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Ensemble post-processing using member-by-member approaches:
theoretical aspects
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Linear post-processing approaches are proposed and fundamental mechanisms are analyzed
by which the probabilistic skill of an ensemble forecast can be improved. The ensemble
mean of the corrected forecast is a linear function of the ensemble mean(s) of the
predictor(s). Likewise, the ensemble spread of the corrected forecast depends linearly on
that of the uncorrected forecast. The regression coefficients are obtained by maximizing the
likelihood function for the error distribution. Comparing different calibration approaches
on simple systems that exhibit chaotic features (the Kuramoto–Sivashinsky equation, the
spatially extended Lorenz system), four correction mechanisms are identified: the ensemble-
mean scaling and nudging using the predictor(s), and the ensemble-spread scaling and
nudging. Ensemble-spread corrections turn out to yield improvement only when ‘reliability’
constraints are imposed on the corrected forecast. First of all climatological reliability is
enforced and is satisfied when the total variability of the forecast is equal to the variability
of the observations. Second, ensemble reliability or calibration of the ensembles is enforced
such that the squared error of the ensemble mean coincides with the ensemble variance.

In terms of continuous ranked probability skill score, spread calibration provides much
more gain in skill than the traditional ensemble-mean calibration and extends for lead
times far beyond the error-doubling time. The skill performance is better than or as
good as the benchmark calibration method which derives from statistical assumptions
–non-homogeneous Gaussian regression. In addition to the member-by-member nature
of the approach, benefits compared with the benchmark method can be pinpointed. In
particular, although the post-processing methods are performed for each lead time, location
and variable independently, they preserve the rank correlations and thus take dependencies
across space, time, and different variables into account. In addition, higher-order ensemble
moments like kurtosis and skewness correspond to those of the uncorrected forecasts.
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1. Introduction

The atmosphere and its climate display the property of sensitivity
to initial conditions which drastically limits their predictability
horizon (Kalnay, 2002). Moreover, it is recognized that model
errors also strongly degrade forecasts as a function of lead time
(Nicolis et al., 2009). The modern approach is to quantify these
uncertainties using an ensemble of forecasts, each starting from
different initial conditions, and/or with different model physics. In
this way, a probabilistic forecast can be produced. The ensemble
mean is the quantity usually disseminated while the ensemble
spread is a measure of the flow-dependent forecast uncertainty.
However, it is well-known that, for state-of-the-art weather
forecasts, the uncertainty measure is not very accurate. Moreover,
at the surface, experiments show that ensemble forecasts are
consistently under-dispersive (or overconfident) for long lead

times (Leutbecher and Palmer, 2008). This feature can be partly
traced back to systematic errors, relevant to the model at hand,
that could be partly corrected by calibration or post-processing.

A common method to calibrate (deterministic) forecasts is
called Model Output Statistics (MOS) and is based on the statis-
tical error features of past model output. The simplest approach
applies ordinary least-squares regression to fit predictions to
observations (Glahn and Lowry, 1972). Unfortunately the use
of this approach implies a degradation of the variability at
long lead times, an undesirable feature for ensemble forecasting
(Wilks, 1995). In order to overcome this problem, new methods
were introduced for scalar predictands based on different linear
regression techniques (Vannitsem, 2009; Van Schaeybroeck and
Vannitsem, 2011, 2012) but also for vector variables such as wind
(Pinson, 2012). These will be referred to as ‘member-by-member’
(MBM) calibration methods in this work. On the other hand,
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‘statistical’ calibration methods were also proposed. These
are statistical in nature in the sense that they assume specific
ensemble distributions and have predictive distributions as
output, rather than an ensemble of discrete size. For example the
logistic distribution has been successfully applied in the context of
post-processing of precipitation forecasts (Wilks, 2009; Schmeits
and Kok, 2010; Roulin and Vannitsem, 2012). For temperature,
one of the most competitive approaches is the Non-homogeneous
Gaussian Regression (NGR) (Gneiting et al., 2005; Hagedorn
et al., 2008). NGR uses Gaussian predictive distributions with
mean and spread that depend linearly on the corresponding
quantities of the raw forecast. Also, NGR explicitly minimizes the
associated continuous ranked probability score (CRPS) which
is the squared difference between the cumulative distribution
functions of the ensemble forecast and the observation integrated
over all possible thresholds.

In practice, however, important side effects emerge when
independently applying statistical post-processing methods at
different stations, lead times or for multiple variables. The
output of such a collection of statistical post-processing are
independent predictive distributions which can be used to
reconstruct ensembles by random sampling. However, strong
correlations are likely to be present between the values of nearby
stations, lead times and multiple variables of the raw forecast,
which will be strongly reduced for a member reconstructed from
the output of statistical calibration.

We illustrate this reduction of correlations in Figure 1. Consider
in Figure 1(a) four ensemble members of the raw ECMWF
ensemble forecast for 2 m temperature (2mT) and minimum
temperature over the last 6 h (minT) on 21 June 2011 at
Uccle, Belgium. For each ensemble member the 2mT (full lines)
and minT (dotted lines) have a strongly correlated temporal
evolution. The presence of correlations is made more explicit in
Figure 1(b) which displays the raw 2mT forecasts against the
minT forecasts for all 15 days of lead time at 0600 UTC and
for all 51 members. Figure 1(c, d) show the same scatterplot but
for calibrated forecasts–more specifically, the MBM correction
method (CRPS MIN in Figure 1(c)) introduced in this article and
a 51-member reconstructed ensemble forecast of the statistical
calibration method NGR (Figure 1(d)). Even though the post-
processing is performed with one predictor only and for 2mT and
minT independently, the Pearson correlation ρ = 0.92 among
2mT and minT of the raw forecast is very close to the MBM
method for which ρ = 0.90, while ρ is strongly reduced by NGR
to a value of 0.15. In addition, the latter produces many physically
inconsistent forecasts (red dots) where minT is higher than 2mT.

Analogously to the correlations that exist among variables (per-
taining to the same ensemble member), important information is
contained in the spatial and temporal structures of the individual
members. Calibration of the different sets (including different
locations and lead times) independently using our approach does
preserve the information as a consequence of the linear map-
ping of the individual ensemble members. Independent statistical
calibration, on the other hand, yields independent predictive
distributions from which a new ensemble is sampled, reducing
correlations among the different sets compared with the raw
forecast. Note that these problems of the statistical methods have
been already recognized and form the subject of intense ongoing
research (Schuhen et al., 2012; Möller et al., 2013; Schefzik et al.,
2013; Scheuerer and Büermann, 2014).

In this work, MBM (or ‘deterministic’) methods are developed
for which each ensemble member is corrected individually by a
linear mapping, thereby retaining rank correlations. Therefore
each member retains to a large extent correlation structures
in the case of multiple independent calibrations (as shown in
Figure 1(c)). Moreover in terms of skill our MBM approach can
be as high as NGR.

More specifically, the purpose is to correct the forecasts so that
they respect two ‘reliability’ conditions. First of all, the distribution
of errors of the ensemble mean should agree with the distribution
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Figure 1. (a) Evolution of four members of the ECMWF ensemble forecast on 21
June 2011 at Uccle (Belgium) of 2 m temperature (2mT, full lines) and minimum
2 m temperature over the last 6 h (minT, dotted lines). For each member 2mT
and minT are strongly correlated. Also shown are the predictive densities of minT
and 2mT obtained with NGR calibration at lead time 192 h. Upon randomly
sampling minT and 2mT from these distributions, it may occur that 2mT is
lower than minT, which is physically inconsistent. (b) Raw 2mT forecasts against
minT forecasts at 0600 UTC for lead times up to 15 days, for all 51 ensemble
members. The solid line is a linear fit to the points. (c) is as (b), but obtained
by post-processing using the member-by-member approach CRPS MIN. Red
dots denote physically inconsistent forecasts. (d) is as (b), but shows ensemble
members sampled from the predictive distributions obtained with NGR.

of the deviations of the ensemble members from the ensemble
mean (Kharin and Zwiers, 2003; Johnson and Bowler, 2009;
Glahn et al., 2009). The second reliability condition concerns the
climatological distribution of the forecasts which should agree
with the distribution of all observations (Van Schaeybroeck and
Vannitsem, 2011). This last property is called marginal calibration
in Gneiting et al. (2007).

To this aim, a general framework is developed based on
Lagrange multipliers and constrained maximum likelihood for
imposing an arbitrary number of constraints. As it turns out,
allowing the ensemble mean and spread to be expressed as
linear functions of the uncorrected ones (as in NGR) are
insufficient to decrease the CRPS at all lead times. Reliability
constraints on the corrected forecast are the essential extra
ingredient. Our theoretical findings are illustrated using the
Kuramoto–Sivashinsky (KS) model.
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We start in section 2 by outlining our general set-up of
correcting forecasts and specifying the KS equation used to
illustrate the findings. The new post-processing techniques are
introduced in section 3, while a verification is performed in
section 4. We come back to the issue of modification of correlation
structures in section 5 and we present a preliminary test of the
calibration techniques on real data in section 6. Finally, we
conclude in section 7.

2. General set-up

2.1. Raw and corrected forecast

Consider the meteorological variable X for which N observations
(XO,1, . . . , XO,N ) are available. Corresponding to each observa-
tion n, the mth member of the ensemble forecast produces the
values (Vm

1,n, . . . , Vm
P,n) for the P different meteorological variables

or predictors. The first predictor V1 is the one corresponding to
the variable X and is also called the raw or uncorrected forecast.
The ensemble-mean values are defined as (V1,n, . . . , VP,n). For
the variable X, and for each member m of an ensemble n, a
corrected forecast or predictand is constructed:

Xm
C,n = α +

P∑
p=1

βpVp,n + τnε
m
n . (1)

Here regression coefficient α is the bias parameter while the
coefficients (β1, . . . , βP) are the ensemble-mean scale parameters.
Although in our verification only one predictor (P = 1) is used,
multiple predictors can be used, provided care is taken to avoid
overfitting. The parameter τn adjusts the spread of the new
ensemble because the deviation from the ensemble mean is
defined as εm

n = Vm
1,n − V1,n. A direct consequence of the form

of Eq. (1) is that, in the case of one predictor (P = 1) and β1 ≥ 0,
the correlation between the corrected ensemble mean and the
observation is equal to the correlation between the uncorrected
ensemble mean and the observation (Johnson and Bowler, 2009).
The fact that τn depends on the ensemble index n comes from
its dependence on ensemble spread as specified below. First, two
spread measures, the ensemble standard deviation σε,n and the
absolute-value spread δn, are defined as

σ 2
ε,n =

〈(
Vm

1,n − V1,n

)2
〉

m
, (2a)

δn =
〈〈|Vm1

1,n − Vm2
1,n |〉

m1

〉
m2

. (2b)

Here 〈·〉m denotes the ensemble average. Note that the measure
δn is of the Cramér–von Mises type (Baringhaus and Franz, 2004;
Gneiting and Raftery, 2007). Depending on our choice of spread
measure, τn is defined as

τ 2
n = γ 2

1 + γ 2
2 σ−2

ε,n , (3a)

τn = γ1 + γ2 δ−1
n . (3b)

This implies that the ensemble spread measures of the corrected
ensemble are given by

σ 2
C,ε,n = γ 2

1 σ 2
ε,n + γ 2

2 , (4a)

δC,n = γ1 δn + γ2 . (4b)

Here γ1 is called the ensemble-spread scale parameter while γ2 is
the ensemble-spread nudge parameter. Scaling refers to inflation
or deflation of the uncorrected quantity using a multiplicative
factor. Nudging, on the other hand, refers to the fact that
a quantity, here σC,ε,n or δC,n, becomes constant, i.e. here
independent of σε,n or δn. It is therefore an additive correction.
In terms of the parameters, this leads to

• ensemble-mean scaling: XC,n ∝ β1V1,n ,
• ensemble-mean nudging: XC,n ≈ α ,
• ensemble-spread scaling: σC,ε,n ∝ γ1σε,n ,

or δC,n ∝ γ1δn ,
• ensemble-spread nudging: σC,ε,n ≈ γ2 ,

or δC,n ≈ γ2 .

Both choices of Eq. (4) with non-zero values for γ1 and
γ2 allow us to cover the crossover between the following two
situations. First, at short lead time, the ensemble spread may be
a reliable measure of skill up to a constant multiplicative factor
owing to a systematic underdispersiveness. A good calibration
scheme should be such that γ2 ≈ 0 and γ1 > 1 (or γ1 < 1, for
overdispersion). Second, at long lead times, when no spread–skill
relation exists, a good calibration method should set the spread
to a constant and this is achieved using γ1 ≈ 0 and γ2 > 0. Note
that relation (4a) is also satisfied by the NGR approach (Gneiting
et al., 2005).

2.2. Maximum likelihood estimation (MLE)

The parameters (α, β , γ1, γ2) are estimated by maximization of a
likelihood function L0 associated with the ensemble-mean error
distribution of the nth ensemble Pn (Wilks, 1995):

lnL0 = 〈
ln

{
Pn

(
XO,n − XC,n

)}〉
n

, (5)

where 〈·〉n = (1/N)
∑

n · denotes the average over all data points,
all of which are assumed independent. Again, depending on the
ensemble-spread measure, two choices for the error distribution
are considered:

Pn(y) = e−y2/(2σ 2
ε,n)√

2πσ 2
ε,n

∼ N (0, σε,n), (6a)

Pn(y) = e−y/δn

δn
∼ E(0, δn). (6b)

The first choice for the normal distribution (Eq. (6a)) is the most
natural since it allows analytic solutions and the reproduction
of traditional post-processing approaches. As shown later, the
exponential distribution (Eq. (6b)) is useful as it leads to more
stable solutions of the MLE.

2.3. Constrained MLE

In order to obtain the best possible correction, one needs to
enforce reliability constraints to our corrected forecast. From a
climatological point of view, a reliable forecast is characterized
by the fact that the distribution of all observations agrees with
the distribution of all forecasts. Therefore, for bias-free forecasts,
climatological reliability (CR) is defined as the equality of forecast
variability σ 2

C with the variability of the observations σ 2
O:〈(

Xm
C,n−

〈
Xm

C,n

〉
m,n

)2
〉
m,n

=
〈(

XO,n−
〈
XO,n

〉
n

)2
〉
n

. (7)

A reliable probabilistic forecast, on the other hand, is
characterized by the fact that the observation may be considered
as a member of the ensemble and therefore has the same statistical
properties as the ensemble forecast. The conventional approach is
to say that, for a bias-free forecast, the average ensemble variance〈
σ 2

C,ε,n

〉
n

agrees with the mean squared forecast error. This is what
is defined as weak ensemble reliability (WER):〈

(XC,n − XO,n)2
〉
n

= 〈
σ 2

C,ε,n

〉
n
. (8)

Since ensemble spread may be strongly regime-dependent, a
slightly different notion of ensemble reliability or ensemble
calibration is defined as follows: Strong ensemble reliability (SER)
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is satisfied when, for a bias-free forecast, the χ 2/N value (which
is the standardized mean squared error of the ensemble mean) is
equal to one. The standardization is done using the ensemble
variance of the corresponding corrected forecast σ 2

C,ε,n. The
condition for SER is therefore

χ 2

N
=

〈
(XC,n − XO,n)2

σ 2
C,ε,n

〉
n

= 1. (9)

Note that the χ 2/N value is also called the reduced centred
random variable (RCRV) as introduced in Candille et al. (2007).

The mathematical tool for imposing the constraints on the
corrected forecast is a modified likelihood L with additional
parameters η and μ. The constrained log-likelihood becomes

lnL = lnL0 − η

(
1 − σ 2

C

σ 2
O

)2

− μ

(
1 − χ 2

N

)2

. (10)

In the case that one of the two conditions is not imposed, the
corresponding parameter (η or μ) is set to zero. If one considers
η and μ as variational parameters, they are in fact Lagrange
multipliers and the two imposed conditions are ‘hard’ in the
sense that they are exactly satisfied. However, in practice, it is
often better to use ‘soft’ constraints by fixing η and μ to a value
much larger than one. As will be discussed later and shown
in Appendix C2, maximizing some hard-constrained likelihoods
may not yield any solution. Unless mentioned otherwise, we
further use soft constraints with η = μ = 103. Optimization of
these parameters could be performed but will be strongly system-
dependent. Furthermore for the system under consideration, no
substantial quantitative changes are expected. Note also that no
constraint on the mean is necessary since our forecasts are to
a large extent bias-free after maximization of the log-likelihood
with respect to the bias-adjustment parameter α. Moreover,
when assuming the normal distribution Eq. (6a) for the error
with a variance that is independent of the ensemble, the corrected
forecast is exactly bias-free.

In summary, maximization of the first term of Eq. (10) forces
the corrected ensemble means XC,n to be as close as possible
to the observations XO,n, ensuring a maximal resolution. The
second and third term are introduced to enforce climatological
and ensemble reliability, respectively.

Note that, for a forecast which satisfies both WER and CR
constraints, the correlation between the observation and the
ensemble mean equals the correlation between the ensemble
members and the ensemble mean. This feature is proven in
Appendix A and may be seen as another measure of reliability.

2.4. Benchmark: non-homogeneous Gaussian regression

The MBM approach introduced will be compared with NGR,
considered here as a benchmark. It has been shown (Hagedorn
et al., 2008; Vannitsem and Hagedorn, 2011) that NGR is a state-
of-the-art method, at least for Gaussian-like distributed variables
such as surface temperature. Wilks (2006) confirmed that NGR is
in many situations the best post-processing method available, in
the context of the Lorenz 96 model. However, as already alluded
to in the Introduction, cross-correlation properties could be
considerably affected when multiple variables, locations and lead
times are considered. We therefore think that a MBM approach as
presented here is worth using, provided a skill can be comparable
with that of the NGR method.

The NGR approach minimizes the CRPS score subject to
the assumption that the predictive distribution is normally
distributed. An analytical form can be obtained for the CRPS
(Gneiting et al., 2005):

CRPS = 〈
σC,ε,n

[
zn {2
(zn)−1} + 2φ(zn) − π−1/2

]〉
n
,
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Figure 2. The CRPSS as defined in Eq. (12) as a function of lead time for
the different calibration methods. Below the figure, the different time-scales
associated with different types of corrections are indicated. The characteristics of
the correction schemes are given in Table 1. This figure is obtained using the KS
equation with a biased model error parameter ν ′ = ν + 0.001.

where φ is the normal probability density function (PDF), 

its cumulative distribution function (CDF), zn the standardized
error = (XO,n − XC,n)/σC,ε,n, and both σC,ε,n and XC,n are related
to the regression parameters (α, β , γ1, γ2) as before.

2.5. Illustration based on test case

Our main findings are illustrated based on a spatially extended
system, the KS equation (Manneville, 1990) which pertains
to a class of partial differential equations describing the flow
dynamics in the vicinity of a convective instability threshold of
two-dimensional stationary rolls. The dynamic equation reads:

∂tψ = −νψ − ∂2
x ψ − ∂4

x ψ − 2ψ∂xψ , (11)

where ψ(x, t) is the convective velocity and ν = 0.01 is a small
damping parameter. For the numerical integration, we use a
semi-implicit Adams–Bashford Cranck–Nicholson scheme with
a time step of 0.1 time units and 256 spatial grid points of 0.5 space
units and periodic boundary conditions. The forecasts extend up
to 200 units of time. The properties of ordinary least-squares
(OLS) post-processing have also been investigated for this system
in Vannitsem and Nicolis (2008). With this choice of parameters,
the system exhibits chaotic behaviour. The error-doubling time
associated with the largest Lyapunov exponent λL is equal to
ln(2)/λL = 7.54 time units. For generating the observations,
we assume a slightly biased parameter ν ′ = ν + 0.001 from the
one used for generating the model data. The system is perfectly
reliable at time zero in the sense that the observation is randomly
sampled from the normally distributed forecast ensemble with
standard deviation of 10−4 at each grid point. Both the training
and verification sets include 200 ensembles of 50 members each.

3. The different practical correction methods

To evaluate the approach proposed in sections 2.1–2.3 using
the test case (section 2.5), a hierarchy of correction methods
are now detailed and developed, and a summary of their
main characteristics is provided in Table 1. In this table, for
each calibration method, we denote the use of the regression
parameters α, β1, γ1, γ2 by a checkmark (�). These coefficients
are determined independently for all lead times and spatial points.
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Table 1. Schematic representation of the characteristics of the post-processing schemes. For the calibration methods indicated in the first column, the regression
parameters α, β1, γ1, γ2 (section 2.1) are fixed to a certain value (0 or 1) or are variable regression parameters (�). It is also indicated whether the different reliability
constraints are satisfied: climatological reliability (CR; Eq. (7)), weak ensemble reliability (WER; Eq. (8)) and strong ensemble reliability (SER; Eq. (9)). When exactly
satisfied, it is denoted by �, while ± means overall satisfaction in numerical experiments. Note that, for CRPS MIN and NGR, the choice of error distribution Pn is

not applicable (n/a).

Method Abbreviation α β1 CR γ1 WER SER γ2 Error distrib. Exact Comput.
Pn of solution load

ensemble n

Normal-error minimization MSE MIN � � – 1 – – 0 N
(
0,

〈
σ 2

ε,n

〉
n

)
� Low

Weak ensemble-reliability WER + CR � � � � � – 0 N
(
0, γ 2

1

〈
σ 2

ε,n

〉
n

)
� Low

and climatological-reliability
constraint

Exponential-error and BEST REL � � � � � ± � E(0, δC,n) – Higher
non-homogeneous
error variance

Member-by-member CRPS MIN � � ± � ± ± � n/a – Highest
CRPS minimization

Non-homogeneous NGR � � – � ± ± � n/a – Higher
Gaussian regression

The different methods are compared by displaying in Figure 2 the
continuous ranked probability skill score (CRPSS) as a function
of lead time. Denoting the CRPS of the corrected and uncorrected
forecasts by CRPScorr and CRPSunc, respectively, the associated
skill score is

CRPSS = 1 − CRPScorr

CRPSunc
. (12)

A forecast better (worse) than the raw forecast has positive
(negative) skill and a perfect forecast corresponds to a skill of one.

Different time-scales associated with the different correction
mechanisms which were defined in section 2.1, are indicated
below Figure 2. The scales reflect the time intervals during which
skill increase is observed, by comparison of the different methods.

3.1. Ensemble-mean correction

We define now the ensemble-mean correction or MSE MIN. This
method adjusts the ensemble mean using one or more predictors,
the first one, V1, being the uncorrected forecast. However, MSE
MIN leaves the deviation of the members from the ensemble
mean untouched. Therefore we setγ1 = 1 andγ2 = 0, constraints
which are later relaxed upon introduction of the other correction
methods. The MSE MIN forecast is therefore:

Xm
C,n = α +

P∑
p

βpVp,n + εm
n . (13)

The log-likelihood function associated with a normal error
distribution with ensemble-independent variance N (0, 〈σ 2

ε,n〉n)
reads:

lnL0 = −N

2
ln

(
2π〈σ 2

ε,n〉n

)− 〈
(XC,n−XO,n)2

〉
n

2〈σ 2
ε,n〉n

. (14)

Note that the second term on the right-hand side is proportional
to the mean squared error. The maximization of the likelihood
function leads to the well-known result of OLS regression:

β = σ 2
OV

σ−2
V

, (15a)

α = 〈XO〉n − 〈
βV

〉
n

, (15b)

with XO = (XO,1, . . . , XO,N ) the vector of all N observations,
β = (β1, . . . , βP) the vector of P regression parameters and V
the matrix of size P × N containing all ensemble-mean predictors.

The expression 〈A〉n denotes averaging over all N vector elements
of A. The P × P covariance matrix σ 2

V
and the vector σ 2

OV
of size

P that contain the elements (p1 and p2 are between 1 and P) are
defined as:

σ 2
V ,p1,p2

=
〈(

Vp1,n1−〈Vp1〉n

)(
Vp2,n1−〈Vp2〉n

)〉
n1

, (16a)

σ 2
OV ,p1

=
〈(

XO,n1−〈XO〉n

)(
Vp1,n1−〈Vp1〉n

)〉
n1

. (16b)

Note that the solution of Eq. (15) does not depend on the average
ensemble variance 〈σ 2

ε,n〉n.
Figure 2 indicates that MSE MIN has a period (t < 20) of

improved skill compared with the raw forecast due to ensemble-
mean scaling. This period is of the order of the error-doubling
time ln(2)/λL = 7.54 time units. On the other hand, for long
lead times (t > 70), ensemble-mean nudging induces skill gain:
the bare ensemble mean and observations are nearly decorrelated
such that skill is gained by setting the ensemble mean to a constant.
However, an intermediate period (20 < t < 70) of negative skill
is encountered due to reduced forecast variability caused by the
ensemble-mean nudging and thus a reduction of climatological
reliability. This is illustrated in Figure 3 where the ratio of
forecast variance with respect to the observational variance is
displayed. The MSE MIN forecast exhibits a clear variance dip at
intermediate times.

One could try to avoid the variance dip of the MSE MIN
forecast by imposing the climatological reliability constraint.
In Appendix B the solutions for such correction scheme are
presented. The green line in Figure 4 shows that, although the skill
gain due to the ensemble-mean scaling is preserved, the gain due to
ensemble-mean nudging is lost. This is because the CR constraint
eliminates the decreased variability of the MSE MIN method
by increasing the ensemble-mean variability, which implies an
increase of the ensemble-mean error. In the next subsection we
allow for an increase of the ensemble spread to satisfy the CR
constraint while preserving the reduced ensemble-mean error of
MSE MIN.

3.2. Ensemble-spread scaling (WER + CR)

The detrimental features of reduced total variability of MSE MIN,
and the underdispersion of ensemble forecasts could be overcome
by allowing for a spread correction. As a first approach, a spread-
scaling factor γ1 only, is introduced while γ2 = 0 in Eq. (3).
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Therefore

Xm
C,n = α +

P∑
p=1

βpVp,n + γ1ε
m
n . (17)

The log-likelihood of the normal distribution is then readily
obtained by replacing 〈σ 2

ε,n〉n with γ 2
1 〈σ 2

ε,n〉n in Eq. (14). Again the
error variance is homogeneous in the sense that it is independent
of the specific ensemble forecast. The MLE solutions for α and β
are as in Eq. (15) and the spread-scale parameter is given by

γ 2
1 = 〈σ 2

ε,n〉−1
n

{
σ 2

O − σ 2
OV

σ−2
V

(σ 2
OV

)T
}

. (18)

It can be checked that this calibrated forecast satisfies exactly
the WER and CR conditions of Eqs (7) and (8). Therefore
this approach is called the WER + CR approach. As is clear
from Figure 2, the skill gain of ensemble-spread scaling is large
compared with the other correction mechanisms and extends for
a considerable time range of around 100 time units. This time
interval indicated below Figure 2 by ‘ensemble-spread scaling’ is
the interval during which the CRPSS value of WER + CR exceeds
that of MSE MIN.

In the case where one predictor is used (P = 1), the results
already obtained by several authors (Kharin and Zwiers, 2003;
Johnson and Bowler, 2009) are recovered for the regression
coefficients:

β1 = ρOVσO

σV

, (19a)

γ 2
1 = σ 2

O

〈σ 2
ε,n〉n

(
1 − ρ2

OV

)
, (19b)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20 40 60 80 100 120 140 160 180 200

Lead time

/N or Standardized MSE skill score/N or Standardized MSE skill scoreχ2

WER + CR

NGR
BEST REL

CRPS MIN

MSE MIN
RAW FC

Figure 5. The skill associated with the χ 2/N score (Eq. (9)) or reduced centred
random variable (RCRV) as a function of lead time for the different calibration
methods.

where ρOV is the correlation between uncorrected ensemble
mean and observation. Note that Johnson and Bowler (2009),
rather than minimizing the MSE or the likelihood as done
here, asked for the equality of correlation between the truth
and the corrected ensemble mean with the correlation between
the corrected ensemble members and corrected ensemble mean,
but this leads to the same answer (Appendix A). Our solution
can be considered as an extension for any arbitrary number of
predictors.

Figure 5 shows how well WER + CR satisfies the strong
ensemble-reliability constraint, as indicated by the χ 2/N skill
score. The expression for this skill score is obtained by replacing
CRPS in Eq. (12) with χ 2/N as given in Eq. (9). Compared
with the uncorrected and the MSE MIN approaches, WER + CR
performs reasonably well, but clearly even better results are
obtained using the approaches introduced in the next section.

3.3. Ensemble-spread nudging

Although large skill improvements are obtained by ensemble-
spread scaling, Figure 2 indicates that the WER + CR approach
also has a short time period of negative skill (which becomes
longer upon decrease of the model error; section 4.4). The skill on
this time-scale can be improved using different approaches. Let us
now enable spread nudging with a non-zero value of γ2 in Eq. (3).
Again this is implemented for all lead times and spatial points.
This is analogous to the situation of ensemble-mean nudging.
If, for some period of time, there is hardly any spread–skill
relation, a good calibration scheme would set the spread to a
constant (γ1 ≈ 0) and thereby increase the probabilistic skill. To
ensure climatological and ensemble reliability of the corrected
forecasts, it is necessary to constrain explicitly using the full
constrained likelihood function, Eq. (10), allowing non-zero
values for α, β1, γ1 and γ2. The results are shown in Figure 4 (blue
curve), and, although better in skill than the WER + CR method,
strong fluctuations appear probably caused by the occurrence of
degenerate solutions of the MLE. As the stability of the regression
parameters is an important requirement for a good calibration
method, we prefer to discard this approach.

3.4. Non-homogeneous error variance and SER + CR constraint:
BEST REL method

For all calibration methods considered so far, the error variance as
present in the ensemble-mean error distribution P was assumed
to be homogeneous or independent of the ensembles (in other
words Pn = P). For ensemble forecasts, the assumption of a
constant error variance (made for OLS regression and used for
all the above-introduced approaches) can be readily improved.
For a skilful ensemble forecast, the variance of the error on
the ensemble mean may be estimated by the ensemble variance.
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Figure 6. The Brier skill scores for different thresholds (5, 25, 75 and 95%
percentiles of the climatological distribution) as a function of lead time for the
different calibration methods.

In general a training set contains ensembles of both large and
small spread. Analogous to the improvement of weighted least-
squares regression upon ordinary least-squares regression, errors
should be weighted in case prior information concerning their
statistical properties is available. Upon disposal of an ensemble
forecast, the best guess concerning how far the observation
may be from the ensemble mean is the spread of the ensemble
itself.

Here stable and improved calibration schemes are obtained by
considering non-homogeneous error variances in the likelihood
function. More specifically, for both choices of the error
probability function Pn (Eq. (6)) the ensemble errors are divided
by their corrected-ensemble spreads which are given by Eq. (4).
The best results are obtained with the exponential distribution
E(0, δC,n) for which the spread is given by Eq. (4b).

Finally, the BEST REL approach is defined by using the full
constrained likelihood function Eq. (10) with SER and CR
conditions including non-homogeneous error variances. Again
the variational parameters are α, β1, γ1 and γ2. Figure 2 shows
that BEST REL is clearly one of the best methods, comparable
in skill with the NGR method. Both SER and CR are necessary
conditions for obtaining good skill with the BEST REL. The purple
line in Figure 4 shows the CRPSS values of a calibration method
which is exactly the same as the BEST REL approach but without
the CR constraint. These results are far worse than those of BEST
REL in Figure 2. Although this approach is optimized in order to
improve the CRPSS, it also perform well for events with different
thresholds. This is illustrated in Figure 6 where the Brier skill
scores are shown for different thresholds, corresponding to the
5, 25, 75 and 95% percentiles of the climatological distribution.
Apparently the BEST REL approach is distinctly better than
WER + CR at the most extreme percentiles.

Note also that exact solutions exist for the case of normally
distributed errors with non-homogeneous error variance without
ensemble-spread nudging, but with hard SER and CR constraints.
These are outlined in Appendix C. Figure 4 shows that enforcing
SER only (brown line) is not worthwile and the approach with
both enforced (black line) has only solutions up to a certain lead
time (here t ≈ 20). This advocates the use of soft rather than hard
constraints.

3.5. CRPS minimization

The last method is again a MBM method which, analogous to
NGR, explicitly minimizes the CRPS, but without any assumption
on the distribution. The CRPS corresponding to the observations
XO,n (n = 1, . . . , N) and the corrected-forecast members Xm

C,n

REScorr -RESunc (of CRPS component)

REScorr -RESunc (of CRPS component)

-0.4

-0.3

-0.2

-0.1

 0

 0.1
 (a)

 (b)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

0 20 40 60 80 100 120 140 160

Lead time

WER + CR

NGR
BEST REL

CRPS MIN

MSE MIN
RAW FC

Figure 7. Change of reliability (a) RELcorr − RELunc and (b) resolution
REScorr − RESunc as a function of lead time for the different calibration methods.
Eq. (21) gives the definitions of REL and RES.

(m = 1, . . . , M) can be written as (Gneiting and Raftery, 2007)

CRPS =
〈〈|Xm

C,n − XO,n|
〉
m

− δn

2

〉
n

. (20)

The corrected forecast Eq. (1) is used with the absolute-value
spread given in Eq. (3b). Note that, given the ensemble spreads
δn of the uncorrected forecast, the right-hand side of Eq. (20)
consists of N×M terms due to the averaging over all N data
points and M ensemble members. Therefore the minimization of
this CRPS expression is computationally intensive which makes
this method mostly suitable for small ensemble sizes M or small
sample sizes N.

4. Verification

As already mentioned in the Introduction, for a perfect ensemble
forecast, the ensemble-mean error distribution should be the same
as the distribution of ensemble members around the ensemble
mean. It is now assessed how well the ER constraint is satisfied,
and to what extent moments higher than two of the distributions
agree using the different calibration approaches presented in
section 3. The influence of the model, the model error amplitude,
the initial condition error and the ensemble size on the calibration
techniques are also discussed.

4.1. Reliability component of CRPS

In Hersbach (2000) it was shown that the CRPS can be
decomposed into the following components:

CRPS = REL + UNC − RES , (21)

where REL stands for reliability, UNC for uncertainty and RES for
resolution. The reliability term expresses how well the predicted
probability for a certain event matches the corresponding
observed frequency. The resolution, on the other hand, expresses
how different the probabilistic forecasts are from the climatologi-
cal distribution, overall. Since UNC depends on the observations
only, the interesting quantities are the reliability and resolution.
Figure 7(a) displays the gain in reliability compared with the
uncorrected forecast, that is RELcorr − RELunc. Positive values of
this difference indicate a deterioration of the reliability. Except for
the MSE MIN method, all our methods improve the reliability of
the uncorrected forecast. Interestingly, ensemble-spread scaling
as featured in the WER + CR approach substantially increases
the reliability with respect to the spread-scaling approach MSE
MIN. A comparable additional skill gain is obtained using
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Figure 8. The cumulative rank distribution as a function of the rank for the
different calibration methods. This diagram is obtained by pooling the rank
distributions of all lead times before 50 units of time. The rank CDF of a perfect
forecast would lie on the diagonal (thin dashed) line.

ensemble-spread nudging imposed by BEST REL, NGR and
CRPS MIN. Although there is a net gain in skill, the improvement
in terms of reliability by ensemble-spread correction is at the
expense of a loss in resolution, as shown in Figure 7(b) where
all methods, except for MSE MIN clearly degrade the resolution
with respect to the uncorrected forecast. The loss is highest for
the most reliable methods NGR and CRPS MIN.

4.2. Reliability in terms of cumulative rank distribution

Figure 8 displays the CDF of the rank probability distributions
(or integrated rank histogram), obtained by pooling all times up
to t = 50. The rank CDF for a perfectly reliable ensemble forecast
would be on the diagonal (dashed black line). Clearly this is far
from being realized for the uncorrected and MSE MIN forecasts.
The NGR and CRPS MIN forecasts approach very well perfect
reliability while BEST REL is close to it.

4.3. Higher moments of the ensemble distribution

Finally note that all ensembles obtained using a MBM correction
scheme preserve (normalized) ensemble moments like skewness
and kurtosis exactly. This can be checked using the expression
of the corrected forecast Eq. (1). On the other hand, statistical
methods such as NGR produce ensembles with constant skewness
and kurtosis and are highly sensitive to outliers even though the
extreme event may be very unlikely and would be discarded
by forecasters. Moreover the calibrated forecasts based on
MBM approaches BEST REL and CRPS MIN display an
error distribution which is well represented by the ensemble
distributions. In order to verify this, we compare in Figure 9
the percentiles Qz of the distribution of all standardized
errors zn = (XO,n − XC,n)/σC,n (x-axis) with the percentiles
Qy of the distribution of all standardized ensemble members
ym

n = (Xm
C,n − XC,n)/σC,n. All values are obtained by pooling all

lead times. For a perfectly reliable forecast, the difference Qy − Qz

would be zero. Due to the absence of bias, the signs of the quantiles
of zn and ym

n seem to agree well for all forecasts however, due
to the underdispersiveness, the standardized errors zn of the
raw forecast and of the MSE MIN method are generally much
larger than the ensemble spread. In agreement with our previous
findings, the spread-scaling approach WER + CR improves upon
MSE MIN but BEST REL, NGR and CRPS MIN are much better.
Note that CRPS MIN is slightly better than NGR in the sense that
its associated quantile differences Qy − Qz are close to zero but
also in the sense that the quantiles Qz themselves are closer to
zero.
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Figure 9. The difference of percentiles Qy − Qz against the percentiles Qz

associated with the distributions of all standardized errors zn = (XO,n −
XC,n)/σC,n and the standardized ensemble members ym

n = (Xm
C,n − XC,n)/σC,n.

All lead times are pooled. For a perfectly reliable forecast Qy − Qz should be zero
for all percentiles.

4.4. Sensitivity to model, model error amplitude and ensemble size

The sensitivity of the post-processing methods to changes of
the amplitude of the model error and the initial-condition error
have been tested. Figure 10 shows CRPSS as a function of lead
time for a small (ν ′ = ν + 0.0001) and a large model error
(ν ′ = ν + 0.005). Note that the inflation of the initial-condition
spread is qualitatively equivalent to a decrease of model error, and
vice versa (not shown). In this case the best methods (BEST REL,
NGR and CRPS MIN) retain their positive skill and the efficiency
hierarchy of post-processing methods remains unaffected. The
effect of a reduction of the model error (or increase of initial-
condition error) is a reduction of the skill gain and in particular
for the ensemble-mean nudging in the time interval between 60
and 140 time units. This can be understood by the fact that,
with a larger ensemble spread, the uncorrected ensemble will
probe the entire attractor at an earlier stage thereby setting the
ensemble mean equal to the climatological mean. In other words,
the ensemble mean of the uncorrected forecast will already be
nudged to the climatological mean.

Analogously to Figure 2, Figure 11 displays the CRPSS but for
the single-scale Lorenz 96 system (Lorenz, 1996) instead of the
KS equations. Again it seems that our conclusions are generic in
the sense that the efficiency hierarchy of post-processing methods
is preserved. Tests with reduced ensemble sizes for calibration
training have also been performed. Remarkably, even with only
four members, skill changes are small for all presented methods,
except at long lead times (t > 140) for which all skills become
slightly negative.

5. Conservation of correlation structure

As illustrated in the Introduction, the main benefit of using a
MBM post-processing method is that, when independent post-
processing is performed on different spatial points, lead times
or variables, the structural information that was present in
the uncorrected forecast is largely preserved. This is a direct
consequence of Eq. (1) which imposes a strong relation between
the MBM-corrected forecast and the raw forecast. Note that
this preservation is not a consequence of the use of more
than one predictor. Randomly reconstructed ensembles based
on the predictive distributions of statistical post-processing
methods such as NGR destroy to a large extent the correlation
structure.

Figure 12 shows the Pearson correlation between the KS order
parameters ψ(x) and ψ(x + 1) as a function of lead time. Note
that, due to the translational symmetry of the KS system, all values
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Figure 10. As Figure 2, but for (a) a smaller model error (ν ′ = ν + 0.0001), and
(b) a larger model error (ν ′ = ν + 0.005).
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Figure 11. As Figure 2, but for the single-scale Lorenz 96 system. Both the
training and verification sets include 2000 ensembles each of 100 members. 36
grid points and a forcing parameter F = 10 are used, while for generating the
observations F′ = F + 0.01 is used. The error-doubling time associated with the
largest Lyapunov exponent λL is equal to ln(2)/λL = 0.3 time units. At time
zero, the observation is randomly sampled from the normally distributed forecast
ensemble which has a standard deviation of 10−4 at each grid point. The bias
correction which, contrary to the KS system, introduces a substantial correction
at short time-scales (t < 1), is also plotted.

x are equivalent. Clearly, the correlation of all the MBM methods
is quite close to that of the raw forecast and deviates weakly for
lead times between 60 and 120 time units. On the other hand, for
the NGR method the correlation becomes small after 100 time
units. This can be understood from the fact that, at long lead
times, both ψ(x) and ψ(x + 1) are random and independent
samples from a normal distribution, the mean and variance of
which are very close to the climatological values.

For short and long lead times, the spatial correlation structures
of the MBM approaches are exactly equal to those of the raw
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Figure 12. Pearson correlation between the KS order parameters ψ(x) and
ψ(x + 1) against lead time for the different calibration methods. All methods
except NGR are close to the correlation of the raw forecast for all lead times.
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Figure 13. Pearson correlation between the KS order parameters ψ(x) and
ψ(x + y) against spatial distance y for the different calibration methods at lead
time equal to 100 time units. All methods except for NGR keep information on
the correlation structure.

forecast (not shown). They deviate slightly for intermediate lead
times between 60 and 120 time units, as we illustrate for lead time
100 in Figure 13. Clearly, all but the NGR method reproduce well
the correlation structure of the raw forecast between ψ(x) and
ψ(x + y) as a function of y.

Note that, due to a particular symmetry of the system, the cor-
relation between ψ(x) and ψ(x + y) is equal to that between ψ(x)
and ψ(x − y). In addition, due to the Wiener–Khinchin theorem,
the power spectra of the MBM methods are still close to the ones
of the uncorrected forecast. The power spectrum of the NGR-
corrected forecast, on the other hand, is white at long lead times.

The structure of forecast uncertainty among the different
spatial locations is also of interest. This can be measured
by the correlation between the deviations from the ensemble
mean at location x and the one at x + 1. This correlation
closely follows the one shown in Figure 12 for all calibration
techniques except for NGR, for which it is identically zero.
Another measure is the correlation between the error (compared
with the observation) at location x and the one at location x + 1.
Again, except for a convergence to half of its initial value for
NGR, this correlation behaves identically to the one given in
Figure 12.

6. Application

Results of a preliminary test on the European Centre for Medium-
range Weather Forecasts (ECMWF) forecast for Belgium are
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Figure 14. CRPSS against lead time for (a) minimum 2 m temperature over the
last 6 h (minT) and (b) 2 m temperature (2mT) using different corrections of the
ECMWF ensemble forecast. Between the lead times, in (a) there are 24 h intervals
starting at 30 h, while in (b) there are 6 h intervals starting at 0 h.

shown in Figure 14 where the new calibration methods
are compared with the benchmark NGR method. Two-metre
temperature (2mT) and minimum temperature over the last 6 h
(minT) are validated over 1 year (June 2011–June 2012) of the
51-member ECMWF Ensemble Prediction System (EPS) forecast
and averaged over seventeen SYNOP stations in Belgium. For
training, the five-member ECMWF EPS hindcasts were used. All
our post-processing methods were independently applied on 2mT
and minT, both of which are model variables of the EPS. Since
observations of minT are only available once daily at 0600 UTC,
only these post-processed values are shown. On the other hand,
for 2mT results are shown every 6 h. The conclusion drawn from
our simple models, indicating that WER + CR improves upon
MSE MIN, extends to real applications. It is clear also that the
best new methods (BEST REL and CRPS MIN) provide more
skill than the benchmark NGR method. Moreover, the NGR
approach suffers from loss of correlations and consistency issues
as highlighted in Figure 1 and explained in the Introduction.
Such problems are avoided using a MBM calibration method.
Interestingly, the spread calibration gives improvements during
the first week although the training set includes only five hindcast
ensemble members. Note that post-processing with both 2mT
and minT as predictors might lead to overfitting due to their
strong correlations.

7. Conclusion

A set of post-processing techniques based on linear regression
enforcing the forecast to become climatologically reliable (CR)
and/or to have reliable ensembles (ER), have been introduced.
The methods have been tested extensively using a low-order
chaotic system with model error, and preliminary results on
operational weather forecasts are presented. For lead times much
longer than the error-doubling time, the constrained approaches

are superior to the uncorrected forecast and the forecast obtained
by an unconstrained maximum likelihood estimation. Moreover,
the use of the ensemble spread for estimating the error variance
of the ensemble mean leads to a better calibration and avoids the
undercorrection of ensembles with small spreads. Apart from the
fact that the best corrected forecasts satisfy both constraints, their
CRPS scores are at the same level as that of the NGR-corrected
forecast which, by construction, minimizes the CRPS. Moreover,
the reliable forecast preserves not only the higher moments from
the uncorrected forecast (kurtosis and skewness), but also the rank
structure of the ensemble and, in a large part, the spatio-temporal
coherence of the forecasts. Calibration results of the ECMWF
forecast for Belgium even indicate slightly superior scores for the
MBM approach compared with the NGR approach. An extensive
analysis of these forecasts will be reported soon.

Appendix A

Equality of correlations

In this Appendix we prove that, for a forecast that satisfies both
WER and CR constraints, the correlation between the observation
and the ensemble mean equals the correlation between the
ensemble members and the ensemble mean. Without loss of
generality, we assume the forecast and the observation to have a
zero mean. We first write the weak ensemble reliability constraint
Eq. (8): 〈

(XC,n − XO,n)2
〉
n

=
〈(

XC,n − Xm
C,n

)2
〉

m,n
. (A1)

Expanding the squares, we obtain:

σ 2
O − 2

〈
XC,nXO,n

〉
n

= σ 2
C − 2

〈
XC,nXm

C,n

〉
m,n

. (A2)

We continue by using the CR constraint Eq. (7) and by dividing
by σO = σC and by the standard deviation of the ensemble mean
σXC

: 〈
XC,nXO,n

〉
n

σXC
σO

=
〈
XC,nXm

C,n

〉
m,n

σXC
σC

. (A3)

This expresses the equality of the correlations.

Appendix B

MSE MIN with CR constraint

Here exact results for the regression coefficients are provided for
the MSE MIN with the CR constraint. Consider the corrected
forecast for each member m of an ensemble n (we assume τn = 1):

Xm
C,n = α +

P∑
p

βpVp,n + εm
n . (B1)

The log-likelihood with the CR constraint reads (Van Schaey-
broeck and Vannitsem, 2013):

lnL = lnL0 − η

(
1 − σ 2

O

σ 2
C

)2

. (B2)

Maximizing this constrained likelihood with respect to α, β and
η, one straightforwardly arrives at:

β =
σ 2

OV
σ−2

V

√
σ 2

O − 〈σ 2
ε,n〉n√

σ 2
OV

σ−2
V

(σ 2
OV

)T
, (B3a)

α = 〈XO〉n − 〈βV〉n, (B3b)
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with XO = (XO,1, . . . , XO,N ) the vector of all N observations,
β = (β1, . . . , βP) the vector of P regression parameters and V the
matrix of size P × N containing all ensemble-mean predictors.
The expression 〈A〉n denotes an averaging over all N vector
elements of A and βV corresponds to the summation of Eq. (B1).
The covariance matrix σ 2

V
and the vector σ 2

OV
have been defined

in Eq. (16). For a deterministic forecast the average ensemble
variance 〈σ 2

ε,n〉n is zero and Eq. (B3) correspond to the known
solution for Error-in-Variables MOS (EVMOS; Vannitsem,
2009; Van Schaeybroeck and Vannitsem, 2011, 2012). Therefore
EVMOS can be interpreted as an approach that minimizes the
MSE of the ensemble mean subject to the CR constraint. Note
that other methods exist that satisfy the CR constraint. Examples
include the geometric-mean regression and the time-dependent
Tikhonov regression (Van Schaeybroeck and Vannitsem,
2011).

Appendix C

Hard-constrained MLE with non-homogeneous error variance

In this Appendix exact solutions of the hard-constrained MLE
are provided with a normal error distribution with non-
homogeneous or ensemble-dependent variance N (0, σ 2

ε,n). These
methods were already partly discussed by Van Schaeybroeck
and Vannitsem (2013). Let us first define the standardized
variables:

Ṽm
p,n = Vm

p,n

σε,n
, X̃m

O,n = Xm
O,n

σε,n
, X̃m

C,n = Xm
C,n

σε,n
. (C1)

Using this notation we can redefine the strong ensemble reliability
constraint of Eq. (9):〈(

X̃C,n − X̃O,n

)2
〉

n

= 1. (C2)

Two types of ‘debiasing’ can be defined: the conven-
tional definition implies 〈XC〉n = 〈XO〉n but a standardized
debiasing 〈X̃C〉n = 〈X̃O〉n can also be proposed. Two debi-
asing coefficients α1 and α2 can then be introduced such
that

Xm
C,n = α1 + α2σε,n +

P∑
p

βpVp,n + γ1ε
m
n . (C3)

We proceed with a corrected forecast of this form, thus allowing
for spread scaling.

C1. Unconstrained approach with non-homogeneous error vari-
ance

Minimization of the likelihood function Eq. (5) of the corrected
forecast Eq. (C3) associated with a normal ensemble-mean error
distribution with respect to α2, β and γ1 and assuming α1 = 0
yields

β = σ̃ 2
OV

σ̃−2
V

, (C4a)

α2 = 〈X̃O〉n − 〈βṼ〉n , (C4b)

γ 2
1 = σ̃ 2

O − σ̃ 2
OV

σ̃−2
V

(
σ̃ 2

OV

)T
, (C4c)

where the covariances σ̃ OV , σ̃ V and σ̃O are the same as σ OV , σ V
and σO (Eq. 16) but for the standardized variables. Importantly,
the strong ensemble reliability (SER) criterion is satisfied.

C2. SER and CR with hard constraints

Both SER and CR are now enforced allowing for ensemble-spread
nudging and scaling. Differentiation with respect to all parameters
leads to the equations:

σ 2
O−βσ 2

V
βT =〈σ 2

ε,n〉n
(
βσ̃ 2

V
βT−2σ̃ 2

OV
βT+ σ̃ 2

O

)
, (C5a)

β = σ̃ 2
OV

(
σ̃ 2

V
− 2ησ 2

V

〈σ 2
ε,n〉n(1 − 2η)

)−1

, (C5b)

γ 2
1 =〈σ 2

ε,n〉−1
n

(
σ 2

O − βσ 2
V
βT

)
, (C5c)

α1 =(
1 − 〈σε,n〉n〈σ−1

ε,n 〉n

)−1
(C5d)

×
[
〈XO〉n−〈σε,n〉n〈X̃O〉n−β

(
〈V〉n−〈Ṽ〉n〈σε,n〉n

)]
,

α2 =(〈σε,n〉n〈σ−1
ε,n 〉n − 1

)−1
(C5e)

×
[
〈XO〉n〈σ−1

ε,n 〉n−〈X̃O〉n−β
(
〈V〉n〈σ−1

ε,n 〉n−〈Ṽ〉n
)]

.

In principle these equations can be solved by substituting
Eq. (C5b) into Eq. (C5a) and solving for η and then substituting
the result into the subsequent equations. An exact result for the
case of one predictor (P = 1) has been obtained:

β1 =[
σ 2

V
+ σ̃ 2

V
〈σ 2

ε,n〉n

]−1
{
σ̃ 2

OV
〈σ 2

ε,n〉n (C6a)

+
√

σ̃ 4
OV

〈σ 2
ε,n〉2

n +
(
σ 2

V
+σ̃ 2

V
〈σ 2

ε,n〉n
)(

σ 2
O−σ̃ 2

O〈σ 2
ε,n〉n

)}
,

γ 2
1 = σ 2

Oσ̃ 2
V

+ σ 2
V
σ̃ 2

O

σ 2
V

+ σ̃ 2
V
〈σ 2

ε,n〉n
− 2σ 2

V
〈σ 2

ε,n〉nσ̃
4
OV(

σ 2
V

+ σ̃ 2
V
〈σ 2

ε,n〉n

)2 (C6b)

−
2

√
σ̃ 4

OV
〈σ 2

ε,n〉4
n +

(
σ 2

V
+σ̃ 2

V
〈σ 2

ε,n〉n
)(

σ 2
O−σ̃ 2

O〈σ 2
ε,n〉n

)
σ−2

V
σ̃−2

OV

(
σ 2

V
+ σ̃ 2

V
〈σ 2

ε,n〉n

)2 .

The coefficients α1 and α2 are given in Eqs (C5d) and (C5e).
Note that solutions only exist when both the right-hand side of
Eq. (C6b) and the quantity under the square root are positive.
For chaotic systems this condition is not satisfied at long lead
times when forecast and observations are decorrelated since the
argument under the square root is approximately equal to(

σ 2
V

+ σ̃ 2
V
〈σ 2

ε,n〉n

)
σ 2

O

(
1 − 〈

σ−2
ε,n

〉
n
〈σ 2

ε,n〉n

)
.

At long lead times, the distribution of the ensemble variance σ 2
ε,n

is peaked and, in the absence of a strong skewness, the peak is
located at the mean value

〈
σ 2

ε,n

〉
n
. An expansion of σ−2

ε,n around
this value amounts to〈

σ−2
ε,n

〉
n
≈ 〈

σ 2
ε,n

〉−1

n
+ 〈

σ 2
ε,n

〉−3

n

〈(
σ 2

ε,n − 〈
σε,n

〉
n

)2
〉

n
.

This implies that
〈
σ−2

ε,n

〉
n

〈
σ 2

ε,n

〉
n

> 1 and the argument under the
square root becomes negative and both β1 and γ1 are ill-defined.
The case of a positively skewed distribution for the ensemble
variance distribution can be modelled by assuming ln

(
σ 2

ε,n

)
to be

normally distributed, or ln
(
σ 2

ε,n

) ∼ N (a, b2). It is then readily

found that
〈
σ−2

ε,n

〉
n

〈
σ 2

ε,n

〉
n

= eb2
> 1. Another argument considers

the SER constraint χ 2/N = 1, which, at long lead times and
together with the CR constraint, becomes

2σ 2
XC

= 〈
σ−2

ε,n

〉−1

n
− 〈σ 2

ε,n〉n.

Again, when
〈
σ−2

ε,n

〉
n
〈σ 2

ε,n〉n > 1, the SER constraint cannot be
satisfied.
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