
 
 

 

  

BEL-HORNET 
Belgian homogenized long-term reference climate time series 

Cedric BERTRAND (IRM/KMI) – Vladimír VrábeÍ (IRM/KMI) – Charles Delvaux 

(IRM/KMI) – Michel ALIOSCHA-PEREZ (VUB) – Hichem SAHLI (VUB) 

 

 

 

Axis 6: Management of collections  



Project  BR/154/A6/BEL-HORNET – Belgian homogenized long-term reference climate time series 

BRAIN-be (Belgian Research Action through Interdisciplinary Networks) 2 

 

  

BEL-HORNET 

Belgian homogenized long-term reference climate time series 

 

Contract - BR/154/A6 

 

FINAL REPORT 

  

 

NETWORK PROJECT 

 

PROMOTORS:   Cedric BERTRAND (IRM/KMI) 

 Hichem SAHLI (VUB) 

  

  

AUTHORS: Cedric BERTRAND (IRM/KMI), Vladimír VrábeÍ  (IRM/KMI),  

 Charles DELVAUX (IRM/KMI) , 

  Michel ALIOSCHA-PEREZ (VUB), Hichem SAHLI (VUB) 

 



Project  BR/154/A6/BEL-HORNET – Belgian homogenized long-term reference climate time series 

BRAIN-be (Belgian Research Action through Interdisciplinary Networks) 3 

 
 
 
 
 
 
 
 
 

 
 
Published in 2018 by the Belgian Science Policy Office 
Avenue Louise 231 
Louizalaan 231 
B-1050 Brussels 
Belgium 
Tel:  +32 (0)2 238 34 11  - Fax: +32 (0)2 230 59 12 

http://www.belspo.be 

http://www.belspo.be/brain-be 
 
Contact person: Maaike VANCAUWENBERGHE 
Tel: +32 (0)2 238 36 78 
 
Neither the Belgian Science Policy Office nor any person acting on behalf of the Belgian Science Policy Office is 
responsible for the use which might be made of the following information. The authors are responsible for the 
content. 

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by 
any means, electronic, mechanical, photocopying, recording, or otherwise, without indicating the reference : 

Bertrand C., V. VrábeÍ, C. Delvaux, M. Alioscha-Perez and H. Sahli. Belgian homogenized long-term reference 
climate time series. Final Report. Brussels : Belgian Science Policy Office 2018 – 62 p. (BRAIN-be -  (Belgian 
Research Action through Interdisciplinary Networks)) 

http://www.belspo.be/


Project  BR/154/A6/BEL-HORNET – Belgian homogenized long-term reference climate time series 

BRAIN-be (Belgian Research Action through Interdisciplinary Networks) 4 

TABLE OF CONTENTS 

ABSTRACT 5 
CONTEXT .....................................................................................................................................................................5 
OBJECTIVES .................................................................................................................................................................5 
CONCLUSIONS ..............................................................................................................................................................5 
KEYWORDS ..................................................................................................................................................................5 

 

1. INTRODUCTION 6 
 

2. STATE OF THE ART AND OBJECTIVES 14  
2.1 DATA QUALITY CONTROL..................................................................................................................................... 14 
2.2 DATA HOMOGENIZATION ..................................................................................................................................... 15 

2.2.1 Monthly homogenization: The HOMER software 16 
2.2.2 Daily homogenization 17 

 

3. METHODOLOGY 19  
3.1 SERIES CONSTITUTIONS AND METADATA COMPLETION ...................................................................................... 19 

3.1.1 Series Constitutions 19 
3.1.2 Metadata completion 23 

3.2 DATA QUALITY CONTROL ................................................................................................................................... 23 
3.2.1 Digitized data 23 
3.2.2 Daily automated QC procedures 25 

3.3 DATA HOMOGENIZATION ..................................................................................................................................... 30 
3.3.1 Extreme Temperature 30 
3.3.2 Precipitation 40 

 

4. SCIENTIFIC RESULTS AND RECOMMENDATIONS 47  
 

5. DISSEMINATION AND VALORISATION 48  
 

6. PUBLICATIONS 48  
 

7. ACKNOWLEDGEMENTS 49  
 

REFERENCES 49  
 

ANNEXES 54  
A.1 HOMER TEMPERATURE CLUSTERS CONSTITUTION ........................................................................................... 54 

A.1.1 Long Series (LS) 54 
A.1.2 Historical Series (HS) 56 

A.2 HOMER PRECIPITATION CLUSTERS CONSTITUTION ........................................................................................... 57 
A.2.1 Long Series 57 
A.2.2 Centennial Series 61 

 

 

 

 

  



Project  BR/154/A6/BEL-HORNET – Belgian homogenized long-term reference climate time series 

BRAIN-be (Belgian Research Action through Interdisciplinary Networks) 5 

ABSTRACT 

 

Context 

Long-term, high-quality and reliable instrumental climate records are indispensable pieces of 

information required for undertaking robust and consistent studies to better understand, detect, 

predict and respond to climate variability and change. However, as extensively discussed in 

literature most instrumental time series contain variations that are not only due to the vagaries of 

weather or climate. Causes for these variations are manifold, e.g. station relocation, 

instrumentation changes or changes in observation times. In addition wrong or aberrant 

observations are common in most observational systems. All these factors reduce the quality of 

original data and compromise their homogeneity. Because biases in time series frequently have a 

similar magnitude as the climate signal (i.e. long-term variations, trends or cycles), it is widely 

accepted that inhomogeneities and aberrant observations in time series have to be detected and if 

necessary adjusted before performing any kind of climate change analysis.  

 

Objectives 

Based on the meteorological records archived at the Royal Meteorological Institute of Belgium, 

long-term, high-quality and homogeneous temperature and precipitation time series will be 

produced for Belgium using state-of-the art data quality control procedures and homogenization 

methods. 

 

Conclusions 

A new dataset of quality controlled monthly and daily homogenised temperature and precipitation 

time series for Belgium has been produced for the period 1880 to 2015, although with a lower 

station density before the second half of the 20th century. This, in turn, will support century-scale 

analyses of changes in mean temperatures and precipitations, as well as of extremes 

temperatures. 

 

Keywords 

Time series, data quality control, data mining, artificial neural network, break detection, 

homogenization, daily extreme temperature, and daily precipitation amount  
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1. INTRODUCTION 

 In Belgium, the official climatological network started in 1870s under the auspices of the former 

Observatory of Brussels located in St-Josse-ten-Noode, Brussels. In 1913, the Royal Meteorological 

Institute (RMI) was set up at Uccle, Brussels, and the climatological network was put under its 

responsibility. Mainly relying on volunteers, the main climatic information collected across the time 

are the daily precipitation amount (RR) and the daily maximum (TX) and minimum (TN) temperature. 

RR, TX and TN, for the previous 24 hours, are recorded at 8:00 am local time. TN is recorded against 

the day of the observation while TX and RR against the previous day.  

The network currently counts 145 thermometric stations (i.e. 115 manual and 30 automated 

stations) and 226 pluviometric stations (i.e. 196 manual and 30 automated stations) but the number 

of climatological stations maintaining daily precipitation amount and temperature records has varied 

over the time as illustrated in Figure 1. Starting in 1911, an abrupt increase followed a call for 

collaboration published in the national newspapers. The negative impact of the war periods on the 

climatological network is also clearly visible in Figure 1. A total of about 1060 stations were 

identified in the RMI’s central database (DB) for the period 1880-2015 with a minimum of 48 

operating stations in 1880 and a maximum of 358 operating stations in 1976. (The number of 

climatological stations maintaining temperature records has varied over time with a minimum of 25 

stations in 1925 and a maximum of 177 stations in 2006). 

 

FIGURE 1: Time evolution of the number of available pluviometric (in blue) and thermometric (in 

red) stations within the central RMI’s database. 

Huge amounts of climate data have been recorded since the early stage of the climatological 

network. However, the existing data heritage is largely under-exploited because historical 

information still remained in hard copy and in fragile media (e.g. data hand-written kept in the 

original daily weather reports). Easily accessible digital climate data are mostly restricted to the 

second half of the 20th century. While instrumental data extend back in time at least to the 19th 

century over most regions of Belgium, only one long-term daily temperature series (1767-1998) 

representative of central Belgium has been established (Demarée et al., 2002) and 12 long-term 
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daily precipitation time series (e.g. Dupriez and Demarée, 1988 – see table 1-). Thanks to two 

digitization projects funded by the Belgian Science Policy Office (BELSPO), RMI has undertaken the 

digitization of the climate observations conducted in the period 1880-1953 by the Belgian 

climatological network. A total of 623 series of daily precipitation amount and 239 series of daily 

extreme temperatures data have been digitized (which roughly represents 5 million of daily data 

encoded). For each of them, the station’s name, code, latitude, longitude, altitude, and observer 

were verified thoroughly. Note that when detailed information about the station’s location was 

missing, the coordinate and altitude of the village’s church has been set as default location. 

Only some of the stations in the network are suitable for use in climate analysis. Most have not 

enough data, while others have excessive missing data, poor site characteristics or unreliable 

observations. Ideally, station used for climate change analysis should meet the following criteria 

(Trewin, 2013): 

1. A long period (preferably 100 years or more) of continuous data with few or no missing 

observations. 

2. No site relocations, changes in observation practices or instruments, or significant changes 

in local site environment. 

3. Located well outside any urban or potential urban growth area. 

Because only a few (if any) of such stations exist in practice, it is necessary to construct long time 

series by merging climate records from neighbouring stations. 

 

SERIES NAME LATITUDE (°N) LONGITUDE (°E) ALTITUDE (m) TIME PERIOD 

Sint-Andries-
Brugge 

51.159 3.161 11 1880-1983 

Ath 50.626 3.778 32 1883-1999 
Leopoldsburg 51.107 5.263 48 1880-1999 
Uccle 50.798 4.359 100 1880-1999 
Gembloux 50.583 4.687 180 1880-1999 
Denée-
Maredsous 

50.287 4.768 222 1882-1998 

Rochefort 50.176 5.224 193 1880-1999 
Thimister 50.654 5.863 280 1882-1999 
Stavelot 50.392 5.923 297 1880-1999 
Hives 50.152 5.583 398 1882-1999 
Chimay (Forges) 49.982 4.340 318 1880-1999 
Chiny 49.739 5.346 374 1882-1998 

TABLE 1: Already available centennial daily precipitation time series in the RMI’s central DB. Series in 

bold include records from stations operated by the former Belgian Roads and Bridges Administration 

in their older parts. 

 Currently, air temperature is measured in every thermometric station of the Belgian climatological 

network in a shaded enclosure (i.e. Stevenson screen) at a height of 1.5 m above the ground. Liquid-

in-glass manually read thermometers (i.e. mercury thermometers for TX and alcohol thermometers 

for TN) are still used in about 80 % of the stations; the others being fully automated. The way that 

thermometers have been exposed to the atmosphere and sheltered from direct or indirect solar 
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radiation has changed over time. The Belgian standard of the Stevenson screen (currently used for 

both liquid-in-glass manually read thermometers and automated sensors) was introduced in the 

network in the 1950s. Before this, varied types of exposures and stands were used in the network 

for protecting thermometers. 

 

FIGURE 2: The different types of exposures and stands used in the network for protecting 

thermometers. Type A was used from 1880 to about 1910, type B from 1911 to 1920 and type C 

from 1921 until the 1950s when type D (the Belgian standard of the Stevenson screen) was 

introduced in the network. 

From 1880 to about 1910, the thermometers were sheltered in a large screen constructed of wood 

with no northern wall nor floor under the thermometers and single louvered wall on the other sides 

(see screen of type A in Figure 2). This screen ensured strong natural ventilation, but a poor 

protection against soil radiation. 

From 1911 to 1920 a small prism-shaped double sided screen with no floor constructed of zinc was 

used (see screen of type B in Figure 2). This screen had no floor and was fixed on the north side of a 

mast (or a tree). Adopted because inexpensive, it was however particularly defective because of 

radiation and intense absorption by the zinc walls. 

From 1920 to 1950s, a small wooden screen (see screen of type C in Figure 2) with single louvered 

walls on all sides, a floor built with three boards with the central one slightly shifted to the top and a 

double roof (the top of the screen was composed of one asbestos board above the wooden roof 

with an air space between them) was in use. The volume of this screen was twice as small as the 

volume of type A. 

Finally, in 1950s, a large wooden Stevenson screen in a double-louvered design (see screen of type D 

in Figure 2) was introduced in the network. Note that the asbestos boards are currently replaced by 

a laminate for health and safety reasons.  

The screens were always and are still placed on grass with the opening or door(s) faced north so as 

to prevent direct sunlight on the thermometers or Pt100 sensors. It is worth pointing out that the 

introduction of a new type of screen into the network was progressive and could last several years 

before the whole network has been updated. As an example, archive documents attest that no 
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screen of type B was anymore in use in 1931. Fortunately, two stations did not experience these 

successive changes in shelter type. In Denée-Maredsous, a screen of type A was used from the late 

19th until the beginning of the 1950s when it was replaced by a Stevenson shelter (i.e. the screen of 

type D). In Uccle, an open shelter slightly different from type A (see Figure 3) is in use since the end 

of the 19th century till nowadays. This screen differs from type A by the smaller height of the side 

walls: the single louvered walls do not descend under the level of the thermometers. Since 1983, the 

Belgian standard of the Stevenson screen (i.e. screen of type D in Figure 2) is used as the reference 

shelter for climate monitoring in Uccle. Parallel measurements indicate that the open shelter is more 

sensitive to radiation effects than the Stevenson screen: temperatures recorded in the open shelter 

tend to have a strong bias in TX records compared to the closed shelter while TN readings have a 

small cold bias all the years. 

 

FIGURE 3: Open screen in the climatological station in Uccle 

As for the meteorological screens different types of rain gauges were used in the network.  

Atmospheric precipitations, rain, snow, sleet and hail were initially measured in climatological 

stations using three kinds of rain gauges. The oldest (see panel A in Figure 4), built by Baudin in Paris 

was a tenfold increasing pluviometer, it consisted of a zinc gauge, fitted on the side with a 

communicating tube of glass behind which a scale was engraved on the zinc. The gauge had a 

circular opening of about one-tenth of a square meter equipped with a solid brass ring. After each 

observation, the device needed to be emptied by turning it over. The second model (see panel B in 

Figure 4), built by Schubart in Ghent, was very similar to the previous one. It consisted of a gauge 

and a tank. The gauge was cylindrical and was 20 cm in diameter and 13 cm high. Its bottom was 

conical. At the tank, which was cylindrical was fitted a glass tube that communicated with it and 

behind which was the graduated scale. A tap allowed evacuating the collected water. The third 

model without glass tube but with a tap (see panel C in Figure 4) had an opening of 1 dm2 so that 

each cm3 of water it contained corresponded to a height of one tenth of a millimetre. (Note that it is 

customary to express the quantity of water fallen in millimetres; one millimetre of water collected 

representing one litre per m2). It had a capacity of 2500 cm3 and its upper part was mobile and used 

only in summer time to prevent water collected from evaporating and to decrease wetting loss when 

the rain was falling. In winter it was removed so that the instrument could collect the snow. A sleeve 

wrapped the zinc cylinder and protected it from the Sun. The three models were fixed on a support 
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or on a stake in a way that their collecting surfaces lied at 1.5 m above the ground surface. This was 

a double fault. Indeed, it is necessary to bring the rain gauges closer to the ground as much as 

possible to remove them from the wind which produces eddies and diminishes the amount of water 

they collect. Moreover, a high rain gauge easily tips, which could artificially increases or decreases 

the quantities collected, depending on whether the instrument is inclined towards the rain or in the 

opposite side. 

 

FIGURE 4: The different manual rain gauges used in the Belgian climatological network. Note that 

the indicated time periods are only approximate since the replacement of the instruments was 

progressive. 

To overcome such deficiencies a new designed rain gauge was introduced in the network at the 

beginning of the 1910s. The instrument (see panel D in Figure 4) consisted of a bottle with a capacity 

of about one litre surmounted by a funnel with a diameter of 10 cm. A sleeve welded to the funnel 

covered the joint between the funnel and the neck of the bottle, so that the rain could not penetrate 

through this joint. The bottle was placed on the ground (in a cylinder that prevented the bottle from 

being knocked over) and the receiving surface of the funnel of 78 cm2 was about 30 cm above the 

ground. The collected water, measured in cm3 using a graduated test tube, was divided by 7.85 to 

convert to mm. In suspicion of snowfall, the funnel was replaced by another whose body was 

lengthened by a 20 cm cylinder so as to allow the snow to accumulate between two observations. 
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From 1921 to 1950 a funnel with a receiving surface of exactly 1 dm2 (see panel E in Figure 4) was 

used so as to convert the collected cm3 to mm simply by dividing by a factor of ten. The funnel with a 

rectangular opening surmounted a specially designed 2-liters bottle partly driven into the soil so that 

receiving surface of this rain gauge was approximately 30 cm above the ground surface. The brass 

edge of the funnel was sharp-edged to exactly define the receiving surface. The mouth of the funnel 

was provided with a welded sleeve to cover the junction between the funnel and the bottle in order 

to prevent water from either entering the bottle laterally or evaporating too easily. This device also 

ensured a good stability of the funnel on the bottle. A funnel with an elongated 20 cm body was 

used to collect the snow. 

In 1950, as part of a major reorganisation of the Belgian climatological network, a new rain gauge 

(see panel F in Figure 4) was introduced into the network. This rain gauge is still in use in all manual 

stations. It consists of a chromed brass funnel whose circular opening has a surface of 1 dm2, 

surmounting a special bottle whose capacity is 2 litres. The rain gauge is placed on a tripod support 

fixed in a stable way in a protective concrete tube. It is surrounded by a protective cone (i.e. Nipher 

cone) designed to close the wind at the immediate vicinity of the funnel and to ensure the horizontal 

flow of the air above the rain gauge opening. The opening of the rain gauge is 50 cm above the 

ground surface in Lower and Middle Belgium and can rise up to 75 cm in Upper Belgium in locations 

where the snow accumulation can be large in winter time. In suspicion of snowfall, the rain gauge 

(i.e. the funnel and the bottle) is replaced by a nivometer which consists of a cylindrical gauge 45 cm 

high with an opening of 1 dm2.  

It is worth pointing out that as for the meteorological screens, the up-mentioned time periods are 

only indicative because all instrumentation changes have only be progressively implemented in the 

network. We do not have precise documentation on the date of commissioning of the different 

models of rain gauges at each station. 

Two zinc gauges have been used until the end of November 1890 at the former Observatory of 

Brussels in St-Josse-ten-Noode (i.e. the No. 13 and No. 14 on panel A in Figure 5). These gauges were 

rectangular in shape and had an opening of 1 x 2 dm. The gauche No. 13 had the shape of an 

inverted quadrangular pyramid, opened by the base, but whose walls then extended vertically to 

form a rim of 2 cm in height. The No. 14 designed to collect the snow differed from No. 13 only in its 

upper form so as to prevent the snow from being blown away by the wind after its fall. The collected 

water passed into a lower reservoir/tank through a 1 cm diameter tube. The tank ended with a tap. 

The rectangular opening of the rain gauges was 1.1 meters above the ground of the terrace of the 

Old Observatory (which was itself 1.75 m above the garden). 

Numerous rain gauges have been in use in the RMI’s climatological park in Uccle, Brussels (e.g. 

Vincent, 1912; Sneyers, 1964, 1968), but only few of them have served as reference instruments for 

climate monitoring. The reference rain gauge from March 1889 to October 1947 was placed in the 

centre of a cylindrical tank 69 cm in diameter dug so that the opening of the rain gauge was flush 

with the surrounding ground. The rain gauge had a circular collecting surface of 1 dm2 delimited by 

a cylindrical edge in sheet metal 1 mm thick. From the funnel (with a shape of an inverted cone) the 

water flowed into a bottle serving as a reservoir (see panel E in Figure 5). To measure the water, the 

bottle was emptied into a graduated test tube. In case of snowfall suspicion a funnel with an 

elongated 10 cm cylinder body was used instead of the usual 1 cm height body. 
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FIGURE 5: The different rain gauges (and associated time periods of use) involved in the Brussels-

Uccle centennial time series. 

From November 1947 it was preferred another rain gauge whose opening also reached the ground 

level. This rain gauge consisting of a funnel surmounting a bottle was placed in the centre of a 

cemented tank with a diameter of 70 cm and a depth of 40 cm. The rain gauge had a circular 

opening of 1 dm2 delimited by the bevel stop of a copper ring. The collecting bottle had a 2 litres 

capacity (see panel F in Figure 5). In suspicion of snowfall, the rain gauche (i.e. the funnel and the 

bottle) was replaced by a nivometer which consisted of a cylindrical container 40 cm high with an 

opening of 1 dm2. It is worth nothing that this rain gauge has been used as the reference instrument 

until the end of April 1983 while the current reference rain gauge (panel G in Figure 5) was 

introduced in the network in 1950. 

It is worth pointing out that the Brussels-Uccle daily precipitation data retrieved on a digital format 

from the RMI’s central DB does not exactly correspond to the measurements performed with the 

reference rain gauges described above. Figure 5 presents the different instruments actually involved 

in the daily Brussels-Uccle pluviometric time series elaborated in a former digitisation work (e.g. 

Dupriez and Demarée, 1988) and considered here. From January 1880 to the end of March 1886 

measurements from the two zinc gauges (see panel A in Figure 5) located at the former Observatory 

of Brussels in Saint-Josse-ten-Noode were used. From April 1886 the daily rainfall amounts were 

taken from rain gauges installed in the Uccle plateau. From April 1886 to the end of November 1890, 

atmospheric precipitations were measured using rain gauges (see panels B and D in Figure 5) similar 
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to those in use in the regional stations (see panels A and B in Figure 4). Note that from December 

1887 to the end of May 1890 measurements were taken from a rain gauge (see panel C in Figure 5) 

which slightly differs from the one in use in the regional stations during the time period 1901-1910 

(see panel C in Figure 4). This rain gauge specially designed to measure the snow consists of a 40 cm 

long cylinder with a conical bottom and ending with a tap. It is equipped with a truncated cone, 

inverted, surrounding the container and designed to prevent the air from rising vertically along the 

gauge during strong wind. This truncated cone makes an angle of 45° with the horizon. The upper 

base is on the same level as the rain gauge opening. This device was designed by Nipher. The rain 

gauge was hooked to a support and its circular opening was 20 cm in diameter. From December 

1890 to the end of the year 1900 atmospheric precipitations were recorded in zinc gauges similar to 

those used until the end of November 1890 at the former Observatory of Brussels (see panel A in 

Figure 5). From January 1901 to the end of the year 1945 measurements were taken from the 

reference rain gauge at that time (see panel E in Figure 5). From January 1946 to the end of May 

1983, the reference rain gauge for the time period November 1947 to April 1983 was considered 

(see panel F in Figure 5). Finally, the current official manual rain gauche (see panel G in Figure 5) is 

used since June 1983. 

As extensively discussed in literature (e.g. Aguilar et al., 2003; Auer et al., 2007; Brunet et al., 2008, 

2011) instrumental time series could be altered by changes in the measurement conditions, such as 

evolution of the instrumentation, relocation of the measurement site, modification of the 

surroundings, instrumental inaccuracies, poor installation, and observational and calculation rules. 

Moreover spurious observations are frequent. As these artificial shifts often have the same 

magnitude as the climate signal, such as long-term variations, trends or cycles (e.g. Caussinus and 

Mestre, 2004; Della-Marta et al., 2004) a direct analysis of the raw data series might lead to wrong 

conclusions about the climate evolution. As an example, Hanssen-Bauer and Forland (1994) reported 

that, in the case of precipitation, the progressive improvements of instrumentation can introduce 

artificial systematic increases. Therefore it is widely accepted that inhomogeneities and aberrant 

observations in time series have to be detected and if necessary adjusted before performing any 

kind of climate change analysis. 
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2. STATE OF THE ART AND OBJECTIVES 

 

2.1 Data quality control  

The value of any meteorological measurement is dependent on the accuracy and precision with 
which it represents the physical quantity being measured. No measuring technique is perfect and 
errors can occur in meteorological observations for a wide variety of reasons, the most common 
being instrument faults, observer errors, errors in data transmission and clerical error in data 
processing. A distinction is drawn here between short-term issues which affect observations over a 
finite period (most commonly a single observation, but sometimes persisting for a period of a 
number of days or weeks), and longer-term influences on a climate record (inhomogeneities) which 
are considered separately (see Section 2.2 here below). Without outliers being properly treated, 
homogenization and analysis may render misleading results.  
 
In the past, little attention was paid to data quality control, believed to be less important than the 

improvement of numerical weather prediction and data assimilation techniques, and considered as a 

less “glamorous” topic. Quite early though, it was recognized that the insufficiency of the quality 

control applied to the observations was an obstacle to the quality of the analysis, also crucial for the 

skill of numerical forecasts. Since the 1980s more effort has gone in the study and formalization of 

quality control procedures. Literature of the last two decades suggests an evolution toward complex 

quality assurance (QA) and quality control (QC) in practice with meteorological data processing. 

Complex QA is distinguished from more traditional “simple” QA by the use of several different tests 

or rules against which data are tested and a decision tree to weigh all of the evidence before flagging 

data (Gandin, 1988; Eskridge et al., 1995). Each procedure will either detect the data as being valid 

or erroneous. The guiding principle is that no decision to flag a datum should be made until all 

available approaches have been applied toward the assessment of its validity. False positives (i.e. 

type I error) increase the burden on the manual QC and false negatives (i.e. type II error) reduce the 

quality of the data. 

In view of the huge amount of values that have to be processed for each selected meteorological 
parameters (i.e. TX, TN and, RR), automating the QA/QC process is of extreme importance. Fully 
automated QA procedures required to be developed (with a special care pay to the records digitized 
by the staff as they require a stricter QC to avoid major mistakes in data digitization) to isolate and 
flag potentially errant values as well as for ensuring internal consistency and temporal and spatial 
coherence of the data. Through this objective, we have also investigated how recent data mining 
techniques can be incorporated in the quality assurance decision making process.  
 
Data mining (e.g Han and Kamber, 2006) is the extraction of hidden predictive information from 
large databases. It is a powerful technology with great potential to analyse important information in 
data bases and data warehouses. A variety of data mining tools and techniques are available in the 
industry, but they have been used in a very limited way for meteorological data (e.g. Abdelaal and 
Elhadidy, 1995; Lucio et al., 2007; Sciuto et al., 2009). In this project, we use Artificial Neural 
Network (ANN) to explore the spatiotemporal dependence of meteorological attributes. An ANN is 
an interconnected group of artificial neurones that uses a mathematical model for information 
processing based on a connectionist approach to computation. In most cases an ANN is an adaptive 
system that changes its structure based on external or internal information that flows through the 
network. In more practical terms neural networks are non-linear statistical data modelling tools. 
They can be used to model complex relationships between inputs and outputs or to find patterns in 
data. The motivation for the development of neural network technology stemmed from the desire to 



Project  BR/154/A6/BEL-HORNET – Belgian homogenized long-term reference climate time series 

BRAIN-be (Belgian Research Action through Interdisciplinary Networks) 15 

implement an artificial system that could perform intelligent tasks similar to those performed by the 
human brain.  
 
Supervised deep learning approaches (Lecun et al. 2015) model the underlying distribution of the 
data by learning from demonstrations, provided that enough examples are available to learn from. 
Deep learning architectures convert all (raw) data samples under analysis into a stack of 
intermediate representations that are compact and redundancy-free, in a way that further tasks 
such as discrimination or detection (among others) can be done in a simpler, more efficient and 
accurate way, without requiring any specific features engineering. Recurrent neural networks (RNN) 
models (Lipton et al. 2015), and in particular long-short term memory (LSTM) networks based on 
auto-encoder representations (Malhotra et al. 2016), have been successfully applied to anomaly 
detection problems in time series, though mostly for discord rather than contextual anomalies. 
Essentially, by looking at many examples of raw signals (i.e. including anomalies) and their errors-
free (manually corrected) counterparts, it is possible to learn given certain context, the underlying 
distribution of the residual signal as an indicator of anomaly presence in form of peaks in the 
residual. Another possibility would be to directly learn to detect anomalous data points from the 
residual signal and the same context. A third scenario considers combining both detection and 
prediction in order to better find irregularities on information that follows certain patterns (Feng et 
al. 2017). Our approach goes in this direction and aims at simultaneously detecting anomalies and 
predicting the correct values for such data points in weather time series; the benefits of this 
approach is two folds. Firstly, the detection process can be improved with the prediction model by 
increasing the detection likelihood whenever the predicted value is too different with respect to the 
raw value, and hence the magnitude of the associated residual will increase (or diminish) the 
detector signal; this reduces false negatives (errors type II). Secondly, corrections to the raw time 
series will only be performed if a positive detection happened in the data point in question, which in 
turns reduces false positives (errors type I). As a result, such a combined detection + prediction 
model allows to jointly minimizing errors of types I and II. 
 

2.2 Data homogenization 

The aim of data homogenization is to adjust observations, if necessary, so that the temporal 

variations in the adjusted data are caused only by climate processes (Conrad and Pollak, 1950). It is a 

two-stage process: firstly the detection of inhomogeneities in the data time series and secondly the 

adjustment of the data to remove these inhomogeneities. Ideally, the date of a change of 

instruments, location, or observing practices would be recorded as metadata, and parallel 

measurements made with the original and the new setup for several years, allowing reliable 

estimation of the inhomogeneity. In practice, metadata are often incomplete and parallel 

measurements lacking, so statistical homogenisation is required. 

Because statistical absolute homogenization (without using neighbouring stations) has the potential 

to make the data even more inhomogeneous (e.g., Venema et al., 2012) and cannot distinguish small 

jumps and gradually occurring inhomogeneities from natural variability and climate change, the 

most commonly used principle over the last decades to detect and remove the artificial changes is 

relative homogenization. This assumes that nearby stations are exposed to the same climate signal, 

but that non-climatic changes are station-specific. Differences between nearby stations enable to 

detect inhomogeneities. By looking at the difference time series, the year to year variability of the 

climate is removed, as well as regional climatic trends. In such a difference time series, a clear and 

persistent jump can be therefore easily detected and attributed to changes in the measurement 

conditions. 
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In the past, it was a common practice to establish a composite reference time series computed from 

multiple nearby stations and to assume that the difference between the data at the tested station 

and the reference series (assumed not perturbed) is fairly constant in time, up to the perturbations 

to be detected (Alexandersson, 1986). The procedures that were in widespread use among 

climatologists (e.g., Potter, 1981; Alexandersson, 1986) relied on likelihood ratio tests (Hawkins, 

1977; Maronna and Yohai, 1978). In these procedures the null hypothesis was tested against the 

presence of a single change-point (also referred to as break-point). 

These approaches however suffer from two major limitations: 

1. The reliability of the so-called reference series cannot be proved. The methods for creating 

such series (Alexandersson, 1986; Hanssen-Baueur and Forland, 1994; Easterling and 

Peterson, 1995; Alexandersson and Moberg, 1997) do not guarantee their quality (Caussinus 

and Mestre, 2004). 

2. These methods can usually handle only a single change-point while long time series typically 

have more than just one jump. Moreover, an unknown number of outliers may spoil the 

data (Caussinus and Mestre, 2004). 

Therefore, more recent homogeneization approaches focus on methods specifically designed to 

detect and correct multiple change-points and work with inhomogeneous references (e.g. 

Szentimrey, 1999) or via direct pairwise comparison (e.g. Caussinus and Mestre, 2004). 

 

2.2.1 Monthly homogenization: The HOMER software 

The method opted for homogenization of the monthly temperature and precipitation time series in 

Belgium relies on the use of the HOMER software (Mestre et al., 2013) developed with support of 

the European Union, through the COST Action ES0601 – Advances in Homogenization Methods of 

Climate Series: an Integrated Approach (HOME) – for the detection of a multiple number of break-

points and the calculation of adjustments. This interactive semi-automatic software includes the 

best features of some state-of-the-art methods, namely PRODIGE (Caussinus and Mestre, 2004), 

ACMANT (Domonkos, 2011), and cghseg a joint segmentation method that was developed originally 

by biostatisticians in the context of DNA segmentation (Picard et al., 2011). These methods identify 

change-points in a time series by computing an optimal segmentation of this time series in 

homogeneous subseries. A dynamic programming approach enables to determine the change-points 

by minimizing the internal variance of the subseries (Caussinus and Lyazrhi, 1997). Combining 

different break detection algorithms has been demonstrated to be beneficial (Gubler et al., 2017). It 

results in higher confidence when accepting or rejecting break-points, especially if a break-point 

cannot be confirmed by metadata (Toreti et al., 2012; Kuglitsch et al., 2012). The correction of the 

break-points in HOMER is done based on a two-factor analysis of variance (ANOVA) model approach. 

It allows for the correction of a set of stations simultaneously and automatically (Mestre et al., 

2013), and was shown to improve break-point correction over traditional approaches (Domonkos et 

al., 2011; Domonkos, 2013). 

Homogenization with HOMER is an iterative process. Break-point detection procedures are 

alternated with the correction of the break-points. In case the homogenization does not remove the 

breaks in a satisfying way, break dates are modified and breaks in the original time series are 
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readjusted. The alternating procedure is stopped once every time series is considered homogeneous 

by the homogenization operator. Finally, it is worth pointing out that HOMER adjusts the data 

preceding a detected change-point to make it homogeneous with the data after that change-point. 

In this way, the most recent data (i.e. following the last change-point) are not modified. This offers 

the clear advantage for ongoing monitoring that new data can be simply appended to the time 

series. 

2.2.2 Daily homogenization 
If methods used to homogenize annual and monthly data are well established (e.g. Peterson et al., 

1998; Venema et al., 2012) relatively few methods exist to homogenize daily data. This is not due to 

limitations in the detection of shifts since this information may be provided by analysis of annual or 

monthly series (e.g. Kuglitsch et al., 2009; Nemec et al., 2013; Xu et al., 2013; Wang et al., 2014) but 

is mainly due to an adjustment problem. Indeed, the main challenge of the homogenization of daily 

compared to monthly data is that, at least for temperature, the magnitude of inhomogeneities may 

differ with varying weather situations. For temperature correction, multiple regressions including 

other parameters such as wind-speed and direction, sunshine duration and parallel measurement is 

probably the best way to proceed (Brandsma, 2004). But such data is extremely rare when 

considering older data, where usually only precipitation and temperature were observed. 

The simplest daily data adjustment method relies on interpolation of monthly adjustment 

coefficients. However, adjusting monthly or annual mean value is not sufficient to produce 

homogeneous time series of higher-order statistical properties such as variance, or derived statistics 

which are a function of those higher-order properties, such as the occurrence of extremes. This issue 

was initially identified by Trewin and Trevitt (1996), who found that in some cases an 

inhomogeneity, such as a site move, affected different parts of the frequency distribution of daily 

temperature in different ways. Different techniques have been proposed to address this problem. 

These include methods which attempt to homogenize data across the full range of the frequency 

distribution, by matching percentile points in the frequency distribution (Della-Marta and Wanner, 

2006) or by other means (Brandsma and Können, 2006; Toreti et al., 2010; Wang et al., 2010; Mestre 

et al., 2011), as well as methods which explicitly test the homogeneity of higher-order statistical 

properties such as mean daily variability (Wijngaard et al., 2003) or exceedances of percentile-based 

thresholds (Allen and DeGaetano, 2000).  

Based on the HOMER detected break-points on the monthly time series, the following daily 

adjustment methods were applied on the daily extreme temperatures time series: the Vincent’s 

method (Vincent et al., 2002), the Higher-Order-Moments (HOM) method (Della-Marta and Wanner, 

2006), the SPLine Daily HOMogenization (SPLIDHOM) method (Mestre et al., 2011) and the 

Percentile Matching (PM) method (Trewin, 2013) and compared to the Quantile Matching (QM) daily 

homogenization method proposed by Wang (2009). Because the HOM, SPLDHOM and PM methods 

are not suited for the computation of daily precipitation adjustments, only the Vincent method using 

the HOMER adjustments’ and the QM method were considered for the homogenization of the daily 

precipitation time series. 
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2.2.2.1 The Vincent method 

If there is a need for daily data adjustment, the simplest method relies on the interpolation of 

monthly adjustment coefficient. This method provides adjustments only for the mean of an 

inhomogeneity and not for its higher-order moments. 

2.2.2.2 The HOM method 

The Higher-Order Moments (HOM) method uses a nonlinear model capable of handling 

inhomogeneities in higher moments to estimate the relationship between a candidate series and a 

highly correlated reference series in the absence of overlapping parallel measurements. The model 

is built in a homogeneous sub-period before an inhomogeneity and is then used to estimate the 

observations at the candidate series after the inhomogeneity using observations from the reference 

series. The differences between the predicted and observed values are binned according to which 

decile the predicted values fit in the candidate series observed cumulative distribution function 

defined using homogeneous daily temperature before the inhomogeneity. In this way, adjustments 

for each decile are produced. 

2.2.2.3 The SPLIDHOM method 

The SPLIne Daily HOMogenization (SPLIDHOM) method is a variation of the HOM method. Although 

part of the principle involved is quite similar relying on the definition of homogeneous sub-periods, 

SPLIDHOM proposes a very different direct non-linear spline regression approach rather than an 

adjustment based on quantiles. It is a method for sequential adjustment of breaks in time series, 

relying on the good relationship between the candidate series and the highest correlated reference 

series. It is based on a nonlinear regression function between the temperature measurements. In a 

first step, the nonlinear regression between the two series is estimated for both the period before 

and after the break-point. To circumvent the problem of additional inhomogeneities in the reference 

series, the regression function is estimated using a classical smoothing spline (i.e. a cubic smoothing 

spline). The smoothing parameter of the cubic spline is estimated for each regression by means of a 

standard cross-validation technique, in order to avoid overfitting. Both HOM and SPLIDHOM 

methods require highly correlated (r > 0.8) reference series. 

2.2.2.4 The PM method 

The percentile-matching (PM) method is similar conceptually to the HOM and SPLIDHOM methods 

(i.e. differing adjustments are applied to daily data depending on their position in the frequency 

distribution) although there are some differences, principally in the details of generating transfer 

functions. By contrast to HOM and SPLIDHOM methods that use a single reference station, the PM 

method allows considering a combination of multiple reference stations (i.e. up to ten neighbouring 

stations selected in descending order of correlation with the candidate series, with a lower 

correlation limit of 0.6). Where overlapping data exist between the candidate and reference series, 

percentile points (calculated separately by seasons) from the old and new sites are matched to 

define transfer function. Where no overlap exists, reference series are used in a two-step process 

which first matches the pre-inhomogeneity series to the neighbouring reference series, then the 

neighbouring reference series to the post-inhomogeneity series, with the final transfer function 

taken as the median of the transfer functions derived individually for each neighbouring reference 

series. Each month is processed individually taking into account the 6 previous and following 

adjacent months to ensure a smoother passage from one month to another. 
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2.2.2.5 The QM method 

The objective of the Quantile Matching (QM) method is to adjust the candidate series so that the 

empirical distributions of all segments of the detrended candidate series match each other. The 

adjustment value depends on the empirical frequency of the datum to be adjusted (i.e. it varies from 

one datum to another in the same segment, depending on their corresponding empirical 

frequencies). It is worth pointing out that the QM method does not use reference series. 

 

 

 

3. METHODOLOGY  

 

3.1 Series Constitutions and Metadata Completion 

 
3.1.1 Series Constitutions 
In view of the limited number of historical daily temperature and precipitation time series available 

in the RMI’s central DB it was necessary to construct long time series by merging records from 

neighbouring stations. This process was done in two steps. First, stations with more than 360 

months (30 years) of continuous records were selected. Second these series were extended as much 

as possible with measurements from neighbouring stations provided that the following conditions 

were satisfied: a maximum distance of 15 km and a maximum elevation difference of 50 m between 

all the stations contributing to the composite series. This allowed records from short-duration sites 

of similar climatological conditions to be considered in the development of long time series. The 

location and name of the composite series are those of the longest subseries. Note that when the 

shift in the location does not involve the change in name and identifier for the station we consider it 

as a site relocation and otherwise as a station catenation. Site relocation can be as small as a few 

meters but have the potential to substantially impact on observation (e.g. a short move may place 

instruments well clear of an obstacle which previously affected the observations or the reverse). On 

the other hand, station catenations introduce the potential for changes due to meso-scale influences 

such as elevation changes, site classification changes, local topography, or proximity to the coast 

(e.g. Trewin, 2010).  

The ideal situation in case of composite time series is that a substantial overlap between the two 

sites exists so that observations in common can be used to determine appropriate adjustments. In 

most cases however, no sufficient (if any) overlap is available. Records from different sites need then 

to be merged without overlap, and are treated in the same way as an inhomogeneity identified from 

metadata within a record from an individual site.  
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Series Name Latitude (°N) Longitude (°E) Altitude (m) Time Period 

Oostende 51.223 2.906 5 01/1880-12/2015 
Jalhay 50.584 5.972 298 01/1880-12/2015 
Saint-trond 50.816 5.187 54 01/1880-12/2015 
Uccle 50.798 4.359 100 01/1880-12/2015 
Antwerpen 51.225 4.400 10 02/1880-12/2015 
Thimister 50.654 5.863 280 01/1881-12/2015 
Leopoldsburg 51.108 5.271 50 01/1881-12/2015 
Gembloux 50.561 4.660 160 05/1881-12/2015 
Saint-Josse 
(Brussels) 

50.856 4.366 35 01/1889-12/2015 

Stavelot 50.398 5.936 320 01/1890-12/2015 
Rochefort 50.176 5.224 193 06/1892-12/2015 
Denée Maredsous 50.287 4.768 222 01/1893-11/2013 
Chimay (Forges) 49.982 4.340 318 08/1910-12/2015   
Ezemaal 50.756 5.083 50 06/1913-12/2015 
Baraque-Michel 50.519 6.061 672 01/1928-12/2015 
Leuven 50.863 4.685 28 04/1930-12/2015 

TABLE 2: Names, coordinates, altitudes and time periods covered by the historical daily extreme 

temperatures time series. The twelve centennial temperature time series are indicated in italics.  

 

At the end of this process, continuous time series of daily temperature data have been identified for 

61 locations in Belgium for the period 1954-2015 (hereafter referred to as long series) including 16 

locations with data starting before 1931 (hereafter referred to as historical series, see Table 2). 

Among them eight locations have data since 1880 (or 1881). Note that the number of stations (i.e. 

subseries) in a composite temperature series has been limited to three and five for the long and 

historical series, respectively (see Table 3). The average percentage of missing daily values is in the 

order of 2.3% for the long and 4.7% for the historical series, respectively. Many historical locations 

suffer from a lack of data during the World War II. Figure 6 shows the temperature series’ location 

within the Belgian territory, together with additional neighbouring foreign temperature series 

considered in the homogenization process (see Section 3.3.1). 

 

Number  
of Stations 

Temperature Times series Precipitation times series 

Long Series Historical Series Long Series Centennial Series 

1 31 2 72 5 

2 25 5 58 6 

3 5 5 16 7 

4 / 2 3 5 

5 / 2 / / 

6 / / / 1 

TABLE 3: Number of stations (i.e. subseries) involved in the long and historical/centennial 

temperature and precipitation time series, respectively.  
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FIGURE 6: Location of the temperature series. Additional neighbouring foreign series considered in 
the homogenization process are also displayed. 
 
Similarly, time series of daily precipitation data has been established for 149 locations in Belgium for 
the time period 1951-2015 (hereafter referred to as long series) and for 24 centennial series. It is 
worth pointing out that because some of the already existing centennial precipitation time series 
(see Table 1) were not built in compliance with our current criteria of maximum distance and 
elevation between all the stations contributing to the composite series, they were modified 
accordingly. More specifically, the starting date of the Denée-Maredsous, Chiny, Hives and Chimay 
(Forges) time series have been delayed as indicated in Table 4. In addition, in the case of the Chiny 
series such a temporal reduction combined with the impossibility to extend the series to recent 
years in a satisfactory way made this series too short to keep referred as a centennial one. Note that 
it was not possible to extend the Thimister series after the end of March 2000. 
 

Series Name Latitude (°N) Longitude (°E) Altitude (m) Time Period 

Jalhay 50.584 5.972 298 01/1880 – 12/2015 
Leuven 50.863 4.685 28 01/1880 – 12/2015 
Saint-trond 50.816 5.187 54 09/1899 – 12/2015 
Sint-Andries-Brugge 51.159 3.161 11 01/1880 – 12/2015 
Stavelot 50.392 5.923 297 01/1880 – 12/2015 
Uccle 50.798 4.359 100 01/1880 – 12/2015 
Antwerpen 51.225 4.400 10 03/1880 – 12/2015 
Gembloux 50.583 4.687 180 03/1880 – 12/2015 
Ninove 50.823 4.113 45 03/1880 – 12/2015 
Oostende 51.223 2.906 5 03/1880 – 12/2015 
Rocheford 50.176 5.224 193 03/1880 – 12/2015 
Leopolsburg 51.107 5.263 48 04/1880 – 12/2015 
Thimister 50.654 5.863 280 01/1882 – 05/2000 
Veurne 51.072 2.669 5 02/1883 – 12/2015 
Ath 50.626 3.778 32 04/1883 – 12/2015 
Huy 50.534 5.217 71 04/1888 – 12/2015 
Schaerbeek 50.847 4.400 72 02/1905 – 12/2015 
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Etalle 49.674 5.602 336 05/1892 – 12/2015 
Denée-Maredsous 50.287 4.768 222 12/1892 – 12/2015 
Hives 50.152 5.583 398 09/1909 – 12/2015 
Sugny 49.816 4.900 375 09/1909 – 12/2015 
Chimay (Forges) 49.982 4.340 318 08/1910 – 12/2015 
Landen 50.754 5.079 69 05/1911 – 12/2015 
Ezemaal 50.771 5.001 47 05/1913 – 12/2015 

 TABLE 4: Names, coordinates, altitudes and time periods covered by the established centennial 
daily precipitation time series. Series in italics are the already existing time series that have been 
extended to recent years while in bold are already existing time series that have been modified and 
extended. 
 
Table 3 indicates that the number of stations (i.e. subseries) in the composite precipitation time 
series has been limited to a maximum of 6 for the centennial series (i.e. 1 series) and 4 for the long 
series (i.e. 3 series), respectively. Five (resp. 72) centennial (resp. long) series originate from a single 
station records (including possible relocations) and less than 55% (resp. 13%) of the centennial (resp. 
long) series contain more than 2 subseries. The location of the precipitation time series within the 
Belgian territory is displayed in Figure 7 together with the location of additional neighbouring 
foreign series used to help the homogenization of the national series (see Section 3.3.2).  
 
Finally, it is worth pointing out that the distinction between historical/centennial and long series is 
due to a reorganization of the Belgian climatological network in the early 1950s. This resulted in the 
widespread introduction of the current manual rain gauge instrument and the Belgian standard of 
the Stevenson shelter, the operational start of many new stations and the incorporation of the 
former Belgian Roads and Bridges Administration observation network within the RMI’s 
climatological network. To this respect, it is important to note that the Belgian Roads and Bridges 
Administration has used for long time a rain gauge much larger than those of RMI presenting an 
opening surface of 4 dm2 and placed on a wooden frame of 2 to 2.5 m height to avoid any spilling in 
highly frequented locations.   
 

  
FIGURE 7: Location of the precipitation series. Additional neighbouring foreign series considered in 
the homogenization process are also displayed. 
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3.1.2 Metadata completion 
Before undertaking any data quality control and homogenization it is necessary to develop complete 
metadata or station history information. Metadata – that is, information about the way in which the 
data have been observed – are important in documenting non-climatic influences which can affect 
measurements. These include issues which are specific to individual sites (such as site relocations, 
instrument changes or changes in local site conditions), or issues which affect large parts of the 
observing network (such as changes in observation times). These pieces of information about data 
are a valuable and essential guide to quality control and homogenization of the raw climate 
instrumental data.  
 
An inventory of available metadata retrieved from archive documents has been established for each 
series. However, metadata is harder to recover than observed data: they are often not published, 
the older documents are sometimes illegible and only a small part of the information provided in 
these documents is relevant for homogenization purposes. Moreover, the existing information does  
not always permitted to attribute a precise date of change in a particular station but rather for the 
entire network in general. As an example, the introduction of a new shelter type or rain gauge 
instrument in the network was progressive and the date of change in a given station is usually 
unknown. 
 
3.2 Data Quality Control 

Roughly five millions of daily data were encoded at RMI during the digitations phase of the 1880-
1949 records. Compared to the supplied readily-available digitized records (i.e. from 1950 to 
present) additional issues related to the general keying process can affect the quality of recently 
recovered and digitized data. Data QC was therefore performed in two steps. First the digitized data 
(i.e. 1880-1949) were checked on a semi-automated basis against typical keying errors. Second, all 
data (i.e. 1880-2015) were subject to various tests to automatically highlight inconsistencies.  
3.2.1 Digitized data 
If double-keying is recognized to minimize the effect of human error by having two individuals key 
the same form and reconciling the differences, historical observation forms were only digitized once 
at RMI. To overcome such a limitation, a first series of QC tests were applied to the digitized data to 
ensure that the observations reported on the original documents were accurately recorded in the 
RMI’s DB. A two steps QC approach was implemented: 
 

1. Visual QC: Errors in the keyed data are numerous: typo errors (forgetting a comma, doubling 
a number, adding or forgetting a number, omission of the negative sign, etc.) keying one 
element as another element, keying 1 day as another day, keying the date of the form and 
shifting the day of the data up or down to an incorrect day, attributing the form to another 
station and/or another month, no-data keyed as a zero value, etc.). An example of form 
leading to keying error is illustrated in Figure 8. In this form, the precipitation quantities 
measured in millimetres were written in the cubic centimetres column with the decimal in 
the millimetres column. Unfortunately, in such a case it was frequent that only the latter 
values were keyed by the digitization staff (e.g. 7 mm instead of 4.7 mm). Various tests 
(including data visualisation) enabled to highlight periods with suspicious values. In case of 
non-obvious corrections, the suspicious data were checked against the original hard-written 
weather reports. Despite the computer assistance, it is worth pointing out that because 
visual QC is an extensively time-consuming activity; only records from selected stations for 
the historical/centennial time series constitution were verified. 

 
2. Automatic QC: Beside the visual QC automatic procedures were developed to flag and 

correct (when possible) known systematic errors: 
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a. 30°C temperature offset. It was common in the past that thermometers in use 
within the Belgian climatological network added a 30°C offset to the actual 
temperature record to prevent the omission of the negative sign for temperature 
values lower than 0°C. Unfortunately, such an offset was not always removed by the 
digitization staff when keying values reported on the original forms. 

b. Unit conversion error. Prior to 1930, it was common to report the daily precipitation 
amount in cubic centimetres rather than in millimetres. Because various types of 
rain gauges were in use at that time as discussed in the Introduction, conversion 
factors of 0.1274, 0.1 or 1.0 needed to be applied by the staff to the precipitation 
amounts reported on the forms to convert them in millimetres. Unfortunately, it 
was not always done. 

c. One-day time lag in the RR and TX series. Daily precipitation amount (RR) and 
extreme temperatures (TN and TX) are recorded from 8:00 am of the previous day 
to 8:00 am of the current day. While most of the observers did shift the RR and TX 
values from one day directly on the form, some did not. 

 
At the end, it was found that about 16% of the original data were not directly usable. They were 
corrected or rekeyed accordingly. This error rate is rather high when compared to the recently 
prepared digital dataset of meteorological observations for Europe and the southern Mediterranean 
region for the period 1877-2012 (Ashcroft et al., 2018) in which less than 5% of the checked values 
required correction (in more than 60% of station tested). This highlights the importance of well 
preparing the digitization work before starting and implements a QC of the keyed data during the 
digitization phase to minimize the introduction of errors. 
 

 
 
FIGURE 8: Example of form leading to keying error (Corbeek-Loo station) 
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3.2.2 Daily automated QC procedures 
In addition to the data QC especially devoted to the digitized data, fully automated data QA 

procedures were developed and applied to both the supplied readily-available digitized records (i.e. 

from 1950 to present) and the data recovered and digitized by the staff (i.e. time period 1880-1949) 

to isolate and flag potentially errant values as well as for ensuring internal consistency and temporal 

and spatial coherence for both temperature and precipitation data. 

3.2.2.1 “Classical” QC approach 

The daily QC process involves a sequence of specific consistency tests. 62 years (i.e. 1954-2015) of in 

depth manually controlled daily extreme temperature and precipitation values from a subset of well-

distributed representative stations within the Belgian territory were used as reference when 

developing/calibrating the automated tests. As illustrated in Figure 9 for the daily extreme 

temperature data QC (left panel), record that has successfully passed the first test are checked 

against the second test and so on. 

First, the physical limits consistency test verifies whether the values are within acceptable limits 

depending on the climatic conditions of the measurement site and the season. The plausible value 

test ensures then that the daily records lay within lower and upper bounds determined for each 

calendar day from the highest and lowest daily values measured in the reference stations. The 

internal consistency test imposes that the maximum temperature of a given day D (corresponding to 

the observation period D to D + 1 at 08:00 local clock time) cannot be lower than (a) the minimum 

temperature in the same observation period and (b) the minimum temperature in the preceding and 

following observation periods, since temperature varies continuously (i.e. not by step). The temporal 

consistency test analyses the daily rate of change in both TN and TX time series in order to detect 

possible anomalies (e.g. spikes or unusual persistence). Finally, the spatial consistency test compares 

the observations at a given location with temperature values recorded at neighbouring stations. 

More details about these tests are given in Delvaux et al. (2015) from which the current QC 

procedures have been derived. At the end of the checks a quality index is attributed to each 

particular temperature data given the score obtained at the various test: 

 “v”: validated data 

 “c”: corrected data 

 “sX”: suspicious data where “X” is a number ranging from 1 to 5 which indicates the test the 

data has failed. 
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FIGURE 9: Automated QC procedure applied to extremes temperature (left panel) and precipitation 

(right panel) records together with the associated confidence index. 

As for daily temperature records, daily precipitation amounts were faced to a sequence of specific 

consistency tests to ensure physical limits consistency (i.e. 0 mm ≤ RR < 250 mm) and spatial 

coherence of the data (see right panel in Figure 9).   

 

3.2.2.2 Deep learning for automated detection and correction of anomalies in time series 

 
The main issue of classical QC approaches in time series anomaly detection is that anomalies 

presence in the time series is very irregular, and in terms of frequency and magnitude, they are quite 

similar to unusually high (or low) temperature values that are perfectly natural. As a result, such 

anomalies can be very difficult distinguish from those extreme values using consistency tests, and 

require more sophisticated analysis of the local context to properly detect them (Chandola et al., 

2009). Contextual anomalies are a kind of single point anomalies, whose values are localized within 

the range of typical values present in the time series, and thus cannot be considered outliers in the 
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statistical sense; nonetheless, such single points are salient in some local context with respect to the 

others (Cheboli, 2010) in the time series. 

Recall that most of anomalies present in historical temperature records arise from errors related to 

human and instruments failure, which are largely occasional and unpredictable, and whose nature 

resembles that of a random error in terms of measurements variability (Brunet et al. 2008). 

Stochastic Neural Networks (Malhotra et al., 2016) provide a framework to model the appearance 

and frequency of such anomalies without making any a priori assumption with regards to the errors 

distribution. The overall idea behind this type models consist in learning how an errors-free time 

series would looks like given many examples of anomalous and correct temperature values. This 

allows to predict the correct temperature value of a specific date in some meteorological station, 

given certain context comprising temperature values from previous days of the same station, as well 

as temperature values of neighbouring meteorological stations. The difference between the 

predicted and the registered temperature values, known as residual, would then serve as indicator 

of anomaly likelihood. At the same time, the predicted temperature value can serve to directly 

correct the anomaly, which paves that way for a fully automated QC solution, or as suggestion for a 

human operator to revise and correct the detected anomaly in a semi-automated QC solution. 

Figure 10 illustrates the proposed solution for fully automated and semi-automated QC of daily 

temperature/precipitation time series. 

 

FIGURE 10: Proposed joint peaks detection and sequence to sequence prediction allows to 

automatically detecting and corrected anomalies in time series. 

Due to the low frequency and irregular emergence of anomalies in temperature time series, 

prediction of temperature values at every date/timestamp could probably lead to too many false 

positive detections (type I errors) and consequently to unnecessary corrections of the original time 

series values, which should be avoided. In order to address this issue, corrections are only applied 

whenever: 

o the residual is big enough to suggest the presence of an anomaly 

o and a peaks/anomaly detector indicates a positive detection 

The peaks detector model’s architecture is selected in a way that both type errors I and II are jointly 

minimized; the NN architecture of both temperature predictor and anomaly detector is provided in 

Figure 11. 
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FIGURE 11: Architectures of both models (a) LSTM for temperatures prediction and (b) CNN for 

anomaly detection; they are trained independently and combined afterwards. 

The overall solution was trained in 24 stations for TX and TN temperature values comprising 

temperature records from 2005 until 2015 (training period). After training, the solution was tested in 

unseen time series of the same 24 stations involving the period from 1996 until 1989 (testing 

period). The Figure 12 illustrates the temperature prediction process obtained with the trained 

model and tested in the period from 1996 until 1997 in one meteorological station. 

 

FIGURE 12: Predicted values vs raw time series of temperature records in the Uccle station, tested in 

the period from Jun 1996 until Jan 1997. 

As can be seen, the temperature prediction is quite close to the raw time series and, more 

importantly, the model is able to predict missing values; the Figure 13 provides a comparison on the 

predicted values and the errors-free (manually corrected) time series in the same meteorological 

station.  At the same time, the detector was used to predict the likelihood of anomaly presence in 

each date, and a correction to the time series, using the predicted value, is performed only if both 

models agree suggest the presence of an anomaly.  
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FIGURE 13: Predicted values vs errors-free (manually corrected) time series of temperature records 

in the Uccle station, tested in the period from Jun 1996 until Jan 1997. 

The overall solution was then applied to correct the time series associated to the 24 stations under 

assessment in the testing period. We can see in Figure 14 that the statistics concerning the errors-

free time series (manually corrected) and the time series automatically corrected with the proposed 

QC (NN) solution are almost the same. 

                       

FIGURE 14: Main statistics for TX (MAX) and TN (MIN) temperature values involving the raw time 

series, the errors-free (manually corrected) time series, and the automatically corrected time series 

using the proposed QC (NN) solution. 

Finally, a set of climate indicators related to temperature values were computed in all the 24 

stations to quantify the differences between the raw time series, the errors-free (manually 

corrected) time series, and the time series automatically corrected with the proposed QC (NN) 

solution; the results are detailed in Table 5. 
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Climate Indicator Raw 
Data 

Errors-free 
data 

Proposed QC (NN) 
corrected data 

Hot days 9 5 5 

Summer days 31 27 27 

Tropical nights 79 76 76 

Frost days 47 48 48 

Icy days 7 7 7 

TABLE 5: Results in climate indicators frequently used or climate analysis; given values are per-

station and per-year covering the testing period from 1989 until 1999 for all the 24 meteorological 

stations under study. 

As can be seen, not only the statistics of errors-free and automatically corrected time series are the 

same, but also the information extracted from the time series to analyse extreme values are 

essentially the same. Such a result confirms that both semi-automated and fully automated QC of 

daily weather time series can be performed via NN with a high accuracy level. 

 

3.3 Data Homogenization 

3.3.1 Extreme Temperature 

3.3.1.1 Monthly homogenization 

For each temperature time series, monthly values were computed when at least 90% of the daily 

values within a given month were found as valid. The monthly value was otherwise considered as 

missing. The monthly homogenization was carried out separately for historical series and long series. 

Twelve additional foreign non-homogenized series (five in France, five in Germany and two in the 

Netherlands – see Figure 6 for the stations location -) were considered to help the homogenization 

of the 61 long Belgian series. The same daily QC procedures used to check the Belgian data have 

been applied to the foreign data. To ensure that nearby locations are exposed to the same climate 

signal in the homogenisation process, the 73 time series of TX and TN were divided into five clusters 

of approximately 15 series (see Annexe A.1.1 for the clusters’ composition) according to the 

following criteria: 

3. The series of a same cluster should define a coherent climatological area. 

4. The series of a same cluster should be correlated and present similarities. 

5. A cluster should contain around 15 series 

Similarly, five additional foreign series of TX and TN (i.e. two German locations and three French 

locations – see Figure 6 for the stations location -) were used to help the homogenization of the 16 

historical Belgian series of TX and TN. Due to the limited number of locations, a unique cluster was 

considered for the homogenization of the historical series (see Annexe A.1.2 for the cluster 

composition). 

Because HOMER is an interactive semi-automated software, some decisions may differ from one 

user to another. Therefore, the full homogenization process has been conducted independently by 

three different experts to minimize the impact of the cluster definition and the consequences of 

false break-point attributions and associated adjustments. To ensure the reliability of the 
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homogenized long (resp. historical) temperature series, it was checked that all series satisfy the 

following conditions: 

1. Maximum five (resp. 10) break-points. 

2. Maximum one (resp. 2) break-point(s) with a magnitude larger than 0.8°C. 

3. No break-point with a magnitude larger than 1°C (excepted if well supported by metadata, 

for example, Brunet et al., 2006; Mamara et al., 2014, 2016; Yosef et al., 2018). 

4. A minimum detectable magnitude (MDM; break-point significance detection threshold 

provided by HOMER) smaller than 0.25°C. 

5. All break-points have a magnitude larger than MDM. 

At the end of the homogenisation process, the three experts had to agree on where to place any 

break-points on the temperature time series. Note that sensitivity tests on the cluster composition 

in the break-points attribution were also conducted during the homogenization process of long 

series. Finally, since each historical series is composed of a long series, break-points in the historical 

series after 1954 are based on the break-points identified when homogenizing the long series. 

Table 6 reports the number of break-points detected in the analysed temperature time series. A 

maximum of 5 and 7 break-points are observed for long and historical series, respectively. Eight long 

series do not have any break-point while all historical series have at least one break-point. Twenty-

nine per cent of break-points are directly supported by metadata. Further 18% break-points are 

found during the transition period of instrument or shelter type change and could be potentially 

attributed to this network upgrade. Beside instrumental changes which are not well temporally 

identified in the stations metadata, station catenations are responsible for the largest number of 

documented break-points (68%), followed by site relocations (18%) and to a lower extent by 

observer changes (14%). 

Number  
of breaks 

Historical series (1880 – 2015) Long series (1954 – 2015) 

TX TN TX TN 

0 0 0 8 8 

1 1 1 18 17 

2 5 1 18 22 

3 2 5 13 7 

4 3 3 3 6 

5 4 4 1 1 

6 1 1 / / 

7 / 1 / / 

TABLE 6: Number of detected break-points per temperature series 

Figure 15 presents the frequency distribution of break-point magnitudes for both TX and TN time 

series. The magnitude range is broader for historical series with 14 break-points with a magnitude 

higher than 1 °C while the magnitude of the break-points of long series are all between -1 °C and 1 

°C. The average distribution is very close to zero for TN and negative for TX, especially for historical 

series. The station moves from St-Josse-ten-Noode (Brussels downtown) to Zaventem (Brussels 

airport) in 1954 (distance of 12 km and elevation difference of 23 m between the two stations) 

presents the largest tolerated break-point (i.e. -2.12 °C for TX). Station catenation often coincides 

with a change of the observer, of instruments, of altitude and others. In these cases, it is not always 

possible to determine which of the potential causes has created the break. Multiple causes are 
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common and a break is generally produced by more than one factor. In the present case, it is 

expected that the dominant cause is the cooling due to the shift from an urban location to an airport 

site (i.e. the previous site was 2.12 °C warmer than the new site). Note that similar ruptures have 

been identified in Austrian temperature series in 1940s and attributed to a number of city airport 

relocations caused by the needs of World War II (Auer et al., 2001). 

 

FIGURE 15: Frequency distribution of break-points magnitudes for the maximum (left panels) and 

minimum (right panels) temperature in historical series (lower panels) and long series (upper 

panels), respectively. The vertical dotted line represents the average of the distribution. 

To assess the impact of the homogenisation on the temperature trend, seasonal and annual trends 

for TX and TN were computed for historical and long series with both original and homogenized time 

series. Note that for the historical series only the twelve locations having temperature data since at 

least 1895 (i.e. centennial series) were considered in the trends analysis to avoid bias. The trends 

were computed using the Theil-Sen estimator (Fernandes and Leblanc, 2005) (hereafter referred to 

as TS) which offers the advantage of being robust to outliers and by linear regression (hereafter 

referred to as LR). Because the TS results do not significantly differ from the LR results, only the LR 

results are discussed in the following. Table 7 summarizes the temperature trends (in °C/decade) 

before and after homogenization. The temperature trend of the homogenized long series during the 

period 1954-2015 is slightly larger for TX (0.30 °C/decade) than TN (0.26 °C/decade). The same 

observation is true for the period 1880-2015 with a temperature trend of 0.15 °C for TX and 0.13 °C 
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for TN. The respective low p-values (lower than 10-6 for the long series and 10-12 for the historical 

series) indicate that these trends are statistically significant. 

 TX trend (°C/decade) TN trend (°C/decade) 

Mean (min – max) p-value Mean (min – max) p-value 

Original (1954-2015) 0.26 (0.01 – 0.46) 0.2 0.29 (0.12 – 0.56) 1e-4 

Homogenized (1954-2015) 0.30 (0.23 – 0.35) 5e-6 0.26 (0.21 – 0.33) 2e-6 

Original (1880-2015) 0.02 (-0.11 – 0.09) 0.17 0.1 (-0.01 – 0.20) 0.8 

Homogenized (1880-2015) 0.15 (0.14 – 0.15) 1e-12 0.13 (0.13 – 0.14) 5e-13 

TABLE 7: Mean temperature trends (°C/decade) for long and centennial temperature time series. 

The minimum and maximum trends observed among all the series are indicated in brackets 

 

 

FIGURE 16: Magnitude distribution of the maximum (right panels) and minimum (left panels) 

temperature trends (°C/decade) for long series (upper panels) and historical (i.e. centennial) series 

(lower panels), before (i.e. Orig.) and after (i.e. Homo.) homogenization. The dash lines represent 

the mean of the trends. 

Table 7 highlights a strong difference in the 1880-2015 TX time series before and after 

homogenization (i.e. 0.02 vs. 0.15 °C/decade, respectively). This difference can be explained by the 

type of stands used in the network for protecting thermometers before the introduction of the 

closed shelters. Both the open stand and more particularly the semi-opened prism (see types A and 

B in Figure 2, respectively) used to shelter the thermometers in the late 19th century and early 20th 

century are known to have biased upward TX (Vincent, 1912; Poncelet and Martin, 1947). Similarly, 

it is well known that the open shelter in use at Uccle (see Figure 3) induces warm bias on clear days. 
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Because daily maximum temperatures show original values that are too high during the first part of 

the period (some original centennial TX series even exhibiting a cooling trend), all homogenized TX 

time series present a warming trend due to the resulting downward adjustment (see lower left panel 

in Figure 16).  

FIGURE 17: Interpolated temperature trends (°C/decade) of original (upper panels) and 

homogenized (lower panels) data for long series for maximum (left panels) and minimum (right 

panels) temperature. 

Figure 16 presents the distribution of the trend of each time series before and after homogenization. 

Clearly, the homogenization process tends to reduce the spread of the trends. This is particularly 

noticeable for the historical TX and TN series (see lower panels in Figure 16). As mentioned 

previously, the historical series have been treated at once (i.e. in a single cluster) while five clusters 

were defined for the homogenization of the long series. Because relative homogenization assumes 

that all series in a given cluster are exposed to the same climate signal, the use of a unique cluster 

tends to remove the natural variations existing between the different stations. 

Figure 17 compares the spatial distribution of the temperature trends for both TX and TN before and 

after homogenization. This analysis is proposed for the long series due to the limited number of 

available historical series. The homogenization largely reduces the spatial disparities. For the 

homogenized data, the spatial differences are moderate over Belgium and not similar for maximum 

or minimum temperature. In particular, the Campine region (in the northeast of Belgium) shows the 

most pronounced warming for TX and a relatively small warming for TN. 
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FIGURE 18: Seasonal maximum (left panels) and minimum (right panels) temperature trends 

(°C/decade) for homogenized long series (from top to bottom: winter, spring, summer, autumn) 



Project  BR/154/A6/BEL-HORNET – Belgian homogenized long-term reference climate time series 

BRAIN-be (Belgian Research Action through Interdisciplinary Networks) 36 

Figure 18 presents an overview of the actual seasonal trends for both TX and TN based on the 

homogenized long series. Even if the temperature trend is always positive, it differs significantly 

according to the season. Spring and summer show the most pronounced warming concerning 

maximum temperature with an average trend of 0.38 °C/decade for all long series. For minimum 

temperature, the winter warming (average trend of 0.32 °C/decade) is slightly larger than the spring 

and summer warming (average trend of about 0.3 °C/decade). On the other side, the autumn shows 

the lowest trends with an average of 0.18 °C/decade for both TX and TN. All the seasonal trends are 

significant with a p-value below 10-4. The Belgian temperature trends are consistent with the dataset 

of monthly homogeneous series of temperature produced by Météo-France (Gibelin et al., 2014). In 

the vicinity of the Belgium, the French temperature trends vary between 0.25 and 0.3 °C/decade and 

are slightly higher for TX than TN. The autumn shows also the smallest temperature increase. 

3.3.1.2 Daily homogenisation 

Based on the HOMER detected break-points on the monthly time series, the Vincent, HOM, 

SPLIDHOM and PM daily adjustment methods were first applied to the twelve centennial daily 

extreme temperature time series (see Table 2) and the resulting homogenization results were then 

compared to those obtained by using the QM daily homogenization method. In the application of 

the Vincent method, the HOMER correction values were taken to be the exact correction on the 15th 

of each month and all the other daily correction values were obtained by linear interpolation 

between two consecutive HOMER monthly values. For the HOM and SPLIDHOM methods the 

reference series was taken as the highest correlated series (with a minimum correlation of 0.8 

between the candidate and reference detrended daily series). Finally, based on Trewin (2013) the 

PM95 variation of the PM method (i.e. the fixed points for defining the transfer function are the 5th 

to 95th percentiles) has been considered using at least 3 and up to ten sufficiently-correlated 

neighbours selected in descending order of correlation with the candidate series, with a lower 

correlation limit of 0.6 between the candidate and the neighbouring detrended daily series. 

Basically, the PM95 variation performs similarly to the PM99 variation (i.e. the fixed points for 

defining the transfer function are the 1st to 99th percentiles) of the PM method, but is generally 

much better than PM99 in simulating the highest and lowest values. It is likely that this reflects 

instability in the transfer functions towards the ends of the distribution when the 1st and 99th 

percentiles are used. Finally, it was observed that the five-neighbours case performs marginally 

worse than the ten-neighbours case adopted here. 

Figure 19 displays the differences between the five different daily homogenization approaches 

applied to the centennial temperature time series. Both TX and TN data are additionally divided in 

three groups: the very low and the very high daily temperatures where the daily observations are 

respectively less than the 5th percentile and more than the 95th percentile and the intermediate 

temperatures in between. The percentiles were computed for each series separately from the 1961-

1990 Vincent homogenized daily data which were further split by season. It is clearly apparent in 

Figure 19 that the QM corrections for TX largely differ from the correction made by the four daily 

adjustment methods using the HOMER detected break-points. The corrections differences between 

these four methods are relatively small excepted for the low TN observations (i.e. the correction is 

less than 1°C in 90 % of the cases and less than 2°C in 99.8% of the cases, respectively). Because the 

HOM and SPLIDHOM methods tend to consider exactly the same reference series for a given break-

point, their corrections are only marginally different. 
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FIGURE 19: Comparison of the daily temperature corrections applied to the centennial temperature 

time series as provided by the Vincent, HOM, SPLIDHOM, PM and QM methods, respectively. The 

comparison is provided for both the TX (left panel) and TN (right panel) values and for 3 groups of 

temperature (i.e. very low, intermediate and very high), respectively. 

Figure 20 compares the temperature trends (in °C/decade) between the daily original and 

homogenised centennial temperature time series at each series location. The decennial trends in 

original data largely fluctuate from one series to another one with some of them showing negative 

trends. After homogenization there is less spread in decennial trends with the Vincent methods 

exhibiting the more uniform trends between stations. There is some variation in the trends resulting 

from the application of the SPLIDHOM, HOM and PM methods to a given series, but they are globally 

close to each other and quite similar to those obtained with the Vincent method. In the contrary, the 

decennial trends obtained after the daily homogenization with the QM method vary just as much as 

in the original data. In addition the QM method tends to amplify the decennial trends in most of the 

TX series compared to the four other methods.  
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FIGURE 20: Comparison between the decennial temperature trends (in °C/decade) found in the 

original and homogenised centennial temperature time series. The comparison is provided at each 

centennial series location for both TX (upper panel) and TN (lower panel) and for the 5 daily 

adjustment methods, respectively. 

Because of the very poor performances of the QM method compared to the four other daily 

adjustment methods and the fact that the HOM and SPLIDHOM methods produce very similar 

results, only the Vincent, SPLIDHOM and PM methods were considered to homogenize the TX and 

TN long series on a daily basis. Figure 21 displays the differences in daily corrections for the 3 

adjustment methods applied to the long series of daily extreme temperature. The corrections 

differences are centred on zero for both TX and TN irrespective of the temperature groups. In almost 

all the comparison groups, 90 % of the corrections differ by less than about 0.75 °C and for 99.8 % of 

the corrections the differences are less than about 1.5 °C with the notable exception of the very low 

TN observations (as already pointed out for the centennial temperature series in Figure 19). There 

were only around 300 cases (out of more than 5 millions) for which the correction difference was 

larger than 3°C and most of them concerned TN values. The magnitude of the correction differences 

between the 3 methods is slightly lower than found for the centennial series (see Figure 19). This is a 

direct consequence of the larger number of available stations for the long series than for the 

centennial series which offers the opportunity to use more correlated reference series in the 

adjustment process.  
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FIGURE 21: Comparison of the daily temperature corrections applied to the long temperature series 

as provided by the Vincent, SPLIDHOM and PM adjustment methods, respectively. The comparison is 

provided for both the TX (left panel) and TN (right panel) values and for 3 groups of temperature (i.e. 

very low, intermediate and very high), respectively. 

Figure 22 compares the decennial trends before and after the daily homogenization of the long 

series of temperature. Clearly, the 3 methods reduce the spread in the decennial trends. The lowest 

spread in trends is obtained with the Vincent method for both TX and TN. This is not really surprising 

because the HOMER software, unlike the SPLIDHOM and PM methods which adjust the series one by 

one, determines the correction coefficients in a given cluster simultaneously for the set of stations. 

 

FIGURE 22: Comparison between the decennial temperature trends (in °C/decade) found in the 

original and homogenised long temperature time series. The comparison is provided for both TX 

(upper panel) and TN (lower panel) and for the Vincent, PM and SPLIDHOM daily adjustment 

methods. 
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3.3.2 Precipitation 

3.3.2.1 Monthly homogenization 

Similar to temperature, the method opted for homogenization of the monthly precipitation time 

series relies on the use of the HOMER software. However, in contrast to the temperatures, only the 

pairwise detection and the joint segmentation components of HOMER were used for the 

precipitation data. The ACMANT-component of HOMER was not considered because it is not 

intended for cumulative parameters such as precipitation data. For each precipitation time series, 

monthly values were computed when at least 90% of the daily values within a given month were 

found as valid by the QC process and otherwise considered as missing. The monthly homogenization 

was carried out separately for the centennial series and long series. Twenty tree additional foreign 

series (i.e. twelve in France, nine in Germany and two in the Netherlands – see Figure 7 for the 

stations’ location) were considered to help the homogenization of the 149 Belgian long series and six 

of them (i.e. four in France, one in Germany and one in the Netherlands – see Figure 7 for the 

stations’ location) having data since 1880 were also used in the homogenization of the 24 centennial 

series. To ensure that nearby locations are exposed to the same climate signal in the 

homogenization process, the monthly precipitation time series were clustered according to their 

climatological coherence and correlation. The long series were divided into 13 clusters (see Annexe 

A.2.1 for the clusters’ composition) and the centennial series into 3 clusters (see Annexe A.2.2 for 

the clusters’ composition) of about 15 series, respectively. 

Following the recommendations by Venema et al. (2012) monthly values were adjusted using a 

coefficient estimated on annual values. To ensure the reliability of the homogenized long (resp. 

centennial) precipitation series, it was verified that all homogenized series satisfy the following 

conditions: 

 Maximum 4 (resp. 8) break-points. 

 No break-point with a magnitude larger than 30% (for precipitation, the comparison series 

are computed as the ratio between the candidate and the reference series). 

 No accepted break-point with a magnitude lower than the break-point significance detection 

threshold provided by HOMER. 

Number of breaks Centennial series (1880-2015) Long series (1951-2015) 

0 6 91 

1 5 48 

2 6 8 

3 5 2 

4 1 / 

5 1 / 

Table 8: Number of detected break-points per precipitation series 

Table 8 reports the number of break-points detected in the analysed time series. A maximum of 3 

and 5 break-points were identified in the long and centennial series, respectively. The majority of 

the long series (i.e. 91/149) do not have any break-point and about 93% of the long series have less 

than 2 break-points. Six centennial series do not present any break-point and the majority of the 

centennial series (17/24) have less than 3 break-points. While varying from one series to another the 

HOMER’s break-point significance detection threshold is in the order of 8% [6% - 11%] for the 
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centennial series and 6% [3% - 9%] for the long series, respectively.  This explains the relatively 

limited number of break-points detected in the precipitation time series by comparison to the 

temperature time series.   

 

FIGURE 23: Frequency distribution of break-points magnitude (in %) for the centennial (upper panel) 

and long (lower panel) precipitation time series, respectively. 

Figure 23 presents the frequency distribution of break-point magnitudes (in %) for both centennial 

and long precipitation time series. The largest detected break-point magnitude is +35% and occurs in 

the Hives series in 1928 (see Figure 24). While the Hives series is one of the 11 long term daily 

precipitation time series established by Dupriez and Demarée (1988) during a former digitalisation 

exercise (see Table 1), a break-point magnitude of 35% is larger than the threshold of 30% 

considered in our study and this series has been discarded.  The largest decrease of -27% is found in 

the Gembloux precipitation time series and results from the station automation at the end of the 

1990s. It is worth noting that this decrease is somewhat compensated a few years later by an 

increase of 25% (see Figure 24) when a new type of automated rain gauche was installed in the 

station. 
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FIGURE 24: Detected breaks position and magnitude (in %) in the centennial precipitation time 

series. 

Roughly 50% of the detected break-points are not directly supported by metadata but many of those 

are found, at least in the case of the centennial series, during a transition period of instrumental 

changes. As for the temperature time series, station catenations are responsible for the largest 

number of documented break-points (about 60%). The rest is attributed to observer changes, station 

relocations and station automatization.  

Series Name Original series Homogeneized series 

Trend (mm/yr) p-value Trend (mm/yr) p-value 

Jalhay 0.882 0.05183 1.370 7e-5 

Oostende 1.373 1.9e-4 0.559 0.043 

Leopoldsburg 1.330 6e-5 1.143 1.4e-4 

Rochefort 1.178 6.3e-4 1.259 1e-5 

Stavelot 1.567 0.0013 1.796 1e-5 

Uccle 0.760 0.00688 0.898 7.4e-4 

Sint-Andries-
Brugge 

1.340 4e-5 0.908 0.00491 

Mean of the 7 
longest series 

1.260 1e-5 1.333 4e-5 

Mean of the 23 
centennial series 

1.315 1e-5 1.247 3e-5 

Table 9: Precipitation trends for the centennial series (mm/year). The trend is provided individually 

for each of the 7 longest and more complete series, their mean and for the mean of the 23 

centennial series, respectively. 
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Table 9 presents the precipitation trends (in mm/year) before and after homogenization of the 

centennial series.  The trends are given individually for each of the seven longest and more complete 

precipitation series, their mean and for the mean of the 23 centennial series, respectively. If the 

trends are positive in both the original and homogenized series the impact of the homogenization 

differs from one series to another one. As an example the trend is reduced after homogenization in 

three  series and increased in four of them. The largest trend reduction after homogenization is 

reported for the Oostende series (i.e. 1.373 mm/yr in the original series vs. 0.559 mm/yr in the 

homogenized series). In the reverse, the largest trend increase after homogenization is for the Jalhay 

series  (i.e. 0.882 mm/yr in the original series vs. 1.370 mm/yr in the homogenized series). When 

considering all the seven series together the mean precipitation trend is slightly increased after 

homogenization (i.e. a mean trend of 1.333 mm/yr after vs 1.260 mm/yr before homogenization, 

respectively) but the reverse situation occurs when all the 23 centennial series are considered (i.e. a 

mean trend of 1.247 mm/yr after vs. 1.315 mm/yr before homogenization, respectively).

FIGURE 25: Interpolated precipitation trends (decenial change in %) before (right panel) and after 

(left panel) homogenization of the Belgian long series of precipitation (1951-2015). 

Figure 25 compares the spatial distribution of the precipitation trends before and after 

homogenization. This analysis is proposed for the long series due to the limited number of available 

centennial series. Note that the trends in Figure 25 are expressed in percentage change per decade 

rather than in mm change per decade because the annual normals of precipitation in Belgium vary 

from simple to double (i.e. from 740 mm/year in the northern part of the Hesbaye to more than 

1400 mm/year in the Hautes Fagnes). For each long series, the change in % has been computed as 

following: [(change in mm per decade)/(mean over the years 1961-1990)*100]. The homogenization 

reduces the spatial disparities within the differents natural regions of Belgium. For the homogenized 

data, the most apparent changes in the precipitation regime appear in the Polders and Flanders 

regions and to a lesser extend in Belgian Lorraine and Campine. By contrast, no significant decenial 

trend is reported in the Hautes Fagnes.   
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FIGURE 26: Seasonal precipitation trends (decenial change in %) before (right panels) and after (left 

panels) homogenization of the Belgian long series of precipitation (1951-2015). 

Figure 26 presents an overview of the seasonal trends for both the original and homogenized long 

series. If the precipitation trend is always positive in the Polders and Flanders regions, it differs in the 
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other regions according to the season. The winter shows an increase in precipitation for all long 

series with the most pronouced increase in the Polders, Flandres and Belgian Lorraine regions. On 

the other side, the summer shows the largest decreasing trend in the Hautes Fagnes. Spring and 

autumn show the lowest trends in both precipitation increase and decrease.  

3.3.2.2 Daily homogenisation 

As mentionned in Section 2.2.2, two methods have been considered for the homogenization of the 

daily precipitation amount: a direct application of the HOMER’s yearly correction factors to the daily 

data (i.e. the Vincent method) and the QM method. Figure 27  summarizes the correction 

differences between both methods according to the daily precipitation amount. If both methods 

produce quite similar results for low precipitation values, the discrepancies between them increase 

as the precipitations amounts increase. Globally, the QM method tends to produce larger daily 

precipitation amount than the Vincent method and it is interesting to note that the boxplot median 

value is very similar for the centennial and the long series within a given precipitation group. 

 

FIGURE 27: Correction differences between a direct application of the HOMER yearly correction 

factors and the QM method for both centennial series (left panel) and long series (right panel) as a 

function of the daily precipitation amount.  

Figure 28 compares the distribution of the decennial trends before (upper panels) and after the daily 

homogenization of the long (left panels) and the centennial (right panels) precipitations time series 

with the QM (middle panels) and Vincent (lower panels) methods, respectively. Clearly, while the 

daily homogenization performed according to the Vincent method (i.e. a direct application of the 

HOMER’s yearly correction coefficients to the daily values) reduces the spread of the trends by 

comparison to the original data for both the long and centennial series, the QM method completely 

fails to produce more uniform decennial trends. In the contrary the spread of the trends is enlarged 

for both the long and the centennial series meaning that the QM method tends to produce even 

more inhomogeneous time series than the original ones. This well illustrates the limitations of an 

absolute homogenization method (i.e. without using neighbouring stations) even when compared to 

the simplest daily relative homogenization approach based on yearly correction coefficients. 
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FIGURE 28: Magnitude distribution of the precipitation trends (decennial change in %) for long series 

(right panels) and centennial series (left panels) before (upper panels) and after daily 

homogenization using the QM method (middle panels) and the Vincent method (i.e. HOMER’s yearly 

correction coefficients, lower panels), respectively. 
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4. SCIENTIFIC RESULTS AND RECOMMENDATIONS 

A new dataset of quality controlled and homogenized monthly and daily extreme temperature and 

precipitation amount has been created for Belgium. Homogenization results are provided for 61 long 

temperature series over the period 1954-2015 and for 16 historical series starting before 1931, 

including 8 series covering the full time period 1880-2015. Three different versions of daily 

homogenized temperature time series are available. In a first version, the daily adjustment relies on 

the interpolation of the monthly adjustment coefficient according to the Vincent method. In a 

second version the daily adjustments are based on non-parametric regression (by means of cubic 

smoothing spline) as computed by the SPLIDHOM method. And finally, in a third version, daily 

adjustments were obtained using the PM method which allows considering a combination of 

multiple reference stations. Based on simulated examples Mestre et al. (2011) have shown that 

SPLIDHOM technique improve HOM (especially in terms of RMSE) and Vincent’s method for the 

correction of extreme quantiles if correlation is high enough (above 0.90).  When correlation is lower 

than 0.9 Vincent’s method is often superior and thus should not be neglected. Because correlation 

larger than 0.9 between candidate and reference series was in practice not reached in most of the 

cases (if any; note that even a correlation of 0.8 was not always found between the candidate and 

the reference series), we do not recommend the use of the temperature time series homogenized 

on a daily basis with SPLIDHOM.  However, Vincent’s method is not designed for adjusting extreme 

values. In consequence only the daily homogenized temperature time series using the PM algorithm 

should be considered for analyses of changes in the extremes. 

Regarding the precipitation, homogenization results are provided for 149 long series covering the 

time period 1951-2015 and 23 centennial series. It is worth pointing out that the historical series of 

Hives established in a former digitalisation exercise (e.g. Dupriez and Demarée, 1988) has been 

discarded here because of an excessive break-point (magnitude of 35%) identified in this series in 

1928. Finally, contrary to the temperature, only one version of the daily homogenized precipitation 

time series is delivered. Indeed the QM method fails to provide valuable daily homogenised 

precipitation time series; the resulting series being for some of them even more inhomogeneous 

than the originals ones. Therefore, only the daily homogenization obtained with the Vincent method 

is available for the precipitation time series. 
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ANNEXES 

 

A.1 HOMER Temperature Clusters Constitution 

A.1.1 Long Series (LS) 

A.1.1.1 Cluster 1 

 

 
 

A.1.1.2 Cluster 2 

 
 

LS CODE LS NAME 

801 Dunkerke 

802 Lesquin 

820 Le Touquet Paris-Plage 

2001 Middelkerke 

2002 Koksijde 

2003 Deurne 

2004 Antwerpen 

2005 Eeklo 

2006 Vlamertingen 

2007 Sint-Andries-Brugge 

2008 Roesselare 

2009 Beitem 

2010 Lemberge 

2011 Kruishouten 

2013 Sint-Maria-Latem 

2025 Essen 

LS CODE LS NAME 

601 Gilze-Rijen 

602 Eindhoven 

2021 Leuven 

2024 Sint-Katelijne-Waver 

2026 Geel 

2027 Leopoldsburg 

2029 Houthalen 

2030 Kleine-Brogel 

2036 Tienen 

2037 Saint-Trond 

2038 Bierset 

2039 Brustem 

2040 Ezemaal 
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A.1.1.3 Cluster 3 

 
 

A.1.1.4 Cluster 4 

 
 
 
 
 
 
 
 
 
 

LS CODE LS NAME 

817 Fontaine-les-Clercs 

822 Epinoy 

2012 Geraardsbergen 

2014 Anvaing 

2016 Bailleul 

2017 Huissignies 

2018 Chievres 

2019 Lobbes 

2020 Gosselies 

2023 Gembloux 

2031 Stehoux 

2032 Uccle 

2033 Zaventem 

2034 Braine l’Alleud 

2035 Beauvechain 

LS CODE LS NAME 

401 Aachen 

2041 Angleur 

2042 Liège-Monsin 

2043 Denée-Maredsous 

2044 Florennes 

2046 Malonne 

2047 Lessive 

2048 Ciney 

2049 Rochefort 

2050 Houyet 

2051 Thimister 

2052 Jalhay 

2055 Stavelot 

2060 Chimay-Forges 

2066 Scry 
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A.1.1.5 Cluster 5 

 
 
 
 

A.1.2 Historical Series (HS) 

 
 
 
 
 
 
 
 
 
 
 

LS CODE LS NAME 

406 Olsdorf 

408 Kall-Sistig 

412 Schneifelforsthaus 

2053 Baraque-Michel 

2054 Spa 

2056 Beverce 

2057 Hockai 

2059 Gouvy 

2061 Bièvre 

2062 Saint-Hubert 

2063 Libramont 

2064 Virton 

2065 Arlon 

HS CODE HS NAME 

201 ANTWERPEN 

203 BRUXELLES (SAINT-JOSSE) 

206 EZEMAAL 

208 JALHAY 

210 LEUVEN 

212 OOSTENDE 

213 SAINT-TROND 

216 LEOPOLSBURG 

217 ROCHEFORT 

218 CHIMAY-FORGES 

219 STAVELOT 

220 MAREDSOUS 

221 GEMBLOUX 

222 BARAQUE-MICHEL 

223 THIMISTER 

224 UCCLE 

401 AACHEN 

418 TRIER-ZEWEN 

801 DUNKERKE 

802 LESQUIN 

816 BOULOGNE-SUR-MER 
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A.2 HOMER Precipitation Clusters Constitution 

A.2.1 Long Series 

A.2.1.1 Clusters 1, 2 and 3 

 
 

CLUSTER 1 (orange) CLUSTER 2 (blue) CLUSTER 3 (white) 

LS CODE LS NAME LS CODE LS NAME LS CODE LS NAME 

504 Kerkwerve 1002 Deinze 702 Lesquin 

701 Dunkerke 1013 Moerbeke 709 Cappelle-en-Pevele 

712 Watten 1017 Eeklo 710 Douai 

713 Lillers 1022 Lemberge 1020 Roeselare 

1001 Middelkerke 1023 Kruishoutem 1021 Beitem 

1003 Knokke 1024 Adegem 1028 Sint-Baafs_vijve 

1004 Koksijde 1025 Zelzate 1029 Ooigem 

1005 Blankenberge 1026 Gentbrugge 1030 Kortrijk 

1006 Nieuwpoort 1027 Merendree 1031 Menen 

1007 Veurne 1034 Wingene 1032 Comines  

1008 Plassendale 1035 Sint-Maria-Latem 1039 Ellezelles 

1010 Diksmuide 1038 Oudernaarde 1041 Kluisbergen 

1011 Pollinkhove 1040 Asper 1042 Zwevegem 

1018 Vlamertinge   1043 Bailleul 

1019 Sint-Andries-Brugge   1045 Peronnes-lez-Antoing 

1033 Boezinge   1046 Kain 
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    1047 Herinnes 

    1048 Estampuis 

 
 
 
 

A.2.1.2 Clusters 4, 5, 6, 7, 8 and 9 

 
 

CLUSTER 4 (grey) CLUSTER 5 (white) CLUSTER 6 (red) 

LS CODE LS NAME LS CODE LS NAME LS CODE LS NAME 

1015 Wintam 501 Gilze-Rijen 304 Selkant-
Havert 

1016 Dendermonde 1012 Deurne 1060 Meeuwen 

1036 Brussegem 1014 Stabroek 1061 Riemst 

1037 Pollare 1049 Herentals 1062 Lanaken 

1044 Ath 1050 Essen 1063 Neeroeteren 

1052 Sint-Katelijn-
Waver 

1053 Retie 1064 Maasmechel
en 

1072 Deftinge 1054 Aarschot 1065 Kessenich 

1073 Uccle 1055 Geel 1066 Hasselt 

1076 Zaventem 1056 Rijkevorsel 1069 Genk 

1077 Braine l’Alleud 1057 Viersel 1092 Jeneffe 

1078 Overijse 1058 Wijnegem 1093 Bierset 

1080 Schaerbeek 1059 Leopoldsburg 1095 Waremme 

1081 Uccle 
(Reservoir) 

1067 Kleine-Brogel 1097 Angleur 

1163 Leuven 1068 Lommel 1098 Lanaye 

  1070 Kwaadmechel
en 

1099 Vise 



Project  BR/154/A6/BEL-HORNET – Belgian homogenized long-term reference climate time series 

BRAIN-be (Belgian Research Action through Interdisciplinary Networks) 59 

    1100 Liege-Monsin 

    1102 Ivoz-Ramet 

 
 
 
 
 

CLUSTER 7 (blue) CLUSTER 8 (orange) CLUSTER 9 (white) 

LS CODE LS NAME LS CODE LS NAME LS CODE LS NAME 

1074 Gembloux 1071 Braîne-le-
Comte 

1096 Ben-Ahim 

1075 Malèves-Sainte-
Marie 

1082 Marbais 1103 Andenne 

1079 Blamnont 1106 Godarville 1105 Scry 

1083 Mazy 1107 Anderlues 1117 Malonnes 

1085 Tiennen 1108 Houdeng-
Aimeries 

1120 La Plante 

1086 Ezemaal 1110 Thuin 1122 Mornimont 

1087 Beauvechain 1111 Solre-sur-
Sambre 

1125 MODAVE (vivaqua) 

1088 Jodoigne 1112 Walcourt 1126 Modave 

1089 Thorembais-les-
Beguines 

1114 Beaumont-
Stree 

  

1090 Landen 1116 Rance   

1091 Gorsem     

1094 Brustem     

 

A.2.1.3 Clusters 10, 11, 12, and 13 
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CLUSTER 10 (grey) CLUSTERE 11 (green) 

LS CODE LS NAME LS CODE LS NAME 

707 Ham-sur-Meuse 704 Le Chesne 

1113 Florennes 705 Rocroi 

1115 Dourbes 708 Signy l’Abbaye 

1118 Dinant 714 Longuyon 

1119 Rivière 715 Bras-sur-Meuse 

1121 Hastière 1150 Chimay-Forges 

1123 Spontin 1151 Bièvre 

1124 Crupet 1153 Libramont 

1127 Havelange 1154 Longlier 

1128 Hamois-en-Condroz 1156 Ebly 

1130 Ciney 1157 Sugny 

1131 Denée-Maredsous 1158 Witry 

1132 Rochefort 1160 Virton 

1133 Houyet 1161 Arlon (gare) 

  1162 Buzenol 

 

CLUSTER 12 (blue) CLUSTER 13 (green) 

LS CODE LS NAME LS CODE LS NAME 

307 Hellenthal-udenbreth 301 Aachen 

308 Kall-Sistig 313 Simmerath (Kalltalsperre) 

310 Monschau-Kalterherberg 1136 Mont-Rigi 

312 Schneifelforsthaus 1137 Spa 

314 Winterspelt 1138 Stavelot 

315 Dasburg 1139 Elsenborn 

1145 Vielsam 1140 Hestreux 

1146 Hives 1141 Hockai 

1147 Rachamps 1164 Jalhay 

1152 Saint-Hubert   
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A.2.2 Centennial Series 
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CLUSTER 1 (grey) CLUSTER 2 (orange) 

CS CODE CS NAME CS CODE CS NAME 

101 ANTWERPEN 105 ETALLE 

104 SCHAERBEEK 108 JALHAY 

106 EZEMAAL 115 SUGNY 

107 HUY 117 ROCHEFORT 

109 LANDEN 118 CHIMAY-FORGES 

110 LEUVEN 119 STAVELOT 

111 NINOVE 120 DENEE-MAREDSOUS 

112 OOSTENDE 121 GEMBLOUX 

113 SAINT-TROND 123 THIMISTER 

114 VEURNE 127 HIVES 

116 LEOPOLDSBURG 301 AACHEN 

124 UCCLE 703 LISLET 

125 SINT-ANDRIES-BRUGGE 704 LE CHESNE 

126 ATH 705 ROCROI 

504 KERKWERVE   

702 LESQUIN   

 
 

 
 

 


