

Technological Development and Needs at ESO

Industry Day, Brussels, 18-June-2015

Gerald Hechenblaikner ESO

1

Technology in Astronomy

- From a small, manually pointed device for visual observations (around 400 years ago)
 large, sophisticated, computer-controlled instrument with fully digital output
 - Two properties have been particularly important:
 - the light-collecting power, or diameter of the telescope's mirror (allowing for the detection of fainter objects), and
 - the image sharpness, or angular resolution (allowing more detail to be seen)
- The European Southern Observatory (ESO), as a worldwide leader in astronomy, has developed, together with industry, several advanced technologies that have enabled the construction of ever bigger telescopes with similarly complex instrumentation

+ES+ 0 +

Key-Technology in Astronomy

ESO has contributed to the progress of several technologies applied to the modern astronomy to improve the image sharpness, among these:

ACTIVE OPTICS

- Preserves optimal image quality by adjusting a "flexible" mirror's shape with actuators during observations (i.e. corrects telescope flexure)
- In use in most modern medium and large telescopes

ADAPTIVE OPTICS

- Technology to reduce distortions introduced by atmospheric turbulence
- One of the principal reasons for launching the Hubble Space Telescope was to avoid this image smearing

INTERFEROMETRY

- The combination of the light collected by two or more telescopes boosts the angular resolution beyond that of a single telescope
- ESO has been a pioneer in this field with the Very Large Telescope Interferometer (VLTI) at Paranal

Principle of Active Optics

Closed control loop with:

- 1.Measurement of wave front error generated by the telescope itself
 - Integration times of 30 sec
 - Modal analysis using optical aberrations and elastic modes of the flexible meniscus mirrors
- 2.Correction of the errors by the optical elements of the telescope
 - Rigid-body movements of the mirrors
 - Deformation of the mirrors by adjusting the support forces

Active Optics From the NTT to the VLT

- A computer-controlled <u>active</u> optics system was first developed by ESO in the 1980s
- The first major telescope to benefit from this revolution in telescopic techniques was ESO's New Technology Telescope (NTT) at the La Silla Observatory
- This has become a standard technology for all major new telescopes

VLT Mirror

VLT Cell

Adaptive Optics

An adaptive optics system (AO) corrects turbulence in the atmosphere (loop frequency in kHz range), which is much faster than corrigible by the active optics

> Active optics:

Shape of the primary mirror adjusted by stiff actuators to compensate <u>slowly</u> changing disturbances (gravity flexures, thermal deformations) on a timescale of tens of seconds

> Adaptive optics:

ESO – DoE

Shape of a smaller and thinner deformable mirror adjusted (typically second Cassegrain mirror "M2" or a subsequent mirror conjugate to pupil plane)

Turbulence in the earth atmosphere: Warm (red) and cool (blue) air cells (~10 cm) distort the incoming wavefront from the star.

Adaptive Optics Principle

An AO Milestone: MAD

MCAO: 3 Guide stars at 2', K-band, FWHM: 100-120mas, Sr: >20%, 0.7" seeing, Exposure 360 s

Multi-conjugate adaptive optics demonstrator (MAD) installed on Nasmyth A of UT3

Laser for Adaptive Optics

LASER GUIDE STARS

- Laser guide stars are artificial stars generated by excited atomic sodium in the mesosphere at an altitude of 90km
- This requires a powerful laser beam launched from the telescope. The yellow wavelength (589nm) is the colour of a sodium street lamp

LASER DEVELOPMENT

- In 2009 ESO demonstrated continuous output power >50 W at 589nm in a narrow spectral line
- Optical fibre Raman amplifier technology developed at ESO and licensed to industry
- Milestone industrial demonstrator of 20W using technology developed by ESO

Laser Guide Star Development

Field Selector Beam Steering Mirror

Adaptive Optics Facility

Adaptive Optics Facility (AOF):

- 2nd generation AO System on UT4
- Uses 4LGSF, deformable M2, and 2 WFS modules:
 - GALACSI for MUSE
 - GRAAL for Hawk-I
- Commissioning in 2015/16

Technical Data of 4LGSF:

- 4 LGS, off axis up to 330"
- 2.5-5 Mphot/sec/m²
- LGS FWHM <1.2" on WFS</p>
- 4 LGSs fixed on pupil

Special Optics for AO

Wave front map for the VLT DMS, best figure: <10 nm RMS

Detector Development

Near infrared high speed wavefront sensor: eAPD array

- HgCdTe Electron Avalanche PhotoDiode array: 320x256 pixel
- Avalanche effect offers noiseless amplification \rightarrow sensitivity larger by factor 100
- first time worldwide NIR subelectron readout noise at 5Mpix/s/output
- Technology only available in Europe: SELEX, SOFRADIR funded by ESO & NSF
- Needed for IR wavefront sensing and fringe tracking in interferometry (GRAVITY)

Mid infrared detector (3-28 μm): AQUARIUS

- Arsenic doped Silicon detector (Raytheon)
- 1024 x 1024 pixels, 30 μm pixel-pitch
- Hybridized construction: silicon MUX + indium bumps
- 64 outputs with 150 Hz frame rate

NGC: Generic Control Electronics

- Controller platform NGC is the result of three decades of development at ESO
- NGC is a state-of-the art controller for all detectors at the observatory
- high speed (10MHz) low noise (sub-electron) AO wavefront sensors
- large format mosaic (VISTA: 256 channels)

Power supply

VLT – Main-Axes Drive System

VLT is well known for its excellent tracking performance. The four main contributors to this technology are:

- 1. Direct drive motors
- 2. Collocated encoders
- 3. Hydrostatic bearing system
- 4. Innovative control algorithms

VLT – Technologies

- VLT was the first telescope to use large diameter direct drive motors (early 90s)
 → outperform traditional gear or friction coupled drives due to high stiffness and no backlash
 → little wear and maintenance
 - Direct drive motors offer possibility of using collocated encoders
 - \rightarrow optimal for control engineering
 - \rightarrow VLT encoders are high quality tape encoders with same diameter as the motors.

 \rightarrow mounted together on the same structure, accuracy ~0.1"

- VLT main axis uses hydrostatic bearing system
 → telescope structure floats on an oil film of thickness 50 µm.
 - \rightarrow very low friction (one person can move it)
 - \rightarrow absence of stick-slip friction make the system practically linear.
 - \rightarrow huge advantage for the control system
- First telescope with entire control system implemented in software

18

VLTI = VLT & Interferometry

VLTI Scheme

Very Large Telescope Interferometer (VLTI)

- Combines light from the 8-m UTs and several moveable 1.8-m ATs, separated by up to 200 m
- Inside a130-m long underground tunnel the light beams pass through delay lines to balance the optical path length from each telescope
- The resulting interference fringes provide information needed to reconstruct an image with unprecedented detail
- ➤ The angular resolution is increased according to telescope distance, i.e. 10-20 times better than individual telescope → opens door to milli-arcsec resolutions

The ALMA Partnership

- ALMA=Atacama Large Millimeter / sub-millimeter Array:
 - Giant array of 50 12-m radio antennas, which can be configured to achieve baselines up to 16 km for highest angular resolution
 - Additional, compact array of 7-m and 12-m antennas for large field-of-view
- ALMA is equipped with state-of-the-art receivers that cover all the atmospheric windows up to 1 THz

Some challenges:

- Continuous day and night operation at the Array Operations Site (AOS) at 5000m in the Atacama desert
- Strong wind conditions of 6-9 m/s
- Temperature extremes of -20C to +20C and large temporal gradients
- Seismically active region

ALMA is a global partnership in astronomy:

- Europe (ESO): 25 x 12-m antennas
 Industrial Contractors: AEM Thales-Alenia Space, European Industrial
 Engineering and MT Mechatronics
- North America (US, Canada, Taiwan): 25 x 12-m antennas Industrial Contractors: Vertex, part of General Dynamics Corporation
- East Asia (Japan, Taiwan): 4 x12-m 12 x 7-m antennas Industrial Contractors: MELCO, part of Mitsubishi Electric Corporation

Instrument Technologies

ExampleMUSE is the Multi-Unit Spectroscopic Explorer at UT4
composed of 24 identical cameras providing a 1 arcmin² image optical spectrum for each pixel
24 CCD cameras and dewars built by ESO
Instrument built over 10 years by Center of Astrophysical Research in Lyon (CRAL).

Cryogenic Systems & Lines

Cooling systems and cryostats down to 3 Kelvin, small and large scale

VLT MUSE cooling system with 24 identical CCD cryostats

Manufacturing and testing qualification of transfer and distribution lines for liquid nitrogen ESO – DoE

Single detector head cryostat for MUSE

Wave front sensor cryostat for GRAVITY

Manufacturing

small and large structures

- Manufacturing of small accurate parts
- Materials: Aluminum, martensitic and austenitic stainless steels, copper...

Manufacturing of stainless steel structures

Custom gears and worm gear system

 Final machining of large structures including in some case in-situ metrology for accurate references

Manufacturing

Cryostats and vacuum chambers

- Aluminum structures: Manufacturing Techniques
 - Forming of aluminum
 - TIG welding
 - Thermal treatments
 - Machining.

- Aluminum structures: Cryogenic applications
 - intermediate treatment
 - temperature ageing

- Manufacturing & testing
 - vacuum chambers
 - LN2 cryostats (including intermediate thermal shocks)

Control Systems on PLC-basis

Cryogenic and Vacuum Control System for Scientific Instruments: X-Shooter, Gravity, MUSE, MATISSE

- Interlock and Safety Systems for telescopes and instruments ELT, VLT, 4LGSF
- UT Dome control system upgrade
- From the shelves components standardized SIEMENS, WAGOO, MAXON, PI, etc

Obsolescence management

- HW Virtualization: keep HW and SW interfaces untouched
 - $\circ\,$ Today Design and back engineering $\,$ made by ESO $\,$
 - Shall be outsourced → FPGA and schematic design, Layouting, production, tests

Control Software at ESO

At ESO, we develop control software for telescopes, antennae and astronomical instruments over the full lifecycle

HAWF ICS Control - @whf

VLT Software: All current ESO telescopes and their instruments are based on the VLT Common Software and on the VLT Instrumentation Software

ESO - DoE

Real time HW control

Graphical user interfaces

VLT Software

The E-ELT

Selected Technology Development Efforts

FEA and CFD Analyses

E-ELT Dome wind velocity distribution

Wind Tunnel Tests for Dome and Main Structure •Validation of in-house CFD analyses •Input to specification requirements

M1 Segment subunit detailed FE model

M1 Edge Sensor stresses

┃ ◎ ▶ := + | | = | | = | | = | | ...

Earthquake Analysis

Consultancies and testing for the E-ELT

Evaluation of seismic design loads

 Define seismic Acceleration Response Spectra and ground motion time histories for E-ELT specifications

Seismic devices & isolation

- system prototype testing
- Verification of seismic isolation analyses by testing

E-ELT mirror handling

handling & treating large mirrors

- E-ELT segment handling system for M1 1.
- E-ELT large mirror handling system for M2, M3: 2. gantry with 5 DoF, precision movement, force control
- Mirror cleaning and washing facilities 3.
- Coating tank with infrastructure for applying y 4. multi-layer coatings on glass-ceramic substrates (ca 4m diameter) ESO - DoE33

Control System Design

VLT - Model-based controller design based on frequency models

ALMA - Model-based non-linear damping system design

EELT - Prototyping and design of M1 and M5 control systems

Presentation of EELT technical concepts to the public

Optical Metrology Technologies

Monitoring telescope's inter-mirror positions

- Laser trackers (5μm/m):
- Multiline frequency scanning laser interferometry (0.5μm/m

Laser tracker on AT2 (2015)

Segment phasing during day time

- Instantaneous Multiwavelength shearing interferometry (10nm, 1 arcsec sensitivity):
- Multiwavelength fiber interferometry (nm resolution over 1.2mm)

Detector Mosaics

Near infrared

HAWK-I near infrared mosaic 4 x 2Kx2K HgCdeTe Hawaii2RG arrays Cutoff wavelength $\lambda_c = 2.5 \ \mu m$ 128 parallel video outputs cryogenic preamplifiers MICADO (ELT Instrument): mosaic of 16x4Kx4K Hawaii-4RG-15 arrays

OmegaCAM CCD mosaic 268 M Pixel, 32 CCDs,

NEW: 9Kx9K e2v CCDs for ESPRESSO Also to be used in **ELT instruments**

General Technology Needs

- Optics
- Detectors
- Mechanical structures
- Cooling and chiller system
- HVAC
- Cranes and handling equipments
- Mirror coating facilities
- Actuators
- Controllers
- SW
- Power generation systems
- Power distribution
- Waste and chemicals treatment
- Pulsed laser at specific frequency/wavelength
- Consultancy (RAMS, PA, QA)
- Only a few examples are given above.....

Thank you!

55

38

..