COME-IN

Constraining Mercury’s Interior structure and evolution

Tim Van Hoolst (Royal Observatory of Belgium/KU Leuven) - Bernard Charlier (Université de
Liege) - Stefaan Cottenier (Ghent University) - Wim van Westrenen (VU University Amsterdam,
NL) - Olivier Namur (KU Leuven) - Attilio Rivoldini (Royal Observatory of Belgium) - Jurrién
Knibbe (KU Leuven/Royal Observatory of Belgium) - Marie-Héléne Deproost (Royal
Observatory of Belgium) - Jan Jaeken (Ghent University)

SUMMARY

Context and objectives

Mercury has long been the least known of the terrestrial planets. Only two spacecraft have so
far visited Mercury. Mariner10 flew by Mercury on three occasions in 1974-1975 and
MESSENGER (MErcury Surface, Space ENvironment, GEochemistry and Ranging) orbited
Mercury between 18 March 2011 and 30 April 2015. With the wealth of data gathered by the
NASA MESSENGER spacecraft and the ESA/JAXA BepiColombo mission launched on 20
October 2018 and on schedule for Mercury orbit insertion in December 2025, the focus of the
planetary science community on Mercury is stronger than ever. One of the primary goals of
these missions and of many theoretical, observational, and experimental studies is to gain a
deeper understanding of the interior structure and evolution of this smallest terrestrial planet.
Spacecraft measurements alone, however, are not sufficient to reach this goal. The scarce
knowledge of the high-pressure behaviour of putative bulk Mercury chemical compositions is a
major problem for interpreting spacecraft measurements. As a result, studies on Mercury’s
interior have had to either simplify interior property models, or use thermodynamic models to
predict interior mineralogy based on experiments performed at conditions of pressure,
temperature, composition, and oxygen fugacity far outside those invoked for Mercury.
Additional data and insight are therefore needed on the behaviour of planetary materials at
relevant conditions.

With COME-IN we aimed at advancing our understanding of Mercury by integrating
complementary approaches from igneous petrology, high-pressure mineral physics,
computational materials science, geodesy, and geodynamics in addition to using the constraints
set by recent observational data. To reach our goal, a set of specific objectives was identified
building upon the complementary expertise of the five partners. They are related to the
primordial structure of Mercury after accretion, magmatic processes relevant to the
differentiation and evolution of Mercury, the characterization of the physical properties and
structure of the iron-rich core, and to the global interior structure and thermal evolution of
Mercury.

Results

We describe the main results of the COME-IN project organized according to the four principal
research themes.

Primordial silicate metal equilibration

We experimentally studied the metal-silicate and sulfide-silicate partitioning behaviour of trace
elements in reduced silicate melts over a wide range of S contents as a function of redox state at
a pressure of 1 GPa and temperatures in the range 1833-1883 K. It was found that at conditions
more reducing than AW = -3 to —4, the metal-silicate partitioning behaviour of the majority of
the siderophile elements deviates significantly from their behaviour at the valence state(s) at
more oxidized conditions. These new results provide an extensive experimental foundation for
studies of Mercury’s differentiation under (highly) reduced conditions, which we started to
perform.

We also investigated the likeliness of the existence of an iron sulfide layer at the core-mantle
boundary of Mercury by comparing new chemical surface data, obtained by the X-ray
Spectrometer onboard the MESSENGER spacecraft, with geochemical models supported by



high-pressure experiments under reducing conditions. We built a new data set consisting of 233
Ti/Si measurements. Multiphase equilibria experiments showed that at the conditions of
Mercury's core formation, Ti is chalcophile but not siderophile, making Ti a useful tracer of
sulfide melt formation. By comparing the model results and surface elemental data we showed
that Mercury most likely does not have a FeS layer, and in case it would have one, it would
only be a few kilometers thick (<13 km). We also showed that Mercury's metallic Fe(Si) core
cannot contain more than ~ 1.5 wt% sulfur and that the formation of the core under reducing
conditions is responsible for the only slightly subchondritic Ti/Al ratio of Mercury's surface.
Mantle-crust evolution

The MESSENGER spacecraft provided geochemical data for surface rocks on Mercury. We used
the major element composition of these lavas to constrain melting conditions and residual
mantle sources on Mercury. Surface basalts have been shown to be produced by 10 to 50%
partial melting of variably enriched Iherzolitic mantle sources. The average melting degree is
lower for the young northern volcanic planes (NVP, 0.27 +0.04) than for the older intercrater
planes and heavily cratered terranes (IcP-HCT, 0.46+0.02), indicating that melt productivity
decreased with time. The mantle potential temperature required to form Mercurian lavas and
the initial depth of melting also decrease from the older High-Mg IcP-HCT terrane (1650 °C and
360 km) to the younger lavas covering the NVP regions (1410 °C and 160 km). This evolution
suggests strong secular cooling of Mercury's mantle between 4.2 and 3.7 Ga ago and explains
why very little magmatic activity occurred after 3.7 Ga.

We also experimentally investigated the phase equilibria of five S-free compositions.
Experiments were performed from 1,480 to 1,100 °C at 1 kbar under reducing conditions
similar to those of Mercury’s mantle. We found a common crystallization sequence consisting
of olivine, plagioclase, pyroxenes and tridymite for all magmas tested. Combining the
experimental results with geochemical mapping, we identified several mineralogical provinces:
the Northern Volcanic Plains and Smooth Plains, dominated by plagioclase, the High-Mg
province, strongly dominated by forsterite, and the Intermediate Plains, comprised of forsterite,
plagioclase and enstatite. This implies a temporal evolution of the mineralogy from the oldest
lavas, dominated by mafic minerals, to the youngest lavas, dominated by plagioclase, consistent
with progressive shallowing and decreasing degree of mantle melting over time.

We calculated the thickness of the crust taking into account lateral variations of crustal density.
We show that the local thickness is correlated with the degree of mantle melting required to
produce surface rocks. Low-degree melting of the mantle below the Northern Volcanic Plains
produced a thin crust (19+3 km) while the highest melting degree in the ancient High-Mg
region produced the thickest crust (50 + 12 km), disproving the hypothesis of mantle excavation
by a large impact in that region.

Core structure

The seismic velocity (VP) and density of Fe-Si liquid metals at high temperatures (1400-1900 K)
and high pressure (2-6 GPa), relevant for Mercury’ core, were measured in two separate
experimental campaigns in Chicago, lllinois, USA and Grenoble, France. The density
measurements of Fe-Si metallic liquids show that Si significantly reduces the density of Fe-rich
metallic liquids. The VP measurements show that Si significantly increases the VP of Fe-rich
liquid metal. This effect of Si contrasts with the retarding influence of S on the VP of Fe-rich
liquids in the examined pressures range (2-6 GPa) that was reported by other experimental
studies (e.g. Nishida, 2013; Jing et al., 2014). Preliminary results indicate that seismic data can
help distinguishing between Fe-S and Fe-Si in Mercury’s core.

A model based on energy and entropy budgets was developed to study under which conditions
the core of Mercury can maintain a dynamo up to present. Silicon in the core results in
significantly larger amounts of latent heat generated upon Fe-Si freezing compared to sulfur and
makes dynamo action possible during the whole evolution of the core. Dynamo action can also
be extended to the present day if radioactive elements are present in the core with an



abundance of at least about one tenth of the crustal abundance or if light element exsolution
out of the core is a continuously ongoing process.

We developed three different thermal evolution models for the core that take into account the
possible presence of a stably stratified layer at the top of the core. The existence of such a layer
is suggested by thermal evolution models and can help explaining the observed magnetic field.
We showed that the existence of a stratified layer makes more entropy available for the
dynamo.

We developed a thermodynamic consistent model for Fe-Ni-S liquids that includes the non-
ideal mixing of Fe-S alloys and agrees with recent laboratory experiments of the density and
acoustic velocity of these alloys. It shows that Mercury assuming a Fe-S core would require
more sulfur in the core than in previous models.

We performed ab initio calculations of the acoustic anisotropy at high pressures and high
temperatures of hcp crystals with stacking faults. The results show that an aggregate of random
close-packed iron crystals, aligned predominantly North-South is consistent with the observed
seismic anisotropy in the Earth’s inner core.

Models of the interior and evolution

We developed a model for the obliquity of Mercury that takes into account variations in
obliquity and the deviation with respect to coplanarity induced by the slow precession of the
pericenter. We showed that those effects must be taken into account when determining the
polar moment of inertia from the observed obliquity with the expected BepiColombo precision.
We also showed that tidal effects on obliquity put a lower bound on tidal dissipation.

We interpreted the recent (2019) new estimates of the moment of inertia and tidal Love number
in terms of Mercury’s interior structure based on our interior structure models. Our results show
that at 1 sigma Fe-S models have a core radius that is within 1972 km and 2000 km whereas for
Fe-Si models the core can be about 20 km larger. The inner core radius is below 1500 km (at 3
sigma) for Fe-S models and between 1306 km and 2007 km for a Fe-Si core.

We demonstrated that taking into account a stratified outer core layer leads to higher
temperatures of Mercury’s mantle and outer core compared to treating the core as a convecting
region with its energy distribution fixed by an adiabat. As a consequence, sulfur, which lowers
the core melting temperature more drastically than silicon is not a necessary ingredient of
Mercury’s Fe-rich core for maintaining it partially liquid until the present. We showed that core
convection and present-day dynamo action can be driven by bottom up solidification of an Fe-
Si core, while having an upper liquid core layer thermally stratified.

We performed impact calculations and showed that the hemispherical asymmetry of ancient
large craters on Mercury can be produced by impacting on Mercury in a formerly synchronous
rotation (1:1 spin-orbit resonance) or a former 2:1 spin-orbit resonance. This asymmetry cannot
be generated by impacting in the present-day 3:2 spin-orbit resonance. We concluded that
Mercury previously likely had a different stable rotational state during the heavy bombardment
and that the impactor that caused the Caloris basin is a feasible candidate to have initiated a
transition from the former to the present-day rotational state of Mercury.
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