution. The
parameters are then minimized numerically through stan-
dard techniques such as the simplex method which can
be found in Press ef al. (1996).

3. The data

One of the central problems of most post-processing
techniques is the need to have a sufficiently large set
of data on which the statistical relations can be trained.
This imposes that the model used for the forecast should
be the same as the one used for training. This has
led different centres to develop long archive data sets
based on the integration of the model starting from past
analyses. These are known as reforecasts (Hamill et al.,
2006; Hamill and Wilks, 2007; Hagedorn, 2008). In the
present work the 2 m temperature reforecast produced by
ECMWEF is used. Each week, a set of ensemble forecasts
starting from the same calendar date for 17 years from
1991 to 2007 is performed. The initial state of the control
forecast is selected from the ECMWF reanalyses data set
(Uppala et al., 2005). The number of ensemble members
has been fixed to four, in addition to the control forecast.
It has been shown that this number is sufficient to get
a quite robust estimate of the parameters of the NGR
methods presented in Section 2 (Hagedorn, 2008).
Ensemble post-processing is applied on a set of syn-
optic stations located in Belgium. Eight of them (Uccle,
Beauvechain, Elsenborn, Florennes, Deurne, Kleine Bro-
gel, Koksijde and Middelkerke) have been selected, in
view of their long records without many data gaps. Some
of these are located in the central part of the country
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(Uccle, Florennes, Beauvechain, Deurne). Elsenborn and
Kleine Brogel are located in the eastern part of Bel-
gium which is a more undulating region than the central
part, while Middelkerke and Koksijde are located on the
coastal zone. The same stations have been used in Van-
nitsem (2008) to evaluate the nature of the corrections
provided by the classical LMOS algorithm for single (or
deterministic) 2 m temperature forecasts, in the spirit of
the theoretical investigation of Vannitsem and Nicolis
(2008). As it turned out, the dominant correction was
mainly of a systematic nature, either from a systematic
bias in the initial conditions or in the model formula-
tion. The only exception is the coastal zone for which an
important correction is obtained for the variable part of
the model error source.

The same analysis is also performed using the most
recent ECMWF reanalysis, ERA-interim (Simmons et al.,
2007) as verification dataset. The purpose of this is
to evaluate the role of the observational error. The
investigation is done at the same grid points as the ones
providing the forecasts for the synoptic stations (five grid
points).

The post-processing techniques presented above are
trained for each season (December, January, February;
March, April, May; June, July, August; September, Octo-
ber, November) separately, using the reforecasts gener-
ated during the corresponding periods. The regressions
are then applied to the ensemble forecasts of the four sea-
sons covering the period from March 2008 up to February
2009. For each season there are 221 ensemble forecasts
(17 years x 13 weeks) on which the post-processing
techniques are trained. All the results displayed in the
sequel are averaged over all stations or grid points, in
order to compensate for the shortness of the verification
period.

4. Results

4.1. Source of errors

Before starting the presentation of the results obtained in
the context of the ECMWF data, a discussion of the role
of the different sources of errors affecting the forecasts,
the post-processing and the scores, is needed. One can
distinguish between two different sources of errors: the
initial condition and model errors. The post-processing
calibration technique of ensemble forecasts aims at mod-
ifying the original ensemble in order to take into account
these different sources of errors, as discussed extensively
in previous works (Wilks, 2006a; Vannitsem, 2009), but
one important source of errors also affects the scores
used to evaluate the quality of ensembles, the observa-
tional error, as discussed in recent papers (Saetra et al.,
2004; Bowler, 2006; Candille and Talagrand, 2008). This
observational error originates from (1) the presence of
instrumental errors and (2) from the so-called representa-
tiveness errors. Instrumental errors are, of course, related
to the quality of the instrument and the environmental set-
ting in which it is placed. For the hourly temperature at
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2 m this error is quite small (of the order of a few tenths
of degrees at synoptic stations). The second source of
error is larger and is related to the fact that the measure-
ment station evaluates the quantity of interest on a very
small scale as compared with the scale of the forecasted
observable. For the ECMWF model the forecasted vari-
able is valid for a domain of the order of a few tens of
kilometres, which is of course much larger than the size
of the instrument used to measure the 2 m temperature,
which can vary substantially over a few tens of kilome-
tres. It is worth emphasizing that the representativeness
error is not per se associated with a defect of the observa-
tional technique designed to measure the local properties
of the atmosphere, but stems from a mismatch between
the scale of the measurement and of the model observ-
ables. This representativeness error reflects, therefore, the
under-sampling of the atmospheric variability.

To evaluate the potential impact of this observational
error, it is necessary to focus on the mean square
error between one forecast and the observations, denoted
respectively as V and O = X1 + ¢ where ¢ is the obser-
vational error, including both the measurement error and
the representativeness error, and X7 is the truth. Assum-
ing that this error is independent of the forecast and of
the true value, the mean square error is then given by:

<(V=0P>=<(V-Xr)P?>+<e>
(11)

—2<e><V —-—Xr >

If no systematic observational errors (<& >= 0) are
present or if <V >=< Xy >, it reduces simply to the
sum of the mean square error as compared to the truth and
the variance of the observational error. Note that in data
assimilation the standard deviation of this observational
error is assumed to be of the order of 1.5°C (e.g. Parrish
and Derber, 1992; Mahfouf et al., 2009).

Turning more specifically to the impact of this obser-
vational error on the corrected forecast based on the
EVMOSI scheme, the first point to make is the role of
this observational error on the estimation of the parameter
o and B, obtained by minimizing Equation (3) in which
X is replaced by O = X7 + &:

ao=<Xr>+<e>-8B<V> (12)
2 2

g = w (13)
Oy

If the observational error is small as compared to
the natural variability of the variable considered, then
B is not very much affected by the presence of the
observational error. Parameter « is shifted by an amount
equal to the systematic observational error. Both mean
and variance of the corrected forecasts are of course
affected by these errors. The mean will be shifted from
the reality by an amount equal to < & > and the variance
by an amount equal to the variance of this observational
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error. The mean square error of the corrected forecast
using one model observable, Y, can be easily evaluated
(Equation (1)):

where Y here refers to any observable of the deterministic
or ensemble forecasts (with the same units as the nominal
variable). The MSE decomposition is then:

DC
<Ko= 0P >=<(Y-XpP?>—~(<Xp>—<V>)
+(B-1)?2< (¥ -<V>P>2B-D{CXp V) —< (Y=< V>)? >}+o?
-vc

15)
where C (X7, Y) refers to the covariance between X7 and
Y. The second term on the right hand side is called the
drift correction (DC) and the third and fourth terms are
referred to as the variability correction (VC). The main
difference with the estimation, assuming that there are
no observational errors, lies in the presence of the term
052, the variance of the observational error. If known, this
quantity can be removed to get a reliable estimate of the
mean square error of the correction as compared to real-
ity. In the next section, relation (15) will be estimated for
the ensemble mean.

Note that this observational error does not affect
explicitly the evaluation of the variance of the raw ensem-
ble itself or of the corrected ensemble by EVMOS, except
through the amplitude of the parameters « and 8. In
order to take into account the presence of observational
errors in the estimate of MSE some perturbative tech-
niques are usually used to increase the variance of the
ensemble (Hamill, 2001; Hagedorn et al., 2008), the pur-
pose being to clarify the reliability of the ensemble taking
into account the presence of observational errors. This
approach is not used here. Instead, the amplitude of the
observational error is removed based on Equation (15) to
evaluate the quality of the post-processing (e.g. Hagedorn
et al., 2008). For other variables, this operation cannot
necessarily be performed due to the poor knowledge of
the observational error. Note that in this case, the use of
other datasets such as the reanalyses can help in clarify-
ing the role of observational error as will be shown in
Section 4.

For the NGR method, the estimation of the parame-
ters of the Gaussian distribution is highly sensitive to
all sources of errors, and in particular the observational
errors. The main reason lies in the fact that the estimated
variance (8) is directly related to the use of real obser-
vations in Equation (10). This will be confirmed in the
next section.

4.2. Application to the ECMWEF ensemble forecasts

Starting with the evaluation of the correction obtained
with the MOS equations discussed in Section 2,
Figure 1(a) displays the mean square error evolution for
the corrected forecasts based on EVMOS1 with 2 m
temperature, T2m, as predictor and EVMOS2 with two

Meteorol. Appl. 18: 94—104 (2011)
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Figure 1. (a) Mean square error evolution for the raw forecasts (pluses),
EVMOSI (stars) and EVMOS2 (squares) during the training period
covering 1991-2007. EVMOS?2 is based on the temperature at 2 m
and 850 hPa as predictors. (b) Variability (pluses) and drift (crosses)
corrections provided by the EVMOS]1 scheme during the same period.

observables T2m and T850 (temperature at 850 hPa),
as obtained from the full reforecast training data set
described in Section 3. The results are averaged over all
synoptic stations and the four seasons.

A large correction is obtained with an amplitude oscil-
lating between 0.5 and 1°C depending on the lead time
of the forecast. The largest improvement occurs at 0000
and 0600 UTC. The EVMOS2 scheme does only pro-
vide a slight improvement as compared to the EVMOSI1
scheme during the training phase. Other second observ-
ables were also considered such as latent or sensible heat
fluxes, but without success. As shown later, the improve-
ment obtained with T850 disappears when considering
the forecast quality of the ensemble mean computed dur-
ing the verification phase. This suggests that the second
observable is of little use in this specific forecast case.

The two corrections, the systematic drift (DC) and the
variability (VC), are plotted in Figure 1(b) for EVMOSI,
indicating that the nature of the correction is mainly of a
systematic nature. This feature together with the fact that
the parameter § is usually not very far from 1, indicates
that a good variability is already produced by the model.
This result is obviously very encouraging in terms of
model quality for Belgium.

Copyright © 2010 Royal Meteorological Society

As already discussed in the previous section, the
comparison of the forecasts is made with observations
affected by observational errors. The variance of these
errors is typically estimated to be of the order of (1.4)
or (1.5)% (see e.g. Mahfouf er al., 2008; Hagedorn et al.,
2008). This implies that the mean square error evaluation
of the corrected forecast should be shifted by about 2 °C?
in order to get an estimate of the error as compared
with the true evolution at the scale of the model. So the
error of the corrected forecast oscillates between 2 and
3°C? for short times. The correction obtained with the
post-processing varies between 20 and 40% of the error
variance for short lead times, as compared with the true
atmospheric evolution.

One of the central objectives of ensemble forecasts
is to provide an uncertainty information such that the
observation can be considered as one state undistinguish-
able from the states generated by the ensemble forecasts.
This feature implies that the mean square error of the
ensemble mean (MSE) should be close to the variance of
the ensemble (VAR), averaged over a set of initial dates.
Figure 2 displays the MSE and the VAR for the different
MOS schemes used here, averaged over the whole verifi-
cation year (March 2008 to February 2009). Lead times at
0600, 1200, 1800 and 0000 UTC are displayed separately
in order to emphasize the corrections obtained during the
daily cycle. Whatever the lead time, the mean square
error of the ensemble mean is smaller for the three MOS
schemes as compared with the raw forecast. The correc-
tion amplitude is similar for the three schemes, indicating
that they all provide similar corrections of the systematic
error. It also reveals that the addition of the temperature
at 850 hPa as second predictor does not provide much
additional correction for the ensemble mean forecast, but
seems to affect the variance of the ensemble slightly (as
compared with EVMOSI1).

In order to evaluate the robustness of these results in
view of the small number of stations and the single veri-
fication year, a confidence interval has been estimated for
each MSE and VAR curves through a bootstrap approach
(Efron and Tibshirani, 1993). For each lead time, the
MSE and VAR computed at the eight stations are first
re-sampled through random drawings. This operation is
performed for each season and then averaged to get new
values for the whole year. It is then repeated 1000 times.
A mean and a variance for the curves MSE and VAR can
then be estimated. This bootstrap method shows that the
variability around the MSE curves displayed in Figure 2
is quite small, with a standard deviation close to 0.15 for
short times and 0.4 °C? for longer lead times, as illustrated
in Figure 2(e) for EVMOS1 at 0000 UTC lead times.
For the VAR curves, these standard deviations are very
small at short lead times, close to 0.01, up to 0.3 °C2 for
long lead times. It indicates that the differences between
the MSE and VAR curves of the corrected forecasts and
the raw forecasts are quite robust, even with this small
number of stations.

Meteorol. Appl. 18: 94—104 (2011)
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Figure 2. Evolution of the mean square error of the ensemble mean (MSE; pluses for the raw forecast, crosses for EVMOSI, stars for EVMOS2

and circles for NGR) and variance (VAR, curves without symbols; continuous line for the raw forecasts, dashed line for EVMOSI, dotted line

for EVMOS2, dash-dotted line for NGR) for the raw and corrected ensemble forecasts of the period March 2008 to February 2009. The results

are displayed separately for the four different forecast times of the day, (a) 0600, (b) 1200, (c) 1800, and (d) 0000 UTC. EVMOS2 is using the

Temperature at 850 hPa as second predictor. (e) As in (d) for EVMOSI and the raw forecasts only, with the error bars (one standard deviation
on both sides of the averaged curves) obtained with the bootstrapping method (see text for details).

An additional important result is that for short lead
times the EVMOSI1 and EVMOS2 scheme do not sub-
stantially modify the variance of the ensemble, whereas
the NGR method does this quite well. The NGR cali-
brated ensemble variance VAR is very close to the MSE,
indicating that the observation can be considered as one
potential member of the model ensemble. Note that the
variance of the ensemble is smaller for EVMOS2, but
in view of the small difference with EVMOSI1 and our
inability in evaluating precisely the observational error,
one cannot infer at this stage what the best scheme is.

Copyright © 2010 Royal Meteorological Society

To understand this major difference between EVMOS
and NGR one must come back to the discussion of
Figure 1, which mentioned that the role of the obser-
vational errors is mainly of a representativeness nature.
The EVMOS approach does not correct for short lead
times the random part of error sources uncorrelated with
the predictors (Vannitsem, 2009). The absence of cor-
rection of the observational error present when com-
paring the corrected large scale forecast mean and the
local scale observation suggests that this error is not
correlated with the predictors used. This in turn implies

Meteorol. Appl. 18: 94—104 (2011)
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this large difference between the VAR and MSE curves
for EVMOS. However, if one uses relation (15), one
immediately realizes that by removing the variance of
the observational error (2°C?), one gets an MSE curve
very close to the VAR curve, suggesting that indeed the
ensemble is consistent, but at the scale described by
the model. The NGR method, on the contrary, inflates
the ensemble VAR during the minimization process in
order to get a distribution close to the observational one.
This VAR curve therefore becomes close to the MSE by
construction.

Small differences are present between the various daily
hours, in particular an increase of the variance for 1200
UTC using EVMOS (Figure 2(b)) and a decrease for
0000 UTC (Figure 2(d)). For NGR, the VAR curves are
usually larger than the MSE for long lead times, suggest-
ing a tendency of the ensemble based on NGR to be over
dispersive.

Note that both techniques have been applied using
the ensemble of reforecasts archived at the ECMWF
(four members and a control), but an important aspect of
EVMOS is that it can be trained using the control fore-
casts of the reforecast archives only. The corrections for
the ensemble obtained in this case do not differ substan-
tially from the ones based on the full archive, as revealed
in Figure 3. In this figure, all lead times have been plot-
ted for the winter season of the verification period. The
EVMOS scheme trained using the four ensemble mem-
bers + control is practically undistinguishable with the
corrected forecast obtained by using the control only.
This suggests that with this approach one can achieve
similarly good results but with a less expensive reforecast
data set.

Let us now focus on the rank histogram of the ensem-
bles (see Wilks, 2006b). This diagram evaluates the frac-
tion of occurrences of the observations within the ensem-
ble. For a consistent ensemble, this histogram should
be flat, otherwise it indicates some deficiencies such as
an under dispersion when it has a U-shape with more
occurrence of the observation outside the ensemble (see
Wilks, 2006b for a detailed discussion). Figure 4 displays
the rank histogram at four different lead times averaged
over the whole year and the ensemble of stations consid-
ered. For short lead times, all the ensembles are under
dispersive (U-shape of the histogram), except the one
generated by the NGR method. This feature obviously
reflects the small VAR of the ensembles of the DMO
and EVMOS schemes. The NGR method is clearly much
more useful than the EVMOS method (in its current form)
when a reliable ensemble at the scale of the observation
is needed for short lead times. For long lead times this
conclusion is weakened because the rank histogram is
now much flatter for the EVMOS method. These fea-
tures reflect the results already summarized for the MSE
and VAR, indicating that the observational error is taken
into account by the NGR method.

In order to investigate the skill of specific extreme
events, Figure 5 displays the Brier Skill Score (BSS) for
predicting the occurrence of temperature less than 0°C

Copyright © 2010 Royal Meteorological Society
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Figure 3. Evolution of the mean square error (MSE) of the ensemble

mean (a) and variance (VAR) of the ensemble (b) for the raw (pluses)

and EVMOSI corrected ensemble forecasts, trained using the control

forecast (crosses) or the four ensemble members + the control (stars).
The period covered is winter 2008—2009.

during winter times for 0000 UTC as in Figure 2(d).
Interestingly the two approaches EVMOS and NGR pro-
vide similar corrections with a large improvement of skill.
For summer temperature larger than 20°C at 1200 UTC
(Figure 6), the results indicate a large improvement of
skill by using one of the post-processing techniques, with
at some moments a doubling of skill scores. The similar-
ity of improvement in skill between the EVMOS and
NGR approaches suggests that the observational error
does not affect excessively the ensemble evaluation based
on this score.

The impact of the observational error present at small
scales and emphasized when discussing the results for
synoptic stations is further examined by investigating
the correction obtained by the various techniques when
trained and verified against another reference. A suit-
able reference is provided by the ERA-interim reanalyses
(Simmons et al., 2007) covering the same period and the
same region. The smaller scale at which these reanal-
yses are performed is twice as large as the scale of
the ensemble forecast model, indicating that the scale
discrepancy between the two systems (i.e. the represen-
tativeness error) is much smaller than in the comparison
with the synoptic stations.
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Figure 5. Brier Skill Scores for 2 m temperature probabilistic forecasts

below 0°C during Winter 2008—-2009 for the raw ensemble (pluses)

and the corrected ones based on EVMOSI (long-dashed), EVMOS2

with as second observable the temperature at 850 hPa (dashed) and the
NGR method (dotted), at 0000 UTC.

Figure 7 displays the MSE and VAR obtained with
the different techniques (DMO, EVMOS1, EVMOS?2 and
NGR) based on the reanalyses as reference at the same
grid points as the ones used for the calibration at synop-
tic stations (five grid points). Clearly the VAR curves are
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Figure 6. Brier Skill Scores for 2 m temperature probabilistic forecasts

larger than 20°C during Summer 2008 for the raw ensemble (pluses)

and the corrected ones based on EVMOSI (long-dashed), EVMOS2

with as second observable the temperature at 850 hPa (dashed) and the
NGR method (dotted), at 1200 UTC.

now closer to the MSE curves for all post-processing
techniques, suggesting that they all provide a good
correction at these larger scales. It is also worth noting
that the NGR ensemble variance is now similar to the
ones obtained with the other techniques. For the Brier
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Figure 7. Mean square error evolution (MSE; pluses for the raw
forecast, crosses for EVMOSI, stars for EVMOS2 and squares for
NGR) of the ensemble mean and the ensemble variance (VAR;
lines without symbols) for the raw ensemble (continuous line) and
the corrected ensemble by the post-processing schemes (EVMOSI,
long-dashed; EVMOS2, dashed; NGR, dot-dashed) for the whole year
at 0000 UTC. EVMOS?2 is using the Temperature at 850 hPa as
second predictor. The reference used for training and verification is
the ERA-interim reanalyses.
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Figure 8. Brier Skill Scores for 2 m temperature probabilistic forecasts

below 0°C during winter 2008—-2009 for the raw ensemble (pluses)

and the corrected ones based on EVMOSI (long-dashed), EVMOS2

with as second observable the temperature at 850 hPa (dashed) and the

NGR method (dotted), at 0000 UTC. The reference is the ERA-interim
reanalysis.

skill score the picture is similar to the one obtained for
the synoptic stations, with a slight improvement at short
lead times (Figure 8).

5. Discussion and conclusions

Two post-processing techniques of ensemble forecasts
have been tested, one correcting directly each member
of the ensemble referred as EVMOS, and the other,
calibrating the ensemble based on a regression density
estimator. The results suggest that both the EVMOS
and NGR approaches are able to correct operational
ensemble forecasts of the 2 m temperature and reduce
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considerably the distance between the ensemble mean
and the observation over Belgium. The main difference
between the two approaches lies in the amplitude of the
corrected ensemble variance. For the EVMOS scheme,
this variance is quite close to the one of the raw ensemble
forecast for most lead times, while the one associated to
the NGR scheme is generally much larger. This difference
reflects two important aspects: (1) the EVMOS scheme
does not correct any deficiency in the random distribution
of the initial condition errors nor does it take the presence
of observational errors into account, and, (2) the NGR
method does take into account all the possible sources
of errors affecting the observations. These differences do
not imply, however, that one scheme is better than the
other, but rather each scheme can have its own interest
depending on the question at hand.

More specifically, if one would like to know whether
the corrected ensemble is consistent with the truth, one
has to take into account the presence of observational
errors. If one subtracts this error from the MSE of the
EVMOS scheme, one gets a result which is now very
close to the variance of the ensemble, suggesting that the
EVMOS scheme does provide a consistent ensemble, at
the scales of the model dynamics. On the other hand,
this observational error is already taken into account in
the NGR approach indicating a good consistency at the
scale of the observation itself.

To emphasize the differences between the two schemes
further, Figure 9 shows two examples of operational
ensemble forecast for the station of Uccle. These
examples also demonstrate how an operational forecast
product would change depending on the different cali-
bration schemes. The starting dates are 4 December 2008
(Figure 9(a)) and 14 February 2009 (Figure 9(b)), respec-
tively. For the first date (Figure 9(a)), the spread of the
raw ensemble and the ensemble corrected by EVMOSI1
are systematically too small, while the NGR method is
indeed covering the range of potential values in which
the observation is falling. On the other hand, the spread
of the NGR can sometimes be too large when a useful
information in a real forecast situation is needed. Such
an example is provided in Figure 9(b) at short lead times.
In this case, at 18 h lead time, the NGR ensemble covers
a range of about 10°C, while the raw ensemble provide
already a good forecast with an uncertainty of the order
of 2°C. The EVMOS ensemble is performing even bet-
ter by debiasing the raw ensemble. Another interesting
feature of both methods is visible after day 3 of the fore-
cast in the same panel (Figure 9(b)): the raw ensemble is
in this case highly skewed indicating that the ensemble
contains multiple regimes (or the possibility of regime
transitions). This feature is preserved after the correction
by EVMOS but not by the NGR method, transforming the
ensemble to a Gaussian distribution. This can sometimes
induce a failure of the NGR method when such regime
transition or extreme events occur, as at the 4 day lead
time (18 February 2009) where the NGR does not cap-
ture the event while the raw ensemble and the EVMOS
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Figure 9. Ensemble forecast for two specific dates (4 December 2008 (a) and 14 February 2009 (b)) at Uccle. The black dots represent the

observation. The ensemble distribution is displayed with box-and-whiskers, with 50% of the ensemble lying in the inner box and the remaining

members represented by the whiskers. At each lead time, the box-and-whiskers represent, from left to right, the EVMOSI corrected ensemble
(dark grey), the raw ensemble (light grey) and the NGR corrected ensemble (dark grey).

ensemble give an indication of the potential occurrence
of this actual event.

In summary, the technique should be chosen depending
on the specific purpose. The EVMOS approach explored
here is able to correct ensemble forecasts at the scales
effectively described by the model, and its specific inter-
est is that it can be trained on single past forecasts. The
NGR method on the other hand provides information on
the full uncertainty including the representativeness error
and acts therefore as a probabilistic approach valid for
downscaling. However its Gaussian shape can sometimes
be counterproductive when raw ensembles are highly
skewed.

An extension of this work through the analysis
of post-processing of GFS re-forecasts (Hamill et al.,
2006) or TIGGE ensembles (Thorpex Interactive Grand
Global Ensemble, Bougeault er al., 2009) is envisioned,
with emphasis of their potential combinations with the
ECMWF ensemble forecasts to form a multi-model
ensemble system.

Copyright © 2010 Royal Meteorological Society
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