Plan d'appui scientifique à la recherche prénormative dans le secteur alimentaire dans un contexte de développement durable

Stratégie intégrée d'analyse qualitative et quantitative des résidus de substances antimicrobiennes dans les denrées alimentaires

Guy MAGHUIN-ROGISTER, Amaya JANOSI and Vincent HELBO, Université de Liège (ULg)

Carlos VAN PETEGHEM, Ellen SANDERS and Nico VAN EECKHOUT, Universiteit Gent (UG)

> Marc CORNELIS and Martine JOURET, Institute of Veterinary Inspection, Brussels (IEV/IVK)

Contrat NP/12/35

Services scientifiques du premier Ministre Affaires scientifiques, techniques et culturelles (SSTC)

8. ANNEXES

- 8.1 Annexes au rapport de l'ULg
- 8.1.1 Liste des publications et communications
- a) liste des publications et communications présentées lors de divers congrès :

Liste des abstracts envoyés aux congrès:

- 1. "Stratégie intégrée d'analyse qualitative et quantitative des résidus de substances antimicrobiennes dans les denrées alimentaires." A. Jànosi, G. Maghuin-Rogister, N. Van Eeckhout, C. Van Peteghem. Journée d'Etude du SSTC sur la Recherche Prénormative dans le secteur alimentaire, Bruxelles, Belgium, 7-8 June 2001.
- 2. "Multi-residue determination of (fluoro)quinolone antibiotics in swine kidney using liquid chromatography-electrospray tandem mass spectrometry." A.Jànosi, G.Van Vyncht, G.Bordin, A.R.Rodriguez, E.De Pauw, G.Maghuin-Rogister. Proceedings of the 15 th International Mass Spectrometry Conference, Barcelona, Spain, 27th August 1st September 2000.
- 3. "A sensitive screening method for the multi-analyte determination of ß-lactam antibiotic residues in swine tissue." A.Jànosi, G.Maghuin-Rogister, J.Degelaen. Proceedings of the Euroresidue IV Conference, Veldhoven, The Netherlands, 8-10 May 2000, 639-644.
- 4. " HPLC-ESI-MS/MS for the determination of (fluoro)quinolone antibiotics in foodstuffs." G.Van Vyncht, A.Jànosi, G.Bordin, G.Maghuin-Rogister, A.R.Rodriguez. Proceedings of the 6th International Symposium on Hyphenated Techniques in Chromatography, Bruges, Belgium, 9-11 February 2000.
- 5. "Stratégie intégrée pour l'analyse qualitative et quantitative des résidus de substances à activité antibactérienne dans les denrées alimentaires d'origine animale." A. Jànosi, G. Maghuin-Rogister, N. Van Eeckhout, C. Van Peteghem, M. Cornelis, M. Jouret. Symposium sur le Développement Durable, Bruxelles, November 1999.
- 6. "Stratégie intégrée d'analyse qualitative et quantitative des résidus de substances antimicrobiennes dans les denrées alimentaires." A. Jànosi, G. Maghuin-Rogister, N. Van Eeckhout, C. Van Peteghem. Journée d'Etude du SSTC sur la Recherche Prénormative dans le secteur alimentaire, Bruxelles, Belgium, 27 May 1999.

Publications

1. Determination of β-lactam antibiotic residues in swine kidney using a multianalyte sensitive screening test. A.Jànosi, G.Maghuin-Rogister and J.Degelaen. JAOAC int, submitted for publication (2001). 2. Multiresidue determinatin of (fluoro)quinolone antibiotics in swine kidney using LC/MS/MS. G.Van Vyncht, A.Jànosi, G.Bordin, G.Maghuin-Rogister, E. De Pauw, A.R.Rodriguez. J. of Chromatography, submitted for publication (2001).

Proceedings

- 1. **LC-MS/MS for the determination of (fluoro) quinolone antibiotics in animal kidneys.** G.Van Vyncht, A.Jànosi, G.Bordin, A.R.Rodriguez and G.Maghuin-Rogister. Proceedings of the 9th Euroanalysis Conference, Lisbon, Portugal, 2-6 September 2000.
- 2. Multi-residue determination of (fluoro)quinolone antibiotics in swine kidney using liquid chromatography-electrospray tandem mass spectrometry. A.Jànosi, G.Van Vyncht, G.Bordin, A.R.Rodriguez, E.De Pauw, G.Maghuin-Rogister. Proceedings of the 15 th International Mass Spectrometry Conference, Barcelona, Spain, 27th August 1st September 2000.
- 3. A sensitive screening method for the multi-analyte determination of ß-lactam antibiotic residues in swine tissue. A.Jànosi, G.Maghuin-Rogister, J.Degelaen. Proceedings of the Euroresidue IV Conference, Veldhoven, The Netherlands, 8-10 May 2000, 639-644.
- 4. Hyphenated RP-HPLC-ESI-MS/MS for the determination of (fluoro)quinolone antibiotics in foodstuffs. G.Van Vyncht, A.Jànosi, G.Bordin, G.Maghuin-Rogister, A.R.Rodriguez. Proceedings of the 6th International Symposium on Hyphenated Techniques in Chromatography, Bruges, Belgium, 9-11 February 2000.

Oral / Poster presentations

- 1. Stratégie intégrée d'analyse qualitative et quantitative des résidus de substances antimicrobiennes dans les denrées alimentaires. Jànosi, G. Maghuin-Rogister, N. Van Eeckhout, C. Van Peteghem. Journée d'Etude du SSTC sur la Recherche Prénormative dans le secteur alimentaire, Bruxelles, Belgium, 27 May 1999. (oral presentation).
- 2. Stratégie intégrée pour l'analyse qualitative et quantitative des résidus de substances à activité antibactérienne dans les denrées alimentaires d'origine animale. A.Jànosi, G.Maghuin-Rogister, N. Van Eeckhout, C. Van Peteghem, M. Cornelis, M. Jouret. Symposium sur le Développement Durable, Bruxelles, November 1999. (poster presentation)
- 3. **HPLC-ESI-MS/MS** for the determination of (fluoro)quinolone antibiotics in foodstuffs. G.Van Vyncht, A.Jànosi, G.Bordin, G.Maghuin-Rogister, A.R.Rodriguez. 6th International Symposium on Hyphenated Techniques in Chromatography, Bruges, Belgium, 9-11 February 2000. (poster presentation)
- 4. A sensitive screening method for the multi-analyte determination of β-lactam antibiotic residues in swine tissue. A.Jànosi, G.Maghuin-Rogister, J.Degelaen. Euroresidue IV Conference, Veldhoven, The Netherlands, 8-10 May 2000, 639-644. (poster presentation)
- 5. Multi-residue determination of (fluoro)quinolone antibiotics in swine kidney using liquid chromatography-electrospray tandem mass spectrometry. A.Jànosi, G.Van Vyncht, G.Bordin, A.R.Rodriguez, E.De Pauw, G.Maghuin-Rogister. 15 th International Mass Spectrometry Conference, Barcelona, Spain, 27th August 1st September 2000. (poster presentation)
- 6. **LC-MS/MS for the determination of (fluoro) quinolone antibiotics in animal kidneys.** G.Van Vyncht, A.Jànosi, , G.Bordin, A.R.Rodriguez and G.Maghuin-Rogister. 9th Euroanalysis Conference, Lisbon, Portugal, 2-6 September 2000. (poster presentation)

- b) Références bibliographiques :
- **Réf. 1:** Boison J.O., Salibury C.D.C., Chan W. and Mc Neil J.D., 1991, *Determination of penicillin-G residues in edible animal tissues by liquid chromatography*, <u>JAOAC Int</u>. 74, 497-501.
- **Réf. 2**: Development and validation of analytical methods, 1996, <u>Progress in pharmaceutical and biomedical analysis</u> volume 3, edited by C.M.Riley and T.W.Rosanske, Pergamon .
- **Réf. 3**: Martin D. Rose, J.Bygrave and G.W.F.Stubbings, 1998, *Extension of multi-residue methodology to include the determination of quinolones in food*, Analyst, 123, 2789-2796.
- **Réf. 4**: B.Delepine, D.Hurtaud-Pessel and P.Sanders, 1998, *Simultaneous determination of six quinolones in pig muscle by ionization mass spectrometry*, <u>Analyst</u>, 123, 2743.
- Réf. 5: F. Doucet-Populaire, 1995, Journal of Antimicrobial Chemotherapy, 36,129.
- **Réf. 6**: B.Délépine, D.Hurtaud-Pessel, P.Sanders, 1996, *Multi-residue method for confirmation of macrolide antibiotics in bovine muscle by LC/MS*, <u>Journal of AOAC int</u>, vol 79, n°2, 397.
- **Réf. 7**: M.Dubois, D.Fluchard, E.Sior, Ph.Delahaut, 2001, *Identification and quantification of five macrolide antibiotics in several tissues, eggs and milk by LC/ESI/MS/MS*, <u>Journal of Chrom B</u>, 753,189.
- **Réf. 8**: JPAbjean, 1997, *Planar chromatography for the multiclass, multi-residue screening of chloramphenicol, nitrofuran, and sulfonamide residues in pork and beef.* Journal of AOAC int, vol 80, n°4, 737.
- **Réf. 9:** A.P.Pfenning, J.E.Roybal, H.S.Rupp, S.B.Turnipseed, S.A.Gonzales and J.A.Hurlbut, 2000, *Simultaneous determination of residues of chloramphenicol, florfenicol, florfenicol amine and thiamphenicol in shrimp tissue by GC/ECD*, <u>Journal of AOAC int</u>, vol 83, n°1, 26.
- **Réf. 10:** R.M.L.Aerts, H.J.Keukens and G.A.Werdmuller, 1989, *Liquid chromatographic determination of chloramphenicol in meat: interlaboratory study*, <u>Journal of AOAC</u>, vol 72, 570.
- **Réf. 11**: E.H.Allen, 1985, Review of chromatographic methods for chloramphenicol residues in milk, eggs and tissues from food-producing animals, Journal of AOAC, vol 68, 990.

8.1.2 Résultats détaillés (tableau, figures)

I. LES B-LACTAMES

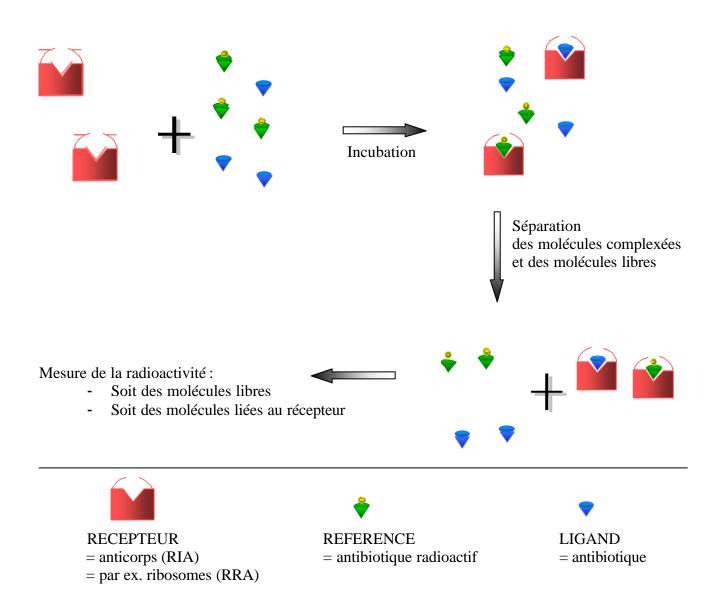
figure 1 : structure des β -lactames

$$R1 - CH - C - NH - CH_3 - CH_3$$

$$R2 - CH_3 - CH_3$$

$$CH_3 - CH_3$$

$$COOH$$


R1	R2	Nom
Н	Н	Penicilline G
Н	NH_2	Ampicilline
OH	NH_2	amoxicilline

$$\begin{array}{c|c} & & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

R	Nom
Н	oxacilline
Cl	cloxacilline

figure 2 : Principe a) du RIA – b) du RRA – c) de l'ELISA.

Principe a) du Radio Immuno Assay (RIA) et b) du Radio Récepteur Assay (RRA)

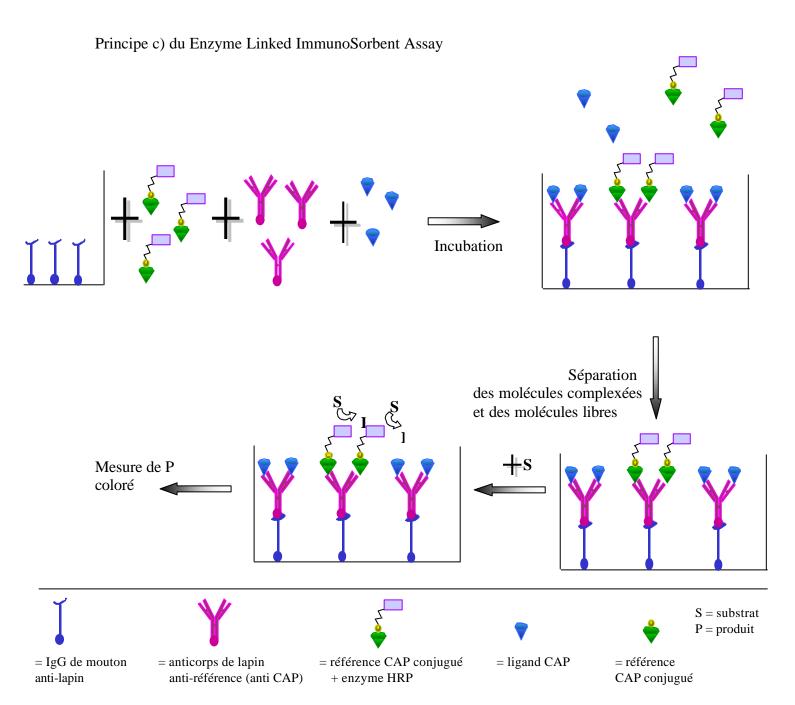
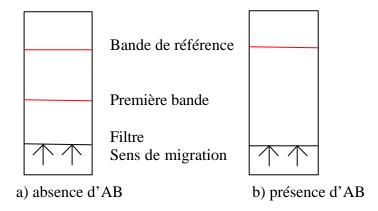
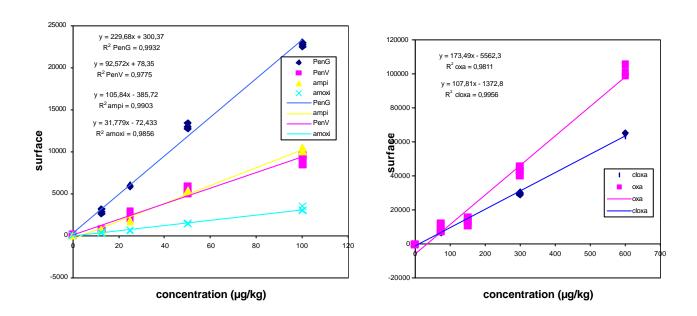


figure 3 : Principe du β -STAR 100 .

2 situations sont représentées a) échantillons sans antibiotique b) échantillon avec antibiotique

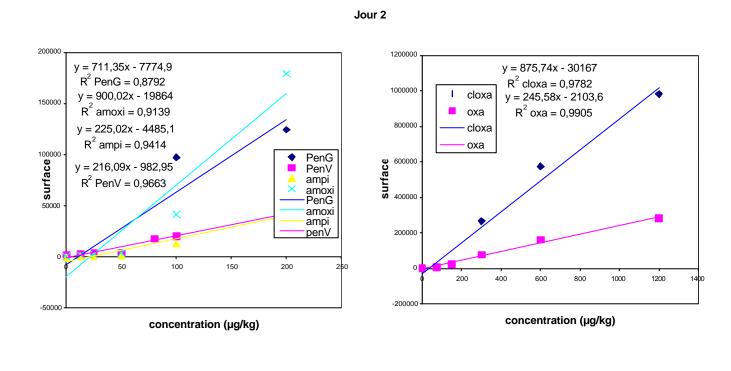


figure 4 : Droite de calibration de solutions standard de β -lactames (ppb) analysés par HPLC.

 $\textbf{figure 5}: \text{Droite de calibration d'extraits de rein dopés aux } \beta\text{-lactames}. \text{ Analyse d'une droite } \text{par jour par HPLC}.$

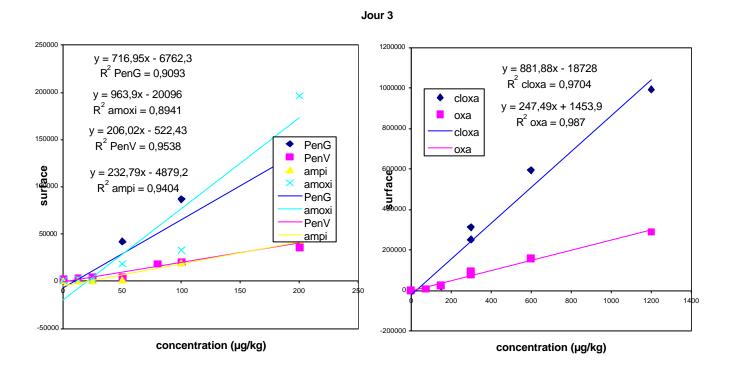
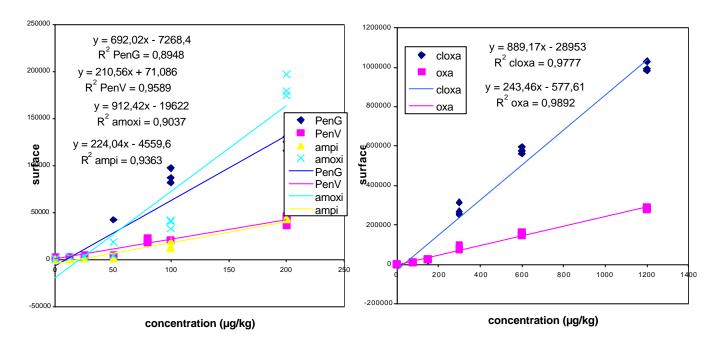
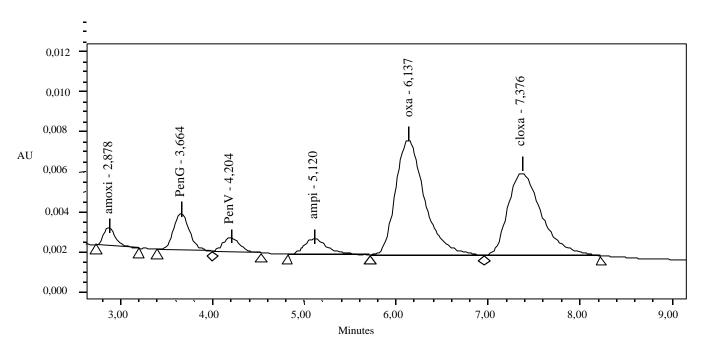
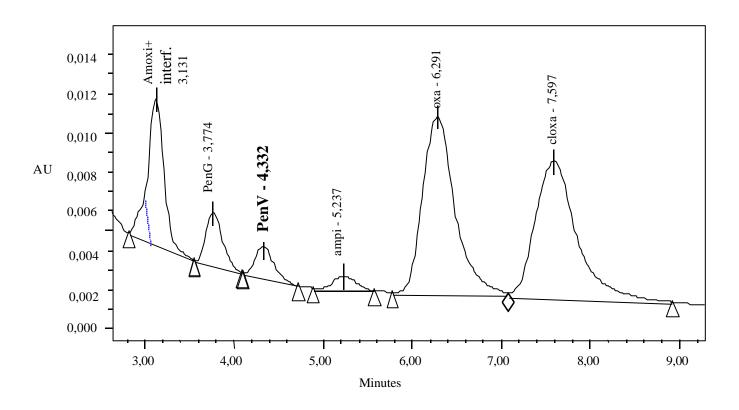
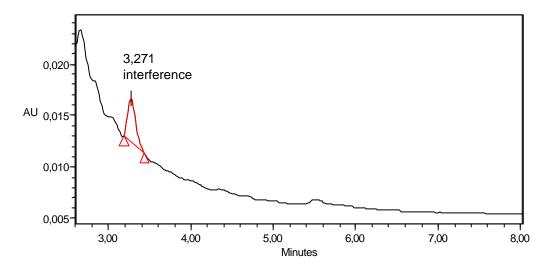




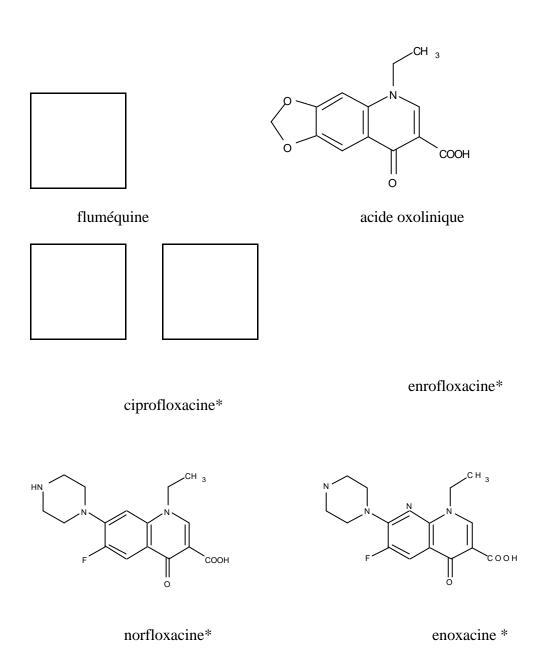
figure 6 : Droite de calibration d'extraits de rein dopés aux β -lactames, établie sur la moyenne des points obtenus pendant 3 jours par HPLC.

moyenne des 3 jours

figure 7 : Chromatogramme d'une solution standard de β -lactames à une concentration équivalente à la LMR (50 μ g/kg pour la pénicilline G, l'amoxicilline et l'ampicilline ; et 300 μ g/kg pour l'oxacilline et la cloxacilline).

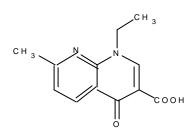
figure 8 : Chromatogramme d'un rein dopé avec des β -lactames à une concentration équivalente à la LMR (50 μ g/kg pour la pénicilline G, l'amoxicilline et l'ampicilline ; et 300 μ g/kg pour l'oxacilline et la cloxacilline).


figure 9 : Chromatogramme d'un rein non dopé aux antibiotiques.

II. LES QUINOLONES

figure 10 : Formule générale des quinolones

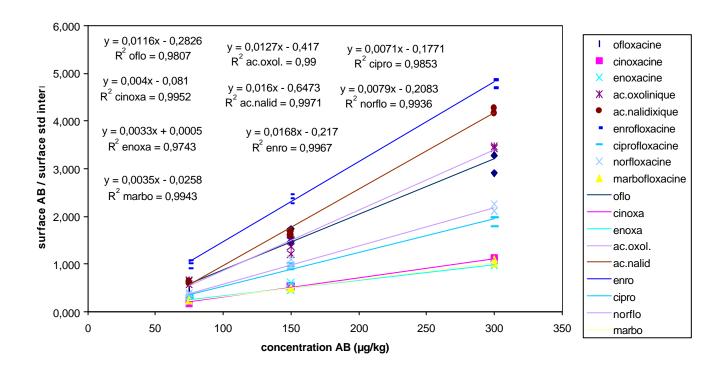

figure 11: Formule des principales quinolones et fluoroquinolones (*)

H₃C N COOH

marbofloxacine*

danofloxacine*

acide nalidixique


.

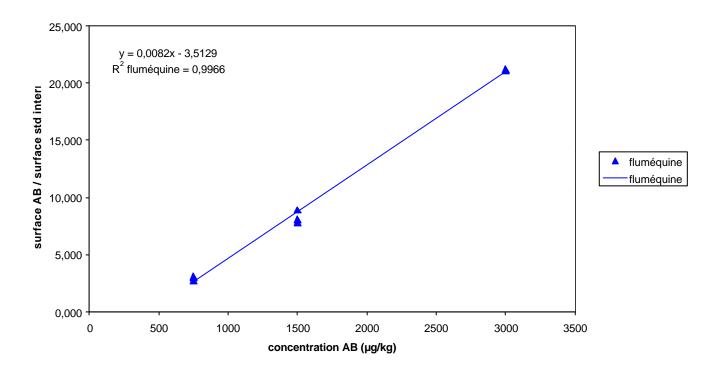
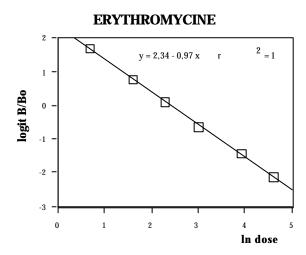

figure 12 : Chromatogramme obtenu par LC/MS/MS lors de l'analyse d'une solution standard de quinolones à une concentration équivalente à la LMR/4.

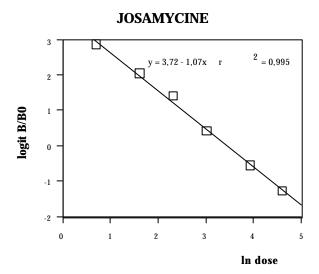
figure 13 : Chromatogramme obtenu par LC/MS/MS lors de l'analyse d'un rein dopé avec des quinolones à une concentration équivalente à la LMR/4.

figure 14: Chromatogramme obtenu par LC/MS/MS lors de l'analyse d'un rein non dopé (blanc).

figure 15 : Droite de calibration établie par LC/MS/MS à partir d'extraits de rein dopés aux quinolones, établie sur la moyenne des points obtenus le même jour (n=3).



III. LES MACROLIDES


figure 16: Inhibition de la liaison spécifique du traceur radioactif (érythromycine C^{14}) aux ribosomes calculée lors de l'incubation de $100\mu l$ d'une suspension de ribosomes correspondant à $300\mu g$ de protéines avec des concentrations croissantes en antibiotiques. L'intersection de la droite de calibration pour la valeur 0 du logit détermine sur l'axe des abscisses des valeurs représentant les doses en antibiotiques

 $(ng/100\mu l/tube)$ inhibant la liaison de 50% du traceur. Graphe a) dosage de l'érythromycine ; graphe b) dosage de la josamycine ; graphe c) dosage de la spiramycine ; graphe d) dosage de la tylosine.

Graphe a)

Graphe b)

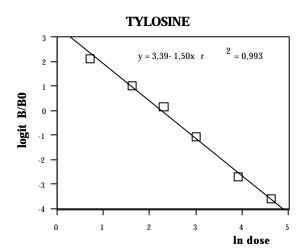
Graphe c)

y = 2,57 - 1,08x r ² = 0,98

ln dose

SPIRAMYCINE

logit B/B0


0

-1

-2

-3

Graphe d)

figure 17 : chromatogramme obtenu par LC/MS/MS lors de l'analyse d'une solution standard de 4 macrolides à une concentration équivalente à la LMR/4.

figure 18 : chromatogramme obtenu par LC/MS/MS lors de l'analyse d'un rein non dopé.

figure 19 : chromatogramme obtenu par LC/MS/MS lors de l'analyse d'un rein dopé avec les 4 macrolides à une concentration équivalente à la LMR/4.

figure 20 : courbe de calibration réalisée par LC/MS/MS à l'aide de solutions standard de macrolides

moyenne des 4 séries standards

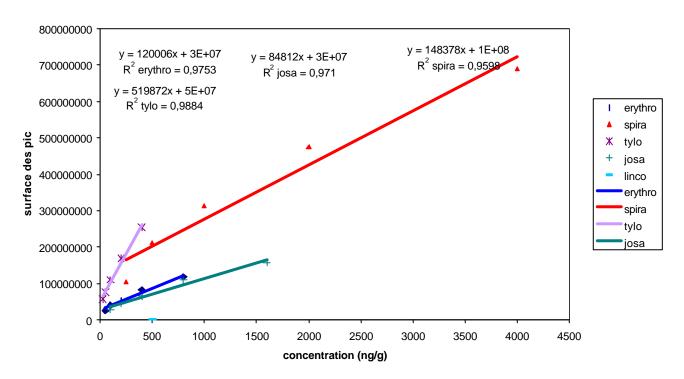
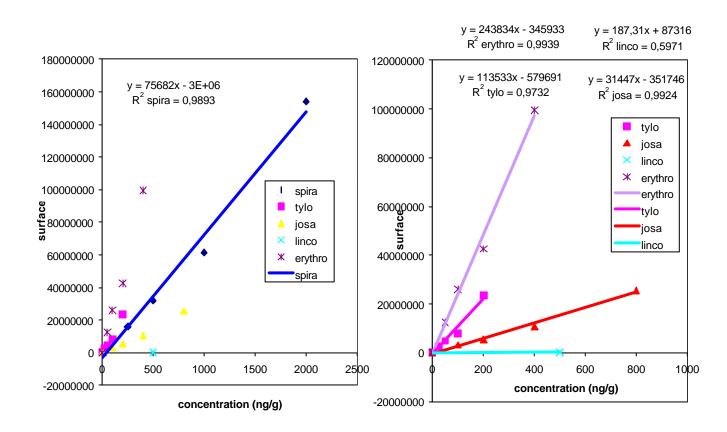



figure 21 : courbes de calibration réalisées par LC/MS/MS à l'aide de reins dopés aux macrolides

IV. LES PHENICOLES.

figure 22 : structure des phénicolés

Chloramphénicol

Thiamphénicol

$$\begin{array}{c} \text{CH} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{SO}_{2} \\ \end{array} \begin{array}{c} \text{NH}_{2} \\ \text{OH} \\ \text{CH}_{2} \\ \text{F} \\ \end{array} \begin{array}{c} \text{CH}_{3} \\ \text{SO}_{2} \\ \end{array} \begin{array}{c} \text{NH}_{2} \\ \text{OH} \\ \end{array} \begin{array}{c} \text{NH}_{2} \\ \text{OH} \\ \end{array}$$

Florfénicol Florfénicolamine

figure 23 : courbe standard n°1 réalisée lors dudosage EIA du chloramphénicol

courbe n°1 std	B/B0	dose (ng/L)	x/(1-x)	In it B/BO	In dose	In dose calc	dose calculée
standard 1	0,8028	50	4,0710	1,4039	3,912	4,049	57,35
standard 2	0,7389	150	2,8300	1,0403	5,011	4,711	111,17
standard 3	0,5497	450	1,2207	0,1995	6,109	6,241	513,59
standard 4	0,4065	1350	0,6849	-0,3785	7,208	7,293	1470,45
standard 5	0,2881	4050	0,4047	-0,9046	8,306	8,251	3831,67

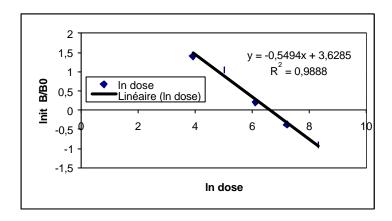


figure 24 : courbe standard n°2 réalisée lors du dosage EIA du chloramphénicol

courbe n°2	D (D c		44				
std	B/B0	dose (ng/L)	x/(1-x)	In it B/BO	In dose	In dose calc	dose calculée
standard 1	0,8395	50	5,2305	1,6545	3,912	3,646	38,33
standard 2	0,6385	150	1,7663	0,5689	5,011	5,485	241,09
standard 3	0,5633	450	1,2899	0,2546	6,109	6,018	410,55
standard 4	0,4150	1350	0,7094	-0,3433	7,208	7,030	1130,26
standard 5	0,2437	4050	0,3222	-1,1325	8,306	8,367	4302,15

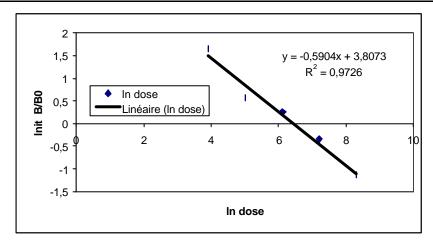


figure 25 : courbe standard n°3 réalisée lors dudosage EIA du chloramphénicol

courbe n°3	B/B0	dose (ng/L)	x/(1-x)	In it B/BO	In dose	In dose calc	dose calculée
standard 1	0,8394	50	5,2267	1,6538	3,912	4,098	60,23
standard 2	0,7958	150	3,8972	1,3602	5,011	4,750	115,57
standard 3	0,6873	450	2,1980	0,7875	6,109	6,021	412,19
standard 4	0,5387	1350	1,1678	0,1551	7,208	7,426	1678,40
standard 5	0,4458	4050	0,8044	-0,2177	8,306	8,253	3840,01

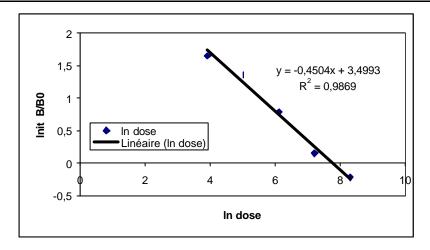


figure 26 : courbe standard n°4 réalisée lors dudosage EIA du chloramphénicol

courbe n°4 std	B/B0	dose (ng/L)	x/(1-x)	In it B/BO	In dose	In dose calc	dose calculée
standard 1	0,9231	50	12,0039	2,4852	3,912	3,780	43,81
standard 2	0,8604	150	6,1633	1,8186	5,011	4,828	124,91
standard 3	0,6682	450	2,0139	0,7001	6,109	6,585	724,50
standard 4	0,5558	1350	1,2512	0,2241	7,208	7,333	1530,63
standard 5	0,4470	4050	0,8083	-0,2128	8,306	8,020	3041,53

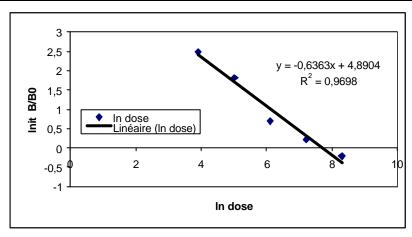
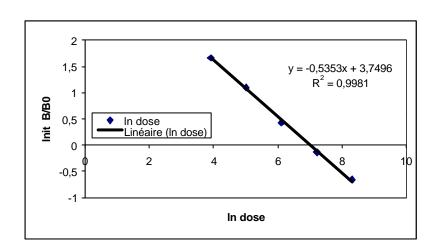



figure 27 : moyenne des 4 courbes standard réalisées lors du dosage EIA du chloramphénicol

moyenne des 4	4 courbes						
std	B/B0	dose (ng/L)	x/(1-x)	In it B/BO	In dose	In dose calc	dose calculée
standard 1	0,8409	50	5,2854	1,6649	3,912	3,894	49,13
standard 2	0,7502	150	3,0032	1,0997	5,011	4,950	141,22
standard 3	0,6054	450	1,5342	0,4280	6,109	6,205	495,26
standard 4	0,4649	1350	0,8688	-0,1406	7,208	7,267	1432,80
standard 5	0,3418	4050	0,5193	-0,6553	8,306	8,229	3747,38

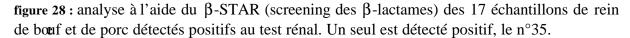
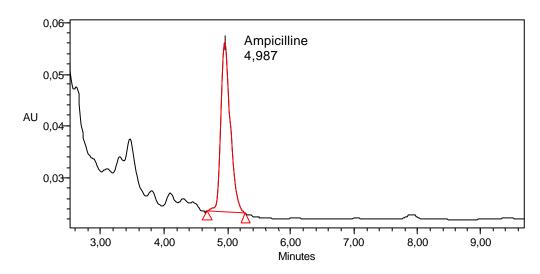



figure 29 : analyse par HPLC d'un échantillon de rein de boaf détecté positif au test rénal ainsi qu'au test de screening pour les β -lactames. Le chromatogramme de l'échantillon n° 35 (rein de boaf) indique la présence d'ampicilline à une concentration équivalente à 1553 ng/g.

figure 30 : analyse par LC/MS/MS d'un échantillon de rein de bouf détecté positif au test rénal ainsi qu'au test de screening pour les macrolides. Les chromatogrammes et spectres de masse de l'échantillon n° 7 (rein de bouf) indique la présence de spiramycine à une concentration équivalente à 93.5 ng / g.

figure 31 : analyse par ELISA des 17 échantillons de rein de bouf et de porc détectés positifs au test rénal. Parmi ceux-ci, 4 échantillons ont une concentration en chloramphénicol significativement supérieure au rein blanc.

							CAP	CAP
							ng / L / 500g	ng/g
ech reels	comptage	moy	B/Bo	x/(1-x)	In it B/Bo	In dose calculé	dose calculée	/ 500
rein blanc	2,047	1,024	0,838	5,182	1,6452	3,931	51	0,1
3	1,920	0,960	0,786	3,678	1,3024	4,572	97	0,2
7	2,089	1,0445	0,855	5,918	1,7780	3,683	40	0,1
16	1,417	0,7085	0,580	1,382	0,3238	6,400	602	1,2
20	1,837	0,9185	0,752	3,036	1,1107	4,930	138	0,3
23	1,596	0,798	0,654	1,887	0,6347	5,819	337	0,7
28	1,710	0,855	0,700	2,336	0,8485	5,420	226	0,5
35	1,945	0,9725	0,796	3,913	1,3644	4,456	86	0,2
38	2,003	1,0015	0,820	4,563	1,5179	4,169	65	0,1
45	2,141	1,0705	0,877	7,113	1,9619	3,340	28	0,1
47	1,878	0,939	0,769	3,330	1,2029	4,758	116	0,2
55	1,969	0,9845	0,806	4,163	1,4262	4,340	77	0,2
61	1,643	0,8215	0,673	2,056	0,7209	5,658	287	0,6
69	2,132	1,066	0,873	6,877	1,9282	3,402	30	0,1
67	1,905	0,9525	0,780	3,547	1,2662	4,639	103	0,2
73	1,837	0,9185	0,752	3,036	1,1107	4,930	138	0,3
80	2,084	1,042	0,853	5,821	1,7615	3,714	41	0,1
85	2,165	1,0825	0,887	7,816	2,0562	3,164	24	0,0

I. LES B-LACTAMES

tableau 1 : calcul des concentrations en antibiotique à chaque étape du protocole.

 β -lactames = pénicilline G (PenG), ampicilline (ampi), amoxicilline (amoxi), oxacilline (oxa) et cloxacilline (cloxa).

ß-lactames	LMR dans le rein ppb (ng/g)	viande engagée au départ	[AB] engagée dans le broyat (ng/g tissus)	ng AB dans 3ml d'éluat (ng/ml)	[AB] après évaporation et reprise dans 1ml	[AB] détectable par le Penzym (ng/ml)
		(g)	ŕ		H2O (ng/ml)	,
PenG	50	2,6	13	13 (4,3)	13	3
Ampi	50	2,6	13	13 (4,3)	13	4
Amoxi	50	2,6	13	13 (4,3)	13	4
Oxa	300	2,6	80	80 (26,7)	80	40
Cloxa	300	2,6	80	80 (26,7)	80	80

tableau 2 : Résultat de l'analyse au β-STAR d'un extrait de rein dopé.

Concentration (ng/ml) ^a	Penicilline G	Amoxicilline	Ampicilline	Oxacilline	Cloxacilline
MRL/2 (2,5)	- b	-	-		
MRL (5)	+ b	+	+		
2*MRL (10)	+ + + ^b	+++	+++		
MRL/2 (15)	+++	+++	+++	+++	+++

MRL (30)	+++	+++	+++	+++	+++
2*MRL (60)	+++	+++	+++	+++	+++

^a Concentration exprimée en ng d'antibiotique par ml de solution finale soumis au test après extraction d'un échantillon de rein (suivant la procédure décrite dans le protocole 2 de ce rapport).

tableau 3: Limite de détection du test β -STAR

	LOD du lait (ng/ml)	LOD du rein (ng/ml) b	MRL dans le rein °		
	(UCB) ^a		tissue (ng/g) (1)	test (ng/ml) (2)	
Penicilline G	2-4	3-4	50	5	
Amoxicilline	2-4	4-5	50	5	
Ampicilline	2-5	3-4	50	5	
Oxacilline	5-10	5-8	300	30	
Cloxacilline	5-10	5-8	300	30	

^a limite de détection des antibiotiques définie par UCB – Bioproducts lors de l'analyse d'échantillons de lait. Concentration exprimée en ng d'antibiotique par ml de lait.

tableau 4 : Répétabilité du test β-STAR sur l'éluat final (série 1) n = nombre d'éluats analysés trois fois avec le β-STAR

	n	LMR/2	L -	M +	R +++	LMR*2 +++
Penicilline G	3	100 % -			100%	100%
	10				100%	
Amoxicilline	3	100% -			100%	100%
	10			3%	97%	
Ampicilline	3	100% -			100%	100%
	10		10%	10%	80%	
Oxacilline	3	100% +++			100%	100%
Cloxacilline	3	100% +++			100%	100%
Blanc	8	100% -				

tableau 5 : Répétabilité du test sur les surnageants (série 2)

n = nombre de surnageants divisés en 3*300 μ l. Chaque fraction de 300 μ l est purifiée et soumise deux fois au β -STAR. Les nombres entre parenthèses indiquent les résultats obtenus après une élution trop rapide.

b Estimation de l'intensité de la première bande de capture : - intensité maximale par rapport à la bande de référence (l'échantillon est négatif). +++ la première bande n'apparaît pas (l'échantillon est très positif).

⁺ intensité intermédiaire, l'intensité de la première bande est plus faible que celle de la bande de référence (l'échantillon est positif).

b limite de détection des antibiotiques mesurée lors de l'analyse d'échantillons de rein de porc. Concentration exprimée en ng d'antibiotique par ml de solution finale soumis au test après extraction d'un échantillon de rein (suivant la procédure décrite dans le protocole 2 de ce rapport).

^c MRL définie dans le rein par le Règlement européen CEE n° 2377/90. Les concentrations sont exprimées d'une part (1) en ng d'antibiotique par g de rein. Et d'autre part (2) en ng d'antibiotique par ml de solution finale soumise au test après extraction complète d'un échantillon de rein (suivant la procédure décrite dans le protocole 2 de ce rapport).

	n	LMR/2	L	M	R	LMR*2
	11	EIVII 2	-	+	+++	+++
Penicilline G	3	100 % -			100%	100%
	4				100%	
Amoxicilline	3	100% -		(63%)	(33%)	100%
	7		3%	3%	94%	
Ampicilline	3	100% -		(63%)	(33%)	100%
	7		8%	14%	78%	
Oxacilline	3	100% +++			100%	100%
Cloxacilline	3	100% +++			100%	100%
Blanc	4	100% -				

tableau 6 : Homogénéité d'un extrait de rein (série 3)

n= nombre de surnageants provenant d'un même extrait de rein dopé et soumis au test de screening.

	n	LMR/2	L -	M +	R +++	LMR*2 +++
Penicilline G	4	100 % -			100%	100%
Amoxicilline	4	100% -	4%	3%	92%	100%
Ampicilline	4	100% -	5%	18%	77%	100%
Oxacilline	3	100% +++			100%	100%
Cloxacilline	3	100% +++			100%	100%
Blanc	16	100% -				

 $tableau\ 7$: Variation intra- et inter-jours du $\beta\text{-STAR}$ (série 4).

n = nombre de reins analysés par jour ; jours = nombre de jours d'analyse

	jours	n	LMR/2	L -	M +	R +++	LMR*2 +++
Penicilline G	4	4	100 % -			100%	100%
Amoxicilline	4	4	100% -	2%	3%	95%	100%
Ampicilline	4	4	100% -	3%	15%	82%	100%
Oxacilline	4	3	100% +++			100%	100%
Cloxacilline	4	3	100% +++			100%	100%
Blanc	4	16	100% -				

tableau 8 : Temps de rétention des β-lactames par HPLC

Temps rétention (minutes)	Amoxicilline	PenG	Pénicilline V	Ampicilline	Oxacilline	Cloxacilline
moyenne (n=48)	2.89	3.71	4.30	5.18	6.25	7.49
écart-type	0.13	0.19	0.23	0.68	0.46	0.63

 $tableau\ 9$: Paramètres des 3 courbes de calibration réalisées par HPLC à partir d'extraits de rein dopés aux β -lactames.

Antibiotique	Jour	Pente	Intercept	Coefficient de corrélation
Amoxicilline	1	900	-19864	0.9139
	2	964	-20096	0.8941
	3	873	-18906	0.9129
		moy = 912		
		RSD = 5.1 %	DS = 631	
Penicilline G	1	711	-7775	0.8792
	2	717	-6762	0.9093
	3	649	-7618	0.9091
		moy = 692		
		RSD = 5.5 %	DS = 545	
Penicilline V	1	216	-983	0.9663
	2	206	-522	0.9538
	3	217	-455	0.9476
		moy = 213		
		RSD = 2.8 %	DS = 287	
Ampicilline	1	225	-4485	0.9414
	2	233	-4879	0.9404
	3	214	-4338	0.9302
		moy = 224	DG 200	
Oxacilline	1	RSD = 4.1 %	DS = 280	0.9905
Oxaciline	2	246 247	-2104 -1454	0.9905 0.9870
	3	238	-1731	0.9870
	3	moy = 244	-1731	0.5540
		RSD = 2.2 %	DS = 1955	
Cloxacilline	1	876	-30167	0.9782
	2	882	-18728	0.9704
	3	911	-39572	0.9859
		moy = 889		
		RSD = 2.1 %	DS = 10439	

 $tableau\ 10$: Equation de la moyenne des droites de calibration réalisées par HPLC à partir d'extraits de rein dopés aux β -lactames.

Antibiotique	Equation de la droite	Coefficient de corrélation
Amoxicilline	Y = 912.42x - 19622	$R^2 = 0.9037$
Pénicilline G	Y = 692.02x - 7268.4	$R^2 = 0.8948$
Pénicilline V	Y = 210.56x + 71.086	$R^2 = 0.9589$
Ampicilline	Y = 224.04x - 4559.6	$R^2 = 0.9363$
Oxacilline	Y = 243.46x - 577.61	$R^2 = 0.9892$
Cloxacilline	Y = 889.17x - 28953	$R^2 = 0.9777$

tableau 11 : Limites de détection et de quantification évaluées dans le rein pour les 6 β -lactames analysés par HPLC.

Antibiotique	LOD (µg/kg)	LOQ (µg/kg)
Amoxicilline	15	25
Pénicilline G	15	25
Pénicilline V	15	25
Ampicilline	15	25
Oxacilline	75	150
Cloxacilline	75	150

tableau 12 : Limites de détection et de quantification calculées sur base de l'intercept et de la pente de la droite de calibration (LOD = 3* Seb / m et LOQ = 3.3* LOD).

Antibiotique	LOD (μg/kg)	LOQ (µg/kg)
Amoxicilline	2.1	6.9
Pénicilline G	2.4	7.9
Pénicilline V	4.1	13.5
Ampicilline	3.8	12.5
Oxacilline	24.1	79.5
Cloxacilline	35.2	116.2

tableau 13 : Moyenne des rendements de récupération obtenus à partir d'extraits de rein dopés à la LMR/2 et à la LMR. Le pourcentage de récupération moyen a été calculé sur base de l'ensemble des résultats obtenus aux trois concentrations. n = nombre de jours

Antibiotique	Rdt de récupération à la MRL/2			Rdt de récupération à la MRL			Pourcentage de récupération moyen
	Rendement	C.V.	n	Rendement	C.V.	n	Rendement
	$R \pm SD$ (%)	(%)		R ± SD (%)	(%)		$R \pm SD$ (%)
Amoxicilline	58.3	3.9	4	65.3	3.6	4	64.7 ± 6.1
Pénicilline G	53.4	6.0	4	57.8	7.0	4	60.9 ± 9.4
Pénicilline V	43.6	3.4	4	54.0	7.7	4	55.1 ± 12.1
Ampicilline	53.3	2.7	4	51.8	3.9	4	56.6 ± 7.1
Oxacilline	89.1	4.5	4	82.6	8.0	4	90.1 ± 8.0
Cloxacilline	84.1	7.4	4	86.3	4.1	4	86.2 ± 2.1

tableau 14 : Exactitude de la méthode et pourcentage de récupération des β-lactames.

Antibiotique	cc théor (μg/kg)	cc trouvée (µg/kg)	RDT (%)	cc corrigée (µg/kg)	écart-type cc corrigée (μg/kg)	CV (%)	exactitude (%)	n
Amoxicilline	(Rendement	moyen : 64,7%)						
	25	14,6	58,3 + - 3,9	22,5	1,5	6,7	90,1	4
	50	32,6	65,3 + - 3,6	50,4	2,8	5,6	100,9	4
	100	70,6	70,6 + - 2,9	109,0	4,5	4,1	109,0	4
Penicilline G	(Rendement	moyen : 60,9%)						
	25	13,4	53,4 + - 6,0	23,0	2,6	11,0	91,8	4

Ī	50	28,9	57,8 + - 7,0	49,7	6,0	11,6	99,3	4
	100	63,3	63,3 + - 1,8	108,8	3,0	6,1	108,8	4
Penicilline V	(Rendement	moyen: 60,9%)						
	25	10,9	43,6 + - 3,4	19,8	1,5	7,6	79,2	4
	50	27,0	54,0 + - 7,7	49,0	7,0	14,5	98,0	4
	100	67,7	67,7 + - 0,9	122,9	1,7	1,4	122,9	4
Ampicilline	(Rendement	moyen : 56,6%)	_					
	25	13,3	53,3 + -2,7	24,2	1,2	5,0	96,7	4
	50	25,9	51,8 + - 3,9	46,9	3,6	7,5	93,8	4
	100	60,4	60,4 + - 1,6	109,5	2,6	2,4	109,5	4
Oxacilline	(Rendement	moyen: 90,1%)						
	150	133,7	89,1 + - 4,5	148,4	7,5	5,1	99,0	4
	300	247,9	82,6 + - 8,0	275,2	26,6	9,7	91,7	4
	600	590,8	98,5 + - 1,7	655,9	11,2	1,7	109,3	4
Cloxacilline	(Rendement	moyen: 86,2%)						
	150	126,1	84,1 + - 7,4	146,3	12,8	8,8	97,5	4
	300	259,0	86,3 + - 4,1	300,4	14,4	4,8	100,1	4
	600	529,2	88,2 + - 6,0	613,9	41,7	6,8	102,3	4

tableau 15 : Etude de la répétabilité de l'analyse des β -lactames par HPLC. Rein dopé à la LMR analysé 4 fois pendant 4 jours. Variation intra-jour (CVr) et et variation inter-jour (CVR).

	cc théor	Concentration trouvée (µg/kg) valeurs non corrigées				
antibiotique	(µg/kg)	jour 1	jour 2	jour 3	jour 4	
Amoxicilline	50	33,3	30,1	28,7	34,2	
Amoxicinine	50	34,5	29,8	31,6	35,6	
	50	30,2	33,6	30,9	33,9	
	50	32,5	34,1	27,5	34,1	
	moyenne	32,6	31,9	29,7	34,5	
	écart type	1,8	2,3	1,9	0,8	
CVr = écart-ty	pe/moyenne	5,6	7,1	6,4	2,3	
pourcentage de	récupération	65,3	63,8	59,4	68,9	

	cc théor	Concentration trouvée (µg/kg) valeurs corrigées par rapport au RDT moyen				
antibiotique	(µg/kg)	jour 1	jour 2	jour 3	jour 4	
Amoxicilline	RDT moyen =	64,7%	cc corrigée =	(cc trouvée/ RDT	moyen)*100	
	50	51,5	46,5	44,4	52,9	
	50	53,3	46,1	48,8	55,0	
	50	46,7	51,9	47,8	52,4	
	50	50,2	52,7	42,5	52,7	
	moyenne	50,4	49,3	45,9	53,2	
	écart type	2,8	3,5	2,9	1,2	
CVr = écart-typ	oe/moyenne	5,6	7,1	6,4	2,3	

nourcente co de	rágunáration	100,9	98,6	91,7	106,5
pourcentage de	recuperation	100,9	98,0	91,7	100,3
	50	μg/kg			
	Concentration test				100
	Moyenne des cond		49,7	μg/kg	
	trouvées corrigées	des 4 jours	3,1		
	Ecart-type	CVr	jour 1	5,6	%
		CVI	jour 2	7,1	%
			jour 3	6,4	%
			jour 4	2,3	%
		CIT		C 1	0.
		CVR		6,1	%
		C	oncentration trouvée (µ	(g/kg)	
	cc théor		valeurs non corrigées		
antibiotique	(µg/kg)	jour 1	jour 2	jour 3	jour 4
1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	*	, ,		
Penicilline G	50	28,6	32,4	30,9	27,5
	50	25,2	28,9	32,5	26,9
	50	30,6	31,2	30,9	28,2
	50	28,1	29,5	28,3	30,0
	movenne	28,1	30,5	30,7	28,2
	moyenne écart type	2,2	1,6	1,7	1,3
CVr = écart-ty		7,9	5,2	5,7	4,8
pourcentage de		56,3	61,0	61,3	56,3
			oncentration trouvée (µ		
antibiotique	cc théor (µg/kg)	v jour 1	aleurs corrigées par rap jour 2	oport au RDT mo joui	
antibiotique	(µg/kg)	Jour 1	jour 2	joui	Jour -
Penicilline G	RDT moyen =	60,9%	cc corrigée =	(cc trouvée/ RD'	 T_moven)*100
	TED T MOJUM	33,270	or comget	(comouvee, 1tb	
	50	47,0	53,2	50,7	45,2
	50	41,4	47,5	53,4	44,2
	50	50,2	51,2	50,7	46,3
	50	46,1	48,4	46,5	49,3
	moyenne	46,2	50,1	50,3	46,2
	écart type	3,7	2,6	2,9	2,2
CVr = écart-ty		7,9	5,2	5,7	4,8
pourcentage de	récupération	92,4	100,2	100,7	92,4
	Concentration test	ée (μg/kg)		50	μg/kg
	Moyenne des cond	centrations		48,2	μg/kg
	trouvées corrigées				r 0 0
	Ecart-type			2,3	
		CVr	jour 1	7,9	%
			jour 2	5,2	%
			jour 3	5,7 4.8	% %
			jour 4	4,0	/0
	<u> </u>	CVR		4,8	%
		CVR	jour 4	4,8 4,8	%

Concentration trouvée (µg/kg)

	cc théor	s			
antibiotique	(µg/kg)	jour 1	jour 2	jour 3	jour 4
Penicilline V	50	22,2	25,4	23,6	26,9
	50	26,3	28,1	30,4	28,2
	50	31,5	26,9	25,8	27,5
	50	27,9	27,3	27,3	29,6
	moyenne	27,0	26,9	26,8	28,1
	écart type	3,9	1,1	2,9	1,2
CVr = écart-ty	oe/moyenne	14,3	4,2	10,7	4,1
pourcentage de	récupération	54,0	53,9	53,6	56,1

antibiotique	cc théor (μg/kg)		oncentration trouvée (µ aleurs corrigées par raj jour 2	0 0,	en jour 4
Penicilline V	RDT moyen =	55,1%	cc corrigée =	(cc trouvée/ RDT	moyen)*100
	50	40.2	46.1	42.9	40.0
	50	40,3	46,1	42,8	48,8
	50	47,7	51,0	55,2	51,2
	50	57,2	48,8	46,8	49,9
	50	50,6	49,5	49,5	53,7
	moyenne	49,0	48,9	48,6	50,9
	écart type	7,0	2,1	5,2	2,1
CVr = écart-ty	pe/moyenne	14,3	4,2	10,7	4,1
pourcentage de	pourcentage de récupération		97,7	97,2	101,8

Concentration testée (µg/kg)		50	μg/kg
Moyenne des concentrations trouvées corrigées des 4 jours		49,3	μg/kg
Ecart-type		1,1	
CVr	jour 1	14,3	%
	jour 2	4,2	%
	jour 3	10,7	%
	jour 4	4,1	%
CVR		2,2	%

	cc théor		Concentration trouvée (µg/kg) valeurs non corrigées					
antibiotique	(µg/kg)	jour 1	jour 2	jour 3	jour 4			
Ampicilline	50	26,9	27,5	30,1	27,6			
1	50	23,4	25,9	28,9	28,3			
	50	25,3	26,3	26,2	29,1			
	50	27,9	28,1	27,1	25,9			
	moyenne	25,9	27,0	28,1	27,7			
	écart type	2,0	1,0	1,8	1,4			
CVr = écart-ty	pe/moyenne	7,6	3,8	6,3	4,9			
pourcentage de	récupération	51,8	53,9	56,2	55,5			

Concentration trouvée (μg/kg)
cc théor valeurs corrigées par rapport au RDT moyen

antibiotique	(µg/kg)	jour 1	jour 2	jour 3	jour 4
Ampicilline	RDT moyen =	56,6%	cc corrigée =	cc corrigée =(cc trouvée/ RDT mov	
	50	47,5	48,6	53,2	48,8
	50	41,3	45,8	51,1	50,0
	50	44,7	46,5	46,3	51,4
	50	49,3	49,6	47,9	45,8
	moyenne	45,7	47,6	49,6	49,0
	écart type	3,5	1,8	3,1	2,4
CVr = écart-typ	e/moyenne	7,6	3,8	6,3	4,9
pourcentage de 1	récupération	91,4	95,2	99,2	98,0

Concentration testée (µg/kg)		50	μg/kg
Moyenne des concentrations trouvées corrigées des 4 jours	48,0	μg/kg	
Ecart-type		1,7	
CVr	jour 1	7,6	%
	jour 2	3,8	%
	jour 3	6,3	%
	jour 4	4,9	%
CVR		3,6	%

	Concentration trouvée (µg/kg) cc théor valeurs non corrigées				
antibiotique	(µg/kg)	jour 1	jour 2	jour 3	jour 4
Oxacilline	300	224,8	237,5	225,8	228,2
	300	234,2	241,0	234,5	230,1
	300	253,4	235,6	230,1	227,8
	300	249,1	242,5	228,9	231,2
	moyenne	240,4	239,2	229,8	229,3
	écart type	13,2	3,2	3,6	1,6
CVr = écart-ty	pe/moyenne	5,5	1,3	1,6	0,7
pourcentage de	récupération	480,8	478,3	459,7	458,7

	cc théor	Concentration trouvée (µg/kg) valeurs corrigées par rapport au RDT moyen				
antibiotique	(µg/kg)	jour 1	jour 2	jour 3	jour 4	
·						
Oxacilline	RDT moyen =	90,1%	cc corrigée =	(cc trouvée/RDT	moyen)*100	
	300	249,5	263,6	250,6	253,3	
	300	259,9	267,5	260,3	255,4	
	300	281,2	261,5	255,4	252,8	
	300	276,5	269,1	254,1	256,6	
	moyenne	266,8	265,4	255,1	254,5	
	écart type	14,7	3,5	4,0	1,8	
CVr = écart-typ	oe/moyenne	5,5	1,3	1,6	0,7	
pourcentage de 1	pourcentage de récupération		88,5	85,0	84,8	

Concentration testée (µg/kg)	300	μg/kg	
			Ш

Moyenne des concentrations trouvées corrigées des 4 jours		260,5	μg/kg
Ecart-type		6,6	
CVr	jour 1 jour 2 jour 3 jour 4	5,5 1,3 1,6 0,7	% % %
CVR	·	2,5	%

	cc théor	Co	oncentration trouvée (μ valeurs non corrigées	U U,	
antibiotique	(µg/kg)	jour 1	jour 2	jour 3	jour 4
Cloxacilline	300	241,5	251,4	261,1	254,0
	300	265,4	249,8	257,6	249,5
	300	259,2	253,6	244,9	261,2
	300	269,8	258,7	258,5	257,3
	moyenne	259,0	253,4	255,5	255,5
	écart type	12,4	3,9	7,2	5,0
CVr = écart-ty	pe/moyenne	4,8	1,5	2,8	1,9
pourcentage de	récupération	518,0	506,8	511,1	511,0

	11.4	Concentration trouvée (µg/kg) valeurs corrigées par rapport au RDT moyen				
	cc théor	Va	ileurs corrigees par raj	pport au RDT moy	ven	
antibiotique	(µg/kg)	jour 1	jour 2	jour 3	jour 4	
Cloxacilline	RDT moyen =	86,2%	cc corrigée =	(cc trouvée/RDT	moyen)*100	
	300	280,2	291,6	302,9	294,7	
	300	307,9	289,8	298,8	289,4	
	300	300,7	294,2	284,1	303,0	
	300	313,0	300,1	299,9	298,5	
	moyenne	300,4	293,9	296,4	296,4	
	écart type	14,4	4,5	8,4	5,8	
CVr = écart-typ	oe/moyenne	4,8	1,5	2,8	1,9	
pourcentage de	récupération	100,1	98,0	98,8	98,8	

Concentration testée (µg/kg)		300	μg/kg
Moyenne des concentrations trouvées corrigées des 4 jours		296,8	μg/kg
Ecart-type		2,7	
CVr	jour 1	4,8	%
	jour 2	1,5	%
	jour 3	2,8	%
	jour 4	1,9	%
CVR		0,9	%

tableau 16 : Coefficient de variation en répétabilité inter-jour (CVR) comparée aux valeurs de références, calculées d'après l'équation de Horwitz.

Antibiotique	CVR calculé A 50 µg/kg	CVR de référence	CVR calculé A 300 µg/kg	CVR de référence
Amoxicilline	6.1 %	12.6 – 16.7 %		
Pénicilline G	4.8 %	12.6 – 16.7 %		
Pénicilline V	2.2 %	12.6 – 16.7 %		
Ampicilline	3.6 %	12.6 – 16.7 %		
Oxacilline			2.5 %	9.6 – 12.8 %
Cloxacilline			0.9 %	9.6 – 12.8 %

II. LES QUINOLONES.

tableau 17 : Rendement d'extraction obtenus lors de l'extraction en phase solide sur des colonnes SDB-RPS des (fluoro)quinolones contenus dans l'extrait de rein de porc (concentrations allant de la LMR/2 à 2* LMR).

Résidues	Extraction recoveries (%)	RSD (%, n=6)
Cinoxacine	89	3
Fluméquine	85	5
Acide Oxolinique	97	3
Acide Nalixidique	98	2
Marbofloxacine	83	6
Ofloxacine	95	4
Enoxacine	87	7
Norfloxacine	93	2
Enrofloxacine	86	5
Ciprofloxacine	87	3
Danofloxacine	91	4

tableau 18 : Gradient linéaire appliqué lors de l'élution des quinolones par HPLC

Temps (min)	H2O/HCOOH pH 2.5	ACN
0	98 %	2 %
5	30 %	70 %
6	30 %	70 %

tableau 19 : Paramètres du spectromètre pour l'analyse des quinolones par HPLC/ESI +/ MS / MS en mode MRM. Les limites maximales de résidus indiquées correspondent aux LMR fixées pour les reins de porc.

Antibiotique	Temps Retention (min)	Ion Parent	V. Cone (volts)	En. Coll. (eV)	Ion Fille	Lim. Det. (ng/ml)	LMR (ng/g)
Norfloxacine	3,01	320,14	35 V	15 eV	276,15	<10	

				25 eV	233,11		
Ofloxacine	3,01	362,15	25 V	20 eV	318,16	<10	
01101110	5,61	502,10		25 eV	261,10	110	
Cinoxacine	3,91	263,10	35 V	15 eV	245,20	<20	
	,			20 eV	217,10		
Fluméquine	4,88	262,20	35 V	20 eV	244,20	<10	1500
				35 eV	202,10		
Enoxacine	2,97	321,14	35 V	20 eV	257,14	<20	
				30 eV	206,07		
Acide oxolinique	4,18	262,14	40 V	20 eV	244,10	<15	150
				30 eV	216,10		
Acide nalidixique	4,78	233,17	40 V	15 eV	215,15	<10	
				25 eV	187,10		
Marbofloxacine	2,97	363,15	30 V	20 eV	345,20	<20	150
				15 eV	320,10		
				50 eV	122,10		
Enrofloxacine	3,19	360,17	35V	20 eV	316,20	<10	
				30 eV	245,20		300
Ciprofloxacine	3,06	332,14	30 V	15 eV	288,13	<15	
				25 eV	245,20		
Danofloxacine	3.10	358.16	35 V	20 eV	314.20	<10	200
				25 eV	96.10		
Quinine (S.I.)	2,74	325,19	40 V	30 eV	160,07	10	

tableau 20 : Quantité ajoutées pour doper 1 g de rein aux cinq concentrations. Les valeurs en gras correspondent aux limites maximales de résidus fixées par le règlement CEE 2377/90 du conseil du 29 décembre 2000. Les autres composés n'ayant pas de LMR, une valeur arbitraire de 150ppb leur a été attribuée.

Onicalana	Concentration (µg / kg)					
Quinolone	LMR/4	LMR/2	LMR	2*LMR	4*LMR	
Norfloxacine	37.5	75	150	300	600	
Ofloxacine	37.5	75	150	300	600	
Cinoxacine	37.5	75	150	300	600	
Fluméquine	375	750	1500	3000	6000	
Enoxacine	37.5	75	150	300	600	
Acide oxolinique	37.5	75	150	300	600	
Acide nalidixique	37.5	75	150	300	600	
Marbofloxacine	37.5	75	150	300	600	
Enrofloxacine +	37.5 +	75 +	300 (= 150	300 +	600 +	
Ciprofloxacine	37.5	75	+ 150)	300	600	
Quinine (S.I.)	150	150	150	150	150	

tableau 21 : Paramètres des 3 courbes de calibration réalisées à partir d'extraits de rein dopés aux quinolones.

Antibiotique	Jour	Pente	Origine	Coefficient de
1				corrélation
Norfloxacine	1	0.008	-0.255	0.9985
TVOITIOXACITIC	2	0.008	-0.177	0.9881
	3	0.008	-0.193	0.9999
		moy = 0.008		
		RSD = 4.05 %	DS = 0.042	
Ciprofloxacine	1	0.006	-0.109	0.9974
_	2	0.008	-0.237	0.9950
	3	0.007	-0.186	0.9897
		moy = 0.007		
		RSD = 8.57 %	DS = 0.065	
Enrofloxacine	1	0.016	-0.041	0.9968
	2	0.018	-0.392	0.9998
	3	0.017	-0.218	0.9994
		moy = 0.017		
		RSD = 5.12 %	DS = 0.176	
Ofloxacine	1	0.011	-0.195	0.9850
	2	0.012	-0.407	0.9999
	3	0.012	-0.246	0.9853
		moy = 0.012	DC 0.111	
Cinoxacine	1	RSD = 8.31%	DS = 0.111 -0.023	0.0002
Cinoxacine	1	0.004 0.004		0.9983
	2 3	0.004	-0.126 -0.094	0.9981 0.9996
	3	moy = 0.004	-0.094	0.9990
		RSD = 6.61%	DS = 0.053	
Ac.Oxolinique	1	0.013	-0.405	0.9925
710.0xommque	2	0.012	-0.309	0.9988
	3	0.013	-0.537	0.9862
		moy = 0.013		
		RSD = 2.40 %	DS = 0.115	
Ac.Nalidixique	1	0.016	-0.699	0.9945
	2	0.016	-0.31	0.9990
	3	0.016	-0.613	0.9989
		moy = 0.016		
		RSD = 2.01%	DS = 0.045	
Enoxacine	1	0.004	-0.042	0.9964
	2	0.003	0.043	0.9516
	3	0.003	0.0011	0.9827
		moy = 0.003	DC - 0.042	
Marbofloxacine	1	RSD = 4.58 %	DS = 0.043	0.9991
iviarbonoxacine	2	0.004 0.003	0.053 -0.019	0.9991
	3	0.003	-0.019	1.0000
	3	moy = 0.004	-0.000	1.0000
		RSD = 6.54 %	DS = 0.038	
Fluméquine	1	0.008	-3.527	0.9941
Tamequine	2	0.008	-3.181	0.9999
	3	0.008	-3.830	0.9975
		moy = 0.008		
1 1				

tableau 22 : Equation de la moyenne des droites de calibration réalisées à partir d'extraits de rein dopés aux quinolones.

Antibiotique	Equation de la droite	Coefficient de corrélation
Norfloxacine	Y = 0.0079x - 0.2083	$R^2 = 0.9936$
Ciprofloxacine	Y = 0.0071x - 0.1771	$R^2 = 0.9853$
Enrofloxacine	Y = 0.0168x - 0.217	$R^2 = 0.9967$
Ofloxacine	Y = 0.0116x - 0.2826	$R^2 = 0.9807$
Cinoxacine	Y = 0.004x - 0.081	$R^2 = 0.9952$
Ac. Oxolinique	Y = 0.0127x - 0.417	$R^2 = 0.9985$
Ac. Nalidixique	Y = 0.016x - 0.6473	$R^2 = 0.9971$
Enoxacine	Y = 0.0033x + 0.0005	$R^2 = 0.9743$
Marbofloxacine	Y = 0.0035x - 0.0258	$R^2 = 0.9943$
Fluméquine	Y = 0.0082x - 3.5129	$R^2 = 0.9966$

tableau 23 : Limites de détection et de quantification observées lors de l'expérience et calculées sur base du rapport de la déviation standard de l'origine (Seb) et de la pente de la droite de calibration (m).

Antibiotique	LMR dans le rein de porc (µg/kg)	$LOD (\mu g/kg) = 3 * Seb / m$	$LOQ (\mu g/kg)$ = 3.3* LOD	LOD (µg/kg) Approx. expérience
Norfloxacine		16	52	< 10
Ciprofloxacine	200	27	90	< 15
Enrofloxacine	300	31	103	< 10
Ofloxacine		29	94	< 10
Cinoxacine		39	130	< 20
Ac. Oxolinique	150	27	89	< 15
Ac. Nalidixique		8	28	< 10
Enoxacine		38	127	< 20
Marbofloxacine	150	32	107	< 20
Fluméquine	1500	119	394	< 10

tableau 24 : Mesure de l'exactitude pour chaque quinolone spiké à 100ppb dans un rein de porc.

Antibiotique	concentration théorique spikée (µg/kg)	concentration calculée (µg/kg)	CV (%)	exactitude (%)	n
Norfloxacine	100	100	4	100	10
Ciprofloxacine	100	103	5	103	10
Enrofloxacine	100	101	6	101	10
Ofloxacine	100	96	4	96	10
Cinoxacine	100	104	7	104	10
Ac. Oxolinique	100	95	8	95	10
Ac. Nalidixique	100	99	6	99	10
Enoxacine	100	107	8	107	10
Marbofloxacine	100	103	7	103	10
Fluméquine	100	89	5	89	10

tableau 25 : Mesure de l'exactitude pour chaque quinolone spiké à 200ppb dans un rein de porc.

Antibiotique	concentration théorique spikée (µg/kg)	concentration calculée (µg/kg)	CV (%)	exactitude (%)	n
Norfloxacine	200	195	7	97.5	10
Ciprofloxacine	200	207	4	104	10
Enrofloxacine	200	198	2	99	10
Ofloxacine	200	197	3	99	10
Cinoxacine	200	206	5	103	10
Ac. Oxolinique	200	190	5	95	10
Ac. Nalidixique	200	188	7	94	10
Enoxacine	200	209	6	105	10
Marbofloxacine	200	204	2	102	10
Fluméquine	200	201	4	101	10

tableau 26 : Mesure de l'exactitude pour chaque quinolone spiké à 300ppb dans un rein de porc.

Antibiotique	concentration théorique spikée (µg/kg)	concentration calculée (µg/kg)	CV (%)	exactitude (%)	n
Norfloxacine	300	302	4	101	10
Ciprofloxacine	300	312	7	104	10
Enrofloxacine	300	297	5	99	10
Ofloxacine	300	294	5	98	10
Cinoxacine	300	301	4	100	10
Ac. Oxolinique	300	315	6	105	10
Ac. Nalidixique	300	287	8	96	10
Enoxacine	300	323	7	108	10
Marbofloxacine	300	309	6	103	10
Fluméquine	300	290	7	97	10

 $tableau\ 27$: Mesure des variations intra-jours (CVr) lors de l'analyse de la fluméquine par LC/MS/MS (n = 6).

Fluméquine	LMR/2	LMR	2*LMR
Conc.théorique spikée (µg/kg)	750	1500	3000
Conc.mesurée(µg/kg)			
1	661.22	1249.50	3362.10
2	617.64	1419.44	3375.90
3	532.59	1283.11	3237.45
4	495.09	1115.31	3188.85
5	471.20	1040.04	2662.08
6	436.06	1019.51	2678.13

Moyenne	535.6	1187.8	3084.1
Ecart-type	79.8	142.6	300.0
CVr (%)	14.9	12.0	9.7
% de récup	71.4	79.2	102.8
% d récup.moyen	84.5		

 $tableau\ 28$: Mesure des variations intra-jours (CVr) lors de l'analyse de l'acide oxolinique par LC/MS/MS (n = 6).

AC.Oxolinique	LMR/2	LMR	2*LMR
Conc.théorique spikée (µg/kg)	/5		300
Conc.mesurée(µg/kg) 1 2 3 4 5 6	79.9 70.31 68.74 63.7 64.71 56.09	134.29 146.93 119.24 144.61 116.21 132.5	341.31 337.27 296.32 347.21 285.11 300.76
Moyenne Ecart-type CVr (%) % de récup % de récup.moyen	67.2 7.2 10.8 89.7 94.6	132.3 11.5 8.7 88.2	318.0 24.6 7.7 106.0

III. LES MACROLIDES.

tableau 29 : Paramètres du spectromètre pour l'analyse des macrolides par HPLC/ESI +/ MS / MS. Les limites maximales de résidus indiquées correspondent aux LMR fixées pour les reins de porc.

Antibiotiques	Temps de Rétention (min)	Ion Parent	Energie de Collision	Ion fille	Lim Dét. (ng on column)	LMR (ng/g)
Erythromycine	6.60	734.5	37 %	576.2 522.1 558.1 540.0	< 4	200
Spiramycine	6.74	843.6	37 %	540 684.2 699.2 522.1	< 20	1000
Tylosine	6.91	916	100 %	772.2 598.4 754.3 407.1	< 2	100
Josamycine	7.99	828.5	70 %	600.1 582.1 391 524	< 8	400
Lincomycine	8.97	443.0	37 %	315 397 271	< 20	

tableau 30 : Gradient linéaire appliqué pour l'élution des macrolides par HPLC

Temps (min)	Acétate d'Ammonium 0.1M	ACN
0	100 %	0 %
1	100 %	0 %
4	70 %	30 %
7	5 %	95 %
8	0 %	100 %
12	0 %	100 %
13	100 %	0 %
20	100 %	0 %

tableau 31 : Concentrations ajoutées pour doper les échantillons de rein. Les valeurs en gras correspondent aux limites maximales de résidus fixées par le règlement CEE 2377/90 du conseil du 29 décembre 2000.

M 11.1	Concentration (µg / kg)					
Macrolide	LMR/4	LMR/2	LMR	2*LMR	4*LMR	
Eryhtromycine	50	100	200	400	800	
Spiramycine	250	500	1000	2000	4000	
Tylosine	25	50	100	200	400	
Josamycine	100	200	400	800	1600	
Lincomycine (S.I.)	500	500	500	500	500	

tableau 32 : Paramètres des courbes de calibration réalisées à partir d'extraits de rein dopés aux macrolides.

Antibiotique	jour	pente	origine	Coefficient de correlation
érythromycine	1	227785	-2215832	0,9780
	1	237296	2345861	0,9770
	2	267321	-3,00E+06	0,9684
	2	220348	2,00E+06	0,9934
		moy = 238188		
		RSD = 7,5 %	DS = 2782311	
tylosine	1	110940	106149	0,8493
	1	111706	119622	0,9467
	2	125503	-1,00E+06	0,9358
	2	101564	107546	0,9952
		moy = 112428		
		RSD = 7,6 %	DS = 555586	
josamycine	1	34972	226721	0,9956
	1	34526	800392	0,8061
	2	32098	-966726	0,9542
	2	30795	263235	0,9955
		moy = 33098		
		RSD = 5,2 %	DS = 746034	
spiramycine	1	71491	-292737	0,9959
	1	79121	176351	0,9929

2	79596	-7,00E+06	0,9540
2	71767	-104239	0,9990
	moy = 75494		
	RSD = 5,1 %	DS = 3468588	

tableau 33 : Equation de la moyenne des droites de calibration réalisées à partir d'extraits de rein dopés aux macrolides.

Antibiotiques	Equation de la droite	Coefficient de corrélation
Erythromycine	Y = 243834x - 345933	$R^2 = 0.9939$
Tylosine	Y = 113533x - 579691	$R^2 = 0.9732$
Josamycine	Y = 31447x - 351746	$R^2 = 0.9924$
Spiramycine	Y = 75682x - 3E + 06	$R^2 = 0.9893$

tableau 34 : Limites de détection et de quantification observées lors de l'expérience et calculées sur base du rapport de la déviation standard de l'origine (S_{eb}) et de la pente (m) de la droite de calibration.

Antibiotique	LMR	LOD (µg/kg)	LOQ (µg/kg)	LOD (µg/kg)
	dans le rein de porc	$= 3 * S_{eb} / m$	= 3.3* LOD	Approx. expérience
	(µg/kg)			
Erythromycine	200	35	116	< 25
Tylosine	100	15	49	< 125
Josamycine	400	68	223	< 12.5
Spiramycine	1000	138	445	< 50

IV. ECHANTILLONS REELS.

tableau 35 : résultats de l'analyse des 17 échantillons réels positifs au test rénal et soumis aux tests de screening et de confirmation pour les antibiotiques de la famille des tétracyclines(TC) des sulfonamides (sulfo), des β -lactames, des phénicolés (CAP) et des macrolides.

échantillons:	TC	Sulfo	B-lactames	CAP	Macrolides
1					
2					
3					
4					
5					spira
7					93,5 ng/g
8					
14					
15					
16	+ -			1,2 ng/g	

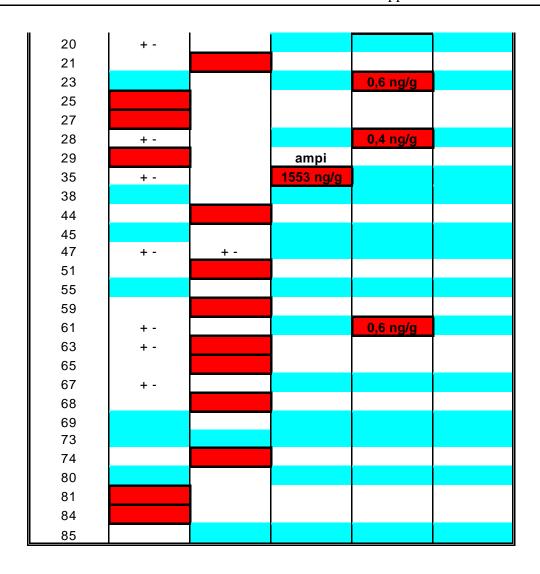


tableau 36 : résultats du RRA pour les macrolides appliqués à une rein témoin ainsi qu'aux 17 échantillons positifs.

1		
échantillons:	Concentration Mesurées	Concentration Calculées
oonaniinone.	(ng/g)	- le blanc (ng/g)
blanc	58	58 –58 = 0
3	115	57
7	1560	1502
16	137	79
20	271	213
23	60	2
28	146	88
35	186	128
38	69	11
45	85	27
47	67	9
55	178	120
61	103	45
67	66	8

69	210	152
73	61	3
80	70	12
85	65	7

tableau 37 : Résultats obtenus lors de l'analyse par LC/MS/MS des macrolides contenus dans les 17 échantillons positifs.

		concentrati	on (ng/g)		
échantillon	n° ech reel	erythro	spira	tylo	josa
	témoin	1,42	39,64	5,11	11,19
	3	1,42	39,64	5,11	11,19
	7	1,42	93,50	5,11	11,19
	16	1,42	39,64	5,11	11,19
	20	1,42	39,64	5,11	11,21
	23	1,42	39,64	5,11	11,19
	28	1,42	39,64	5,11	11,24
	35	1,42	39,64	5,11	11,19
	38	1,42	39,64	5,11	11,27
	45	1,42	39,64	5,11	11,19
	47	1,42	39,64	5,11	11,19
	55	1,42	39,64	5,11	11,19
	61	1,42	39,64	5,11	11,19
	67	1,42	39,64	5,11	11,19
	69	1,42	39,64	5,11	11,19
	73	1,42	39,64	5,11	11,19
	80	1,42	39,64	5,11	11,25
	85	1,42	39,64	5,11	11,19

8.1.3 Normes /législations existantes

tableau 38: Limites maximales de résidus établies pour les β-lactames, exprimées en ppb (μg/kg) et fixées par le Règlement CEE n° 2377/90 du Conseil du 4 mars 1999.

β-Lactames	Animaux	Muscle (µg/kg)	Foie (µg/kg)	Rein (µg/kg)	Graisse (µg/kg)	Lait (µg/kg)
Pénicilline G	(1)	50	50	50	50	4
Amoxicilline	(1)	50	50	50	50	4
Ampicilline	(1)	50	50	50	50	4
Oxacilline	(1)	300	300	300	300	30
Cloxacilline	(1)	300	300	300	300	30

⁽¹⁾ tous les animaux dédiés à la consommation humaine

tableau 39 : Limites maximales de résidus établies pour les quinolones, exprimées en ppb, et fixées par le règlement CEE n° 2377/90 du Conseil du 29 décembre 2000.

Quinolones	Animaux	Muscle (µg/kg)	Foie (µg/kg)	Rein (µg/kg)	Graisse (µg/kg)	Lait (µg/kg)	Œuf (µg/kg)
Enrofloxacine + ciprofloxacine	bovins	100	300	200	100	100	
Enrofloxacine + ciprofloxacine	lapins, porcins, volailles	100	200	300	100 ⁽³⁾		0 ⁽²⁾
Enrofloxacine + ciprofloxacine	ovins	100	300	200	100	0 ⁽⁵⁾	
Sarafloxacine	poulets		100		10 (4)		
Sarafloxacine	salmonidés	30 (1)					
Difloxacine	Bovins	400	1400	800	100	0 ⁽⁵⁾	
Difloxacine	porcins	400	800	800	100 (4)		
Difloxacine	poulets, dindes	300	1900	600	400 (4)		
Danofloxacine	porcins	100	200	200	50 (4)		
Danofloxacine	bovins	200	400	400	100	30	
Danofloxacine	poulets	200	400	400	100 (4)		0 ⁽²⁾
Marbofloxacine	bovins	150	150	150	50	75	
Marbofloxacine	porcins	150	150	150	50		
Fluméquine	bovins, ovins, porcins	200	500	1500	300 (3)	0 ⁽⁵⁾	
Flumequine	poulets, dindes	400	800	1000	250 (4)		0 ⁽²⁾
Fluméquine	salmonidés	600 (1)					
A. Oxolinique	Bovins, porcins	100 *	150 *	150 *	50 *		
A. Oxolinique	poulets	100 *	150 *	150 *	50 *		50 *
A. Oxolinique	fin fish	300 (1)					

⁽¹⁾ muscle et peau en proportions naturelles

tableau 40 : Limites maximales de résidus établies pour les macrolides, exprimées en ppb, et fixées par le règlement CEE n° 2377/90 du Conseil du 27 octobre 2000.

⁽²⁾ interdit pour les animaux dont les œfs sont produits pour la consommation humaine

⁽³⁾ peau + graisse pour les porcins et la volaille

⁽⁴⁾ peau + graisse

⁽⁵⁾ interdit pour les animaux dont le lait est produit pour la consommation humaine

^(*) limites maximales de résidus provisoires jusqu'au 1 janvier 2001

Macrolides	Animaux	Muscle (µg/kg)	Foie (µg/kg)	Rein (µg/kg)	Graisse (µg/kg)	Lait (µg/kg)	Œuf (µg/kg)
Eryhtromycine A	bovins	200	200	200	200	40	
Eryhtromycine A	Ovins (5), porcins,	200	200	200	200 ⁽³⁾		
Eryhtromycine A	poulets	200	200	200	200 ⁽³⁾		150
Spiramycine + Neospyramycine	bovins	200	300	300	300	200	
Spiramycine + Neospiramycine	poulets	200	400		300 (3)		
Spiramycine	porcins	250	2000	1000			
Tilmicosine	Ovins, porcins, lapins	50	1000	1000	50	50	
Tilmicosine	Poulets (2)	75	1000	250	75 (3)		
Tilmicosine	Bovins	50	1000	1000	50	40 (**)	
Tylosine A	porcins	100	100	100	100 (4)		
Tylosine A	bovins	100	100	100	100	50	
Tylosine A	poulets	100	100	100	100 (4)		200
Josamycine	Poulets	200 (*)	200 (*)	400 (*)	200 (*)		200 (*)
Josamycine (somme des Métabolites	Porcins	200 (*)	200 (*)	400 (*)	200 (*)		

⁽¹⁾ muscle et peau en proportions naturelles

tableau 41 : Limites maximales de résidus établies pour les phénicolés, exprimées en ppb, et fixées par le règlement CEE n° 2377/90 du Conseil du 27 octobre 2000.

Phénicolés	Animaux	Muscle (µg/kg)	Foie (µg/kg)	Rein (µg/kg)	Graisse (µg/kg)	Lait (µg/kg)
thiamphénicol	bovins et poulets	50	50	50	50	50
thiamphénicol	Ovins, porcins et poissons (***)	50	50	50	50	
florfénicol + florfénicol amine	bovins	200	300	300		
florfénicol + florfénicol amine	porcins	300	200	200	500 ⁽³⁾	
florfénicol + florfénicol amine	poulets	100	2500	750	200 ⁽³⁾	

⁽²⁾ interdit pour les animaux dont les œfs sont produits pour la consommation humaine

⁽³⁾ peau + graisse pour les porcins et la volaille

⁽⁴⁾ peau + graisse

⁽⁵⁾ interdit pour les animaux dont le lait est produit pour la consommation humaine

^(*) limites maximales de résidus provisoires jusqu'au 1 juillet 2002

^(**) limites maximales de résidus provisoires jusqu'au 1 janvier 2001

florfénicol + florfénicol amine	poissons (*)	1000 (1)			
chloramphénicol	INTERDIT				
Spiramycine + Neospiramycine	poulets	200	400	300 (3)	

- (1) muscle et peau en proportions naturelles
- (2) interdit pour les animaux dont les œfs sont produits pour la consommation humaine
- (3) peau + graisse pour les porcins et la volaille
- (4) peau + graisse
- (5) interdit pour les animaux dont le lait est produit pour la consommation humaine
- (*) limites maximales de résidus provisoires jusqu'au 1 juillet 2001
- (**) limites maximales de résidus provisoires jusqu'au 1 janvier 2001

8.1.4 Méthodologie in extenso, etc

I. LES B-LACTAMES.

Protocole 1 : Extraction des B-lactames et analyse à l'aide du Penzym

- a) Préparation de l'échantillon:
 - a.1 peser 2,6 g de rein
 - a.2 ajouter 17,4 ml d'eau
 - a.3 ajouter 100µl d'antibiotiques à la concentration désirée
 - a.4 broyer au turax
 - a.5 peser une fraction de 2g de broyat
 - a.6 centrifuger 30min à 4°C à 30 000g
 - a.7 récolter 1,5 ml de surnageant

b) Colonne d'hydroxyapatite:

- b.1. mélanger 10g de gel d'hydroxyapatite $[Ca_{10}(PO_4)_6(OH)_2]$ Bio-Gel HTP (Bio-Rad) dans 50ml d'une solution tampon phosphate 0,01M, pH=7,4
- b.2. placer dans un embout de 5ml, une bille de verre, un peu de sable et 4ml de la suspension d'hydroxyapatite.
- b.3. laisser décanter, la colonne de purification est prête à l'emploi.
- b.4. charger la colonne avec 2*500µl de surnageant
- b.5. éliminer l'éluat
- b.6. charger la colonne avec 500µl de surnageant
- b.7. éluer la colonne avec 5*500µl d'eau
- b.8. récolter les 3ml d'éluat non coloré (surnageant + élution)
- c) Colonne Oasis HLB Waters, 6ml, 500mg:
 - c.1 conditionner la colonne avec 2ml de méthanol, puis 2ml d'eau
 - c.2 charger la colonne avec les 3ml d'éluat par fraction de 500µl
 - c.3 laver la colonne avec 2*500µl d'eau
 - c.4 sécher la colonne par centrifugation, 10min à 4°C à 30 000g
 - c.5 éliminer l'éluat
 - c.6 éluer la colonne avec 6*500µl méthanol
 - c.7 sécher la colonne par centrifugation, 10min à 4°C à 30 000g
 - c.8 récolter les 3ml d'éluat

d) Evaporation

- d.1 évaporer à sec les 3ml d'éluat sous flux d'azote
- d.2 reprendre dans 1ml d'eau

e) kit Penzym 100T (UCB-Bioproducts)

- e.1 dans un eppendorf, prélever 50µl de cette solution
- e.2 la soumettre au test :
- e.3 ajouter 10 µl de la solution enzymatique
- e.4 incuber 5 minutes à 47°C
- e.5 ajouter le deuxième réactif
- e.6 incuber 8 minutes et puis encore 7 minutes à 47°C
- e.7 estimation visuelle de la couleur de l'échantillon variant entre

le rose, l'échantillon ne contient pas de β -lactames

l'orange, l'échantillon est douteux

et le jaune, l'échantillon est positif. Il contient des β -lactames

Protocole 2 : Extraction des β -lactames et analyse à l'aide du β -STAR.

a) Préparation de l'échantillon:

- a.1 peser 5 g de rein de porc
- a.2 ajouter 15 ml d'eau
- a.3 ajouter 100µl d'antibiotiques à la concentration désirée
- a.4 broyer au turax
- a.5 peser une fraction de 2g de broyat
- a.6 centrifuger 30min à 4°C à 30 000g
- a.7 récolter le surnageant

b) Colonne d'hydroxyapatite:

b.1 prendre une colonne de purification de 750µl, composée de 5g de gel

d'hydroxyapatite [Ca₁₀(PO₄)₆(OH)₂] contenu dans 5ml H₂O

- b.2 charger la colonne avec 300µl de surnageant
- b.3 éliminer l'éluat
- b.4 éluer la colonne avec 1ml d'eau
- b.5 récolter l'éluat final transparent

c) kit β -STAR 100 (UCB-Bioproducts):

- c.1 dans un eppendorf, mélanger 25µl de récepteur avec 100µl de l'éluat final récolté.
- c.2 incuber 3 minutes à 47.5°C
- c.3 introduire la tigette dans l'eppendorf
- c.4 incuber à nouveau 2 minutes à 47.5°C
- c.5 sortir la tigette de l'eppendorf
- c.6 comparer l'intensité des bandes

Protocole 3: Extraction des β -lactames et analyse par HPLC

a) Préparation de l'échantillon:

- a.1 peser 5 g de rein de porc
- a.2 ajouter 15 ml d'eau
- a.3 ajouter 100µl d'antibiotiques à la concentration désirée

- a.4 broyer au turax
- a.5 centrifuger 30min à 4°C à 30 000g
- a.6 récolter le surnageant

b) Colonne de purification:

- b.1 dans un embout de 10ml, placer de la laine de verre et un peu de sable
- b.2 ajouter 12.5ml d'une solution composée de 5g de gel d'hydroxyapatite
- $[Ca_{10}(PO_4)_6(OH)_2]$ contenu dans 25ml de tampon phosphate 0.01M pH 7.4
- b.3 charger la colonne avec le surnageant
- b.4 récupérer l'éluat du chargement
- b.5 éluer les antibiotiques à l'aide de 6ml d'eau
- b.6 pour une meilleure récupération des antibiotiques, la fraction du chargement ainsi que celle de l'élution sont récoltées
- b.7 les antibiotiques contenus dans ces deux fractions sont concentrés sur une cartouche Oasis

c) Colonne Oasis HLB Waters, 6ml, 500mg:

- c.1 conditionner la colonne avec 5ml de méthanol, puis 5ml d'H₂O
- c.2 charger la colonne avec les deux fractions
- c.3 laver la colonne avec 3ml d'un mélange H₂O/MeOH (95/5, v/v)
- c.4 sécher la colonne par centrifugation, 10min à 4°C à 3000g
- c.5 éliminer l'éluat
- c.6 éluer la colonne avec 2ml d'une solution acétonitrile/tampon phosphate 0.1M pH 6.5~(50/50,~v/v)

d) étape de dérivatisation:

d.1 préparer la solution d'anhydride benzoï que 0.2M

placer 2.33g anhydride benzoï que 97% dans 50ml d'acétonitrile placer la solution dans une bouteille ambrée agiter pendant 30 minutes

d.2 préparer l'agent de dérivatisation

mélanger 13.77g de 1.2.4 triazole dans 60ml d' H_2O et 10ml $HgCl_2$ 0.01M ajuster le pH à 9.0 \pm 0.5 avec du NaOH 5M

placer la solution dans une fiole ambrée et ajuster $\,$ le volume à 100ml avec de l'H $_2{\rm O}$

cette solution se prépare 24h à l'avance et se conserve 1 mois à 4°C à l'ombre

- d.3 prélever 1ml d'éluat obtenu au point c.6
- d.4 ajouter 50µl d'anhydride benzoï que 0.2M
- d.5 incuber 3minutes à 50°C
- d.6 ajouter 500µl d'agent de dérivatisation
- d.7 incuber 10 minutes à 65°C
- d.8 laisser reposer 10 minutes à l'ombre dans un bac d'eau

e) étape d'analyse par HPLC:

- e.1 injecter 200µl dans l'HPLC
- e.2 analyse en mode isocratique, lecture à 325nm
- e.3 colonne C₁₈ Nova Pack, 60Å, 4µm; 3.9*150 mm (Waters)
- e.3 phase mobile composée de A/B, 38/62, v/v
- e.4 A = acétonitrile pour HPLC

e.5 B = tampon phosphate 0.1M pH6.5

 $7.57g \text{ Na}_2\text{HPO}_4.2\text{H}_2\text{O} + 15.21g \text{ NaH}_2\text{PO}_4.\text{H}_2\text{O} + 5.85g \text{ Na}_2\text{S}_2\text{O}_3 + 10.19g \text{ C}_{16}\text{H}_{37}\text{NO}_4\text{S} \text{ dans } 1.21 \text{ d'H}_2\text{O}.$

ajuster le pH à 6.52 avec ± 5ml de NaOH 10M

ajuster le volume à 1.51 avec de l'H₂O

se conserve 5 jours à 4°C dans une bouteille ambrée

e.6 filtrer les solvants sur des filtres Millipore de type HV de 0.22µm

f) étape de préparation et de nettoyage de l'HPLC:

f.1 Préparation:

- filtrer chaque solvant sur un filtre 0.22µm
- dégazer tous les solvants à 100ml/min pendant 30 minutes
- éliminer l'air dans chacun des tuyaux. (ouvrir la vanne et augmenter le débit jusqu'à 10 ml/min)
- conditionner la colonne à 1 ml/min: 30' H₂O/MeOH, 30' MeOH, 30' ACN, 30' avec la phase mobile.
- Injecter 200µl de MeOH puis, 200µl d'eau ultra-pure avant chaque série d'injection

f.2 Lavage:

- injecter 3 fois une quantité de 200 μl de diméthylsulfoxyde en fin d'analyse chaque semaine
- pour une réutilisation le lendemain, nettoyer la boucle d'injection avec 5*200µl de MeOH et rincer la colonne avec de l'eau pour HPLC à faible débit (0.5ml/min) pendant toute la nuit
- pour un arrêt complet du système, rincer abondement la colonne avec de l'eau (60 minutes) suivi de MeOH (30 minutes) et ACN (30 minutes), revenir au MeOH (30 minutes) et terminer avec un mélange H₂O/MeOH (50/50, v/v) pendant 30 minutes.
- -Si un nettoyage plus important s'avère nécessaire, recommencer autant de fois que nécessaire le protocole d'arrêt complet.
- f.3 La précolonne doit être changée environs toutes les 20-30 injections.

Protocole 4: Extraction des quinolones et analyse par LC (ESI +) / MS / MS

- a) préparer les solutions standard d'antibiotique à 0,1 mg/ml
 - a.1 mélanger 2 mg d'antibiotique + 200µl NaOH1M + 19,8ml MeOH (-20°C)
- b) préparer la solution de standard interne SI à 0.1 mg/ml et 1mg/ml
 - b.1. tinidazole : 3mg + 3ml de MeOH (solution sans NaOH) à 1mg/ml
 - b.2. quinine : 2mg + 19,8ml de MeOH (solution sans NaOH) à 0,1mg/ml
- c) préparer les solutions de travail
 - c.1. tinidazole, std interne (T): solution à 150ppb dans MeOH
 - c.2. quinine, std interne (Q) : solution à 150ppb dans MeOH 150ng / 100 μ l \rightarrow 1500 ng/ ml

- c.3. fluméquine: solution à 6000ppb (4MRL) dans MeOH 6000ng / 100µl → 60µg/ml
- c.4. marbofloxacine + acide oxolinique + enrofloxacine + ciprofloxacine + norfloxacine + cinoxacine + ofloxacine + enoxacine + acide nalidixique: solution mixte à 600ppb (4MRL) dans MeOH

 $600 \text{ ng} / 100 \mu l \rightarrow 6 \mu g / ml$

- d) Préparation de l'échantillon:
 - d.1 peser 1g de rein
 - d.2 doper avec 300µl d'une solution au méthanol contenant :
 - 100µl de standard interne (1500 ng/ml de quinine)
 - 100 µl de solution de fluméquine à 15000 ng /ml pour la LMR.
 - $100 \,\mu l$ de solution contenant les autres antibiotiques à $1500 \, ng$ /ml pour la LMR

idem aux autres concentrations de sorte à couvrir la gamme à analyser (de 0 à 4* la LMR en passant par LMR/4, LMR/2, LMR et 2*LMR)

- d.3 ajouter 10ml d'acétonitrile et 2.5g de Na₂SO₄ à l'extrait de rein
- d.4 broyer l'ensemble à l'aide d'un turax.
- d.5 centrifuger le tout 5 minutes à 30 000g et 4°C.
- d.6 filtrer le surnageant sur du papier filtre Wathman contenant 2.5g de Na₂SO₄
- d.7 acidifier le surnageant à l'aide de 2.5ml d'acide acétique 96%
- e) Colonne SPE 3M SDB-RPS, mixed phase; 10mm; 6ml:
 - e.1 conditionner les colonnes avec 2 * 1ml d'acétonitrile/acide acétique (95/5, v/v)
 - e.2 charger l'entièreté du surnageant acidifié
 - e.3 éluer les antibiotiques avec 4 * 1ml de méthanol/ammoniac (1M) (75/25, v/v)
- f) Evaporation
 - f.1 les échantillons sont évaporés à sec sous N₂ à 35°C
 - f.2 le résidus sec est repris dans 300µl d'un mélange eau/acide formique à pH 2.5
 - f.3 l'échantillon est filtré à travers un filtre Chromafil 0.45µm
 - f.4 50µl sont injectés dans l'HPLC qui précède la détection MS.

Protocole 5: Préparation des ribosomes comme récepteurs des macrolides

- a) préparer une culture de Bacillus *subtilis*
- b) laver le culot bactérien avec un tampon Tris 0.01M, pH 7.2, (MgCl₂ 4mM, NH₄Cl 10mM, KCl 100mM).
- c) lyser les bactéries au désintégrateur cellulaire.
- d) éliminer les débris cellulaires par centrifugation 30 minutes à 30 000g.
- e) centrifuger le surnageant 60 minutes à 100 000g.
- f) reprise du culot obtenu dans du tampon Tris 0.01M, pH 7.2.
- g) conservation minimum 6 mois à 80°C.

Protocole 6: Protocole d'utilisation du radio-récepteur-essai pour l'analyse des macrolides

- a) Préparer la solution charcoal/dextran
 - a.1 mélanger 1.2g de charcoal avec 0.12g de Dextran. Ajuster le volume à 60ml avec

de l'eau

a.2 agiter pendant 2 heures en chambre froide

b) Préparer le traceur :

- b.1 la solution stock d'érythromycine C¹⁴ et préparée en diluant 100 fois dans l'éthanol la solution standard de manière à obtenir environs 1000 dpm lors du comptage radioactif.
- b.2 diluer $5\mu l$ de la solution stock d'érythromycine C^{14} dans $1195\mu l$ de tampon phosphate 0.01M
- c) Préparer la solution d'érythromycine froide C¹² (40µg/ml) :
 - c.1 diluer $40\mu l$ d'une solution stock de 1mg/ml dans $960\mu l$ de tampon phosphate 0.01M
- d) Préparer la solution mère :
 - d.1 diluer 1000 fois dans du tampon phosphate 0.01M la solution stock de 1mg/ml, pour obtenir une solution mère de 1 µg/ml de l'antibiotique analysé.
- e) Préparer les solutions de travail pour chaque antibiotique :
 - e.1 100ng/100μl (à partir de 1ng/μl)
 - e.2 $50 ng/100 \mu l$: $50 \mu l (1 ng/\mu l) + 50 \mu l$ tampon phosphate 0.01 M
 - e.3 20ng/100µl: 20µl (1ng/µl) + 80µl tampon phosphate 0.01M
 - e.4 $10 \text{ng}/100 \mu l$: $10 \mu l$ ($1 \text{ng}/\mu l$) + $90 \mu l$ tampon phosphate 0.01 M
 - $e.5.5 \text{ ng}/100\mu\text{l}: 50\mu\text{l} (1\text{ng}/\mu\text{l}) + 950\mu\text{l} \text{ tampon phosphate } 0.01\text{M}$
 - e.6 2 ng/100 μ l: 20 μ l (1ng/ μ l) + 980 μ l tampon phosphate 0.01M
 - e.7 1 ng/100 μ l: 10 μ l (1ng/ μ l) + 990 μ l tampon phosphate 0.01M
- f) Préparer les tubes :
 - f.1 le tube traceur : 100µl de traceur et 900µl de tampon phosphate 0.01M.
 - f.2 le tube Non Spécifique : 100µl de traceur + 100µl de ribosomes + 100µl d'érythromycine froide (4µg/100µl) + 200µl de tampon phosphate 0.01M.
 - f.3 le tube Bo : $100\mu l$ de traceur + $100\mu l$ de ribosomes + $300\mu l$ de tampon phosphate 0.01M.
 - f.4 le tube échantillon ou courbe : 100µl de traceur + 100µl de ribosomes + 100µl de solution d'antibiotiques de concentrations croissantes (ou d'échantillons à analyser) + 200µl de tampon phosphate 0.01M.

En résumé on a :

	Tampon phosphate 0.01M	Erythromycine froide 4μg/100μl	ribosomes	Courbe ou échantillon	Traceur érythromycine C ¹⁴
Traceur	900 μ1				100 μ1
NS	200 μ1	100 µl	100 μ1		100 μ1
Во	300 µl		100 μ1		100 μ1
Courbe:					
1ng/100μ1	200 μ1		100 μ1	100 μ1	100 μ1
2ng/100μ1	200 μl		100 µl	100 µl	100 μl
5ng/100µ1	200 μ1		100 μ1	100 μ1	100 μ1
10ng/100µ1	200 μ1		100 µl	100 μ1	100 μ1
20ng/100µ1	200 μl		100 μl	100 μl	100 µl
50ng/100µ1	200 μl		100 µl	100 µl	100 µl

100ng/100µl	200 μl	1	.00 μ1	100 µl	100 µl
échantillon	200 µl	1	.00 μl	100 µl	100 µl

g) Préparation des tubes (suite) :

g.1 dans chaque tube, placer les quantités indiquées dans le tableau ci-dessus.

Attention: ne pas ajouter de charcoal!

- g.2 incuber 15 minutes à température ambiante
- g.3 ajouter 500µ1 de charcoal dans chaque tube excepté dans le tube du traceur
- g.4 incuber 10 minutes à 4°C
- g.5 centrifuger le tout 10 minutes à 4°C à 3600g
- g.6 placer 500µl de surnageant dans une fiole à scintillation
- g.7 ajouter 4ml de liquide scintillant
- g.8 compter l'activité du C¹⁴ au compteur à scintillation Beeckman LS 500 CE

Protocole 7: Extraction des macrolides et analyse à l'aide du RRA.

a) Préparation de l'échantillon:

- a.1 peser 5 g de rein
- a.2 ajouter 15 ml de tampon McIlvaine pH 4 (30.7ml acide citrique 0.1M + 19.3ml Na₂HPO₄ 0.2M dans 100ml de solution finale).
- a.3 broyer à l'aide du turax
- a.4 peser une fraction de 2g de broyat
- a.5 centrifuger 30min à 4°C à 30 000g
- a.6 récolter tout le surnageant

b) Colonne Oasis HLB Waters, 3ml, 60mg:

- b.1 conditionner la colonne avec 3ml de méthanol, puis 3ml de tampon MacIlvaine
- b.2 charger la colonne
- b.3 laver la colonne avec 3ml d'un mélange H₂O/MeOH (95/5, v/v)
- b.4 sécher la colonne par centrifugation, 10min à 4°C à 3000g
- b.5 éliminer l'éluat
- b.6 éluer la colonne avec 2ml de méthanol

c) Evaporation

- c.1 évaporer à sec le méthanol
- c.2 reprendre dans 200µl de tampon phosphate 0.01M
- c.3 utiliser 100µl dans le test RRA

Protocole 8: Extraction des macrolides et analyse à l'aide du LC (ESI +) / MS / MS

a) Préparation de l'échantillon:

- a.1 peser 5 g de rein
- a.2 ajouter 15 ml de tampon McIlvaine pH 4 (30.7ml acide citrique 0.1M + 19.3ml Na₂HPO₄ 0.2M dans 100ml de soluton finale).
- a.3 broyer à l'aide d'un turax.
- a.5 peser une fraction de 2g de broyat
- a.6 centrifuger 30min à 4°C à 30 000g
- a.7 récolter le surnageant de 2 broyats

- b) Colonne Oasis HLB Waters, 6ml, 200mg:
 - c.1 conditionner la colonne avec 10ml de méthanol, puis 10ml de tampon MacIlvaine
 - c.2 charger 2 surnageants sur la colonne
 - c.3 laver la colonne avec 10ml d'un mélange H₂O/MeOH (95/5, v/v) + 5ml hexane
 - c.4 sécher la colonne par centrifugation, 10min à 4°C à 3000g
 - c.5 éliminer l'éluat
 - c.6 éluer la colonne avec 5ml de méthanol

d) Evaporation

- d.1 évaporer à sec le méthanol
- d.2 reprendre dans $500\mu l$ d'une solution d'acétate d'ammonium 0.1M et acétonitrile (80/20, v/v)
- d.3 transférer la solution dans un eppendorf
- d.4 centrifuger 10 minutes à l'ultracentrifugeuse
- d.5 filtrer l'échantillon sur filtre Millipore 0.45µm
- d.6 20µl sont injectés dans l'HPLC qui précède la détection MS.

Protocole 9: Protocole d'utilisation du kit ELISA RIDASCREEN (Biopharm), pour l'analyse du chloramphénicol

- a) réactifs fournis par le Kit pour 96 déterminations
 - a.1 Une plaque microtitration (12 strips avec 8 puits chacun), donc 96 puits couverts avec des anticorps produits sur moutons et dirigés contre les IgG de lapins.
 - a.2. Six solutions standards de chloramphénicol dilué en tampon :
 - Oppt (standard 1), 500ppt, 1500ppt, 4500ppt, 13500ppt, 40500ppt (ng/L)
 - a.3.Un conjugué : une solution concentrée de chloramphénicol conjugué à la peroxydase (bouchon rouge).
 - a.4. Une solution concentrée d'anticorps anti-chloramphénicol (bouchon noir)
 - a.5. Une solution de substrat (7ml) contenant du peroxyde d'hydrogène (bouchon vert).
 - a.6.Une solution de chromogène (7ml) contenant de la tétraméthylbenzidine (bouchon bleu).
 - a.7. Un réactif d'arrêt (14ml) contenant de l'acide sulfurique 1M (bouchon jaune). a.8 Une solution tampon,1 (100ml) pour la dilution des standards, du conjugué, de l'anticorps et des échantillons.
- b) préparer la solution de référence de chloramphénicol
 - b.1.préparer une solution mère de chloramphénicol de 5mg/ml
 - b.2. diluer cette solution mère à 1/1000 afin de doper 5g de tissu à 10 ppb par ajout de $10\mu l$.

c) mode opératoire du kit

c.1. Les solutions de conjugué enzymatique et d'anticorps spécifiques sont à diluer au moment de l'emploi. La dilution s'effectue dans le rapport 1 : 11 avec le tampon inclus dans le kit. Les solutions diluées ayant une stabilité limitée dans le temps, il est recommandé de ne reconstituer que le volume nécessaire au moment de la réalisation de l'essai. De même, les solutions standards doivent être diluées 10 fois au moment de l'emploi, de sorte que les concentrations finales en chloramphénicol sont 0ppt, 50ppt, 150ppt, 450ppt, 1350ppt et 4050ppt.

- c.2. Pipeter successivement 50 µl de solution de conjugué enzymatique et 50 µl de solution standard ou d'extrait d'échantillon dans les puits désignés.
- c.3. Ajouter 50 µl de solution d'anticorps spécifique dans chaque puits, mélanger par un mouvement rotatif de la plaque et incuber celle-ci pendant 2 heures à température ambiante.
- c.4. Aspirer le contenu des puits et effectuer 3 cycles de lavage par remplissage et aspiration successives de 250 µl d'eau distillée.
- c.5. Ajouter 50 µl de substrat ainsi que 50 µl de chromogène dans chaque puits. Mélanger et incuber 30 minutes à température ambiante à l'abri de la lumière.
 - c.6. Ajouter 100 µl de solution d'arrêt dans chaque puits.
 - c.7. Mélanger et mesurer l'absorbance à 450 nm.
 - a.2 agiter pendant 2 heures en chambre froide

Protocole 10 : Extraction du chloramphénicol selon les indications du kit. et analyse à l'aide du test ELISA.

- a) Préparation de l'échantillon:
 - a.1 peser 5 g de rein
 - a.2 ajouter 20 ml d'un mélange eau/acétonitrile (84/16, v/v)
 - a.3 broyer à l'aide du turax
 - a.4 laisser agir 10 minutes à température ambiante
 - a.5 centrifuger 10min à 15°C à 3000g
 - a.6 mélanger 3ml de surnageant à 3ml d'eau
 - a.7. extraire avec 4.5ml d'acétate d'éthyle par agitation pendant 30 secondes
 - a.8. centrifuger pendant 10 minutes à 3000g à 15°C

b) Evaporation

- c.1 évaporer à sec les 3ml de la phase d'acétate d'éthyle
- c.2 reprendre dans 1.5ml de tampon
- c.3 agiter avec 1.5ml d'hexane
- c.4. éliminer la phase organique
- c.5. utiliser 50µl de la phase aqueuse pour le test ELISA

Protocole 11: Extraction améliorée du chloramphénicol et analyse à l'aide du test ELISA.

- a) Préparation de l'échantillon:
 - a.1 peser 5 g de rein
 - a.2 ajouter 15 ml d'eau
 - a.3 broyer à l'aide du turax
 - a.4 peser 1g de broyat
 - a.5 centrifuger 30 minutes à 30 000g à 4°C

b) Colonne Bond Elut 100mg, VARIAN:

- c.1 conditionner la colonne avec 2ml de méthanol, puis 2ml d'eau
- c.2 charger sur la colonne tout le surnageant obtenu en A.5
- c.3 laver la colonne avec 1ml d'eau
- c.4 sécher la colonne par centrifugation, 10min à 4°C à 3000g
- c.5 éluer la colonne avec 4 fractions de 250µl de méthanol

d) Evaporation

- d.1 évaporer à sec le millilitre de méthanol d.2 reprendre dans 500µl de tampon fournit dans le kit d.3 agiter 30 seconde au vortex
- d.4 utiliser 50µl pour le test ELISA