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ABSTRACT

Extended logistic regression is used to calibrate areal precipitation forecasts over two small catchments in

Belgium computed with the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble

Prediction System (EPS) between 2006 and 2010. The parameters of the postprocessing are estimated from

the hindcast database, characterized by a much lower number of members (5) than the EPS (51). Therefore,

the parameters have to be corrected for predictor uncertainties. They have been fitted on the 51-member EPS

ensembles, on 5-member subensembles drawn from the same EPS, and on the 5-member hindcasts. For small

ensembles, a simple ‘‘regression calibration’’ method by which the uncertain predictors are corrected has

been applied. The different parameter sets have been compared, and the corresponding extended logistic

regressions have been applied to the 51-member EPS. The forecast probabilities have then been validated

using rain gauge data and compared with the raw EPS. In addition, the calibrated distributions are also used to

modify the ensembles of precipitation traces.

The postprocessing with the extended logistic regression is shown to improve the continuous ranked

probability skill score relative to the raw ensemble, and the regression calibration to remove a large portion of

the bias in parameter estimation with small ensembles. With a training phase limited to a 5-week moving

window, the benefit lasts for the first 2 forecast days in winter and the first 5 or 6 days in summer. In general,

substantial improvements of the mean error and of the continuous ranked probability score have been shown.

1. Introduction

The outputs of numerical weather prediction (NWP)

models are increasingly used to estimate future pre-

cipitation amounts or probabilities. To deal with the

large uncertainties associated with initial conditions and

model errors, major operational model centers like the

European Centre for Medium-Range Weather Forecasts

(ECMWF) are running Ensemble Prediction Systems

(EPS). Model errors maybe accounted for by appro-

priate specification and correction using statistics from

previous forecasts and corresponding observations.

Applequist et al. (2002) have compared five different

linear and nonlinear statistical models to produce 24-h

probabilistic quantitative precipitation forecasts for ac-

cumulations exceeding thresholds of up to 2.5 mm. They

have found that the logistic regression with cumulated

precipitation forecast (0–24 h) and relative humidity at

112 h as predictors performs better. Hamill et al. (2004)

also have shown a gain in skill and reliability by using

the logistic regression using ensemble mean precipitation

as predictor (6–10 day and 8–14 day, tercile probabilities).

Hamill and Whitaker (2006) have shown that analog

techniques are similar in skill to the logistic regression

for the calibration of probabilistic forecasts of 24-h pre-

cipitation amount. For the logistic regression, they have

used the square root of the ensemble mean precipitation

and the column precipitable water ensemble mean as

predictors. Wilks and Hamill (2007) have compared the

logistic regression with the nonhomogeneous Gaussian

regression and the Gaussian ensemble dressing. They

have shown that logistic regression with the ensemble

mean as the only predictor is best for medium-range

precipitation forecasts.

Wilks (2009) has noted that fitting logistic regression

for a set of thresholds has some drawbacks: a large

number of parameters have to be estimated, probabili-

ties at intermediate thresholds have to be interpolated,

and separate equations for different thresholds may lead

to probability forecasts inconsistent with each other.
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FIG. 4. Probability distribution [Pr(A # q)] based on the ex-

tended logistic regressions (EPS-FULL) for the Ourthe during

winter at forecast days 3 (solid line) and 6 (dashed line). (left to

right) The curves correspond to ensemble averages of 0, 1, 2, 5, 10,

and 15 mm day21.
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Therefore, he has introduced the extended logistic re-

gression by which the logistic regression is estimated

once by including the threshold itself as predictor. He

has compared the Brier scores at different thresholds

covering the distribution and has shown that these

scores are similar for both methods if a long training

period is used and that the extended version performs

better when a short training period is used. Studying

precipitation over the Netherlands and using an exper-

imental reforcasting dataset produced by the ECMWF

(see below), Schmeits and Kok (2010) have shown a

similar skill improvement for the extended logistic re-

gression and a modified version of the Bayesian model

averaging for the first five forecast days.

To determine the error characteristics corresponding

to a specific NWP model, it has been proposed to per-

form hindcasts of past meteorological situations using

the same model. Such hindcast datasets have been built

and tested for postprocessing for the National Centers

for Environmental Prediction (NCEP) Global Forecast

System (200-km grid spacing, 15 members, every day

during a 25-yr period; Hamill et al. 2004; Hamill and

Whitaker 2006; Wilks and Hamill 2007), and for the

ECMWF EPS (80-km grid spacing, 15 members, weekly,

during a 20-yr period; Hagedorn et al. 2008; Hamill et al.

2008; Schmeits and Kok 2010). Since March 2008, the

ECMWF provides hindcasts for the operational EPS

(five members, weekly, during an 18-yr period; Hagedorn

2008).

Even if the allocation of computer resources either in

the number of past forecast situations or in the ensemble

size has been analyzed by comparing the improvement

in skill gained with the postprocessing (Hagedorn 2008),

the impact of the number of members on the values of

the parameters of the fitted statistical models has not

been explored. Indeed the ensemble mean used as pre-

dictor is estimated with a large uncertainty because of

the small number of members, inducing a bias in the

estimate of the slope of a linear regression toward zero.

This is commonly referred to as attenuation (Carroll

et al. 2006). In the case of an additive error in a simple

linear model, this bias can be accounted for with the so-

called reliability ratio (the ratio of the variance of the

predictors to the sum of this variance and the variance of

the error). The bias can be corrected at the price of an

increased variance error in the estimated slope. In mul-

tilinear or nonlinear problems, the effect of errors may

be even more complex (Carroll et al. 2006). In logistic

regression when the predictor is measured with additive

error, attenuation does not always occur (Stefanski and

Carroll 1985), but is typical.

In the present study, we apply a simple approach called

regression calibration. In the case of replicate data, this

method consists in replacing the predictor measured

with error with a best linear approximation (Carroll

and Stefanski 1990; Gleser 1990). Regression calibra-

tion has been applied to logistic regression by Rosner

et al. (1989, 1990, 1992). Using simulation experiments,

Thoresen and Laake (2000, 2003) have shown that the

regression calibration compares favorably with other

methods like the maximum likelihood.

Postprocessing of single ensemble precipitation pre-

dictions may also be provided. Indeed, bias correcting

each member by adjusting for the cumulated distribu-

tion function has been implemented at NCEP in the

mid-2000s (as mentioned by Hamill and Whitaker 2006).

Other examples range from the correction using the

rank histogram (Hamill and Colucci 1998), methods

based on analogs (Hamill and Whitaker 2006), Bayesian

techniques (e.g., Reggiani and Weerts 2008), and Bayesian

model averaging (e.g., Sloughter et al. 2007; Schmeits and

Kok 2010).

The first aim of this study is to investigate the extended

logistic regression for the postprocessing of ECMWF-

EPS precipitation forecasts using information contained

in the five-member hindcasts. The second goal is to take

advantage of the extended logistic regression as a simple

method to postprocess the ensembles members so that

ensemble precipitation traces for the medium range are

reconstructed. The data and the methodology are first

described in section 2. In section 3, the results are dis-

cussed and the conclusions are presented in section 4.

2. Data and method

a. Data

Postprocessing precipitation forecast data—like their

verification—may be performed at different scales; for

example, by interpolating NWP grid data to a finer grid

(e.g., Hamill and Whitaker 2006) or to the rain gauge

locations (e.g., Rodwell 2006) or by upscaling rain gauge

data to 18 3 18 grid boxes (e.g., Schmeits and Kok 2010).

In the present study, daily totals of precipitation aver-

aged over two small test catchments in Belgium are

considered (Fig. 1). Observations are based on rain gauge

data interpolated using the Thiessen method and fore-

casts of the NWP are weighted according to the grid

cells’ coverage on the catchment. The two catchments

are the Kleine Gete (or Petite Gette, hereafter Gete) at

Budingen, Belgium (area 276 km2, elevation 25–170 m,

and annual average precipitation 764 mm) and the Ourthe

Orientale (hereafter Ourthe) at Mabompré, Belgium

(area 317 km2, elevation 280–650 m, and annual aver-

age precipitation 1029 mm).

For this study, we have analyzed EPS forecasts issued

daily at 0000 UTC during a period when the ECMWF
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model had a spatial resolution of about 50 km and after

a model change having a strong impact on precipitation

forecast skill [i.e., the Integrated Forecast System cycle

(cy31r1)], namely, from 12 September 2006 to 25 January

2010. Model biases might have changed even during this

reduced period, but these do not seem to affect much

precipitation forecasts according to ECMWF reports on

preoperational tests. We have used 51-member ensem-

bles: 1 control and 50 perturbed members.

Besides the operational EPS, a hindcast ensemble fore-

cast has become available since 13 March 2008 (Hagedorn

2008). Every week, five forecasts (one control and four

perturbed) starting at the same date for the past 18 yr

are performed using the same model as for the opera-

tional EPS. In this study, we have used the hindcasts

until 21 January 2010 (i.e., the last hindcast date before

a major change in spatial resolution). (The different

experiments based on these data are summarized at the

end of this section together with Table 2, but let us now

focus on the technique proposed.)

b. Extended logistic regression and ensemble size
correction

The extended logistic regression relates the proba-

bility that the areal precipitation A is lower or equal to a

threshold q to the predictor x and to the threshold itself:

FA(q) 5 Pr(A # q) 5 H[ f (x) 1 g(q)], (1)

where H is the logistic distribution function H(t) 5

[1 1 exp(2t)]21.

The ensemble mean of the fourth root transformation

of areal precipitation forecasts a has been chosen as

predictor:

x 5 (a1/4). (2)

The functions f (x) 5 b0 1 b1x and g(q) 5 b2q1/2 define

a vector of three parameters, b, estimated by maximiz-

ing the likelihood function:

L(b) 5 �
N

i51
�
M

l51
fyil(b0 1 b1xi 1 b2q1/2

l )

2 ln[1 1 exp(b0 1 b1xi 1 b2q1/2
l )]g, (3)

where N is the number of realizations in the calibration

dataset, M is the number of thresholds, and the obser-

vations yil are equal to 1 if the observed areal pre-

cipitation does not exceed the threshold ql and are,

otherwise, equal to zero. The precipitation thresholds

have been selected such that they cover the upper

quantiles of the distribution (M 5 7; Table 1). Alter-

native power transformations and the use of ensemble

spread as an additional predictor have been tested with-

out improvement of the likelihood function. Schmeits

and Kok (2010) have found that selecting the average

of the transformed (square root) ensemble members

as predictor performed slightly better than the trans-

formed ensemble averages as in other studies (e.g.,

Wilks 2009), but this choice has been motivated here

to enable the implementation of the ensemble size cor-

rection.

One important error in estimating the predictor x is

due to the finite size of the ensemble:

wi 5 xi 1 ui, (4)

for the ith realization with w
i
5 (1/K)�K

j51a1/4
ij , K the

size of the ensemble, and ui the uncertainty on the en-

semble mean evaluation, assumed to be a random pro-

cess with E(u) 5 0 and Var(u) 5 s2
u 5 hs2

wi/K. The angle

brackets denote the average over the N realizations.

Here s2
w is the variance of the power transformed en-

semble members. This error may lead to inconsisten-

cies in the estimation of b if w is used directly in Eq. (1)

(Gleser 1990). The basis of regression calibration is

the replacement of x by the regression of x on (w, q).

A linear approximation to the calibration function is

given in Carroll et al. (2006). Noting that we have only

FIG. 1. Location map of the two test catchments in Belgium. The

grid of the EPS is represented with the plus signs.

TABLE 1. Areal precipitation thresholds (percentiles in mm day21)

used for the extended logistic regression (Gete: 1978–2010 and

Ourthe: 1978–2008).

Catchment P50 P70 P80 P90 P95 P98 P99

Gete 0.23 1.7 3.5 6.6 9.8 14.6 18.7

Ourthe 0.43 2.7 4.9 8.6 12.9 18.2 22.8
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one predictor x with error that is not correlated with q,

this approximation can be written as

E(xi jwi) ’ mw 1 l(wi 2 mw), (5)

where

l 5
s2

w 2 s2
u

s2
w

, (6)

is the reliability ratio, m
w

5 hwi, and s2
w 5 h(w 2 m

w
)2i.

Then, E(x
i
j w

i
) is used in place of x

i
in the extended

logistic regression analysis.

c. Modification of the ensembles

In some applications like hydrological ensemble pre-

dictions, precipitation scenarios over the forecast range

are needed rather than separate probability distribu-

tions at each forecast step. In this section, a methodol-

ogy is proposed to modify the raw ensembles according

to the postprocessing obtained with the extended lo-

gistic regression. Let us first consider the distribution

function FA(q) whose verification should, on average,

improve compared to the raw ensemble and how the

ensemble members are modified. The form of the logis-

tic equation and the choice of the functions f and g im-

pose some of the distribution characteristics such as the

mean and the variance. The variance of a logistic dis-

tribution is driven by the parameter b2 but because of

the change of variable in the function g(q) [see Eq. (1)],

the variance of the corrected ensembles is proportional

to its mean as it can be seen with the following first-order

approximations based on the properties of the logistic

distributions and on Taylor expansion around mq9 (e.g.,

Casella and Berger 2002) with q 5 h(q9) 5 q92:

mq ’ h(mq9
) 5

b0 1 b1x

b2

� �2

, (7)

s2
q ’ [h9(mq9

)]2s2
q9 5

4p2(b0 1 b1x)2

3b4
2

, (8)

Therefore, s2
q(x) } mq(x). These equations are only valid

for ensembles with no member forecasting zero pre-

cipitation. The probability of no precipitation is given by

p0 5 [1 1 exp(2b0 2 b1x)]21. (9)

The raw ensembles are modified so that their probability

distributions correspond to the fitted logistic function as

follows. First, for a given forecast day, the ensemble

members a( j) are sorted with increasing predicted pre-

cipitation a(k). Then, the probability is assigned:

p(k) 5 Pr[A # a(k)] 5
k 1 (1/2)

K 1 1
. (10)

In this equation, the uncertainty due to the finite en-

semble size is taken into account by adding an additional

fictitious member distributed equally between the oc-

currence of the event and the nonoccurrence (Roulston

and Smith 2002; Katz and Ehrendorfer 2006). Other

probability estimates are discussed in Folland and

Anderson (2002). Kernel density estimation (e.g., Peel and

Wilson 2008) could also be appropriate in the context of

small ensembles. In the present study, Eq. (10) is applied

on 51-member ensembles and it has the interesting prop-

erty of excluding probabilities of zero or one. Using the

ensemble mean of transformed areal precipitation fore-

casts x, the precipitation value of the members ranked k

is modified by inverting the logistic function as

a9(k) 5

8>><
>>:

ln

�
1 2 p(k)

p(k)

�
2 b0 2 b1x

b2

9>>=
>>;

2

. (11)

If the probability is lower or equal to the intercept of the

logistic function [i.e., p(k) # p0], then the precipitation is

set to zero (see Fig. 2, left). If zero precipitation in the raw

ensemble is forecasted at a higher frequency than the one

provided by the logistic distribution [i.e., p(k0) . p0], only

a fraction r0 5 p0/p(k0) of the corresponding k0 members

is randomly set to zero. The remaining members are

randomly assigned to a value between p0 and p(k
0
) and

the precipitation is given by Eq. (11) (see also Fig. 2).

Finally, the modified values are reassigned to the cor-

responding members so that the ensemble traces a( j, t)

where t stands for lead time can be reconstructed (e.g., for

later use in hydrological predictions).

d. Degree of mass balance

Several alternative correction methods are available. A

comparative study of these methods is beyond the scope

of the present work. However, the results obtained with

a simple correction for a multiplicative bias or degree

of mass balance (DMB; McCollor and Stull 2008) will

highlight some aspects of the ensemble modification. This

DMB factor is determined from the calibration dataset

as the ratio of the average of the ensemble mean and the

average of the corresponding observed areal precipita-

tion for lead time t:

DMB(t) 5 ha(t)i/hA(t)i. (12)

Then the correction is applied to the member j of the

ensemble as
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a9( j, t) 5 a( j, t)/DMB(t). (13)

e. Experiments

Eight experiments have been conducted and are sum-

marized in Table 2. The first four are ‘‘in sample’’ (the

same 51-member EPS are used for training and veri-

fication) and in the last four experiments, 5-member

hindcasts are used for training, which are independent

from the 51-member EPS used for verification. The first

four are aimed at highlighting the effect of ensemble size

on the logistic regression and test a correction method.

The in-sample situation is used to show the maximum

correction that the postprocessing can achieve. In the

last four experiments, the extended logistic regression is

fitted on the base of the hindcasts in order to postprocess

the EPS, which is the main topic of the paper. In par-

ticular, the last two experiments reproduce operational

settings, using information available at the time ensem-

ble predictions are issued.

In the first four experiments (labeled ‘‘EPS’’ in Table 2),

there is a pool of N 5 665 ensemble forecasts or reali-

zations for hydrological winter (October–March) and N 5

568 for summer (April–September). In the first experi-

ment, the fit is based on the raw 51-member ensembles

(FULL). To test the role of ensemble size on the pa-

rameter estimation, bootstrap samples of 51 members

(BOOT-51), 15 members (not shown), and 5 members

(BOOT-5) have been drawn with replacement from the

original 51-member ensembles. These analyses consti-

tute experiments 2, 3, and 4. In the last one, the regression

calibration (RC) method has been applied to small en-

sembles to reduce the bias in the parameters due to the

uncertainty in the ensemble mean used as predictor.

The remaining experiments use hindcasts (HIN) for

training. In experiments 5 and 6, hindcasts are used

pooled (POOL) for each season. The 46 dates corre-

sponding to hydrological winter and 52 to hydrological

summer multiplied by 18 yr give N 5 828 and N 5 936

ensemble hindcasts, respectively. To mimic a more

FIG. 2. Remapping of the members of the raw ensembles (continuous line with pluses) onto the fitted logistic

distribution (dashed line, EPS-FULL). (left) The situation with p(k) # p0 (Gete) and (right) the situation with

p(k0) . p0 (Ourthe), where p0 is the intercept of the logistic (horizontal mixed line) and k0 is the number of

members with zero forecast precipitation.

TABLE 2. List of experiments. The names characterize which ensemble has been used to fit the parameters of the extended logistic

regression. EPS refers to the daily (0000 UTC) operational 51-member ECMWF EPS ensembles; HIN to the weekly operational 5-member

ECMWF hindcasts. FULL refers to the unchanged EPS; BOOT to bootstrap samples in which 51 or 5 members have been drawn from the

full EPS. RC refers to the regression calibration method applied to the ensemble mean; POOL to the case where all hindcasts available are

pooled; WIN5 and WIN7 to the cases where hindcasts corresponding to a moving window of 5 and 7 weeks, respectively, are used. Parameter

sets are defined per forecast day, season, and basin for experiments 1–6 and per forecast day, week, and basin for experiments 7 and 8.

No. Name Training period Verification period

1 EPS-FULL 12 Sep 2006–25 Jan 2010 12 Sep 2006–25 Jan 2010

2 EPS-BOOT-51 12 Sep 2006–25 Jan 2010 12 Sep 2006–25 Jan 2010

3 EPS-BOOT-5 12 Sep 2006–25 Jan 2010 12 Sep 2006–25 Jan 2010

4 EPS-BOOT-5-RC 12 Sep 2006–25 Jan 2010 12 Sep 2006–25 Jan 2010

5 HIN-POOL 13 Mar 1990–21 Jan 2009 12 Sep 2006–25 Jan 2010

6 HIN-POOL-RC 13 Mar 1990–21 Jan 2009 12 Sep 2006–25 Jan 2010

7 HIN-WIN5-RC 5 weeks 3 18 yr 24 Mar 2008–10 Jan 2010

8 HIN-WIN7-RC 7 weeks 3 18 yr 7 Apr 2008–10 Jan 2010
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realistic setting (Hagedorn 2008), the hindcasts are also

pooled during a period of 5 weeks (WIN5, experiment 7),

two before the target week and two after (i.e., for the 18

past years, a training dataset of 90 ensemble hindcasts). A

7-week moving window (WIN7, experiment 8) has been

tested as well—four weeks before and two after the target

week (i.e., 126 hindcasts in total). The use of moving

windows allows minimizing the impact of model changes.

In Table 2, it can be seen that the verification of ex-

periments 1–6 corresponds to the whole selected period.

For experiments 7 and 8, since each parameter set is

valid for 7 days, the verification period starts 3 days

before the date of the third (WIN5) or the fifth (WIN7)

hindcast and ends 3 days after the date of the antepen-

ultimate hindcast. Therefore the verification period is

slightly shorter than the period of availability of hind-

casts. The results are averaged and presented for the

winter and for the summer.

For the verification of the ensemble forecasts, the

following quantities have been computed: the mean er-

ror (ME), the mean-squared error (MSE), the ensemble

spread, and the continuous ranked probability score

(CRPS). The continuous ranked probability skill score

(CRPSS) has also been computed using the raw EPS as

reference. For the CRPS of raw or modified ensembles,

we followed the method described in Hersbach (2000).

For the distributions resulting from the extended logis-

tic regression, we integrate numerically:

CRPS 5

ð‘

2‘

[FA(x) 2 FA
O

(x)]2 dx, (14)

where FA(x) is given by Eq. (1) and, with observed areal

precipitation AO,

FA
O

(x) 5

�
0, x , AO

1, x $ AO

. (15)

Using Eq. (14), it is easily seen that the CRPS is

equivalent to the integral of the Brier score over the set of

possible thresholds. The Brier skill score (BSS) relative to

the sample uncertainty and its decomposition into reso-

lution and reliability terms (e.g., Roulin and Vannitsem

2005) has been analyzed for the range of thresholds and

some qualitative conclusions will also be reported on in

the next section.

3. Results and verification

a. Logistic regression parameters

The parameters of the extended logistic regression

fitted on the full EPS are presented in Fig. 3 for the two

catchments, both for winter and summer. As the forecast

range increases, b0 decreases, b1 increases, and b2 de-

creases implying that the distributions are more dis-

persed and their means decrease as reflected in Fig. 4.

It is worth noting here that if the raw ensembles are

first corrected for the multiplicative biases (or DMB)

before fitting the logistic regression, the parameter b2 is

shifted upward (downward) if the correction factor is

smaller (greater) than 1, and the distributions are shifted

to the left (to the right).

FIG. 3. Values of the parameters of the

extended logistic regression (EPS-FULL)

for the Ourthe catchment during winter

(solid line) and summer (dotted line) and for

the Gete catchment during winter (dashed

line) and summer (dash–dotted line): (top)

(left) b0 and (right) b1; (bottom) b2.
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The extended logistic regression has then been fitted

to subensembles of 51, 15 (not shown), and 5 members

drawn from the 51-member EPS. In Fig. 5, the param-

eter values obtained on the subensembles of five mem-

bers are averages over 100 bootstraps and are compared

with the values obtained with the full ensembles. The

slope b1 is reduced for a small ensemble size and the

difference increases with lead time as the uncertainty on

the subensemble mean increases. When the regression

calibration method is applied on the subensembles [Eq.

(5)], the attenuation of the slope b1 is partly corrected

(Fig. 5). A similar result is found for the intercept b0.

Note that the correction of the intercept is greater than

the correction of the slope. Obviously, the quantiles ql

are not correlated with the xi, and the regression cali-

bration does not change the values of b2. Similar results

are found for the two catchments and both seasons,

showing that the effect of small ensemble is appropri-

ately corrected with the regression correction method.

Note that the slope b1 could also have been directly

corrected with the reliability ratio l [Eq. (6)], as it is

common in epidemiology studies aimed at quantifying

the effect of predictors (Rosner et al. 1992). Here, we are

interested in all parameters. The parameter values ob-

tained with the 51-member bootstrap ensembles are

very close to the values obtained on the full ensemble

showing a very small residual bias. Finally, parameter

values obtained with 15-member bootstrap ensembles

(not shown) are intermediate and somewhat closer to

the values obtained on the full ensemble so that the is-

sues of bias in parameter estimation would be less

stringent with the 15-member hindcasts.

For the five-member hindcasts, the parameter values

obtained with and without the regression calibration are

compared to those fitted on the full EPS ensembles (see

Fig. 6 for the Ourthe during winter). The effect of using

raw hindcasts is to decrease b0 and increase b1 as for the

sensitivity experiment presented in Fig. 5. However, the

parameter b2 is decreased and the parameter b1 is in-

creased even at the beginning of the forecast. A shift of

b2 can also be detected in the sensitivity experiment

(Fig. 5) but to a lesser extent. This statistical difference

FIG. 4. Probability distribution [Pr(A # q)] based on the ex-

tended logistic regressions (EPS-FULL) for the Ourthe during

winter at forecast days 3 (solid line) and 6 (dashed line). (left to

right) The curves correspond to ensemble averages of 15, 10, 5, 2, 1,

and 0 mm day21.

FIG. 5. Parameter values of the extended

logistic regression for the Ourthe catchment

during winter: (solid line) EPS-FULL,

(dotted line) EPS-BOOT-51, (dashed line)

EPS-BOOT-5, and (dash–dotted line) EPS-

BOOT-5-RC. The error bars correspond to

twice the standard deviation of the 100 boot-

straps with five-member samples: (top) (left)

b0 and (right) b1; (bottom) b2.
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between the EPS and the hindcasts is also found for the

other catchment with winter data. For summer, the dif-

ference is less important. The regression calibration

method applied to the hindcasts generally improves the

parameter values toward their optimal values obtained

on the full EPS. However, the shift of b2 for winter re-

mains unchanged since there is no correlation between

the quantiles and the ensemble mean and this effect is

still to be clarified.

b. Verification of calibrated probabilities

The overall benefit of the extended logistic regression

is assessed with the CRPSS with respect to the raw en-

semble CRPS. First the maximum attainable skill score

is evaluated using the parameter fitted on the EPS en-

sembles used for the validation itself. The skill score is

positive over the entire forecast range (Fig. 7) showing

the usefulness of calibrating the forecast probabilities

with the extended logistic regression. If only five-member

ensembles are available, the skill score is deteriorated

as compared to a large ensemble (dashed line of Fig. 7).

For the test case of the Ourthe catchment during win-

ter, the skill score is even negative beyond the sixth

forecast day. Applying the regression-calibration method

completely recovers the skill score values as obtained

using the full ensembles, confirming the usefulness of

the approach.

The postprocessing of EPS based on the regression of

the hindcast dataset is displayed in Fig. 8. It improves

the CRPS compared to its value on the raw ensemble

except for the Ourthe catchment during winter from

the seventh forecast day onward. If the regression cal-

ibration method is applied to take into account the small

ensemble size of the hindcasts, the skill scores are im-

proved most of the time.

When the extended logistic regression is trained on

the hindcasts corresponding to a moving window of five

weeks, the skill score is degraded especially for winter as

illustrated in Fig. 9. The postprocessing has skill during

the first 2 forecast days for winter and during the first 5

or 6 days for summer. Increasing the window from 5 to 7

days marginally improves the skill score. This clearly

illustrates the necessity to have as much realizations as

possible.

c. Modified ensembles

The ensemble members are modified based on the

extended logistic regression as described in section 2c.

The examples presented in Figs. 10 and 11 have been

obtained using the parameters of the extended logistic

regression fitted on the EPS ensembles. The logistic dis-

tribution corresponding to the ensemble mean is com-

pared with that of the raw ensemble (Fig. 10). A new

value is assigned to the member(s) according to its

(their) probability as illustrated by the arrows in Fig. 10.

Then the precipitation traces are reconstructed and the

postprocessed ensembles may be compared with the raw

ensembles in Fig. 11. For this particular forecast, the

postprocessing has improved the CRPS averaged over

the entire range of 9 days. However, it is obvious that for

the first 6 days, the raw ensembles are performing very

well and the postprocessing slightly degrades the CRPS.

FIG. 6. Parameter values of the extended

logistic regression for the Ourthe catchment

during winter: (solid line) EPS-FULL, (dashed

line) HIN-POOL, and (dash–dotted line)

HIN-POOL-RC: (top) (left) b0 and (right)

b1; (bottom) b2.
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This can be seen in more details for the lead times of

6 and 7 days in Fig. 10. Rewriting Eq. (14) as

CRPS 5

ðA

2‘

F2
A(x) dx 1

ð‘

A
[FA(x) 2 1]2 dx, (16)

one can note that the CRPS is made of two parts: the

first, on the left of the observed value (vertical mixed

line), is the integral of the square of the distance be-

tween zero and the curve defined by the distribution,

and the second, on the right, is the integral of the square

of the distance between the distribution and the unit

probability. At day 6 (Fig. 10, left), the integral limited

by the raw ensemble is less than the integral limited by

the logistic; therefore, the raw ensemble is doing better

regarding the CRPS. At day 7 (Fig. 10, right) it is the

reverse and, as the observed value lies outside the raw

ensemble, the longer tail of the logistic curve contributes

to lowering the CRPS. For the case of the Ourthe during

winter, a number of situations like the one depicted in

Fig. 10 (right) implies a substantial improvement of the

average CRPS.

The overall performances of the postprocessed en-

sembles compared to those of the raw ensembles are

presented for the two catchments and both seasons in

Figs. 12–15. The ME of the raw ensembles reveals a

positive bias except for the Ourthe during winter with

precipitation forecasts that are underestimated on aver-

age. Similar contrast between the ME values during

winter for the same catchments taken downstream was

discussed in Roulin and Vannitsem (2005) and Van den

Bergh and Roulin (2009). Using the parameters ob-

tained with the EPS themselves provides an optimal

picture of the impact of postprocessing. Indeed, the bias

is corrected in the postprocessed ensembles. However,

for the Ourthe catchment, the negative bias tends to be

overcorrected. We suspect that the postprocessed en-

semble average is altered by the step of averaging trans-

formed member’s precipitation when preparing the

predictors of the extended logistic regression (instead of

transforming the ensemble average). It can be reminded

that this choice was motivated to ease the regression cali-

bration in the parameter estimation. Preliminary results on

51-member ensembles and using transformed ensemble

FIG. 7. CRPSS of the probability distributions estimated with the extended logistic regression relative to the raw

ensembles: (solid line) EPS-FULL, (dashed line) EPS-BOOT-5, and (dash–dotted line) EPS-BOOT-5-RC. Test

cases: (a),(b) Gete catchment and (c),(d) Ourthe catchment for (a),(c) winter and (b),(d) summer.

882 M O N T H L Y W E A T H E R R E V I E W VOLUME 140



average resulted in a better correction of the bias (ME) in

the postprocessed ensembles. Note that using the multi-

plicative bias (DMB) correction, the correction would be

simply proportional to the raw ensemble mean.

Using the parameters obtained with the hindcasts

results in a correction of the bias during the first two

forecast days for the Ourthe catchment during winter

and the bias is degraded for longer lead times. For sum-

mer the bias is corrected up to 6 days. For the Gete

catchment, the bias is intermediate between the values

of the raw ensembles and those achieved with the pa-

rameters obtained with the EPS.

The MSE is increasing with lead time, the values being

larger for summer than for winter and larger for the

Ourthe than for the Gete. The MSE is only marginally

reduced with the postprocessing during summer, either

based on EPS or on hindcasts. The spread (variance) of

the ensembles is also increasing with lead time. One im-

portant criteria of the quality of the ensemble forecasts

is the necessity to have a spread equal to the MSE (see

Leutbecher and Palmer 2008). Here, the raw ensembles

are in general underdispersed. The postprocessing with

the parameters based on EPS allows for an increase of

the spread to a value closer to the MSE. The only ex-

ception is the Gete during summer for lead times of

4–7 days (Fig. 15). The postprocessing with the parame-

ters based on hindcasts produces a too large spread on

average compared to the MSE for winter (Figs. 12 and 14)

whereas for summer the spread is more similar to the one

resulting from the parameters based on EPS (Figs. 13 and

15). Note that the spread of the corrected ensembles does

not use any information about the uncertainty of the raw

ensemble. Using a multiplicative bias correction (results

not shown), the spread would have been decreased in the

situations where the ensemble means are overestimated

and slightly increased otherwise.

The results on the CRPS are similar for the two pa-

rameter sets (51 or 5 members) based on EPS or hind-

casts. The best improvement of the CRPS with the

postprocessing is achieved for the Gete during summer

(Fig. 15) especially during the first half of the forecast

range. Some insight can be gained by comparing the BSS

of the raw ensembles and of the postprocessed ensem-

bles for different thresholds. For instance, for the Gete

during summer at forecast day D 1 3, results (not

shown) reveal that the BSS is improved for the entire

FIG. 8. As in Fig. 7, but for (dashed line) HIN-POOL and (dash–dotted line) HIN-POOL-RC.
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range of thresholds. This improvement can be explained

by a better reliability for all thresholds and by a better

resolution for low thresholds (,P60). The improvement

is minor for the Ourthe during winter (Fig. 12). For this

case, at forecast day D 1 3, the decomposition of BSS (not

shown) reveals almost no change in resolution neither

in reliability—the raw ensemble are already reliable—

except for a very low threshold (,P40). For this case, as

FIG. 9. As in Fig. 7, but for (solid line) HIN-POOL-RC, (dashed line) HIN-WIN5-RC, and (dash–dotted line)

HIN-WIN7-RC. The error bars correspond to twice the standard deviation of 1000 bootstraps in the verification time

series (HIN-WIN5-RC).

FIG. 10. Probability that the areal precipitation exceeds a threshold. Case study: Ourthe, forecast (left) days D 1 6

and (right) D 1 7 from 15 Mar 2008: (solid line) raw EPS, (dashed line) distribution (EPS-FULL) calculated with the

extended logistic regression based on the mean of the power transformed raw ensemble, and (dash–dotted line)

drawn at the observed value. The arrow shows the mapping from raw EPS members to fitted extended logistic.
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mentioned above, a finer analysis of the CRPS of each

realization both for the raw and the postprocessed en-

semble shows that a group of situations included in the

verification dataset contributes to lowering the average

CRPS and is characterized by all members of the raw

ensemble underestimating the observed areal precipita-

tion whereas the postprocessed ensemble has an increased

spread and includes the observed value as in Fig. 10

(right). On the contrary, for all other cases (Ourthe during

summer and Gete during winter and summer), groups

of situations contributing to lowering the average CRPS

may be isolated in the dataset, but they correspond to

raw ensembles overestimating low observed values and

to postprocessed ensembles with less outliers due to an

increased spread and with a decreased ensemble mean.

4. Summary and discussion

The use of hindcasts to develop postprocessing tech-

niques for ensemble precipitation predictions has been

FIG. 11. Areal precipitation over the Ourthe catchment: ensemble traces (dotted lines) and observed (solid bold line);

(left) raw ensembles and (right) postprocessed ensembles (EPS-FULL).

FIG. 12. Verification of the ensemble prediction for the precipitation: Ourthe catchment

during winter. The (a) ME and (d) CRPS in mm day21; the (b) MSE and (c) ensemble spread in

mm2 day22: (solid line) raw ensembles, (dashed line) postprocessed using the extended logistic

regression parameters fitted on the EPS (EPS-FULL), and (dash–dotted line) on hindcasts

(HIN-POOL-RC).
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investigated for two Belgian catchments. The method

tested is the extended logistic regression that keeps

the coherence between the probabilities estimated for

different thresholds. As the size of the hindcasts is

low compared to the full operational ensemble, the

regression parameters should be corrected for biases

by using, for instance, the so-called regression calibra-

tion method. This method is efficient as revealed by the

comparison of the parameters obtained on the full EPS

and of subsamples.

FIG. 13. As in Fig. 12, but for the Ourthe catchment during summer.

FIG. 14. As in Fig. 12, but for the Gete catchment during winter.
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As the extended logistic regression aims at correcting

the forecast probabilities over the full distribution, a

natural extension of its application consists in the cor-

rection of the precipitation forecast ensemble mem-

bers. Benefits have been found like the improvement of

bias (ME), a better spread, a decreased number of out-

liers, and also decreased CRPS. The simulated logistic

distributions and, therefore, their mean and variance

depend solely on the raw ensemble average (more pre-

cisely, the mean of power transformed members); the

ensemble spread does not improve much the likelihood

function in the parameter estimation and is estimated

with a large uncertainty on the small hindcast ensembles;

however, further tests will be carried out to check whether

this information can be transferred to the postprocessed

ensembles. Finally, the method should be compared

with other methods like the Bayesian model averaging.

Statistical differences between hindcasts and EPS

have been shown. In an operational setting where the

calibration database corresponds to hindcasts taken in

a moving window, the postprocessing with the extended

logistic regression has skill during the first two forecast

days for winter and during the first five to six forecast

days during summer.
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CORRIGENDUM

EMMANUEL ROULIN AND STÉPHANE VANNITSEM

Institut Royal Météorologique de Belgique, Brussels, Belgium

An editing error occurred in the caption of Fig. 4 of Roulin and Vannitsem (2012). The

description of the curves were given in the reverse order. The figure and caption have been

corrected in the version displayed below.

The staff of Monthly Weather Review regrets any inconvenience this error has caused.
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FIG. 4. Probability distribution [Pr(A # q)] based on the ex-

tended logistic regressions (EPS-FULL) for the Ourthe during

winter at forecast days 3 (solid line) and 6 (dashed line). (left to

right) The curves correspond to ensemble averages of 0, 1, 2, 5, 10,

and 15 mm day21.
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