
UCL students reports
Overview

1) Methods like CUSUM charts can indeed be used to visualize individual station series and to
identify time periods during which there were problems related to observers. The reports from I.
and H. show this, but they also show that the approach needs further work. In particular,
integrated or smoothed charts have to be combined with individual value charts to facilitate
viewing, there have to be tools to zoom in on time periods, make annotations, flag values as
known departure from the standard procedure which should be excluded from the calculation of
the sun spot number. As an interesting observation, I. points out that the site FRI has very high
availability but low performance. It may be useful to train/harmonize the observers and
observation methods at this site.

2) The study of the sources of variability confirms the observations made by Dudok de Wit. The
observed variability is a mix of two main sources, one related to the sun, the other to the
observers. The character of the sun-related variability is more 'Poisson' the other more 'relative'.
The students point out that a model for the time domain after suitable transformation is more of a
ARIMA(3,1,1) type than of an AR(8) type. Since the time-domain variability is related to the sun
itself, the same model may be used for all (station) series. One should check to which extent it is
capable of filling in limited amounts of missing data and of producing residuals which could be
used for station characterization and validation (CUSUM on the residuals, or EWMA)

3) The Haar-Fisz transform should be looked at in more detail, in particular to see whether it can
be extended without too much difficulty to general numbers of observations and to moderate
amounts of missing data. Its peculiarity that it is not simply transforming the current value but
takes the time neighbourhood into account leads to attractive results.

4) With respect to algorithms, the works of C. and A. are interesting in several ways. C. finds that
more components in the SVD would lead to an improved scheme. On the other hand, she does
not show what the improvement in MSE means in practice. We don't know either (yet) what the
reconstruction scheme does in the case of periods when there is a shift in a station. C. created
Python code and I'm still checking it, but for that, I have to learn more Python.

5) A. also looked at the set of methods for the reconstruction of missing values. He also observes
that taking 4 singular value components is not yet fully exhausting the data. He also makes a very
interesting remark about newer work on soft imputation. We should definitely look at that.

In the latter context, the recent talk by Stephen Boyd deserves attention. Advances in the
practical implementation of convex optimization algorithms make it possible to solve problems
like ours 'directly'. That is, if we are able to formulate our problem or an approximation to it as a
convex optimization with rather simple bounds, we can use efficient algorithms and a
standardized formulation language to solve them. I tried out the cvx algorithm available in the
Julia programming language and I was able to get it to run on a toy example. So far, this suite of
methods is readily available in Matlab and Julia. I haven't seen a Python package yet.

What might we be able to do:

Formulate the problem like this:

We would like to find a positive vector S (the sunspot index) such that

ai#*#S+bi is close to Xi

where Xi is the vector of (available) observations at station Xi

and ai and bi are either simply constants or again vectors which satisfy constraints on variation or
patterns such that some appropriately chosen objective in S, a, and b is minimized

A few additional constraints may be needed.

Reports

UNIVERSITE CATHOLIQUE DE LOUVAIN

FACULTE DES SCIENCES

ECOLE DE STATISTIQUE, BIOSTATISTIQUE

ET SCIENCES ACTUARIELLES

LSTAT2390 – Statistical Consulting

The sunspot number and the solar cycle :
Variability Analysis

Executive Summary

International Sunspot number is a composite index based on a large number of observa-
tions from di�erent stations. It is therefore a time series that is subject to many constraints
and source of uncertainties. Extracting information from this time serires is not easy and
often requires preliminary treatments. This paper will discuss three di�erent methods for
stabilizing de variance of the series and their e�ects on the estimation of two main types of
errors : The prediction error within the stations and the dispersion error between the stations.
The step that follows the estimation of errors is the definition of a link between the errors
and the international sunspot number. This link varies according to the transformations and
between the stations, nevertheless the common components specific to the estimated errors
can be extracted and studied.

Louvain-La-Neuve

May 2017

LSTAT2390 – Statistical Consulting
The sunspot number and the solar cycle :

Variability Analysis

1 Introduction
This project is interested in sunspots, these are dark spots appearing in groups on the

solar surface. They are characterized by a lower temperature and intense magnetic activity of
the sun. The sunspot number is a direct observation of solar activity that have been counted
since the invention of the telescope in the early 17th century. Today, a lot of stations collect
the number of sunspots every day. All this information have merging in a single composite
index : Sunspot Index and Long-term Solar Observations1 (SILSO).

Sunspot numbers are counted by the following equation : Nw = k(Ng + 10Ns). This
equation defines the solar activity Nw as a function of the number Ns of spots, the number
Ng of groups of spots and a coe�cient k correcting the result according to the observers. This
formula, introduced by Rudolf Wolf 2, makes it possible to quantify solar activity.

This report focuses on estimating the errors in the sunspot numbers obtained and stabi-
lizing the variance of the time series. Le purpose is a better understanding of the model and
source of sunspot variability. The interest in analysing this variability is to identify the dif-
ferent sources of possible errors when calculating the composite index of Silso such as missing
values and how to manage them, the weather or the impact of the observer on the count of
sunpots. Understanding the uncertainty structure is important when aggregating the various
observed data into a global index that provides a perpetual approximation of solar activity.
The analysis made in this document has as its starting point the article of T.Dudok de Wit,
L.Lefèvre and F.Clette [1] where the authors’ proposition is to distinguish two types of errors:

• Time-domain errors : Errors over time for each station. Enables to consider the
variability within the stations.

• Dispersion errors : Errors between stations. Enables to consider the variability
between the stations.

This paper will begin with the explanation and application of several methods for variance
stabilization and the e�ect on the data representation. It will follow the estimate of the two
di�erents types of error for each transformation. This report will conclude with a comparison
of the estimated erros with with the composite index of sunspot number from Silso and a
short conclusion.

1
Data are available on http://www.sidc.be/silso

2
Johann Rudolph Wolf (1816 -1893), a Swiss astronomer who studied the Sun

1

2 Database
The dataset includes sunspot data from 52 observations stations from 1981 to 2015. The

original database contains a large number of missing values and there may be several reasons
for that such as the weather, the lack of observers available or simply the lack of financial
means. There are numerous methods to fill these missing values, usually by interpolation but
it’s a complex discussion and it will not be discussed in this report. Nonetheless, the data
that will be used will already have had a preliminary treatment in order to fill these missing
values from the approach proposed by T. Dudok de Wit [2]. This method is based on an
iterative singular value decomposition to interpolate missing value of the original dataset by
gaussian smoothing.

3 Variance stabilisation
The times series of the sunspot numbers are caracterized by heteroskedasticity in the series,

the variance are not constant over time. Furthermore, a non-decreasing relationship between
the mean and the variance can be observed. This relationship follows the solar cycle which is
a period during which the activity of the Sun varies by reproducing the same phenomena as
during the previous period. A period usually lasts between 8 to 14 years. Generally speaking,
if the mean of the sunspot number is large, the solar cycle is at the top and the variance is
also large. This is partly due to the fact that the increase in solar spot raises the uncertainty
associated with counting them. The possibility of errors linked to observers, the material
used by one of them, even the weather or any other reason makes a raise in the probability
of errors.

Futhermore, for most statistical analysis, variance stabilisation is recommanded. Variance
stabilisation is a procedure which consists of turning the sunspot number into a new random
variable whose distribution is a Gaussian of fixed variance and mean, whatever the level of
solar activity is (Bartlett, 1947). In this document, three variance stabilisation methods were
compared :

• Square root transform:
Ô

SSN

• Simple Anscombe transform: 2


(SSN + 3/8)

• Haar-Fisz transform: Data driven transformed by wavelet (Refer to the appendix
A.1 for more methodological information).

The Figure 1 shows orginal times series of sunspot number in station UC2 and its three
transformations. On the left graph, we can see that, for the orignal data, the sunspots number
follows the solar cycle and there is a significant non decreasing relationship between mean
and variance. If mean of the time series increases, the variance also increases and we are
in the middle of a solar cylce. Furthermore, this relation seems to disappear with the three
other transformations and the variance of the sunspot number seems more stable. The graph
on the right represents the stationnary data obtained by considering the di�erence with the
first lag. Stationnary data gives a better representation of the e�ect of variance stabilization
but it’s also an underlying assumption to Box-Jenkins analysis which will be used later to
estimate Time domain errors.

2

1980 1990 2000 2010

Time

SS
N

Variance stabilisation

Haar−Fisz
Simple Anscombe
Square root
Original data

1980 1990 2000 2010

Time

SS
N

 Differentiated data

Haar−Fisz
Simple Anscombe
Square root
Original data

Figure 1: Variance stabilisation methods of the Non-stationary UC2 sunspots numbers (Left)
and for stationary equivalent data (Right)

Orignal Data

Fr
eq
ue
nc
y

0 200 400 600

0
50
0

15
00

25
00

Square root

Fr
eq
ue
nc
y

0 5 10 15 20 25

0
50
0

10
00

15
00

Simple Anscombe

Fr
eq
ue
nc
y

0 10 20 30 40 50

0
50
0

10
00

15
00

Haar−Fisz

Fr
eq
ue
nc
y

45 50 55 60 65 70 75

0
20
0

40
0

60
0

80
0

Figure 2: Histogram of tranformed data (Right) and with density of tranformed data (Left)

In the Haar-Fisz transformed data chart (figure 1), a pike can be observed around august
2008. There are no logical explanation that can be found in the original data to explain that. A
rough explanation is probably that it is due to computation errors with the transformed data.
See appendix A.2.1 for more information. Therefore, visually, for each of the transformations,
there is a clear improvement in terms of stabilized variance. We can conclude that the
transformations clearly help stablize the variance. On the basis of the histogramme, figure 2,
Haar-Fisz o�ers a better transformation, it is look more like Gaussianne distribution. Square

3

root and simple Anscombe transformation charts show a first pike in the histogramme that
is not gaussian. This pike is explained by the number of observations equal to zero in the
orignal data.

To prevent the variance of the sunspot number from rising when the solar cycle is at the
top, simple transformations by square root already o�er good results. However, despite the
important underlaying assumptions3 to Haar fisz implementation, this transformation is more
similar to a gaussian distribution.

4 Time Domain errors
The main purpose of this report is to better understand the underlying uncertainties

around the sunspot numbers and how variance stabilization methods can help support the
analysis. Thereby these di�erent transformations (Square root, Simple Anscombe and Haar-
Fisz) need to be further compared to when fitting models and estimating time domain errors
and dispersion errors.

4.1 Estimation
In order to estimate time domain errors, the autoregressive model of order p = 8 (AR8)

is replicated as per the reference article. It compares with a more standard autoregressive
integrated moving average4 (ARIMA) approach. After transforming the data to stabilize
the variance and di�erentiate it to reach weak stationarity, data are also scaled to provide
consistent and comparable measures.

Station Orignal data Square root Anscombe Haar-Fisz
LO (5,1,3) (5,1,5) (3,1,5) (3,1,2)
UC2 (5,1,2) (3,1,1) (3,1,1) (1,1,1)
CA (4,1,5) (4,1,3) (4,1,3) (1,1,5)
KS2 (3,1,5) (4,1,2) (4,1,2) (3,1,4)
KZ (5,1,2) (4,1,5) (4,1,5) (1,1,5)

Table 1: Best ARIMA(p,d,q) model obtained for 5 examples stations.

The analysis of the ACF and PACF, appendix A.2.3, leads to include Moving Average
(MA) parameters in the model. Pure autoregressive model isn’t the most parsimonious model.
All estimated ARIMA models also have a di�erencing parameter that is used to reach sta-
tionarity. The table 1 shows that adding MA parameters often leads to a smaller number of
AR parameters overall.

In order to evaluate the fitting quality of the model, the Akaike Information Criterion
(AIC) is used. As the following equation shows, this criterion take into account the goodness
of fit of the model and the complexity of the model by penalizing the number of parameters.

3
Non decreasing Mean-variance relationship and the length of the observed data must be of power 2

4
Notation : ARIMA(p,d,q) with number of autoregressive parameters p, degree of di�erencing d and number

of moving average parameters q

4

The best model is the one that minimizes this criterion.

AIC = 2k ≠ 2 ln L k = number of parameter
L = maximized value of the likelihood

Table 2 represents the AIC for our five example stations. Several remarks can be made.
First, ARIMA models always have a lower AIC than their AR equivalents. Square root
transform and simple anscombe transform are very similar and are lower AIC than the fit
on the original data. This shows the positive e�ect of variance stabilization on the models.
Haar-Fisz transform is generally better than the original data but shows more ambiguous
results compared to other transformations. The last remark is that there is still a relatively
large di�erence in result between each station.

Orignal data Square root Anscombe Haar-Fisz
Station AR(8) ARIMA AR(8) ARIMA AR(8) ARIMA AR(8) ARIMA
LO 1742 1055 944 215 1224 565 2368 1929
UC2 13130 12533 9659 9088 9718 9148 8151 7745
CA 6513 5874 3699 3053 3849 3207 4081 3670
KS2 8525 7852 5726 5075 5871 5225 4013 3568
KZ 8145 7468 5427 4770 5593 5012 5541 5158

Table 2: Comparaison of models by Akaike Information Criterion

4.2 Validation
When comparing AR and ARIMA models for all three transforms, two main conclusions can
be made and can be see on figure 3.5

• The residuals are generally not Gaussian and fail the white noise test for the AR(8)
models. They are generally closer to normality for ARIMA models, and can be consid-
ered white noise for the first 20 to 30 lags for the ARIMA models based on the square
root and Anscomb transforms.

• When the data is only centred, the residuals are generally not Gaussian, have a non-
stable variance and cannot be considered white noise, regardless of the model. However
transforming the data leads to residuals with a stable variance.

The QQplot in the appendix A.3.2 shows that the residuals are generally closer to nor-
mality for ARIMA models. The Box-Pierce statique also shows that they can be considered
white noise for the first 20 to 30 lags for the ARIMA models based on the square root and
Anscomb transforms. Since we work in daily data, the number of significant lag could have a
link with the time of rotation of the sun (averaging over 27 days).

5
Other diagnostic plot are display in appendix A.3.1

5

Time

4000 6000 8000 10000 12000 14000 16000

−6
−2

2
4

6

0 10 20 30 40

−0
.0

6
0.

00
0.

04

ACF of Residuals

Lag

AC
F

●●●

20 40 60 80 100

0.
0

0.
4

0.
8

p values for Box−Pierce statistic

lag

p
va

lu
e

AR8 − Original data − Standardized Residuals

Time

4000 6000 8000 10000 12000 14000 16000

−4
0

2
4

0 10 20 30 40

−0
.0

2
0.

02

ACF of Residuals

Lag

AC
F

●

●

●

●
●
●

●

●
●●

●

●
●
●
●
●

●
●

●●●

20 40 60 80 100
0.

0
0.

4
0.

8

p values for Box−Pierce statistic

lag

p
va

lu
e

ARIMA − Square root − Standardized Residuals

Figure 3: Diagnostic plot for AR(8) model on original data (Left) and ARIMA(3,1,1) on
square root transform for UC2 station (Right)

4.3 Prediction
The Root Mean Square Error of Prediction (RMSEP) can be calculated to compare the

quality of prediction of each model. It is then calculated recursivly by one ahead prediction
approach6 on the final t observations of the series. For our 5 example stations, the choice of
t = 6000 (roughly 50% of observations) was made. It’s a good compromise between model
robustness, number of predictions and computing time. RMSEP is also calculated only for
predictions with the non-missing values in the original serie. Data are always centered and
scaled after transformation with the intention to obtain comparable RMSE values for each of
the estimated models.

Figure 4 shows the evolution of the RMSEP over the final t observations for ARIMA
model on UC2 station. The RMSEP of the original data seems to follow the solar cycle : The
variance of the data and de RMSEP are smaller when the solar cycle is at a low point. The
minimum of the original data curve (index = 3000) corresponds to the end of the last solar
cycle in the year 2009. On the other hand, Square root and Anscombe transform stabilize
the RMSEP more quickly and Haar-Fisz transform has greater RMSEP but is less subject to
solar cycles than original data

Table 3 displays RMSEP for AR and ARIMA models on all considered transformations
for 5 stations. Although the ARIMA models are a better fit for the data, particularly on the
transformed data, the RMSEP is only marginally smaller. In terms of transformation, the
Haar-Fisz transform leads to a larger RMSEP, therefore, the square root or simple Anscombe
transforms seem to be a more suitable transform to estimate the time domain errors. More-
over, even if the ARIMA model is more justifiable in terms of residuals’ diagnostic. The
residuals look more like a withe nose. In terms of predictive capacity, ARIMA model is only
marginally lower than the AR model. The advantage of choosing AR is that a single model

6
At every time m, prediction is estimated in time m + 1 and compared with his true value for the last t

observations

6

RMSEP =
ÛqT

t=1(ŷt ≠ yt)2

T

Figure 4: RMSEP estimated recursively for each t

Orignal data Square root Anscombe Haar-Fisz
Station AR(8) ARIMA AR(8) ARIMA AR(8) ARIMA AR(8) ARIMA
LO 0.239 0.232 0.240 0.233 0.243 0.236 0.280 0.280
UC2 0.362 0.353 0.328 0.319 0.329 0.320 0.384 0.371
CA 0.314 0.306 0.283 0.275 0.284 0.275 0.316 0.304
KS2 0.310 0.302 0.287 0.278 0.288 0.280 0.280 0,300
KZ 0.308 0.301 0.299 0.292 0.301 0.294 0.347 0.338

Table 3: RMSE of AR and ARIMA model for 5 example stations

estimates the errors in each station, while the ARIMA model needs to adjust these parameters
for each station.

Figure 5 provides a visual representation of errors estimated by the ARIMA model for
each of the transformations and for the UC2 station. As with the sunspot number, there
is a positive e�ect of the transformations. The first scaterplot shows a visually stable series
for the square root, simple anscombe and Haar-Fisz transformation. On the other hand, the
histograms are less clear. The e�ect of the three transformations on the distribution of errors
is less marked and look more like a Poisson distribution

4.4 Best common ARMA model
In the previous section, it was shown the ARIMA models are a better fit for the data.

It may also be possible to define a fixed-parameter ARIMA model with a good prediction
capability for each of the stations. To find the best common model, all combination for
autoregressive and moving average parameters ranging from 1 to 5 were tested. The summary
table for UC2 is shown in appendix A.3.3. The models are then compared on the basis of

7

2000 2005 2010 2015

Time

Ti
m

e
D

om
ai

n
Er

ro
rs

Time domain errors

Haar−Fisz
Simple Anscombe
Square root
Original data

Histogram of Time domain Errors

Pr
ob

0.
0

0.
2

0.
4

0.
6

0.
8

Haar−Fisz
Simple Anscombe
Square root
Original data

Figure 5: Scaterplot and histogram of Time domain errors for original data and transformed
data

their respective RMSE and AIC. There is no model that is particularly better than the others
for the 5 stations. However, the di�erence in terms of RMSE and AIC between the di�erent
ARIMAs is marginal. Therefore, we could consider arbitrarily a model ARIMA(3,1,1) with
very few parameters and good goodness of fit. This model could be fit for each station.

5 Dispersion Errors
The second type of error that can be calculated for sunspot numbers is the dispersion error

between stations. In this section, two points will be studied : Comparaison of dispersion errors
between transformations and comparaison between the original dataset with and without the
missing values. We are working here on data that are not prefiltered and therefore contain
missing values. The Haar-Fisz transformation will no longer be considered since it does not
apply to this type of data.

Dispestion errors are estimated in a two step procedure on an subsample of de 15 best
stations with the least number of missing values, as the article of reference of T.Dudok de
Wit, L.Lefèvre and F.Clette [1].

1. Scaling7 sunspot numbers for station i, NW,i(t), by the international sunspot number
SN from SILSO and estimate the residual errors for each station by :

NW,i(t) = “iNW,i(t) where “i = SN

NW,i
And

‘i(t) = NW,i(t) ≠ 1
N

Nÿ

i=1
NW,i(t)

Nÿ

i=1
NW,i(t) = means of the N stations

7
The scaling factor “i is estimated by by weighted total least squares.

8

2. Dispertion Errors is then calculated for each date based on residual of the 15 best
stations.

‡(t) =
ı̂ıÙ 1

N ≠ 1

Nÿ

i=1
‘2
i (t)

1980 1990 2000 2010

Time

R
es

id
ua

l e
rro

rs

Residual errors of UC2

Simple Anscombe
Square root
Original data

1980 1990 2000 2010

Time

D
is

pe
rs

io
n

er
ro

rs

Dispersion Errors

Simple Anscombe
Square root
Original data

Figure 6: Residual errors for UC2 (Left) and Dispersion errors (Right) for orginal data and
transformed data

On the one hand, figure 6 shows the residual errors estimated by the first step for the sta-
tion UC2 and, on the other hand, the overall dispersion between the stations to be estimated
by the second step. Dispersion errors is time-dependent and increases with the sunspot num-
ber and the solar cycle. If the number of sunspots is large, it is more di�cult to count them
and the variability between the stations increases. While square root and simple Anscombe
transform seems more stable for de residual errors of UC2 and the overal Dispersion errors
between station. In appendix A.4.1 histogram of these errors and stationnary representation
of dispertion errors confirme the positive e�ect of square root transformation.

The appendix A.4.2 also shows the e�ect of filling the gaps on the dispersion errors. As
can be expected, estimating the missing values increases the variability of the data and de
Dispersion Errors between stations

6 Link between error et Sunspot number
Now that Time domain errors and dispersion errors are estimated, we seek to define what

relationship they have with the Sunspot Index and Long-term Solar Observations (SILSO), the
international sunspot number. We would also like to observe the e�ect of variance stabilisation
on this relationship.

9

6.1 Time domain errors and SILSO number
For the time domain errors, only the predictions on the last t = 6000 observations are

considered and compared to sunspot numbers from SILSO (SSN). That represents the ob-
servations between 1998-09-06 and 2015-02-06. The relationship between time domain errors
and Sunspot numbers is di�cult to perceive on the raw data. However, when data are ag-
gregated over 27 days, which corresponds on average to a rotation of the sun, the data is
then smoothed and a relationship arises. By aggregating the data, the smallest variation is
no longer automatically perceived8. Only the longern term variations (compared to the daily
terme duration) become visible.

When we take the data of origin without transformation and aggregated to 27 days, a
relationship close to the square root can be observed (figure 18) but this di�ers according to
the station. The graph also shows a funnel shape showing an increase in the variability of the
error when the number of sunspots increases.

Figure 7: Relationship between time domain errors and SSN, averaging over 27 days (Left)
and for 5 example stations (Right)

Error ≥ – + — ◊ SSN“

Lo CA UC2 KS2 KZ
– -0.71 1.75 0.18 0.54 1.09
— 1.69 0.81 1.82 1.27 0.84
“ 0.52 0.66 0.54 0.60 0.66

Table 4: Result of estimation of relationship between time domain errors and sunspot number

In appendix A.5.1, a representation of the relationship between aggregate Times domain
errors and SSN for each of the transformations is available. The conclusions are similar to

8
For example: weather, change of personnel, ... etc

10

what was said at the beginning of this document. The square root relationship with a form
of funnel disappears and gives way to a more stable relationship where the variability of the
error does not seem to be increased with the sunspot number

6.2 Dispersion error and silso number
Now the dispersion error ‡(t) will be put in relation with the sunspot number from Silso.

From now on, we only consider the square root transformation. Simple anscombe is very
similar and will have identical conclusions whereas the Haar-Fisz transformation adapts less
easily in the case of dispersion errors since it does not manage the problem of the missing
values.

The figure 8 shows this link for the original data and the square root transformation.
Similar to the Time domain error, the graph has a form of funnel, however, this time the
relationship is more linear. When we observe the square root transform, the relationship is
then clearly square root. Transforming data thus modifies the link between the errors and
the sunspot numbers but does not do so consistently. In the appendix A.5.2, the graphs
representing the average over 27 days confirm this observation by showing narrow curves.
Nevertheless the transformed data curve no longer has this form of funnel, the variability does
not seem to increase with the SSN when the data is transformed into square root. Stabilizing
the variance by the square root transformation for each station improves the variability of
the dispersion errors.

●●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●
●●●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●
●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●● ●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●●

●

● ●

●

●

●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

● ● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●

●●

●
●

●

●

●
●

●

●●

● ●●

●

●

●

●

●
● ●●

●
●

●
●
●
●

●

●
●

●

●
●●

●
●

● ●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●● ●
●

●

●

●

●
●

●

●

●

●
● ●

●

●●

●
●

●●

●

●
●

●

●

●

●
●

●●

●
●

●

●
●

●

●●●
●

●
●●

●
●●
●

●

●
●

●

●

●

●

●●●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●●

●
●

●● ●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●●

●●

●

●
● ●

●

●
● ● ●

●

● ●

●●

●

●●
●

●

●

●

●
●●

●

●
●●

●
●
●

●●

●
● ●

●

● ●
●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●●
●●●

●

●●

●

●

●● ●
●

●
●

●

●
●●

●

●

●

●

●
●

●●

●

●●
●

●

●

●●
●●

●●
●
●
●

●
●
●

●

●
●

●
●

●●

●
●

●● ●

●

●●
●

●

●●

●

●

●
●

●●

●●
●

●●

● ● ●

●

●●

●●

●

●

●

●
●

●
●

●●

●

●●

●

●
●
●

●●

●
●
●

●

●

●

● ● ● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●●

●

●●

●●
●
●

●

●
●

● ●

●

●
●

●
●●

●●●
●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●● ●
●

●
●

●

●
●

●

●
●

● ●

●●

●●

●
●

●

●

●●

●

●●
●●●●

●

●

●●
●
●

●
●●
●

●

●
●

●●●

●●
●
●

●
●

●

●

●● ●

●
●

●

●

●
●● ●

●

●
●●

●

●

●
●

●

●

●

●●●

●●●● ●

●

●

●
●●●●

●●●
●

●

●
●●●●●
●
●
●●●

●

●
●

●
●
●●●●

●●

●

●●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●
●●
●
●
● ● ●

●
●●

●

●

●
●●

●
●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●
●●●

●●

●
●

●●

●

●

●

●
●●●

●●●●●● ●●

●

● ●●
●

●●●
●
●

●

●

●

●

●
●

●

●
●

●
● ●

●

●●●●

●●

●

●

●

●
●
●
●●

●
●
● ●

●

●●●●
●
●●
●
●●●

●

●●● ●

●●

●

●●
●

●

●

●

●

●

●●

●
● ●

●

●

●
●

●
●

●
●

●

●●
●

●

●
●

●
●

●

●

●
●

●

●● ●

●
●
● ●

●

●
●●●

●
●

●
●
●

●
●

●

●

● ●

●

●

●

●
●

●
●
●

●

●
●●●

●

●

●
●●●

●

●
●●
●

● ●

● ●
●
●●●

●

●
●

●

●●
●●

●
●
●
●●

●
●
●●

●

●
●

●

●
●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●
●●

●

●●

●●

●

●

● ●

●●
●

●

●

●

●
●
●
●
●●
●

●●
●

●

●●●●●●●●●● ●

●●●

●●●

●
●●●●

●●●●●
●

●

●●●●●●

●

●●●● ●●●

●●
●

● ●
●

●

●●

●

●

●
●

●
●

●●●

●●
●

●
●
●●

●
●
●

●
●

●

●
●

●●

●
●

●

●
●

●●●●●●
●

●●

●

●

●

●●●
●

●

●

●

● ●

●
●

●●●
●

●

●

●●●●●●●●●●●●●

●
●
●●
●●● ●

●
●
●

●

●●●●●
●
●
●

●

●

●● ●
●

● ●

●

●
●●
●
●

●

●

●

●

●
●

●
●
●
●● ●

●●●●

●

●●●
●

●

●●

●

●●●

●

●

●
●

●

●

●

●●
●● ●

●
●●

●
●

●●●●●●
●●
●●

●●● ●

●

●

●
●●

●

●

●

●

●

●
●●
●

●

●
●
●●

●

●●● ●●
●
●●

●●
●

●●●●● ●●
●

●●

●
●●

●●
●

●
●●●●

●

●

●

●●●●●●

●
●●
●
●
●●●●●●●

●

●●●●

●

●●●●●● ●

●
●

●
●●

●
●

●
●

●●
●●●

●
●
●

●●

●

●

●
●

●

●

●

●
●●●●●●●●

●●
●
●●●●● ●

●●

●
●

●

●●●
●

●●●●●
●●●●

●

●
●

●

●

●●●●

●
●●●●●●●●
●

●●●●●● ●

●
●●

●●●●
●

●
●
●

●●

●

●

● ●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●
●

●

●
●

●

●
●

●

●
●
●

●●●●●
●●●

●

●

● ●

●

●

●

●●●●●●●● ●●

●
●●

●
●

●

●●●

● ●

●●
●

●
●

●
●
●● ●

●

●

●
●
●
●●

●

●●
●●●●●

●
●

●

●
●

●

●

●●
●●●
●

●

●

●

●

●●●●●●●● ●

●

●● ●
●●

●
●●●

●
●

●

● ●

●
●

●

● ●
●● ●●●●

●
●●

●

● ●

●●

●

●
●

●●
●

●

●
●

●
●

●●
●
●

●

●
●

●

● ●

● ●

●

●
●

●

●

●
●

●
●

●●

●

●●

●

●

●

●●●●
●

●

●
●

●
●
●●

●

●●
●●●● ●

●

●
● ●

●

●

●

●
●

●

●
●●●

●
●
●●●

● ●

●

●●●
●

● ●

●

●

●
●●

●
●

●

●
●
●●

●

●
● ●●●

●

●

●●●● ●

●
●●●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●●

●
●
●
●
●

●
●

●
●

●

●

●
●
●

●

●●
●●

●●
●

●
●●

●
●

●

● ●
●

●●

●
● ● ●

●

●
●

●
●

●●●

●●

●

●

●●

●●●

● ●
●●

●
●●

●

●●

●

●

●

●● ●

● ●

●

●

●

●

●●
●

●

●
●

●●

●
●

●

●

●
●

●
●

●

●●●
●

●

●

●
●●●

●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●
●

●

●● ●
●
●

●
●

●
●●

●

●
●
●●●

●

●●

●
●

●

●

●●
●●

●
●

●

●
● ●

●

●

●
●

●

●
● ●

●

●
●

●

● ●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
● ●

●
●

●
●

●

●

●

●
●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●
●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●
●

●●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●
● ●

● ●
●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●●
●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●
●

●●

●

●●

● ●
●

●

●
●● ●

●

●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●●

●

●

●

●

●
●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●
●

●
● ●

●
●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●●
●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
● ●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●● ●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●
●●

●

●

● ●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●●

●
●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

● ●

●
●

●●●

●

● ● ●
●

●

●

●

●

●

●

●
● ●

●

●●

●

●
● ●

●

●

●

●

●

●

●
●● ●

●

●
●

● ● ●
●

●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●●

●

●

●

●●●
●

●●●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●

●

●

●
●●●

●

●

●

●
●
●

●

●

●

●

●●

●
●

●

●

●

● ●
●

● ●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●● ●

●

●
●

●●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●
●

●
●

●

●

●
● ●
●
●

●

●

●

●

●

●

●

●

●●
●●

●
●●● ● ● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●

●●

●
●●

●●
●

●

● ●
●

●●

●
●

●

●

●

●

●

●●
●
●

●●
●

●
●

●

●
●

●

●

●

●● ●●●●

●●●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●
●

●
●●

●●

●●
●●●

●●
●

●
●
●

●

●

●

●

●●●
●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

● ●

●●
●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●
●
●

●●●

●
●

●●

●

●

●
●

●

●

●
●
●●
●

●● ●

●●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●● ● ●

●

●
● ●

●

●

● ●

●
●●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

● ●
●

●
●●

●
●

●

●
●

●

●

●

●

●

● ●

●
●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●
● ●

●

●
●●● ●

●
●

●●●
●

●●

●

●
●●

●
●● ●

●
●
●

●

●
● ●

●●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●●

●

●

●●
●
●

●●
●
●

●●
●
●●

●

●●●●● ●●

●

●
● ●

●

●

●

●●
●●

●

●

●
●

●

●●●
●

● ●

●● ●
●●

●

● ●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●●●
●●
●

●
●

●
●
●

●
●
●
●
●

●
●
●
●

● ●
●●

●

●
●●
●

●
●

●
●

●
●

●
●
●

●
● ●

●
●

●

●

●●●
●

●●

●

●

●

●
●●●

●

●

●

● ●●●●
●

●
●●●

●

●●

● ●

●●

●

●●●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●●

●
●●●

● ●

●
●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

● ●

●

●
●●

●

●

●
●●●

●

●

●

●

●
●
●●
●●

●

●
●●

●

●

●
●
●

●
●

●

●

●

●

● ●

●
●

●●

●

●
●●

●

●
●

●

●

● ●
●

●

●●

●

●

●

●●

●

●
●

●
● ●

●● ●
●

●
●

●●

●

●

●

●

●
●

●

●

●
●
●●
●●
●

●
●

●●

●
●
●

●●●
●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●●●
●

●●● ●

●

●

●

●

●

●

●
●

●
●

●●●●
●
●

●
●

●
●

●

●
●

●

●●
●●●● ●

●●●●
●
●

●
●

●
●●

●
●●●

●
●

●

●
●

● ●
●

●●
●

●●●●
●
●

● ●
●

●

● ●

●●●
●●

●
●
●●

●

●

●
●

●
●

●

●
●
●

● ●

●●●

●

●
●
●●
●●

●
●

●●●
●●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●
●

●●●

●

●
●

●
●

●●

●

●●

●

●●

●

●●
●

● ●

●
●●
●

●●
●

●●
●●

●

●
●●●

●●
●

●

●

●

●

●
● ●

●●
●

●

●
●●●

●
●

●●
●●

●
●

●

●
●

●
●
●●
●
●●

●

●●

●
●

●

●●

●
●●
●

●

●●●

●●●●

●
●
●

●●
●●

●

●

●

●
●●
●●

●●●

●

●

●●
●

●

●
●
●

●●
●

●
●

●

●

●

●

●●
●

●

●

●●●●●●●●● ●●●

●
●

●

●
●
● ●

●

●
●

●
●
●
●●●●●●●●●

●●
●

●

● ●●
●
●

●

●●
●●

●

●
●

● ●

●

●

●

●

●●

●

●

●●●●●●●
●

●
●●
●
●

●
●

●●

●

●● ●

●
●

●

●●●
●●●

●
●●

●
●

●
●

●
●

●

●●
●●

●●●●

●

●●●●● ●

●

●
●●●

●

●
●

●

●

●

●
●

●

●

●●●●●●●●●● ●

●●●
●

●●
●
●●

●●●
●●●● ●

●
●
●

● ●
●

●

●
●●●●●●

●●
●

●
●

●

●●

●
●

●
●

●●●●

●
●

●●●●● ●

●

●
●●

●
●●
●

●●
●

●
●
●

●
●●

●
●●

●

●●

●●●●●

●
●●
●
●
●●

●●

●

●
●

●

● ●

●●

●● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●
●

●

●●

●

●●●●●●● ●
●
●●

●●
●

●

●
●

●

●

●
●

●

● ●

●

●

●

●●

●
●

●
●
●
●●

●

●

●

●

●
●

●●●
●
●

●●
●

●

●
●

●●

●

●

●●●●●● ●●

●

●● ●●

●●

●

● ●

●●

●

●

●

●●

● ●

●●●

●

●

●

●

● ●

●

●
●

●●
●
●●

●●●●● ●

●

●●●
●

●
●

●
●

●

●
●

●
●●●● ●

●

●
●

●
●
●●● ●

●●

●

●

●

●

●
●

●●
●

●

●

●
●●● ●

●

●
●

●
●
● ●

●

●●
●
●

●

●
●●

●

●

●●
●

●

●

●●
●●

●●

●● ●
●
●
●●● ●

●●

●
●●●

●●
●

●
●

●
●

●●
●

●

●●● ●●●
●

●
●

●●

●●

●
●

●

●

●
●●●●

●
●
●

●

●

●

●●
●●●

●
●

●
●

●

●
●

●

●●

●●
●●

●

●

● ●

●●

●

●
●

●
●

●

●

●

●

●
●
●

●
●

●
●

●
●
●
●

●
●

●

●
●

●
●

●

●
●

●

●

●●●

●

●

●
● ●

●
●

●●

●

●

●

●

● ●
●
●

●

●

●

●●●●
●

●

●

●
●

●

●

●●
●●

●

●

●

●
●

●
●●●

●
●
●

●

●

●
●

●●

●

●

●

●
●
●

●●
●

●●

●

●● ●
●

●

●
●

●

●

●

●●

●●

●●●

●

●

● ●

●●

●

●

● ●

●

●

●

●●

●

●

●●

●

●
●●

● ●

●
●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●●
●●●
●

●●
●●●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●
●
●

●
●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

● ● ●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●● ●

● ●●
●

●

●● ●
●

●●●

●

●

●
●●

●

●

●

●

●

●

●●

●

●
●●

●

●
● ●

●

●

●

●

●
●
●

●

●

●
●

● ●
●●●

●

●
●

●

●

●
●

●

●
●●●

●●
●

●●

●
●

●

●

●

●

●

●
●

●
●
●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●

●
●●

●

●

●

●

●

● ●

●
●

●●

●

●●
●●●

●
● ●

●

●

●

● ●

●

●

●

●

●

●●

● ●
●

●●
●

●

●
●

●

● ●●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●
●

● ●

●
●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●
●

●●

●

●
●●

●

●

●
●
●

●

●

●●

● ●
●

● ●
●

●

●
● ●

●●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●●●

●

●

●
●●● ●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●●●

●

●

●

●

● ●

●

●

●

●

● ●

●

●
●●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●●

●

●

●

●

●●

● ●

● ●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●
● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●

●●
●

●
●●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●●

●

● ●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●●
●

● ●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●
●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

● ●

●

●
●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●●
●

●

●

●

●
●
●

●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●

●

●●●

●

●●
● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●●
●
●

●●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

● ●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●
●

●●

●

● ●

●
●

●

●●

●

●●

●

●

●
●

●
●

●

●
●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●●

●

● ●

●

●
●

●

●

● ●●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●●

●
●

●
●

●
●

● ●

●

●

●

●●
●

●

●

●●●
●

●
●

● ●

●
●
●

●

●
●

●

●
●
●

●
●
●

●
●

●

●

● ●
●

●
●

●

●
●●

●

●

●
●
●

●●● ● ●●

●

●
● ●

●
●

●

●●

●

●
●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

● ●

●
●

●●

●

●

●

●

●

●●
●●

●
●●

●

●

●

●
●
● ●

●

●

●●
●● ●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●
●
●
●●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●
●

●

●●

●●
●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●●●
●●●●
●
●●

●

●●

●

● ●

●●
●

● ●

● ●
●

●

●●

●●
●

●

●

●●

●

● ●●●●
●

● ●

●

●

●

●

●● ●

●
●●

●

●

●

●●
●

●

●

●

●
●

●●
●

●
●

●

●
●

●

●

●●
●
●●

●

●
●

●●
●

●

●

●

●

●

●
●●●
● ●
●

●

●

●

●

●
●

●

●●
●

●
●●

●

●
●
●●

●
●

●

●●

●

●●

●

●●●●●

●

●

● ●
●●

●

●

●

●

●

●
●

●
●
●

●
●●
●●●

●

●

●
●

● ●

●

●
●

●

●

● ●

●
●

●

●

●

●
●

●

●

●●

●
●●
●

●●

●
● ● ●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●
●●●

●●●

●
●●

●

●

●
● ● ●

●●
●
●●●

●

●●

●●

●
●●

●
●
●

●●

●
●

●

●
●

●
●

●
●

●

●

●
●

● ●

●
●

●

● ●

● ●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●● ●

●
●

●

●●●

●

●●
●
●
●
●●●

●
●

●●●

●

●

●

●

●

●●

●●●
●

●
●

●●●

●

●
●●

●

●

●

●

● ●
●

●

●
●●

●

●
●
●

●
●

●
●

●
●

●

●
●

●

●

●

●●

●
●

●●

●●●●
●

●

●

●

●● ●

●

●

● ●

●

●

●

●

●●

●

●

●●
●
●

●

●

●●

●
●

●
●

●

●●
● ●

●●

●
●●
●

●●●

●●
●

●●

●
●

●

●

●●
●

●

●
●

●

●
●●

●

●
●
●
●

●
●

●
●

●

●

●

●
●
●

●●●●

●

●
● ●

●
●
●

●

●
●●●
●

●

●
● ●

●●

●

●●●●
●

●

●

● ●
●●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●●
●

●

●

● ●

●
●●

●

●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●●

●

●
●

●

●

●

●●

● ●

●
●

●

●
●●

●

●
●

●
●

●
● ●

●●●
●

●
●
●

●

●●●

●

●

●
●

●
●●●

●

●
●

●
●

●● ●

● ●
●

●

●

●

●

●

●
●

●
●

●
●
●●

●

●

●

●

●●●●

●●●
●

●
●

●
●

●●

●

●

●●●●

● ●●●●
●

●
●
●●●

●
●●

●●
●●
●
●

●

●

●●

●
●
●

●
●●

●●

● ●
●●

●●
●

●

●

●●
●

●●

●
●●

●

●

●
● ●

●●

●
●

●

●●

●
●

●

●

●

●

●

●

●●

●●

●

●

●
●

●●●
●

●

●

●●●●
●

●

●
●
●
●

●

●● ●

●
●

●
●

●●●●

●●●

●

●
●

●●● ●●

●

●
●
●

●

●

●●●

●

●

●●●●●●

●●

●●
●

●

●

●

●●●● ●

●

●
●

●
●

●

●
●●
●●

●

●●

●
●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●

●
●

●

●

●●

●

●

● ●

●
●

●
●

●

●
●

●●
●

●

●
●●

●

● ●

●●
●
●●●●●

●●

●
●
●

●

●
●
●●●

●
●
●●

●

●●
●●
●

●
●
●
●
●

●
●
●
●●

●
●●●●●
●

● ●

●
●●●●●● ●

●
●

●●

●

●

●

● ● ●

●

●
●
●●
●
●
●
●

●
●

●

●●
●●
●

●●

●
●

●

●
●

●

●

●
●

●
●
●

●
●

●
●

●
●●

●

●

●
●●●
●●●●

●

●

●
●●

●●

●●●●●
●

●

●

●●●●●

●

● ●

●

●●
●

●
●

●

●

●
●

● ●
●

●

●

●

●

●
● ●
●

●
●
● ●

●

●
●

●●●
●

●
●

●

●
●
●

●

●●
●

●

●●●

●●

●●
●●

●●
●
●●●●●●

●●●●
●
●●

●●

● ●
●

●●

●
●●
●●

●

●●
●

●

●
●
●

●

●
●

●
●●

●
●●
●

●
●
●

●

●

●

●
●●

●●●●●
●

●

●

●●●●● ●

● ●
●

●

●●
●
●

●●
●
●

●●●

●●

●

●
●● ●

●●

●

●●●
●
●

●●●
●

●●

●
●●

●

●
●
●

●

●

●

●
●●●
●

●

●●●

●●
● ●

●

●●

●

●●●

●
●●
● ●●●

●
●●
●
●

●●

●●
●
●● ●

●●●
●

●

●
●

●
●

●●

●●● ●

●
●

● ●

●
●

●

●
●●

●

●
●

●●●●●●●●●●●●● ●

●

●●

●
●
●●●

●●●●●●●
●

●
●
●●●●

●●
●
●●●●●●● ●

●●
●●

● ●
●●
●●●
●●
●●●

●

●

●

●●●●
●

●

●●●●●●●● ●
●

●●
●

●
●●

●●●●●●●●●●●●●●●●●●●● ●

●
●●

●
●
●● ●

●

●
●

●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●
●

●

●

●●●●●●●● ●
●

●
●●

●●●

●
●
●●

●●● ●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●●●●

●●●●●●●●●●●● ●

●

●

●

●

●
●

●
●

●
●

●
●

●●
●
●
●●●●●●●●●●●● ●

●●●
●●●

●●

●●●●●●●●●●●●●●●●● ●

●
●

●●●● ●

●●

●

●

●● ●

●

●●● ●

●●

●

●●●●● ●

●

●
●●●

●
●●●

●
●

●

●●●●●●● ●

●●●
●●

●●

● ●

●
●●

●●●●● ●

●

● ●
●

●

●●●●●● ●

●

●

●●

●
●

●

●●
●●●

●

●●●●●●●●● ●

●

●●● ●
●●
●

●

●

●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●
●
●●

●

●●●●●●●●● ●
●●

●●●● ●●

●

●● ●

●

●●
●
● ●

●●
●●●●

●
●

●●●

●

●●●●●●●●

●

●

●

●

●
●
●●

●●● ●

●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●●
●

●

●

●
●
●

●

●
●
●
●●●●●●●●●●●●●

●

●

●
●●●

●
●

●

●
●
●

●
●

●

●

●

●

●
●●

●●

●

●

●
●
●
●●●
●

●
●●●●
●
●●●●

●

●●●●●●●●●●●●

●
●
●●●●●●●●

●
●

●●●●●●●●●●●●●●
●●
●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●● ●

●●

●●●●●
●
●●

●●●

●

●●●●●●●●

●
●●

●●●●
●●

●
●●

●●●●● ●

●
●●●

●
●

●●

●
●

●●

●

●●● ●

●

●● ●

●
●

●●
●

●●●●●●● ●

●●●●●●●
●

●●●●●●●●●●

●
●

●●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●

●●●●●●●●●●●●●

●

●
●●
●

●
●

●●
●

●
●

●

●

●●

●

●
●

●

●●●●● ●

●

●●●●●

●

●●

●

● ●

●
●●●

●

●●
●●

●●● ●

●
●●

●

●●● ●
●●●●

●

●

●

●

●●
●

●
●●●●●●●●●●●●● ●●

●●●
●
●●●●●

●

●
●

●
●●

●

●
●●●

●●

●●●●
●

●
●

●

●

●
●●●

●

●

●
●

●

●

●

●

●●●

●
●

●

●
●
●●
●

●●●

●●
●●

●●●

●

●
●
● ●

●
●
●●●

●

●

●

●●●
●

●●
●

●

●

●

●●
●

●
●●●

●

●●

●

●

●●
●

●
●

●
● ●

●

●●
●

●●
● ●

●

●

●

●

●

●●●●
●●

●●●●● ●

●●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●●

●●●●●●●●●●● ●
●
●●●

●
●●
●

●

●

●

●●●

●

●

●

●

● ●
●

●

●
●

●
●

●
● ●
●●●●●●

●●●

●

●

●●●●

●
●●●

●

● ●

●

●

●●

●
●●●

●

●
●●

●

●

●●

●

●
●

●

●

●●
●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

● ●●
●●

●
● ●

●
●

●●
●

●

●

●

●

●
● ●

●

●●

●●

●

●

●● ●●

●
●●

●
●

●

●

●
●

●
● ●

●
●●

●

●

●●●●

●

●●

●●
●
●

●
●

●

●

●

●

●

●

●●

●●●●

●

●

●
● ●●●

●
●

●
●

●

●

●●
●

●●
● ●

●●
●
●
● ●

●
●
●

●●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

● ● ●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●
●

●●
●

●●
●●●

●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●
●●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●
●●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●
●●

●●

●

●

● ● ●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●●

● ●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●
●●●

●●
● ●●

●

●

●
●

●

●

●

●
●

●
●

●
● ● ●

●

●

●

●●●

●

●●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

● ●●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●●●

●

●
●

●
●

●

●
●
●

●

●

●●
●
●

●
●

●

● ●

●

●

●

●●
●
●

●
● ●

●

●

●

● ●

●

●

●

●

●

●●●

●
● ●
●

●

●
●

●

●
●

●

●●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●●

● ●●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●● ●●

●

●

● ●
●

● ●

●
●

●

●
●

●
●

●

●●
●
●

●
●

●
●

●

●
●

● ●

●
●●

●

●

●

●

●

●●

●

●
●

● ●

●

●●

●●

●
●●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●

● ●
●

●●

●

●

●
●

●

●
●

●

●

● ●

●● ●

● ●
●

●

●

●

●
●
●

●

●●●

●

●

●●
●

●

●●

● ●

●

●

●

●● ●

●

●●

●

● ●
●
●

●

●
●●

●

●
●

●

●
●

●
●

●
●

●
●●● ●

●
●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●●

●●●
●

●

●

● ●
●

●
●

●

●
●

●

●

●●

●

●

●
●

●

●●

●
●

●●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●●

●
●

●

●

●●

●●
●
●

●

●

●
●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●● ●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●●
●●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●●

●

●

●

●

● ●●●

●

●●
● ●
●

● ●

●

●
●

●
●

● ●

●

●
●●

●

●
●
●

●

● ●

●

●

●

●
●

●

●

●

●
●●

●●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●
●

●

●●
●●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

● ●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●
●●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
● ●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ●●

●
●

●

●
●

●

●

●

●●
●● ●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●
●
●

●●●

●

●

●●
●

●

●

●
●
●

●●●

●●

0 100 200 300 400

−1
0

1
2

3
4

5
6

Relationship between dispersion errors and SSN
 Original Data

SSN

D
is

pe
rs

io
n

Er
ro

r

y ~ a + b*x^c
y ~ a+b*sqrt(x)
y ~ a + bx

●

●

●●

●

●

●

●

●●

●

●●
●

●●

● ●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●
●

● ●

●

●●
●

●

●●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●●●●

●

●

●
● ●

●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

● ● ●

●

●
● ●

●

●●

● ●

●

●
●

●
●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●●

●

●●●

●

●
●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●

●
●

●

●

●
●
●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●●●
●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

● ●
●

●

● ●

●

●

●

●
●

●

●

●

● ●

●●●

●

●

●

●
●

● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●●●
●

●

●

●

●

●

●

●
● ●

●

● ●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●
●
●

●

●●

●

●
●

●
●

●

●
●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●
●

●
●

●

●

● ●

●

● ●

●
●

● ●

●

●

●

● ●
●

●

●
●

●●

●
●

●
●

●
●

●●

●
●

●●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●
●

● ●

●
●●●

●

●
●

● ●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●
●
● ●

●

●●

●

●

●

● ●

●
●

●

●
● ●

●

●
●

●

●●
●

●

●●

●
●

●
●

● ●

●
●

●
● ●
●

●

●
●

●●
●

●●

●

●

●

●

●●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●●●

●
●

●
●
●

●
●

●

●

● ●

●

●

●

●

●

●●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●●

● ●

●
●

●
●

●
●

●

●●●

●

●

●
●

●
●

●●

●

●
●

●

●

●
●●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●● ●

● ●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●●●●
●

●

●

●

● ● ●

●

●
●

●

●

●●

●●
●●

●

●
●

●

●
●

●

● ●

●● ●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●
●

●●
●

●

●

●
●
●
●

●
●
●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●
●●

●

●●●
●

●●●

●

●

●
●

●

●

●
●

●

●
●

● ●
●

●

●
●

●

●

●
● ●

●●
●●

●

●

● ●
●

●

●

●

●

●

●

●●
●

●
●

●●●
●

●
●

●
●

●
●
●●●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●●
●

●

●

●
●

●
●●

● ●
●

●
●

●●

●
●

●
●

●

●●

●

●

● ●

●●

●
●
●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●
●●

●

●

●●
●
●●

●

●

●

●
●

●●

●

●

●

●

●●
●
●

●

●

●

●
● ●●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●
●

●● ●

●

●
●

●

●●

●●
●●

●
●●

●

●●

●

●

●

●●

●

●●

●
●

●

●●
● ●

●
●

●
●
●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●
●
●

●
● ●

●

●
●

●

●
●

● ●

●
●

●●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●●

●

●
●
●
●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●
● ●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●●
●

●

●

● ●

●●●

●

●

●

●

●●
●

●
●

●

●●

●

●

●

●
●●● ●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●●

● ●
●

●●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●
●●

●

●

●
●

●●
●●●●

●●

●
●●

●

●
● ●

●
●

●
●

●●
●

●
●

● ●

●

●●

●

●
●

●
●

●
●

●

●●●●
●

●

●

●●●

●●
●●●

●

●

●
●●●●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●
●
●

●●
●

●

●

●●
●

●

●

●
●●

●

●
●
●
●

●
●

●

●

●

●

●

●
●●●
●

●
●

●
●●
●

●

●

●

●

●
●
●

●●
●

●●●●●● ●●

●

● ●●

●

●
●
●
●
●

●

●
●

●

●
●

●

●
●

●
● ●

●

●●

●

●●

●

●
●

●●

●●●
●●
●

●
●

●

●

●
●

●

●
●●●●●●

●

●●● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●●
●

●
●
●●

●

●●
●

●
●

●

●

●

●
●

●
●●●
●●
●
●●

●
●

●

●

●

●
●

●
●●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●●●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●●
●●
●
●

●

●

●
●
●

●

●

●
●

●●

●●
●

●

●

●
●

●

●●

●

●

● ●

●●

●

●

●

●

●
●
●
●
●
●●

●●

●

●

●●●●●●●●●● ●

●

●
●
●●●
●
●
●

●●
●●●●●

●
●

●●●●●●
●
●●●● ●●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●●●
●●

●

●

●●●

●

●●
●

●

●●●●
●
●

●

●

●

●

●●●●●
●
●

●●

●
●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●

●

●

●●●●●●
●●●●●●●

●
●
●●
●●● ●

●

●
●

●

●●●●●
●
●
●

●

●

●● ●
●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●
●
●● ●

●

●●●

●
●
●

●

●

●

●●
●

●●
●

●
●●

●
●

●

●

●
●
●● ●

●

●

●
●

●

●●

●

●

●

●
●
●
●●

●●● ●

●

●

●

●

●
●

●
●

●

●
●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●
●
●●●●● ●

●
● ●

●
●●
●●

●
●

●

●

●
●

●

●●

●

●●●●●●

●
●●
●
●●●●●●●●
●
●●●●

●

●●●●●● ●

●

●

●

●●●

●

●
●●

●

●

●

●

●

●
●
●
●●

●

●
●

●

●

●

●●●●●●
●●

●
●●

●
●●●●● ●

●

●

●
●

●

●●

●

●

●●●
●●●●●●
●

●

●

●

●
●
●
●

●

●
●●●●●●●●
●
●●●●●● ●

●
●●

●

●●●●

●

●

●
●

●
●

●

● ●●

●

●

●

●

●

●●
●●

●
●●●

●

●
●

●
●
●●

●
●

●

●

●
●

●
●

●
●●●●
●
●
●

●●●

● ●

●

●

●

●●●●●●●● ●●

●●
●●

●

●

●●
●

●
●

●

●●
●

●

●
●
●● ●

●

●

●

●●
●
●

●

●●●●●●●

●
●

●●●●

●

●●

●●
●
●

●
●

●

●

●●●
●●●●● ●

●

●●
●●

●

●
●●
●

●●
●

● ●

●

●
●● ●

●●

●

●
●●●

●

●

●

● ●

●

●
●

●
●

●

●

●

●
●●

●

●
●●
●●

●

●●
●

●

●

●

●
●

●

●●
●●●

●

●

●
●

●

●

●

●
●

●

●●

●●

●

●
●●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●
●

●

●●

●

●
●
●●●

●

●●●●

●

● ●

●

●●●
●

● ●

●
●
●●

●

●

●

●
●

●

●
●●
●

●
●

●

●

●

●

●●●● ●

●

●●●

●●

●

●

●

●
●
●

●

●

●

●

●

●●

●
●

●●

●●

●
●

●

●●●

●
●

●

●

●
●

●●
●

●

●
●
●
●

●

●●
●

●

●

●
●

●
●

●

●
●
●●

●
●

●

●
●
●●

●

●

●
●
●

●●

●
●

●

●●●

● ●

●
●
●●

●
●

●

●●

●
●

●● ●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●●

●

●

●

●

●
●

●
●

● ●
●

●●

●
● ●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●●●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●
●
●●

●
● ●●

●

●
●

●

●

●●

●

●
●

●
●

●●●

●
●

●

●●

●

●
●

●

●

●●●
●

●●

●●●

●

●
●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●●

●
●
●●

●

●

●

●

●
● ●

●

● ●

●

●●

● ●
●

● ●

●
●●

●
●

●

●

●
●

●

●

●
●

●
●
●

●

●
●

●

●●
●

●

●
●

●

●

●

●
●
●● ●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●
●

●

●

●●
●

●

●●

●

●

●
● ●

● ●

●
●

● ● ●

● ● ●

●

●

●

●

● ●

●

●
●

●
●

●

●●
●

●

●

●●

●
●

●

●

●●

●

●●●
●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●

●●
●
●●●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●
● ●
●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

● ●
●

●

●

●

●●●
●

●
●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●
●

●
●
●

●
●

●

●
●

● ●

●

●●

●
●

●

●

●
●

●

●
●

●
●●

●
●

●

●

●

● ●

●

●

●

●●

●
●

●

●
●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ● ●

●

●●
●

● ●●●

●

●

●●
●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●●

●●

● ●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●
●

●●

●

●
●
●●

●
●●

● ●

● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

● ● ●

●

●

●

●
●

●

●

●●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●●
● ●●

●

●

●
●

●
●

●

●

●

●
●

● ●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●●
●
●●

●
●●

●

●

●

● ●
●

●

●

●

●●

●●

●

●

●

●

●●

●

●
●

● ●

●

●

●
●

●
●
●

●

●

●

●

● ●

●●
●●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●●
●

●

●
●

●

●

●

●●
●

●●

●

●

● ●

●

●

●

●
●

●

●
●

●
● ●

●
●

● ●

● ●
●

●

●
●

●
●

●

●

●
●●

●

●

● ●
●

●

●●
●● ●
● ● ●

●

●
●

●

●

●

●
●

●●

●
●
●

●

●

●
●

●
● ●

●
●

●

●
●

●●

●

●

●

●

●●●

●
●

●

●

●

●
●●●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●● ●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●●

●

●

●
●

●

● ●

●

●
●

●

●●

●
●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●●●

●

●

●

●
●

●

● ●●●
●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
● ●

●
●

●

●
● ●

● ●●

●

● ●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●●
●

●

● ●

●

●

●

●
●●

●

●

●
●

●

●●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●● ●

●

●

●●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●●

●

●

●

● ●

● ●

●

●

●●

●
●

●

●

●
●●
●

●●

●

●●

●●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

● ●

●
●

●●
●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

● ●●
●

●
●

●

●

● ●

●
●

●

●
●●

●

●

●●
●
●

●
●

●

●

●

●●

●●

●

●
●

● ●

●●

●
●

●

● ●

● ●

●

●
●

●

●

●
●●

●

●●

●
●

●
●

●

●●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●●

● ●

●

● ●
●

●

●
●●

●

●

●

●
●

●●
●

●

●
●●

● ●

●

●●

●
●

●

●

●

●
●

●

●

●

●●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●● ●

●●

●

●

●
●

●

●
●

●
●

●

●
●

●●
●

● ●
●●

●

●

●

●

●

●
●

●
●

●
●●●● ●●
●

●

●

●

●

●
●

●

●
●

●
●

●●●

●
●

●
●

●●

●
● ●

●
●●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●
●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●●

●

●●

●●

●
●

●

●

●●
●

●

●
●

●
●
●

●

●●●
●

●

●

●●●
●
●

●

●

●

●

●
●

●
●

● ●

●●
●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

● ●

● ● ●

●

●

●

●

●

●
●

●
●

●●
●

●●
●

●

●

●
● ●

●

●
●

●

●
● ●

●

●

●●
●●

●

●

●

●●●
●

●
●

●

●

●
●●

●●

●
●

●●
●●

●●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●●

●

●
●

●

●
●

●
●

●

●

●

●
●

●●

●
●
●●

●●

●

●

●

●

●
●

●●●

●

●
●

●
●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●●

●
●

●

●● ●

●

●
●

●

●●

●
●

●●
●●

● ●

●
●

●
●

●

●●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

● ●

●

●

● ●

●

●

●
●

●

●
●

●

●●
●

●
● ●

●

●●

● ●

●●

●●

●

●●
●

●

●●
●

●
●
●

●

●●

●

●

●
●

● ●
●

●
●

●

●

●
●
●●

●

●

●

●

●
●

●
●
●●

●
●●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●
●●
●● ●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●
●●

● ●

●
●

●
●

●

●

●
●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

● ● ●●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●
●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

● ●
●

●
●

●
●

●

●
●

●
●

● ●
●●

●

●

●
●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●
●
●
●

●

●

●

●●

●

●

●

●

●●
●

●
●

●

●●
●

●

●

●

●

●

● ●

●

●●

●

●
●●

●
●

●

●●

●
●

●
●

●

●
●●●
●

●

●●●●● ●●

●

● ●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●●

●
●

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●●
●●

●
●●

●

●●●●

●
●

●
●

●●●

●
●

●

●

●
●●●
●

●

●

●

●

●

●●●
●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

● ●

●

●●
●

●
●

●

●
●

●●

●

●

●

●
●

●

●
●

●● ●

●
●

●

●

●
●

●

●

●●
● ●

●
●
●

●●
●
●

●

●●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●●

●

●

●● ●

●

●

● ●

●●
●

●● ●
●●●

● ●

●

●
●

●
●

●

●

●

●

●
●
●

●
●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●

●

●

●
●

●

● ●

●●

●●
●

●

●

●

●●

●● ●

●

● ●

● ●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●●
●
●

●
●●

●
●

●

●

●●●

●●

●

●

●
●●●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●●●
● ●

●● ●

●

●●
●

●

●

●

●

●●●● ●

●

●
●
●

●

●

● ●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●●
●●

●
●
●

●

●●

●

●
●

●

●●●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●●
●

●
●

●

●●

●
●

●

●
●

●●●
●
●●

●

●

●
●
●
●●●

●

●
●

●

●

●

●●●

●
●

●●

●
●

●●
●●

●
●

●

●

●

●
●

●

●
●

●
●

●●
●

●●●●
●

●

●

●

●

●

●●●●

●

●●●

●

●

●
●

●
●
●
●

●
●●

●

●●
●

●
●
●

●

●
●
●

●

●●

●

●

●

●

●

●●

●●

●
●

●

●
●

●●●

●

●

●

●●●●●●●●● ●
●●

●

●●
●●●

●

●
●

●

●

●

●
●●●●●
●●●
●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●
●

●●●
●●

●●●
●

●

●

●●● ●

●

●
●

●

●● ●

●●
●

●●
●●●●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●●●
●

●

●●●●● ●

●

●
●
●●

●

●
●●●

●

●

●
●

●

●●●●●●●●●● ●

●
●

●

●

●

●
●●

●

●

●●

●●●● ●

●

●

●● ●

●
●
●●●●●●

●●●

●

● ●

●

●
●

●
●

●

●

●●●●

●
●

●●●●● ●

●

●

●

●

●
●●

●●●

●
●●

●

●
●●●

●

●●

●
●

●●

●
●●

●

●

●

●
●●
●

●
●

●

●
●

●

● ●

●

●

●● ●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●
●●

●●

●

●

●●

●

●●●●●●● ●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●●

●

●
●

●●

●●
●●●
●

●
●

●

●●

●

●
●

●
●
●●●●●● ●●

●
●

●

●●

●

●

●

● ●

●
●

●●

●

●
●

● ●

●●
●

●

●

●

●

● ●

●

●●

●

●●

●●

●●●●● ●

●

●

●
●

●

●
● ●

●

●

●●

●
●●●● ●

●

●

●
●

●●
●●

●

●

●
●●

●

●

●
●
●●
●

●

●

●●
●● ●

●

●

●●

●

●
●

●

●
●

●

●●

●
●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●● ●
●

●
●
●● ●

●●

●
●
●

●
●
●

●
●

●

●●

●

●
●

●

●

●● ●●

●

●

●

●●●
●

●

●

● ●

●
●
●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●●
●

●

●

●

●●

●
●

●
●

●

●

●●●
●

●

●

●

●

● ●

●

●

●
●

●

●●

●
●

●

●
●●
●

●
●

●●

●

●

●
●

●

●●
●

●

●

●

●
● ●

●●●●
●

●●
●

●
●●

●
●

● ●
●

●

●

●
●●

●

●

●●
●

●

●
●

●●

●

●●

●

●●

●●

● ●●

●
●

●

● ●

●
●●

●
●

●●

●

●
●
●

●
●

●

●
●

●●●
● ●

●

●

●

●●

●
●

●●

●

●

●

●

●
●

●

●

●

●●●
●
●

●
●

●

●
●

●●
●

●
●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

● ●

● ●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●
●● ●

●

●

●
●●●

●

●

●

●

●
●●

●

●
●

●

●
●

●●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●●●
●●

●●

●

●

●

●
●
●

●

●

● ●

●

●
●

●
●

●●
●
●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

● ●

●

●

●
●
●
●
●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●● ●

●
●

●
●

●

●

●● ●

●

● ●
●
●
●

●

●

●

●

●

● ●

●

●

●
●●

● ●
●

●
●

●
●

●
●

●●

●

●

● ●

●●

●

●●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

● ● ●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●
●

●

● ● ●

●●●

●

●

●

●

●

●

● ●

●

●

●

●
●● ●

●
●●

●

●

●
●

●●
●

●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●
●

●

●

●

●
●

●
●
●●

●
●

●

●

●

●
●●

● ●

●
●

●●●

●

●

●
●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●
●

●

● ●

● ●
●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●●

●

●
●

●

● ●

● ● ●

●●● ●

●

●
●●

●
●

●

●

●●●
●●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●●

●
●

●

●●●
●

●●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●
●●

●
●

●

●

●●
●

●
●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●●
●

●
●

● ●

●

●●

●

●
●

●

●

●

●●

●●
●

●
●
●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●
●

●●
●

●●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●
●

●

●

●●

●●●

●

●

●

●

●

●
●

●●

●
● ●

●

●

●

●

●●
●

● ●

●●

●

●
●

●

●

●
●●

●

●

●

●
●●

●

●

● ●

●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●●

●●

●

●
●

●

●

● ●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
● ●

●

●

●

●

●
●
● ● ●

●

●

●

●

●

●

●
●●

● ●●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●●

●

●

● ●

●●

●

●
● ●

●
●

●
●

●

●
●

●
● ●

●
●

●
●

●●

●●●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●●

●
●

●●

●

● ●
●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●● ●

●

●● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●

●

● ●●●
●

●
●

●

●
●

●

●

●

●
●●

●

●

●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●
● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●
● ● ●

●

●

●

●●
●

●

●

●

●● ●

●

●

●

●●
●

●
●
●

● ●

●

●

●
●

●
●

●

●●
●

●●
●

●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●●●
●

●
●

●

●

● ●

●
●●

●

●
●●

●

●
●

●
●●
●
●

●

●

●

●

●●

●

●

●

●
●

●
●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●●●

●●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

●
●●

●
●

●

●

●

●

●●

●

●

●
●

● ●
●●

●

●

● ●

●

●
●

●

●

●● ●
●
●

●●

●

●
●●

●

●

●
●

●

●● ●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●●●●
●●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●
●●

●
● ●

●
●

●
●

● ●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●
●●

●

●

●

●●●●

●

●
●●●

● ●

●
● ●

●

●

●●

●

●
●●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

●
●
●

●

●
●

●
●

●
●

●
●

●

● ●

●

●

●

●

●
●●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●●
●

●

●

●●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●
●●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●●

●

●
●

●

●

●
●●

●●
●

●
●● ●

●

●

●
●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

● ●

●

●
●

●
●

●

● ●

●
●

●

●
●

●

●●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●
●

●●

●
●

●
●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●●

●
●

● ●

●

●
●

● ●

●

●

●●
●●● ●

●
●

●
●●●

●● ●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●●●

●

●●

●●
●

●

●●
●

●

●

●

● ●
●

●
●
●
●

●
●

●

●
●

●

●●
●

●

●●●

●●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

● ●

●

●●

●●

●

●

●
●●

●●
●

●
●

●

●
●

●

●

● ●
●

●

●

●●

●
●

●

●

●

●
●

●

●
●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●●●

●
●

●

●●

●

●
●

●
●
●●

●
●

●●
●

● ●

●

●

●●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

● ●

●
● ●

●●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●
●● ●

●●

●

●
●●

●

●

●
●

●
●

●

●

● ●
●

●

●
●

●
● ●

●

●

● ●●

●●

●

●
●

●

●

●

●

● ●

●●

●

●●
●

●●

●

●

●

●●

●

●

●

●
●●

●
●●● ●

●
●

●

● ●

●

●

●●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●●
●

●

●●●

●

●
●

●●●
●

●

●

● ●
●

●
● ● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●
●
●●

●●

●
●
●●

●
●

●

●

●
●

● ●●
●

●
●

●
●

●

●
●

●

●
●●

●

●

●
●

●
●

●

● ●

●●
●
●

●
●

●●

●
●

●

●

●

●

●

●●

●●

●●●
●
●●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●●

●
●

●
●

●

●

●●

●

●
● ●

●

●●●
●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●

●
●●

●

●
●

●
●
●

●

●

●● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●
●●
●●

●

●

●

●
● ●

●

●
●

● ●
●

●
●●

●

●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●

●●
● ●

●

●

●

●●
●

●●

●
●

●●
●

●●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●●●

●

●
●●

●
●

●

●

●
●
●

●

●

●
●

● ●

●

●

●

●

●
●

●
●
●
●

●

●
●

●

●

●

●
●

●●
●●●

●●

●

● ●

●
●●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●

●●●
●

●
●
●●●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●
●●

●

●

●

●

●●● ●
●

●●
●

●

●
●

●

● ●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●●

●●

●
●

●

●

●

●
●

●
●
●●

●
● ●

●●
●

●

●

●
●

●

●●●●
●

●

●

●

●

●

●●●

●
●

●

●

●
●

●

●●
● ●

●

●
●

●

● ●

●
●●
●●

● ●●●

●●

●
●

●●

●

●●

●
●
●

●

●

●
●●●

●
●

●

●
●

●
●
●

●

●
●
●

●●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

● ●
●

●

●

●

●

●

●
●

●

●●
●

●
●●●●
●

●●

●
●

●

●●
●

●

●
●

●
●

●
●
●

●
●●

●
●

●

●
●

●●

●

● ●

●

●●
●

●

●

●●

●

●

●
●

●●

●
●
●
●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●●●
●

●

●

●●●

●

●
●●

●
●●

●

●

● ●

●

●
●●●●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●
●●

●●

●
●

●
●●

●●
●●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●
● ●

●

●

●
●

●

●
●●

●
●●

●

●
●

●

●

●●
●
● ●

●

●

●● ●

●
●

●●

●●
●

●

●

●

●
●● ●

●

●

●

●●

●

●

●

●
●●

●

●

●

●●
●
● ●

●

●●●

●
●

●
●

●
●●

●
● ●

●
●

●

●

●
●●

● ●

●

●

●

●

●
●
●●●

●
●

●

●

●●

●

●

● ●

●

●

●

●
●
●

●

●●

●

●● ●

●

●●●●

●
●
●

● ●

●

●

●

●

●●
●

●● ●

●●

●●

●
●

●
●

●

●
●
●●

●

●

●

●●

●●●
●

●●

●
●●

●

●
●●●●

●

●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●
●

● ●

●

●

●
●

●

●
●

●

●●●●●
●

●
●

●●
●

●

●

●

●●●● ●

●
●

●●

●

●

●
●

●
●●

●
●

●

●
●

●

●
●

●

●

● ●

●
●●●

●
●
●●
●●

●

●

●

●

●

●

●●

●
●

●

●

●
●

● ●

●

●●●
●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

● ●

●
●

●

●

●
●●

●

●●

●
●
●

●
●

●●

●

●

●
●

●
●

●

●
●

●●

●
●●
●●
●●

●

●●
●

●

●

●●
●
●●

●

●

●
●
●●●●● ●

●
●

●
●

●

●

●

● ●

●
●

●

●●●

●●
●
●

●
●

●

●

●

●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●●
●●

●

●●

●● ●

●

●
●●●

●

●●
●

●

●

●

●
●●

●
●
●●
●●●

●●

●●●●●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●

●

●

●

●
●●
●
●●
●

●●

●
●●●●

●

●●

●●

● ●

●

●

●

●●●
●●
●

●

●●
●

●
●●

●
●●

●
●
●
●

●
●●

●
●
●

●

●

●

●
●

●

●

●●●●

●●
●

●●●●● ●

● ●

●●

●●●● ●

●●

●
●

●

●
●

●

●

●
●● ●

●●

●

●●●
●

●

●●●
●

●

●

●

●
●
●
●
●

●

●

●

●

●
●●●
●
●

●●●
●●
● ●

●

●●

●

●●●

●

●

●
●

●

●
●●●

●
●
●

●
●
●

●
●

●
●

●

●●●
●

●

●
●

●

●

●

●

●●● ●

●●

●

●

●

●

●

●●
●

●

●
●
●●●

●●●●●●●●●● ●

●
●●

●

●●●

●

●●●●●
●

●●
● ●

●●
●

●

●
●

●

●●●●●●● ●

●●

●

●

● ●
●

●●
●●
●
●●
●●●

●

●

●●●●
●

●●
●●●●●●● ●

●

●

●●

●
●

●

●●●●●●●●●●●●●●●●●●●● ●

●●
●

●

●
●● ●

●

●

●

●●●●●●●●
●
●●
●
●●●●●●●●●●●●●●
●

●

●

●●●●●●●● ●

●
●

●

●

●●
●

●

●

●
●

●●● ●

●
●
●

●
●

●

●

●●

●
●
●

●

●

●

●

●

●

●●●●●●●●●●●● ●

●

●●
●
●

●

●●

●●

●

●

●●
●
●

●
●●
●●●●●●●●● ●

●●
●

●●

●

●●

●●●●●●●●●●●●●●●●● ●

●

●
●

●●● ●

●

●

●

●

●● ●

●

●●● ●

●●●

●●●●● ●

●

●

●
●

●●●

●

●

●
●

●

●●●●●●● ●

●

●

●
●●

●
●

● ●

●

●
●

●●●●● ●

●

● ●

●●

●●●●●● ●

●

●

●

●
●

●
●

●

●
●●●
●

●●●●●●●●●
●

●

●●● ●

●●
●

●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●
●
●●

●

●●●●●●●●● ●

●●

●●●● ●●

●

●● ●

●

●●
●
● ●

●

●●
●●
●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●●

●
●

●●● ●

●
●

●

●
●●

●

●
●

●

●●●●●●●●●●●●●●●●●

●

●

●●●

●

●

●
●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●
●

●

●

●
●
●

●●

●

●

●

●

●

●●
●

●

●
●●●●
●
●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●

●●

●●●●●●●●●●●●●●
●●
●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●● ●

●●

●●●●●
●
●

●

●●●

●

●●●●●●●●

●

●

●

●●
●

●

●●

●

●

●
●●●●● ●

●
●
●●

●

●

●
●

●

●

●●

●

●●● ●

●

●● ●

●

●

●
●

●

●●●●●●● ●

●
●●

●●
●

●

●

●●●●●●●●●●

●

●

●●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●

●●●●●●●●●●●●●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●●●● ●

●

●●●●●

●

●●

●

● ●

●
●
●
●●●

●

●

●

●●● ●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●
●●●●●●●
●●● ●●

●
●● ●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●●
●
●

●●
●●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●●
●●●

●

●

●

●●●

●
●

●

●
● ●

●

●●●●●
●

●
●●

●
●

●

●●

●

●

●

●
●

●
●

●●

●

●

●
●
●●

●

●

●
●●

●

●
●

●
●●●

●●●
●

●
●

●

●

●

●
●

●

●●

●

●●●●● ●

●

●

●
●

●

● ●

●

●

●

●
●

●
●

●

●

●●

●●●●●●●●●●● ●

●

●
●
●●

●
●●

●●

●

●
●●
●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●●●●●

●●
●

●

●

●●●●

●

●●
●

●●

●

●

●

●

●
●
●●●

●
●●

●
●●

●
●

●

●
●●

●

●
●

●

●

●●●

●

●

●
●

●

●● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●●
●●
● ●

●
●
●●

●
●

●●

●

●

●
● ●

●

●● ●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●

●
●●

●

●

● ●

●

●
●

●

●

●●

●

●

●●
●

●
●

●
●

●●

●

●

●●
●

●
●●●

●
●

●
●

●●

●●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●●

●●●●
●

●●

●
●

●
●
●

●

●●

●

●

●

●
●

●

● ●

●●●
●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●
●●

●

●
● ●

●

●●

●
●

●

●●

●

●
●

●

● ●

●
●●

●
●

●●●
●

● ●

●●
●

● ●

●

●

●
●

●

●●
●●

●

●

●●
●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
● ●

●●

●

●
●

●
●

●
●

●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●
●

●

●
●

●
●●

●

●

●
●

●●

●

●●

●

● ●
●

●

●
●

●

●●
●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●● ● ●

●●

●
●

●●

● ●

●

●
●●●

●●

●

●

●

●
●

●

●
●

●

●
●●

●●
●●

●

●

●
●

●
● ●●

●
●●

●

●

●●

● ●
●

●

●

●
●●●
●

●
●

●

●

●

●

●●●

●

●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

● ●● ●

●●

●

●

●

●

●

●●● ●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●
●●

●●

●

●

●
●

●●
●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●●

●
●●

●

●

●

●

●●
●●

●

●
●

●

●

●●
●

●

●
●

●
●

●
●●
●●

● ●

●
●● ●

●
●

●● ●

●

●●

●

●

●

●●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●●

●

●
●

●
●
●

●

●

● ●
● ●

●

●●

●
●

●

● ●
●

●

● ●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●
●●
●
●

●
●

●

●

●
●

●
●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

● ●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●
●

●

●●

●●●
●
●
●
●

●

●

●● ●

●
●

●●

●
●●

●

●

●

●
●
●●
●
●

●
●

●

●

●

●

●
●

●

●
●●●●

●●●

● ●

●

●

● ●●
●

●

●
●
●●

●

●
●
●
●●

●
●

● ●
●

●

●
●
●

●●

●

●

●
●

●
●

●

● ●●●●

●●
●

●
●●

●

●
●

●

●

●

●
●

●●

●

●
●

● ●

●

●●
●

●●

●

● ●●

●

●

●

●

●

●
●

●

●
●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●
●

●●

●
●●

●

●

●●

●●
●

●●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●
●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●●

●
●

●
●

●

●
●

●

●

●● ●

●

●

●
●

●

●

●
●●

●

●
●

●
●
●
●

●

● ● ●

●

●●
●

●

●●

●

●

●

●
●●

● ● ●

●

●
● ● ●

●

●

●

●
● ●●

●
●●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●●

●

●

●

●
●

●● ●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

● ●

●

●

● ●

●

●
● ●

●

● ●

●

●
●

●
●●

●

●

●

●
● ●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

● ●
●

●

●

●

●
●

●
●
●

●

●●

●
●

● ●
●

●

●

●
●

●
●

●
●

●

●

●●
●

●

●
●

● ●

●
● ●

●
● ●

●
●●●

●●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●
●

●
●
●

●● ●

●
●
●●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●●

●

●
●

●

● ●

●

●

●
●

●

●●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●
● ●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●
●

●
●

● ●

●●

●
●

●

●●●●
●

●
●

●
●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●●

●

●

●● ●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●
● ●
●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●
● ●

●

●

●
●

● ●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

● ●●

●
●

●●

●●
●

●
●

●●

● ●

●

●

●
●

●

●

●●

●

● ● ●

●
●

● ●

●●

●

●●

●

●●

● ●

●

●

●
● ●

●
●

●

●

●

● ●

●●
●

●
●

●

●
●

●●

●

●

●
● ●

●

●
●

●
● ●

●

●
●

●●

●

●

●

●● ●

●

●

●
●

●

●

●

●●

●

●

●

●
●

● ●●

●●

●
●
●

●

● ●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●● ●

●
● ●

●

●●

●
●

●
●

●
●

●●
● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

● ●
●
●●●

●
●
●

●
●

●

●

●

0 100 200 300 400

−1
0

1
2

3

Relationship between dispersion errors and SSN
 Square root transform

SSN

D
is

pe
rs

io
n

Er
ro

r

y ~ a + b*x^c
y ~ a+b*sqrt(x)
y ~ a + bx

Figure 8: Relationship between Dispersion errors and Sunspot number of Silso for original
data and square root transform

Original data Square root transform
‡(t) = – + — ◊ SSN ‡(t) = – + — ◊ SSN1/2

– 1.9771 -2.50
— 0.1863 17.55

11

7 Conclusion
In this report, we first tested di�erent transformations to stabilize the variance. The

three tested methods lead to more homoskedasticity data but the square root and Simple
Anscombe transforms seem to give better results in term of predictive capacity (RMSEP),
while Haar-Fisz transform returns more gaussian data. It is therefore not necessary to use
complex transformations to obtain interesting results. Nevertheless, the estimation of the
relationship between the mean and the variance of the Haar-fizs method makes it possible to
obtain a more suitable distribution.

For the estimation of time domain errors, prediction errors in each station, we have tested
a general AR8 model and more specific ARIMA. The last one was more statically justifiable
and o�ered better diagnostics than AR(8) models but lead to similar RMSE and confirm the
magnitude of the time domain errors found in the original article.

There is also a clear improvement in the estimation of this error with stabilized variance
of transformed data. Square root transforms o�ers very interesting results. The estimated
errors are more constant and do not fluctuate with the solar cycle. Simple Anscombe is as
always very similar to square root. Haar-fisz is more ambiguous, the transformation seems
to give good and stable Time domain errors over time but its RMSE is significantly higher.
Finally, for the Time domain errors part, it was possible to define an ARIMA model (3.1.1)
by comparing the AIC and RMSE criterion which could potentially adapt to all the stations.

Dispersion errors (Errors betwen the stations) are time-dependent. Like time domain
erros, transformation of the data has positive e�ect on dispersion errors.

In the next section, we made the link between the errors and the sunspot number from
silso. The link raw data base is not easily observed, however, when aggregating the data (i.e.
averaging over 27 days - sun rotation time), the result is smoothed and the daily noise around
the data disappears. For the time domain error, we notice a square root link with the inter-
national sunspot number. The shape of the funnel also shows that when the SSN increases,
the variance of the data also increases. Nevertheless, the e�ect of the transformations shows
a more random and stable link between errors and SSN. The errors no longer increase with
the number of sunspots and the square root link disappears.

Contrary to the time domain errors, the link between the dispersion errors and the inter-
national sunspot number is linear for the original data. The form of funnel remains present
when SSN increases. At the level of the square root transformation, the relationship changes
to a square root link. This change is probably due to the transformation but, as before, the
link is more limited and the variability of the data is lower.

12

A Appendix
A.1 Haar-Fisz Transform

DDHFT is an automatic method to stabilize the variance from an estimate of the rela-
tionship between variance and mean. This method has shown good results data that follow
Poisson distribution (more information are available on P.Fryzlewics and al.(2007) [3]). Data
Driven Haar fisz transform is an orthogonal transformation that uses the coe�cients obtained
from the decomposition by wavelet of the series. The coe�cients then contain the information
on the local behavior of the data.

This method is subject to 2 main conditions: The variance must be a non-decreasing
function of the mean ‡2 = h(µ) and the length of the observed data must be of power
J = log2(n)

The to transform data follow these step (R function, ddhft.np.2 in variance stabilization
by Data-Driven Haar-Fisz package)

1. Wavelet transforms the time series by the Haar wavelet.

2. Estimation of mean-variance relationship between finest level smoothing and detail
wavelet coe�cients using isotonic regression

‡2
i = h(µi) + ‘i

3. Divide wavelet coe�cients by smooth ones subject to the estimated mean-variance re-
lationship

4. Perform the inverse Haar wavelet transform of the modified coe�cients.

A.2 Variance stabilisation
A.2.1 Haar-Fisz Transform Extreme value

This appendix focuses on a portion of the data containing extreme values of the the
Haar-Fisz transformation. A priori these values as of august 2008 do not derive their origins
from the original data. Figure 9 compares transformed data by the Haar-Fisz method and
the original data for the UC2 station. However, values of this amplitude do not appear on
each station and seem be specific to UC2. By hypothesis, it’s assumed that these extreme
values occur during wavelet transformation from the Haar-Fisz method, it’s a computational
problem.

2008 2009 2010

−6
−4

−2
0

2

Time

Su
ns

po
t n

um
be

r

Haar−Fisz transform : 2008 − 2010

2008 2009 2010

0
20

40
60

Time

Su
ns

po
t n

um
be

r

Original data : 2008 − 2010

Figure 9: Comparison of the Haar-Fisz transformation and the original data between 2008
and 2010

A.2.2 Short term Variance stabilization

The low term standard deviation, such as taken every 20 days, is also subject to fluctuation
of the solar cycles. The figure 10 represents the evolution of standard deviation by a 20
days interval and shows the positive impact of the three variance stabilization methods.
Conclusions are similar to the data taken as a whole. There is an important relationship
between the mean and the variance for the original data. This relationship disappears after
transformation and data and the data has a local standard deviation that is more random
and homoscedasticity

i

1980 1990 2000 2010

Low terme Standard Deviation

Ti
m

e

●
●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●●
●

●

●●
●
●
●
●
●●●

●

●
●

●●
●
●
●●
●●
●●●

●●
●●●●
●●●●●●●●●●●●●●●●●

●●●●●
●
●●
●
●●
●
●●●●●●●●●●●●●●●●●●●●

●
●●●●
●
●●●●●●●●●●●
●●

●

●
●●
●
●

●

●
●
●●

●

●

●
●●
●
●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●
●

●
●

●
●
●

●

●●

●

●

●
●

●

●

●

●
●
●
●●●

●
●●

●●

●●

●
●

●●
●
●●

●
●
●
●
●●●●
●
●●●●
●
●
●●●●●●
●
●●

●●●
●
●●●●●●●●●●
●●●
●●●
●●

●
●
●
●

●

●

●
●
●
●●
●●●●

●

●
●
●
●

●●
●●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●●

●●
●

●●
●●
●

●●

●●

●

●

●

●●
●●●●

●

●●
●
●

●

●

●●●●
●
●
●

●

●

●

●

●
●
●
●●

●

●

●●●
●
●
●

●

●

●
●●●●●

●

●

●

●●●●●●●●●
●●
●
●●●

●
●
●●●
●
●●●●
●
●●

●

●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●
●
●●

●●●●●●●●●●●●●●●
●●●●●
●
●●●●
●●●
●●

●
●

●

●●●

●

●●
●
●
●
●●●●●●
●

●

●●

●●
●●

●
●
●
●●●●
●

●

●

●

●

●

●
●●●●●
●●

●

●

●●
●●
●
●●
●
●●

Low terme Standard Deviation − Averaging over 20 days

●
●●●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●●

●
●●●

●

●
●

●
●
●●

●

●

●
●●
●
●

●

●
●●
●

●

●●

●

●●●
●
●
●●

●
●
●

●●
●
●
●

●●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●●
●●●●
●●
●●
●

●

●●
●

●

●

●●
●●●●
●

●●●
●●
●

●

●
●●
●
●

●

●

●
●●

●

●

●●●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●
●
●

●

●●

●

●
●

●

●

●
●
●
●

●●

●

●

●●

●

●●

●

●●●
●
●●●●

●

●

●●

●●
●

●

●

●
●
●
●
●

●

●●●
●
●

●

●

●
●
●

●

●
●●

●
●
●
●

●
●

●●●●
●

●
●●●●

●
●
●●
●

●

●●●●●
●●●
●●
●●

●●

●

●

●

●

●

●●

●●

●●●
●
●●
●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●
●
●
●

●

●
●

●

●●

●●

●●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●
●●

●

●
●
●●

●●
●
●●

●

●

●

●
●●
●●

●

●

●●
●
●

●

●

●●●●
●
●●●

●

●●

●
●
●●
●
●

●

●
●●
●
●

●

●
●

●
●
●
●
●
●

●

●
●

●●

●

●
●●
●●●

●
●●

●●●

●

●
●
●●

●

●

●●

●

●

●
●

●

●

●
●
●

●
●
●

●

●●
●●
●●
●●
●
●
●●
●●

●

●

●

●
●●

●

●●●

●

●

●

●●●●
●
●
●
●

●
●

●●●●

●

●●●●●
●
●●
●●

●

●
●
●
●

●●●●●
●●
●

●●●

●

●

●

●
●●
●●●●

●

●

●
●

●
●●

●
●
●

●●
●

●●●
●●

●●●

●

●●
●

●

●●●
●●

●
●

●

●●
●

●

●●

●

●

●
●●●●
●●

●

●

●●

●
●

●●

●
●

●
●●
●●
●
●

●

●

●

●

●

●●
●●●

●●

●

●

●●

●
●
●

●
●●
●●

●
●●●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●●

●
●●●

●

●
●

●
●
●
●

●

●

●
●●
●
●

●

●
●●
●

●

●●

●

●●●
●
●
●●

●
●
●

●●
●
●

●

●●
●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●

●●●●
●●
●●
●
●

●●
●

●

●

●●
●●●●
●

●●●
●●
●

●

●
●●
●
●

●

●

●
●●

●

●

●●●
●
●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●
●
●

●

●●

●

●
●

●

●

●
●
●
●

●●

●

●

●●

●

●●

●

●●●
●
●●●●

●

●

●●

●●
●

●

●

●
●
●
●
●

●

●●●

●
●

●

●

●
●
●

●

●
●●

●
●
●
●

●

●

●●●●
●

●
●●●●

●
●

●●
●

●

●●●●
●
●●●
●●
●●

●●

●

●

●

●

●

●●

●
●

●●●
●
●
●
●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●
●

●

●●

●●

●●

●●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●
●●

●

●
●
●●

●●
●
●●

●

●

●

●
●●
●●

●

●

●●
●
●

●

●

●●●●
●
●●●

●

●●

●
●
●●
●
●

●

●
●●
●
●

●

●
●

●
●
●
●
●
●

●

●
●

●●

●

●
●●
●●●

●
●●

●●●

●

●
●
●●

●

●

●
●

●

●

●
●

●

●

●
●
●

●
●
●

●

●●
●●
●●
●●
●
●
●
●●●

●

●

●

●
●●

●

●●●

●

●

●

●●●●
●
●
●
●

●

●

●●●●

●

●●●
●
●
●
●●
●
●

●

●
●
●
●

●●●●●

●●
●

●●●

●

●

●

●
●●
●●●●

●

●

●
●

●
●
●

●
●
●

●●●

●●●●●

●●●

●

●●
●

●

●●●
●●

●
●

●

●●
●

●

●●

●

●

●
●●●●
●●

●

●

●●

●
●

●●

●
●

●
●●
●●
●
●

●

●

●

●

●

●●
●●●

●●

●

●

●●

●
●
●

●
●●
●●

●●
●●
●
●●

●

●●●
●●●●
●●●●
●
●●●
●
●●●●●●●
●●
●●●
●
●
●
●
●
●
●
●
●●
●
●●
●●
●●●●●

●
●●●
●
●●●●●●●
●
●
●
●●●●●
●●●
●

●

●●
●●●●●●
●●●●●●
●●

●

●●
●
●

●●
●
●
●
●●●

●
●●●
●
●●
●

●●●●●●●●
●
●●●●●●●
●
●
●●●●●●●●●
●●●●●
●●●●●
●●●
●●●●●●
●●●●
●●●●●●●●
●
●●●
●●
●●●●
●
●●
●
●
●
●●●
●
●
●
●
●●●
●

●●
●●●
●
●●
●
●●●
●
●
●●
●●
●
●●●

●

●●
●●●●●●

●
●
●
●
●●●●●●
●
●
●●●●●●●●●●●
●
●
●●●●●●●●●●
●
●
●
●●●●●●
●●●●●●

●

●●●●
●

●

●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●
●●●●●
●
●
●
●●●
●●
●
●●●●●
●
●●
●
●●●●●●●
●●●●
●●●●
●●●●●●●
●●●
●
●●
●●●●●

●
●
●●●●●
●
●

●
●
●●●●●●●●

●●

●●●
●
●●
●
●
●
●

Haar−Fisz
Simple Anscombe
Square root
Original data

Figure 10: E�ect of stabilization method on low terme Standard Deviation - Averaging over
20 days

ii

A.2.3 Autocorrelation functions

0 10 20 30 40

0.
0

0.
4

0.
8

Autocorrelations − Centred−scaled

Lag

AC
F

0 10 20 30 40

0.
0

0.
4

0.
8

Lag

Pa
rti

al
 A

C
F

Partial autocorrelations − Centred−scaled

0 10 20 30 40

−0
.1

0
0.

00

Autocorrelations − Differenced Square root

Lag

AC
F

0 10 20 30 40

−0
.1

0
−0

.0
4

0.
02

Lag

Pa
rti

al
 A

C
F

Partial autocorrelations − Differenced square root

Figure 11: Autocorrelations function and partial autocorelation function for UC2 - Original
data (Right) and UC2 - Square root transformation (Left)

A.3 Time domain errors
A.3.1 Dianostic plot

Time

4000 6000 8000 10000 12000 14000 16000

−6
−2

0
2

4

0 10 20 30 40

−0
.0

6
0.

00
0.

06

ACF of Residuals

Lag

AC
F

●●●

20 40 60 80 100

0.
0

0.
4

0.
8

p values for Box−Pierce statistic

lag

p
va

lu
e

AR8 − Anscombe − Standardized Residuals

Time

4000 6000 8000 10000 12000 14000 16000

−6
−2

0
2

4

0 10 20 30 40

−0
.0

2
0.

02

ACF of Residuals

Lag

AC
F

●
●●

●
●
●
●●

●
●
●

●
●
●

●
●

●●●

20 40 60 80 100

0.
0

0.
4

0.
8

p values for Box−Pierce statistic

lag

p
va

lu
e

ARIMA − Anscombe

Figure 12: Diagnostic plot for AR(8) model (Left) and ARIMA(3,1,1) with simple Anscombe
transform for UC2 station (Right)

iii

Time

4000 6000 8000 10000 12000 14000 16000

−6
−2

2
4

6

0 10 20 30 40

−0
.0

6
0.

00
0.

06

ACF of Residuals

Lag

AC
F

●

●

●●●

0 20 40 60 80 100

0.
0

0.
4

0.
8

p values for Box−Pierce statistic

lag

p
va

lu
e

ARIMA − Original data − Standardized Residuals

Time

8000 10000 12000 14000 16000

−4
−2

0
2

4

0 10 20 30 40

−0
.0

3
0.

00
0.

02

ACF of Residuals

Lag

AC
F

●●●●●●●●●●●●●●
●
●

●●

20 40 60 80 100
0.

0
0.

4
0.

8

p values for Box−Pierce statistic

lag

p
va

lu
e

ARIMA − Haar−Fisz − Standardized Residuals

Figure 13: Diagnostic plot for ARIMA model on original data (Left) and ARIMA on Haar-Fisz
transform for UC2 station (Right)

iv

A.3.2 QQplot of residuals ARMA model

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●
●●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●
●

●

●●●

●
●

●

●●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●●
●

●
●●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●
●

●
●

●

●

●

●

●

●
●

●●

●

●●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●
●

●●

●

●

●

●

●

●●
●●

● ●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●●
●●

●
●

●
●

●●

●
●

● ●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●

●

●●●●●●●●
●●●●●

●●

●
●●

●

●

●

●

● ●

●

●

●

●

●
●

●●●
●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●●

●
●

● ●

●

●

●

●

●●

●

●●

●

●

●●●●●●●●●●●

●●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●● ●

●

●

●

●●

●

●

●
●

●
●●●●

●

●●●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●●●●

●

●

●●

●

●

●
●

●

●

●

●

●
●● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●

●

●
●

●●

●

●●●●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●●●
●● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●

●

●●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●

●

●

●●●●●●●●●●●

●
●

●

●

●
●●

●●●●

●

●●●●

●

●

●

●●●●●

●

●

●●●●●

●●

●●

●

●●
●

●

●
●

●

●●
●

●

●●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●●●

●

●●●●●

●

●

●●●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●

●

●

●●●●●●

●●

●

●

●●●●●●●●●●●●● ●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●●●

●

●●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●●●●●●●●

●●

●

●

●

●

●
●●

●●

●

●

●●
●

●

●

●

●●●●●●

●

●

●

●

●

●●●●●●●●●●●

●

●

●●●●●●●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●●●
●

●

●

●

●●●●●●

●

●

●●●

●

●

●

●

●●●●●●●●●

●

●
●

●

●

●●

●

●
●

●●●●●●●●●●●●●●●●

●

●
●

●

●●

●

●

●

●

●●
●

●
●

●

●●

●

●●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

● ●●
●●●●

●
●●

●

●

●

●●●

●

●

●●●●●●●●●

●

●●

●

●

●

●●●●●
●

●

●

●

●
●

●●●●●

●

●
●

●
●

●

●

●

●

●

● ●●●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●
●

●
●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●
●

●

●●

●●

●

●

● ● ●
●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●●●●

●

● ●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●●●

●
●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

● ●●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●●
●●

●

●
●

● ●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●●●●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●●
●●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●
●

●

●

●

●● ●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●●
●

●

●

● ●●

●

●●

●

●
●

●

●●

●

●

●
●

●

●●● ●

●

●

●

●

●

●
●

●●●

●

●
●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●●●

●
●

●

●●
●

●

●

●●

●●

●
●

●

●●
●

●

●

●
●●

●

●●

●●

●
●

●

●●●
●

●

●

●
●

●●●

●●

●

●

●

●

●

●

●●●

●
●

●●

●
●

●

●●●

●

●
●

●●●

●●

●

●

●●
●●●●

●
●

●
●

●

●

●

● ●
●

●

●

●●

●

●

●

●
●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●
●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●
●

●
●●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●
●●● ●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●
●

●

●

●●●●
●

●

●●

●

●●●●●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●●

●●

●

●●●●●

●

●●

●

●
●

●●
●

●

●

●

●
●

●
● ● ●

●

●● ●

●
●●

●

● ●●●
●

●
●

●

●
●

●●

●

●
●

●●●

●

●

●●● ●
●

●

●

●

●

●

●
●

●●

●

●
●●

●

●
●

●●●●●●●●●●●●

●
●●●

●

●

●

●
●

●●

●

●●●●●●●●●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●●●● ●●●●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●●●
●

●
●●●●●

●
●

●
●●

●

●

●
●

●
●●

●

●●●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●
●

●

●●●●●

●

●

●●

●●

●

●●
●●

●

●

●
●

●

●●

●●●

●
●

●●●

●●●●●●●●●●●

●

●
●●
●

●●
●

●●

●
●

●

●
●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●● ●

●

●
●

●
●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●

●●

●

●
●●●

●
●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●
●

●
●

●

●
●

●●●●

●

●●

●

●
●●

●

●

●
● ●

●

●●

●

●

●
●●●●●●●●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●●●●●

●

● ●●

●

●●

●

●

●

●

●●●●●●●

●

●

●

●
●

●
●● ●

●

●

●
●

●

●●●●●●●

●
●

●
●

● ●

●
●

●

●

●●

●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●●●

●

●
●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●●

●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●●
●

●
●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●

●●
●

●

●●
●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●
●●

●

●●

●

●

●
●

●

●
●

●
●

●
●

●
● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●
●

●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●●
●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●●●

●●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●●●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●

●

●
●●

●

●
●●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●●●

●
●●

●

●

●
●

●

●

●●
●●

●
●

●

●
●

●●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●●
●●●

●

●

●

●
●

●

●
●

●

●
●

●●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●●

●
●●●

●

●

●

●
●

●●

●●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●●

●●●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ● ●●
●

●
●●
●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●

●●●

●

●
●

●●●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

●
●●

●●

●

●
●

●

●

●

●

●●●
●●

●●
●

●●●●●●●

●●
●

●●

●

●

●

●

●

●

●

● ●

●
●

●●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●●●●●

●

●

●

●
●●

●

●

●

●
●

●
●

●
●

●

●

●
●●●●●●●●

●
●

●

●●

●●
●

●

●

●●●●
●●●●●

●

●

●

● ●

●

●

●

●

●● ●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●●

●●●●

●

●●

●

●

●
●

●

●

●●●

●

●
●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●●
●

●

●●

●

●●

●

●

● ●

●

●
●

●●

●

●●

●

●●●●
●

●● ●
●●

●

●

● ●●●●●●

●

●●

●●

●

●●●

●
●

●

●

●●

●●●
●

●

●
●

●

●

●●●
●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●●
●●

●●●
●

●

●

●●

●

●

●●
●

●●●●●

●●

●●●●●●●

●●

●

●
●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●
●

●

● ●●

●

●

●●

●

●

●●●

●

●●

●

●

●
●

●
●●

● ●●
●

●

●●●●●

●

●

●

●
●

●

●
●●

●
● ●●

●●
●●●

●
●

●

●

●● ●
●

●
●

●

●
●

●
●●

● ●

●

●
●●

●
●

●

●●●
●

● ●

●

●●●●●

●

●
●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●●●●

●

●

●●●

●

●

●

●

●●
●●

●

●●●●●●●●●●●●●●●●●●● ●
● ●●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●
●●

●

●
●

●

●

●

●●
●

●

●

●●●●

●

●

●

●
●

●
●

●●

●

●

●

●
●●●

●

●●●●●●●●●●

●

●●●

●

●
●

●

● ●●●●
●●●●

●

●

●●

●
●

●●

●

●●●●●●●

●

●●

●

●●●

●

●●●●
●

● ●●●

●

●●●●●●

●
●●●● ●●● ●●

●

●
●

●●
●

●

●●●●●●●●●●●●●●●●●●●●●

●

● ●

●

● ●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

● ●●●

●

●

●●●●●

●

●
●

●●

●

●

●

●
●

●

●●

●
●

●
●●

●

●●●●●●●●●●●●

●●
● ●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●●●●●

●

●●

●

●

●●
●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●●
●

●

●●●●●

●

●

●

●

●

●
●

●
●●

●●

●

●●●●●●●●

●

●

●●●

●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●
●

● ●●●

●

●●●

●

●
●

●
● ●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●● ●●

●

●●●●●●●●●●●●●

●

●

●
●●●

●

●

●●●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

● ●●●●●●●●●●●●●● ●

●

●

●

●

●

●●●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●● ●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●● ●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●
●

●

●●●

●

●

●●●●●●

●

●

●

●
●●

●

●
●

●

●

●●●●●●

●

●

●●

●

●●●
●

●

●●●●●●●

●

●

●●

●

●
●

●

●●●

●

●

●●●●●●●●●●●●●●●●
●

●

●

●

●

●●

●

●
●●●●

●

●●●●●●●●●●●●●● ●
● ●●●●

●
●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●●●●●●●●●●●●●●●●

●

● ●
●

●
●

●

●● ●

●

●
●

●●

●

●

●

●

●●●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●●

● ●

●

●

●
● ●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●●

●

●
●

●
●

● ●

●
●

●●●

●

●

● ●●●●

●

●●●●●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●●●●●●●●●●●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
● ●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●
●●

●
●

●

●●

●
●

●

●

●

●●
●

●

●●

●●
●

●●

●
●●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●●
●●

●

●

●

●

●

●
●

●

●

●●

●

●
●●

●

●

●●

●

●
● ●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●●
●

●

●

●
●

●

●

●●●

●●
●

●
●●

●

●

●

●●

●
●

●●

●

●

●

●
●

●●
●

●

●
●

●●
●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●
●●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●●
●

●
●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

ARIMA − Original data − QQplot

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●●

●
●

●

●●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●
●

●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●
●●●●●●●●

●

●

●

●

●

●
●

●●●●

●

●●●●

●

●

●

●●●●●

●

●

●●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●●●●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●●
●

●

●

●

●

●

●●●
●●

●

●

●

●

●●●●
●●

●

●
●●●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●●

●●
●●

●●

●

●

●

●

●

●●
●●
●●●●●

●●

●

●

●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●●●
●●

●

●

●●●

●

●

●

●

●

●
●●
●●●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●
●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●●
●
●

●

●
●

●

●

●

●●
●

●

●

●
●●●●●●●

●

●

●
●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●●●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●

●
●

●
●

●

●

●
●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●
●●●●●●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●
●

●

●

●●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●

●●●●●

●

●●

●

●

●

●●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●
●●●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●

●

●●
●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●●●●●●●●●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●

●

●

●

●

●
●●●●

●●●●●
●●●●

●

●

●●

●

●

●

●

●
●●

●

●●

●

●●

●

●

●

●●

●

●●●●●●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●●●

●

●
●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●●●●●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●●
●●●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●●

●●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●
●●

●●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●●

●

●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●
●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●●●

●

●●
●

●
●

●

●

●
●

●●
●

●●

●

●
●

●●

●

●●●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●●
●

●

●

●●●●●
●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●
●
●●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●●●

●

●

●●●

●

●

●

●

●●

●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●

●

●

●
●●●●●●●

●

●

●●●

●

●

●

●

●
●●●●

●
●●

●
●

●

●
●

●

●

●●

●

●●●●●●●

●

●
●

●

●●●

●

●●●
●

●

●

●●●

●

●●●●
●

●

●

●

●
●●●

●●
●●

●

●

●

●
●

●

●

●●●●●●●●●●
●

●●●●●●●●
● ●

●

●

●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●
●

●

●

●
●●

●
●

●●●●●●●●●●●●●●●

●

●

●●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●●●●●●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●●●●●●●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●●●●●●●●

●

●

●●●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●●●●●●

●●●●●●●●●●●●●●●
●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●

●

●

●●●●●●●●●●
●

●
●

●
●

●
●●●●●●●●●●●●●

●

●

●

●●●
●

●●●
●

● ●●●●
●

●
●

●

●
●

●

●
●

●

●

●

●●
●

●
●●●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●●
●

●
●●●●

●
●

●
●

●
●●●●●●●

●

●●

●

●

●

●●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●
●

●
●●●

●

●

●●●●
●●●●●●●

●

●

●●
●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●●

●
●●●●●

●

●

●●●●●●●●●●●●
●

●
●●●

●
●

●●
●

●

●

●

●●●●●●●●●●●

●

●

●

●
●

●

●

●
●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●

●

●
●

●

●

●

●●●●●●●

●

●

●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●
●

●
●

●

●

●

●

●

●●

●

●

●
●●
●

●

●●●●●●
●

●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●
●

●
●

●●●●●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●
●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●●

●
●●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−1
.0

−0
.5

0.
0

0.
5

1.
0

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

ARIMA − Square root − QQplot

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●

●

●
●●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●●

●
●

●

●●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●●●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●●
●●●●●●●●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●

●
●●●●●●●●

●

●

●

●

●

●
●

●●
●●

●

●●●●

●

●

●

●
●●●●

●

●

●●
●●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●●●
●●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●

●●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●
●●●●●

●

●

●

●

●

●●
●●●●●●●●●

●

●

●●
●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●●●
●●

●

●

●●
●

●

●

●

●

●
●

●●●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●
●●●

●

●
●

●

●

●

●●
●

●

●

●●●●●●●●

●

●

●●

●

●
●

●
●●●●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●●●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●
●●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●
●

● ●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●●
●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●
●●●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●●●●●●●●●●●

●
●●
●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●●
●●●●●●●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●●
●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●
●

●

●

●●

●

●

●

●

●
●●

●

●●

●

●●

●

●

●

●●

●

●●●●●●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●●●
●

●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●●●●●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●

●●

●

●
●

●

●

●

●

●●
●●●●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●●●●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●
●

●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●

●●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●●
●

●

●
●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●●

●●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●
●

●
●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●
●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●
●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●●

●

●●
●

●●

●

●

●
●

●●
●

●●

●

●
●

●●

●

●●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●●●●

●

●

●●●●●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●
●●●

●

●

●●
●

●

●

●

●

●●
●●

●

●●
●●●●●●●●●●●●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●●●

●

●

●
●●●●●●●

●

●

●●●

●

●

●

●

●
●●●●

●●●

●
●

●

●
●

●

●

●●

●

●●●●●●●

●

●
●

●

●
●●

●

●●
●

●
●

●

●●●

●

●●
●●

●

●

●

●

●
●●

●
●●

●●

●

●

●

●
●

●

●

●●●●●●●●●●
●

●
●●●●●●●

●●

●

●
●

●

●
●

●●

●

●

●

●
●●●●●●●●●●●●●●

●

●

●

●

●●
●

●
●●●●●●●●●●●●●●●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●●●●●●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●●●●●●●●●●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●●●●●●

●

●

●●●

●

●●●

●

●

●

●

●

●●
●●

●

●●
●●●
●

●
●●●●●●●●●●●●●●●●●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●

●

●

●●●●●●●●●●
●

●
●

●

●

●
●●●●●●●●●●●●●

●

●

●

●
●

●

●
●●●

●

●
●●●●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●
●●●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●●

●

●

●●
●

●
●●●●

●

●
●

●
●

●●●●●●●

●

●●

●

●

●

●●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●●
●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●●
●●●●●●●●●●●●●●●●●●
●●

●
●●●●●

●

●

●●
●●●●●●●●●●

●

●
●●●

●

●
●●
●

●

●

●

●●
●●●●●●●●●

●

●

●

●
●

●

●

●
●●

●

●

●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●

●

●

●●

●

●
●

●

●

●

●●
●●●●●

●

●

●
●

●

●
●

●

●●
●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●
●●●●●●●●●●●

●

●
●

●

●

●

●

●

●●

●

●

●
●●●

●

●●●●●●
●

●
●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●●●
●

●
●

●●●●●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●
●●

●

●

●
●●

●
●

●

●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●●
●

●
●●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

ARIMA − Anscombe − QQplot

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●
●●

●
●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●●●●●●
●

●●●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●●●●●●

●
●

●

●

●

●

●

●
●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●●
●

●

●●
●

●●

●

●

●
●

●●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●●●●●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●●

●

●●●●●●●

●

●●●●●●●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●●

●

●

●

●
●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●●●

●

●●●
●

●

●

●

●

●●●
●

●●
●●

●

●

●

●
●

●

●

●●●●●●●●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●●●●●●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●●

●

●

●
●

●

●

●

●

●
●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●
●●●

●

●●●●●●●

●

●

●

●

●

●
●

●

●

●●●●●●●

●

●●●●●●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●●

●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●
●●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●●

●

●
●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●●
●

●

●

●●●

●

●
●

●

●

●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●

●●●●●●●●●●●●●●●

●

●

●

●
●

●●●

●

●●●●●●●

●

●●●●●●●

●

●●●

●●

●

●

●

●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4 −2 0 2 4

−1
.0

−0
.5

0.
0

0.
5

1.
0

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

ARIMA − Haar−Fisz − QQplot

Figure 14: QQ plot of residuals of ARIMA model on original data, square root, simple
Anscombe and Haar-Fisz transform

v

A.3.3 Best common ARMA model

RMSEP of ARIMA(p,1,q) for original data
(p,1,1) (p,1,2) (p,1,3) (p,1,4) (p,1,5)

(1,1,q) 0.415 0.413 0.411 0.411 0.411
(2,1,q) 0.413 0.412 0.411 0.411 0.411
(3,1,q) 0.411 0.411 0.412 0.411 0.411
(4,1,q) 0.411 0.411 0.411 0.411 0.411
(5,1,q) 0.411 0.410 0.411 0.411 0.411

RMSEP of ARIMA(p,1,q) for Square root transform
(p,1,1) (p,1,2) (p,1,3) (p,1,4) (p,1,5)

(1,1,q) 0.338 0.337 0.336 0.336 0.336
(2,1,q) 0.337 0.336 0.336 0.336 0.336
(3,1,q) 0.336 0.336 0.336 0.336 0.336
(4,1,q) 0.336 0.336 0.336 0.336 0.335
(5,1,q) 0.336 0.336 0.336 0.335 0.336

AIC of ARIMA(p,1,q) for original data
(p,1,1) (p,1,2) (p,1,3) (p,1,4) (p,1,5)

(1,1,q) 12, 647 12, 625 12, 574 12, 575 12, 569
(2,1,q) 12, 630 12, 598 12, 576 12, 578 12, 574
(3,1,q) 12, 571 12, 573 12, 573 12, 570 12, 520
(4,1,q) 12, 572 12, 566 12, 566 12, 576 12, 503
(5,1,q) 12, 571 12, 532 12, 577 12, 579 12, 572

AIC of ARIMA(p,1,q) for original data
(p,1,1) (p,1,2) (p,1,3) (p,1,4) (p,1,5)

(1,1,q) 9, 135 9, 129 9, 090 9, 090 9, 082
(2,1,q) 9, 130 9, 110 9, 091 9, 094 9, 093
(3,1,q) 9, 088 9, 089 9, 087 9, 024 9, 098
(4,1,q) 9, 089 9, 092 9, 093 9, 083 9, 087
(5,1,q) 9, 084 9, 092 9, 092 9, 031 9, 086

vi

A.4 Dispersion errors
A.4.1 Transformation E�ect

1980 1990 2000 2010

Time

D
is

pe
rs

io
n

er
ro

rs

Stationary dispersion errors

Simple Anscombe
Square root
Original data

Histogram of dispersion errors

Sigma

Pr
ob

−2 0 2 4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Simple Anscombe
Square root
Original data

Figure 15: Dispersion Error on stationnary data (Left) and histogram of dispersion Error for
orignal data and transformed data (Rigth)

A.4.2 E�ect of filling in the gaps

Figure 16: E�ect of filling in the gaps for original data, square root and Anscombe transform

vii

A.5 Comparaison errors
A.5.1 Time domain errors and Silso number

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Original Data

SSN

Pr
ed

ic
tio

n
er

ro
rs

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Square root

SSN

Pr
ed

ic
tio

n
er

ro
rs

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Anscombe

SSN

Pr
ed

ic
tio

n
er

ro
rs

0 50 100 150 200

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Haar−Fisz

SSN

Pr
ed

ic
tio

n
er

ro
rs

Figure 17: QQ plot of residuals of ARIMA model on original data, square root, simple
Anscombe and Haar-Fisz transform

viii

A.5.2 Dispersion errors and Silso number

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

● ●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●●●●●●
●●●

●

●●
●●●●

●●●

●●

●

●

●
●

●
●●

●

●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
● ●
●

●●●

●

●

●

●

●

●

●

● ●

●●
●

●

●
●●

●

●
●●

●

●

●●

●●
●

●
●

●
●
●

●

●

●
●

●

●
●
●●●●

●
●

●
●

●

●●●
●●●
●●

●●
●

●●
●

●●●
●
●

●●●●
●

●

●

●

●

●●

● ●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●
●● ●

●

●

0 50 100 150 200 250

−1
0

1
2

3

Relation between dispersion errors and SSN
 Averaging over 27 days
 Square root transform

SSN

D
is

pe
rs

io
n

Er
ro

r

y ~ a + bx

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●

●

●●
●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●
●

●
●●

●

●

●
●

●

●●●

●
●
●

●●

●●
●

●

●

●

●
●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●●

●
●●

●●

●

●

●

●

●

●

●●

●

●
● ●
●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

0 50 100 150 200 250

−1
0

1
2

Relation between dispersion errors and SSN
 Averaging over 27 days
 Square root transform

SSN

D
is

pe
rs

io
n

Er
ro

r

y ~ a+b*sqrt(x)

Figure 18: relationship between Dispersion Error and Sunspot number of silso for original
data and square root transform, averaging over 27 days

ix

References
[1] T. Dudok de Wit, L. Lefèvre, and F. Clette, “Uncertainties in the Sunspot Numbers:

Estimation and Implications,” Solar Physics, vol. 291, pp. 2709–2731, Nov. 2016.

[2] T. Dudok de Wit, “A method for filling gaps in solar irradiance and solar proxy data,”
Astronomy & Astrophysics, vol. 533, p. A29, Sept. 2011.

[3] P. Fryzlewicz, V. Delouille, and G. P. Nason, “GOES-8 X-ray sensor variance stabilization
using the multiscale data-driven Haar–Fisz transform,” Journal of the Royal Statistical
Society: Series C (Applied Statistics), vol. 56, no. 1, pp. 99–116, 2007.

[4] P. Fryzlewicz and V. Delouille, “A data-driven Haar-Fisz transform for multiscale variance
stabilization,” in Statistical Signal Processing, 2005 IEEE/SP 13th Workshop on, pp. 539–
544, IEEE, 2005.

[5] F. Clette, D. Berghmans, P. Vanlommel, R. A. Van der Linden, A. Koeckelenbergh, and
L. Wauters, “From the Wolf number to the International Sunspot Index: 25 years of
SIDC,” Advances in Space Research, vol. 40, pp. 919–928, Jan. 2007.

x

LSAT2390: Statistical Consulting
VALUSUN Project

Filling Missing Values

7 mai 2017

Executive Summary The SunSpot Number (SSN) serves multiple purposes. It is the only direct
multi-secular tracer of the solar cycle and a quantitative reference of both the solar irradiance and
sun driven processes. The number of sunspots reflects the solar activity. It is measured by observers
around the world looking everyday at the sun. Due to either cloud cover or ’human related’ reasons,
the signal coming from each station contains gaps.

Missing values are a general problem in data analysis and we consider here a data-adaptive and
non-parametric method developed by T. Dudock de Wit 1. The idea is that what an observer see at
time t is correlated to what he observed in time t-1, this is the time correlation. On top of it, since
all observers are looking at the same sun, their observeations are also correlated. The method uses
both the time correlation and the between stations correlation to fill the gaps by means of low-rank
approximations based on the singular value decomposition.

The goal of this project was first to translate the original code written by the author in MAT-
LAB to both Python and R, and ensure that the obtained results are equal to those obtained via
the original MATLAB code. The current report is mainly about the Python part. Secondly, we
analyze the time complexity. The Python code is slower than the MATLAB code but with the
same asymptotic behavior. Thirdly, as the method uses parameters, we design a cross-validation
procedure to adjust one of the parameters, the number of components taken into account in the
singular value decomposition, which should be set equal to 10 according to the results.

1. Dudock de Wit T., A method for filling gaps in solar irradiance and solar proxy data. Astronomy & AstroPhysics,
533, A29.

1

1 Introduction
The SunSpot Number (SSN) serves multiple purposes. It is the only direct multi-secular tracer

of the solar cycle and a quantitative reference of both the solar irradiance and sun driven processes.
The number of sunspots reflects the solar activity. It is measured by observers around the world
looking everyday at the sun. Due to either cloud cover or ’human related’ reasons, the signal coming
from each station contains gaps.

Missing values are a general problem in data analysis and we consider here a data-adaptive and
non-parametric method developed by T. Dudock de Wit 2. The idea is that what an observer see at
time t is correlated to what he observed in time t-1, this is the time correlation. On top of it, since
all observers are looking at the same sun, their observeations are also correlated. The method uses
both the time correlation and the between stations correlation to fill the gaps by means of low-rank
approximations based on the singular value decomposition.

This report shortly introduce the method developed by T. Dudock de Wit to fill missing values
before analyzing the time complexity of the method. More precisely, we compare the time com-
plexity of the Python code versus MATLAB code.

The python code, available in appendix A, is composed of 2 main files :
— interpolsvd_em.py : contains the main method as well as helper methods.
— script.py : is divided in three parts. Firstly, it contains code to read the data from a

file Alldata.csv containing missing values, apply the method and export the results (data
without missing values) in another file filledData.csv. Secondly, it contains the code used
to obtain the time complexity results presented in section 3. Thirdly, it presents the code
used to perform the cross-validation procedure described in section 4.

2 Method
The method developed by T. Dudock de Wit is based on an iterative singular value decompo-

sition. We start by filling the gaps with a basic method and keep track of the gaps position. For
example, we can fill all the gaps of a given station by the time average of this station. Once the
matrix is bascially filled, we can compute its singular value decompostion :

M = U�V T

We then compute the rank 1 approximation of the matrix :

Mú = U1�1V T
1

Afterwards, we update the position of the orginal gaps with the values obtained with this low
rank approximation. All the other values remain unchanged. We compute SE as the sum of squar-
red di�erence between the old gaps replacement and the new. As long as this value E is above a
predefined threshold, we iterate this computation : compute the low rank approximation of rank
one, replace the old gaps, compute E...

2. Dudock de Wit T., A method for filling gaps in solar irradiance and solar proxy data. Astronomy & AstroPhysics,
533, A29.

2

Once the process does not lead to significant variation anymore, the data are said consistent,
and we execute the same procedure but with a rank two approximation and so on. The maximal
considered rank, K, is determined by the user when launching the method. In practice, T. Dudock
de Wit set it to 4 in his MATLAB code.

Let us see more precisely on which data matrix we will work. The original data matrix, I(t, S),
is composed of S columns, one columns per station and each line of the matrix corresponds to a
given time of measurement. Remember that we want to exploit the between stations correlation as
well as the time correlation. The columns give the information about between stations but not yet
about the time correlaiton. To obtain both informations in the columns, we will not represent a
station by one column but rather by D columns, such that if SA

t is the signal coming from station
A, the D columns representing this stations are shifted replicates of the original signal :

[SA
t , SA

t+1, ..., SA
t+D≠1]

The number D of replicates used is also determined by the user.
The signature of the Python method is given by :

interpolsvd_em(I,D,K)

In practice, it relies on some more practical parameters that are not detailed here.

To ensure that the translated version gives the same results as the original MATLAB version,
we run both codes on the data available in the Alldata.csv file on moodle. We then check whether
the obtained results are the same. Since it is indeed the case, both codes are well performing the
same computations. The overall computing time on file Alldata.csv is around 2 minutes.

3 Time Complexity
In order to measure the execution time of the method, we run it for an input data matrix of

increasing size. In practice, we increase here the number of considered time steps (or increasing
number of lines in the matrix. This approach can be justify by the fact that every day the number
of time steps increases while the number of stations remains more or less constant over time. Mo-
reover, the number of lines in the matrix is far more important than the number of columns (33
333 verus 59).

Since the method is only valid for stations having at least 5% of non missing values, we need to
select the stations with the most complete values to perform our analyzis. We selected here the five
stations having the smallest number of missing values.

As we can see on figure 1, the Python code is slower than the MATLAB one but seems to have
the same asymptotic behavior. It is to note that the current version of the Python code is not
optimized for the python language, it is a simple translation of the MATLAB code.

3

Figure 1 – Time Complexity

4 Parameters adjustment
We focus in this section on how to tune the parameter K which is the maximal rank taken

into account in the iterative singular value decomposition procedure. Althought it is set to 4 by
the author, we can wonder if this value is well fitted. In this section, we describe a cross-validation
procedure allowing to select a right value for K. The intuitive idea is that a high value will keep
more information but also more noise and increase the overfitting risk. We start by introducing the
K-fold cross-validation procedure before presenting the results.

4.1 K-fold Cross-Validation
Cross-validation is a well-known procedure in machine learning to adjust the parameters of a

method. The idea is to test the di�erent values for the parameters and assess the performance of
the model build on each value. To assess the performance of a model we need to test it on data that
has not been involved in the computation procedure.

To this aim, we here randomly select some data, having a non missing value, and remove it. We
then apply, for each value of the parameter, the method and compute the error between the filled
value and the real value that we know in that case. We can compute the sum of squared errors on
removed data. The lower this value, the better the value of the parameter. The problem is that we
could be unlucky, the selected data to removed might be the easiest or the worst data of the dataset
to predict. To avoid this problem and ensure that each single data has been part of an assessment
procedure, we randomly split the original dataset in let’s say 10 groups. We repeat the procedure
for each single group and compute the Mean Squared Error (MSE) over all the 10 groups. This
gives a more objective way of assessing the di�erent values of the parameter.

The major disadvantage of this 10-fold cross-validation procedure is the computational time. In-
deed, for 10 groups and 10 di�erent values of the parameter, we will execute the method 10◊10 = 100
times. Moreover, in our case, the execution time grows with the maximal considered K. It means

4

that assessing larger and larger values of K will lead to longer and longer computational time.

The pseudo-code of the procedure is presented below :

Algorithm 1 Cross-Validation
1: for each Validation Fold, j do
2: replace the data of Fold j by NaN
3: for each value of K, k do
4: Fill missing value, using the method with K=k
5: Compute SEk

j

6: Compute MSEk = 1
10

q10
j=1 SEk

j

Althought this procedure allows to select the most appropriate value of K, it gives no clue about
the overall accuracy of the method. What is the error we should expect on filled data ?

An estimation of the accuracy can be obtained by performing what we can call a cross-test
procedure. A naive idea would be to select the best value for K via the cross-validation procedure,
then remove some random data and apply the method with the selected K. The error could be
estimated by the error commited on these values. However, we need to remember that all values
where used for the cross-validation procedure, even the one that we later remove for assessing the
accuracy. Therefore, even if the random data selected seem neutral, they are not. To assess the
accuracy of a method we need data that have never been seen in any way by the method. This can
be done by a cross-test procedure described in pseudo-code .This is again a 10-Fold procedure.

Algorithm 2 Performance evaluation
1: for each Test Fold, i do
2: replace the data of Fold i by NaN
3: for each Validation Fold, j do
4: replace the data of Fold j by NaN
5: for each value of K, k do
6: Fill missing value, using the method with K=k
7: Compute SEk

j

8: Compute the mean over all j of the MSEj
k and deduce the optimal value of K, k

9: Fill the gaps using the method with K=k
10: Compute SEi

11: Generalized Error = 1
10

q10
i=1 SEi

As we can see, for each test fold, after removing the corresponding data, we select the most
appropriate K based on the remaining data. It is possible to obtain di�erent optimal values for K
on di�erent test folds. This cross-test procedure assesses the performance of the whole adjustement
process : select the best K and fill the gaps.

Eventually, the computational time is drastically increased when performing a cross-test proce-
dure. We have to fill the gaps 10 ◊ 10 ◊ 10 times. Other testing procedures could be developed. For
example, we could run it only one time on randomly selected values. However, the estimator would

5

be of higher variance.

4.2 Results
The cross-validation procedure described above has been run for K going from 1 to 15. The re-

sults are presented on figure 2. The computational time to obtain those results is around 15 hours,
showing the heaviness of the computation. The cross-test procedure was not performed due to too
smalll computing capacity.

Figure 2 – Cross-Validation : K

As we can see on figure 2, the most appropriate value for K, based on the data seems to be 10.

5 Conclusion
Firstly, the main goal of this project was to translate the MATLAB code to Python, which has

been done.

Secondly, we analyzed the time complexity of the code in both languages and showed that even
if the Python code is not optimized for the Python language, it follows the same asymptotic time
complexity than the MATLAB code.

Thirdly, we introduced a cross-validation procedure to select the most appropriate value for the
maximal considered rank in the method, K. We found that considering low rank approximation up
to rank 10 allow to get the smaller reconstruction error on our data. On top of it, we proposed a
cross-test procedure to assess the performance of the method and have an idea of the error com-
mitted on filled data. However, due to the high computing load of the procedure, we were not able
to perform it in reasonable time on our machine.

6

A Code
A.1 interpolsvd_em.py

###
Statistical Consulting Course ≠ LSBA ≠ UCL

###
VALUSUN Project
Tranlation of the MATLAB code written by T. Dudock de Wit
###
Author: Caroline Sautelet
Date: 3 May 2017
###

Import modules
import numpy as np
from numpy import linalg as LA
from scipy.signal import lfilter
import math
import scipy
import pandas as pd
import time
import numpy as np

###
interpolsvd_em
fills gaps in monovariate or multivariate data
by SVD≠imputation (closely related to expectation≠maximization)
The method decomposes the data into two time scales, which are processed
separately and then merged at the end. The cutoff time scale (nsmo) is
expressed in number of samples. A gaussian filter is used for filtering.
Monovariate data must be embedded first (nembed >1).
In the initial data set, gaps are supposed to be filled in with NaNs
Example for daily solar data with a cutoff at 81 days
yf = interpolsvd_em(y,3,81,0,20,1);
###
INPUT:

≠ y: array or matrix of data with gaps, gaps must be filled by NaN values.
≠ nembed: embedding dimension Default(0) is 1
must be > 1 for a monovariate data set
≠ nsmo: cutoff time scale scale (in nr of samples). Set nsmo=0 if only one
single time scale is desired. Default is 0
≠ ncomp: max number of iterations Default (0) is 30
≠ niter: number of significant components , to be specified for running
in automatic mode. Default (0) leads to manual selection

7

OUTPUT:
≠ yk: same data set as y, but with gaps filled
≠ Ak: weight distrtibution of the SVD

###
def interpolsvd_em(y,nembed = 1,nsmo = 0,ncomp = 0,niter=30):

Ensure inputs are ok or modify them
if niter <1:

niter = 30

if nembed < 1:
nembed = 1

if nsmo < 1:
nsmo = 0

yshape = y.shape

nrow_y = yshape[0]

ncol_y = yshape[1]

swap = 0

max cumulative energy (%) for selecting nr of significant components
Emax = 95

iterations stop after relative energy change is < threshold
threshold1 = 0.00001

Detect shape of input array and transpose if necessary in order
to have more rows than columns
if ncol_y > 2únrow_y:

y = np.transpose(y)

swap = 1

tmp = nrow_y

nrow_y = ncol_y

ncol_y = tmp

Estimate mean and standard deviation and standardise
ave_y = np.zeros((1,ncol_y))

std_y = np.zeros((1,ncol_y))

for i in range(0,ncol_y):
w = np.nonzero(~np.isnan(y[:,i]))[0]

if len(w)>1:
ave_y[0][i] = y[w,i].mean()

std_y[0][i] = np.std(y[w,i],ddof=1)

y[:,i] = (y[:,i] ≠ ave_y[0][i])/std_y[0][i]

8

else:
ave_y[0][i] = 0

std_y[0][i] = 1

perform some tests
for i in range(0,ncol_y):

assert(sum(np.isnan(y[:,i])) < len(y[:,i])),"each column should have at least some valid values"
assert(ncol_y >= 2 or nembed >=2),’embedding dimension must be >1 for monovariate records’
assert(ncomp<=ncol_yúnembed),"number of components cannot exceed: "+str(ncol_yúnembed)

Embed record if necessary
if nembed > 1:

x = embedy(y,nembed ,1,0)

else:
x = y.copy()

tmp = x.shape

nrowx = tmp[0]

ncolx = tmp[1]

Weight each record according to the number of NaNs
larger weight is given to record with fewer gaps
weight = np.zeros((1,ncolx))

for i in range(0,ncolx):
n = sum(np.isnan(x[:,i]))
weight[0][i] = (nrowx ≠ n)/nrowx

weight = weight/max(max(weight))
weight = weightúweight
for i in range(0,ncolx):

x[:,i] = x[:,i]úweight[0][i]

first iteration: start by filling in gaps by linear interpolation
xi = np.zeros((nrowx,ncolx))

ave_x = np.zeros((1,ncolx))

t = x.shape

for i in range(0,ncolx):
w = list(np.nonzero(~np.isnan(x[:,i]))[0])
dummy = list(x[w,i])
ave_x[0][i] = x[w,i].mean()

dummy = [0] + dummy + [0]

w = [≠1] + w + [t[0]]
f = scipy.interpolate.interp1d(w,dummy)

xi[:,i] = f(range(0,nrowx))

9

xnew = x.copy()

xi = np.reshape(xi,(1,ncolxúnrowx))
xtmp = np.reshape(x,(1,ncolxúnrowx))
ind_NaN = np.nonzero(np.isnan(xtmp[0,:]))[0]

nNaN = len(ind_NaN)
for i in ind_NaN:

xtmp[0][i] = xi[0][i]

xnew = np.reshape(xtmp,(nrowx,ncolx))

subtract again the mean
xnew = xnew ≠ (np.zeros((nrowx ,1))+1)úxnew.mean(axis = 0)

first estimate dominant mode nr 1
print(’ncomp = 1’)
err = [0]úniter
nNan = len(ind_NaN)
for i in range(0,niter):

xfit = rank_reduce(xnew,1)

xold = xnew.copy()

xtmp = np.reshape(xnew,(1,ncolxúnrowx))
xtmpfit = np.reshape(xfit,(1,ncolxúnrowx))
xtmp[0][ind_NaN] = xtmpfit[0][ind_NaN]

xnew = np.reshape(xtmp,(nrowx,ncolx))

tmp = np.zeros((1,ncolx))

tmp[0] = np.mean(xnew, axis=0)

xnew = xnew ≠ np.dot((np.zeros((nrowx ,1))+1),tmp)

xtmp = np.reshape(xnew,(1,ncolxúnrowx))
xtmpold = np.reshape(xold,(1,ncolxúnrowx))

e = xtmp[0][ind_NaN] ≠ xtmpold[0][ind_NaN]

err[i] = np.sqrt(sum(eúe)/nNan)

print(’ncomp = 1 iteration ’ + str(i) + "rel.error " + str(err[i]))

if err[i] < threshold1:
break

ask for number of components
if ncomp <1:

U, S, Vh = LA.svd(xnew,full_matrices = False) # do the SVD
Ak = np.diag(S) # singuar values of the SVD
E = AkúAk

10

E = 100úE/sum(E) # fraction amount of energy for each SVD mode
nE = len(E)
print("using "+str(ncomp2)+ " components out of " + str(nE))

else:
ncomp2 = ncomp

U, S, Vh = LA.svd(xnew,full_matrices = False)

Ak = np.diag(S)

now start the main loop
if nsmo > 1:

for k in range(2,ncomp2+1):
print("ncomp = " + str(k))
for i in range(0,niter):

xlp = smooth_gauss(xnew,nsmo)

xhp = xnew ≠ xlp

xlp = rank_reduce(xlp,k)

xhp = rank_reduce(xhp,k)

xold = xnew.copy()

xtmpnew = np.reshape(xnew,(1,nrowxúncolx))
xtmplp = np.reshape(xlp,(1,nrowxúncolx))
xtmphp = np.reshape(xhp,(1,nrowxúncolx))

xtmpnew[0][ind_NaN] = xtmplp[0][ind_NaN] + xtmphp[0][ind_NaN]

xnew = np.reshape(xtmpnew ,(nrowx,ncolx))

xnew = xnew ≠ (np.zeros((nrowx ,1))+1)úxnew.mean(axis = 0)
xtmpnew = np.reshape(xnew,(1,nrowxúncolx))
xtmpold = np.reshape(xold,(1,nrowxúncolx))

e = xtmpnew[0][ind_NaN] ≠ xtmpold[0][ind_NaN]

err[i] = np.sqrt(sum(eúe)/nNaN)

if err[i] < threshold1:
print("error threshold reached")
print("iteration : " + str(i))
break

else:
for k in range(1,ncomp2+1):

for i in range(0,niter):
xhp = xnew.copy()

xhp = rank_reduce(xhp,k)

xold = xnew.copy()

xtmpnew = reshape(xnew,(1,ncolxúnrowx))

11

xtmpold = reshape(xold,(1,ncolxúnrowx))
xtmphp = reshape(xhp,(1,ncolxúnrowx))

xtmpnew[ind_NaN] = xhp[ind_NaN]

xnew = np.reshape(ntmpnew ,(nrowx,ncolx))

xnew = xnew ≠ (np.zeros((nrowx ,1))+1)úxnew.mean(axis = 0)
xtmpnew = reshape(xnew,(1,ncolxúnrowx))
e = xtmpnew[ind_NaN] ≠ xtmpold[ind_NaN]

err[i] = np.sqrt(sum(eúe)/nNaN)

if err[i] < threshold1:
break

recompose the data by adding the mean
for i in range(0,ncolx):

w = np.nonzero(~np.isnan(ORIGINAL[:,i]))[0]

xnew[:,i] = xnew[:,i]/weight[0][i]

xnew[:,i] = xnew[:,i] ≠ xnew[w,i].mean() + ave_x[0][i]

de≠embed the data
if nembed > 1:

yf = deembedy(xnew,ncol_y ,1,0)

else:
yf = xnew

restore mean and stdev
for i in range(0,ncol_y):

yf[:,i] = yf[:,i]ústd_y[0][i] + ave_y[0][i]

if swap:
yf = np.transpose(yf)

return yf

###
embedy
embeds a set of time series [x1 x2 ... xm] into an D≠dimensional
space by taking as state vectors the consecutive sequences
z(k,:) = [x1(k) x1(k+T) ... x1(k+DúT≠1) x2(k) x2(k+T) ... xm(k+DúT≠1)]
for k=1 to n≠DúT+1, where n is the length of x and T is the embedding
delay
###
INPUT:
≠ x: input matrix (records are columns) [n,m]

12

≠ D: embedding dimension [1,1]

≠ T: embedding delay (integer >0), default is 1 [1,1]

≠displ: set displ=0 to prevent size from being displayed
default is with display [1,1]

OUTPUT:
≠ y: embedded matrix [n≠D+1, Dúm]
###
def embedy(x,D,T = 1,displ = 1):

T = int(T)
assert(T > 0),"embedding delay must be >0"

xshape = x.shape

nrow = xshape[0]

ncol = xshape[1]

nrowy = nrow ≠ (D≠1)úT

assert(nrowy >= 2),"embedding dimension D must be < " + str((nrow≠1)/T)
if displ:

print(["size of embedded matrix is :" + str(nrowy) + ’x’ + str(Dúncol)])
y = np.zeros((nrowy,Dúncol))
for j in range(0,ncol):

for i in range(0,D):
y[:,i+júD] = x[np.array(range(0,nrowy)) + iúT,j]

return y

###
deembedy
deembeds an m≠dimensional space which has been created
by EMBEDY. It returns the averaged state vector x
###
INPUT:
≠ y: embedded matrix [n,m]

≠ nset: # of data sets used to build y, default is 1
≠ T: embedding delay (integer), default is 1
≠ displ: set displ=0 to prevent matrix size from being displayed
default is with display
OUTPUT:
≠ x: averaged state vector [n+(m≠1)T,1]
###
def deembedy(y,nset=1,T=1,displ=1):

yshape = y.shape

n1 = yshape[0]

n2 = yshape[1]

m = nset

M = n2/nset

n = n1 + (M≠1)úT
assert((M≠int(M))== 0)," nset does not match the size of the data matrix"

13

M = int(M)
n = int(n)
if displ:

print([’embedding dimension : ’+ str(M)])
print([’length of array : ’+str(n)])

x = np.zeros((n,m))

dx = x

xx = np.zeros((n,M))

for j in range(0,m):
for i in range(0,M):

a = np.zeros((iúT,1)).flatten()
b = y[:,i+júM]
c = np.zeros(((M≠i≠1)úT,1)).flatten()
xx[:,i] =np.concatenate([a,b,c])

nor = np.array([int(i) for i in np.array(range(1,MúT+1))/T ≠ 0.5]) + 1

tmp = xx.mean(axis = 1)

tmp2 = np.concatenate([nor,Mú(np.zeros((1,n≠2úMúT)).flatten()+1),nor[::≠1]]).flatten()
x[:,j] = tmp/np.transpose(tmp2)

x[:,j] ú= M
return x

###
rank_reduce
generates a low≠rank version version of matrix X by computing
its SVD, and then then reconstructing X by keeping only its ncomp most
important singular values. This function bypasses the (slower) full
computation of the SVD by estimating the singular vectirs through
diagonalisation of the covariance matrix of X
###
INPUT:
≠ X : input matrix
≠ ncomp: number of significant components

OUTPUT:
≠ Xfit: reduced rank version of X

###
def rank_reduce(X,ncomp):

xshape = X.shape

nrow = xshape[0]

ncol = xshape[1]

if ncol>nrow:
swap = 1

X = np.transpose(X)

else:
swap = 0

14

M = np.dot(np.transpose(X),X)

D,V = LA.eig(M)

order = np.argsort(D)

order = order[::≠1]
D = D[order]

V = V[:,order]

K = V.copy()

Vshape = V.shape

col = Vshape[1]

for i in range(0,col):
K[:,i] = V[:,order[i]]

V = K

US = np.dot(X,V)

xfit = np.dot(US[:,range(0,ncomp)],np.transpose(V[:,range(0,ncomp)]))

if swap:
xfit = np.transpose(xfit)

return xfit

###
smooth_gauss
smooths data in x using either a gaussian window
which has a total width given by 2úns+1 (each side contains ns data points)
###
INPUT:
≠ x: data matrix to smooth (smoothing is done columnwise)
≠ ns: smoothing width

OUTPUT:
≠ y: smoothed data
###
def smooth_gauss(x,ns):

ns = math.ceil(ns)

xshape = x.shape

n = xshape[0]

m = xshape[1]

ns must not exceed n/2
ns = int(min(math.floor(float(n)/2 ≠ 1),ns))

if ns <= 1:
return x

w = np.transpose(np.array(range(≠ns,ns+1))/ns)
w = np.exp(≠3úwúw)
w = w/sum(w)

15

z = np.zeros((1,m))

z[0,:] = x[range(0,ns),:].mean(axis = 0)
a = np.dot(np.zeros((ns,1))+1,z)

z = np.zeros((1,m))

z[0,:] = x[range(n≠ns≠1,n),:].mean(axis = 0)
b = np.dot(np.zeros((ns,1))+1,z)

x = np.concatenate([a,x],axis = 0)

x = np.concatenate([x,b],axis = 0)

y = np.zeros((n+2úns,m))

do the convolution
for i in range(0,m):

y[:,i] = lfilter(w,1,x[:,i])

return y[np.array(range(0,n))+2úns,:]

A.2 script.py

###
Statistical Consulting Course ≠ LSBA ≠ UCL

###
VALUSUN Project
###
Author: Caroline Sautelet
Date: 3 May 2017
###
import interpolsvd_em as Method
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import math
import random
import time
###
Import data
###

df=pd.read_csv(’Alldata.csv’, sep=’,’,header=0)

###
DATA PREPROCESSING
###
I = np.where(df.SSN == ≠1)[0]
df.SSN[I] = float(’NaN’)
station_name = df[’station’]

SSN = df[’SSN’]

16

decdate = list(df.decdate)
res = df.pivot(columns=’station’, index=’decdate’,values=’SSN’)

EnoughData = dict()
T = float(res.shape[0])
rejected = 0

print("≠≠≠")
print("Remove Stations having to few complete values")
for station in set(station_name):

I = res[station].isnull().sum()
if I >= 0.95úT:

EnoughData[station] = False

res = res.drop(station, 1)

print("reject station: " +station)

else:
EnoughData[station] = True

SSN = res.as_matrix()

nstations = SSN.shape[1]

nrec = SSN.shape[0]

###
Launch the method
###
print("≠≠≠")
print(" Start the method")
t = time.time()

z = Method.interpolsvd_em(np.sqrt(SSN+1),2,81,4)

z = zúz ≠ 1
z[np.where(z<0)] = 0

elapsed = time.time()≠t
print("≠≠≠")
print("Done")
print("Elapsed time: " + str(elapsed))
print("≠≠≠")
np.savetxt("filledData.csv", z, delimiter=",",fmt=’%.4f’)

###
#Time Complexity Analysis
###
#select the 5 stations having the smallest # of gaps
tmp = SSN[9408:nrec ,[12,15,2,19,47]]

timeForTrial = [0]ú28

current = 10000 # initial number of time step used

for i in range(0,28):

17

currentData = tmp[0:current ,:]

t = time.time()

z = Method.interpolsvd_em(np.sqrt(currentData+1),2,81,4)

z = zúz ≠ 1
timeForTrial[i] = time.time()≠t
current += 500 # add data for next trial

Save results in text file
np.savetxt("pythonTimeComplexity.txt", np.array(timeForTrial), newline=" ")

##
Cross≠Validation Procedure
##
total nbr of values:
V = nrecúnstations
print("nrec = " + str(nrec))
for i in range(0,nstations):

print(i)
print(SSN[:,i].shape)
tmp = nrec ≠ sum(np.isnan(SSN[:,i]))
print(tmp)
print("Percentage = " + str(tmp/nrec))

tmp = SSN

shapeSSN = tmp.shape

Nrec = shapeSSN[0]

Nstations = shapeSSN[1]

find indices of non NaN values
longLine = np.reshape(tmp,(1,NrecúNstations))
all_indices = list(range(0,NrecúNstations))
indices_non_NaN = np.where(~np.isnan(longLine[0]))

indices_non_NaN = list(indices_non_NaN[0])
nbrValues = len(indices_non_NaN)
n = math.floor(nbrValues ú0.1)
permuted = indices_non_NaN

random.shuffle(permuted)

Error_K = np.zeros((5,10))

for K in range(11,16):
print("K equal to " + str(K))
for val in range(0,10):

current_start = valún
if val < 9:

current_end = (val+1)ún
else:

current_end = nbrValues

print("Starting at " + str(current_start))
print("Ending at " + str(current_end))

18

Trial_SSN = longLine.copy()

for i in range(current_start ,current_end):
Trial_SSN[0][permuted[i]] = float(’NaN’)

Trial_matrix = np.reshape(Trial_SSN ,(Nrec,Nstations))

res = Method.interpolsvd_em(np.sqrt(Trial_matrix+1),nembed = 2,nsmo = 81,ncomp = K)

res = resúres ≠ 1
for i in range(0,Nrec):

for j in range(0,Nstations):
if res[i,j]<0:

res[i,j] = 0

res = np.reshape(res,(1,NrecúNstations))
Compute Squared Error
E = 0

for i in range(current_start ,current_end):
E += (longLine[0][permuted[i]] ≠ res[0][permuted[i]])ú(longLine[0][permuted[i]] ≠ res[0][permuted[i]])

Error_K[K≠11][val] = E
print(Error_K)
np.savetxt(’Error_K.csv’, Error_K, fmt=’%1.3f’)

19

OBSERVING SUNSPOT NUMBER

CUSUM charts as a tool for evaluation of

stations performance

Hanna Pawelec

Abstract

This paper discusses the application of CUSUM charts for the sunspots data. The aim of this
application is to help in quality control of particular observing stations. The technique is
described and required modifications as data transformation and calculation of deviation are
explained. The use of different parameters, as target, allowance value or control limits is
discussed and illustrated with examples. Some indications for interpretation of CUSUM charts are
given to facilitate the future work and an example of interpretation for Uccle, Locarno and
Kanzelhöhe are given. Finally, R code is provided with the paper to enable quick visualisation of
CUSUM charts for sunspots data.

Table of contents

Introduction	
..A

Method 1: regression residuals	
...F

Method 2: regression coefficient	
...F

Method 3: sums ratio	
...G

Target	
..G

Allowance value	
..H

Control limits	
..I

Time period	
..I

Expressing CUSUM values as percentage	
...J

Conclusion	
...L

Annexe: R code	..M

A

Introduction

Sunspots are the darker areas on the photosphere of the Sun. Because of the contrast, they

seem black when observed from Earth. Since 17th century and the invention of telescope,

humans have been counting their number. The huge amount of data let to discover cycles with

high and null number of spots and to understand the link between the Sun activity and

different Earth phenomenon, for example, the climate change.

270 stations, situated mostly in Europe, have contributed to the solar data collection and

80-100 do it on a regular basis. Among those, the majority of observers are amateurs. Since

1981, the collected data are centralized by the Sunspot Index Data Center, located in The

Royal Observatory of Belgium in Uccle (Brussels). The Uccle Observatory collects the

everyday data on the sunspots number from around the world and watch over its quality.

Indeed, high variations in the number of observed sunspots exist between stations. On the one

hand, these differences are due to the equipment quality (optical resolution). They are

supposed to be relatively stable in the time, a station may, for example, all the time measure a

few percent less spots than others. On the other hand, some differences are a consequence of

human factor: the interpretation of definition of pore, sunspot or sunspots group may differ

between observers, it may especially be true for new or substituting observers; optical

capacities or distractions may also influence the final daily number observed.

Control the quality of data of each station is thus crucial to assure the quality of the estimated

international sunspot number that is communicated to scientists working on the sunspot

number. CUSUM charts are a common solution in the industrial world to track the quality

control on a period of time. This paper investigates the application of this method to the

observations of sunspots and whether a CUSUM chart could be a practical tool to control the

stations performance.

Firstly, the use and the purpose of CUSUM charts will be explained. The data transformation,

necessary for the further analyses, will be highlighted. Next, three methods of calculating

stations bias and the choice of the chart parameters will be discussed. Finally, a few examples

of the application will be presented and interpreted. R code to generate a CUSUM chart

adapted to the sunspots observations is provided in the annex of this paper.

A

1) What is a CUSUM chart?

The CUSUM (from cumulative sum) chart is a statistical quality control method developed to

detect changes in industrial processes. The aim was to measure deviations from a target

(certain size of a piece in a factory, a chemical density etc.) corresponding to the mean of the

series. As the deviations are accumulated, even minor changes can be detected.

There are two types of CUSUM charts: one sided and two-sided. To plot the first one, an

upper CUSUM value, measuring deviations above the target, and a lower CUSUM value,

measuring deviations below the target, need to be calculated. The control limits indicate if

some observations are out of control. In the two-sided CUSUM, both upper and lower values

are combined and plotted as one. A V-mask method was designed for two-sided CUSUM to

detect if process is out of control.

The basic formula to calculate CUSUM values is as follows:

For the upper values: C+i = max[0, xi – (T + K) + C+i-1] 

For the lower values: C-i = min[0, xi – (T - K) - C-i-1]

Where T is the target (often expressed as µo) and K is the allowance value or reference value.

Deviations from the target are accumulated only when their values exceed the reference value.

It is generally equal to the half of the shift (in standard deviations) that is supposed to be

detected (so often one standard deviation divided by two). The control limits, noted with the

letter H, are generally fixed as 5 standard deviations.

Once, the values are calculated, the lower line and the upper line as well as the control limits

can be plotted. The observations that are outside those two limit lines are out of control. An

example of a CUSUM chart is shown below.

B

Source: http://support.minitab.com/en-us/minitab/17/topic-library/quality-tools/control-
charts/understanding-time-weighted-control-charts/what-is-a-cusum-chart/

2) Plotting CUSUM charts with R

In this paper, the R programming language is used to calculate and to plot CUSUM charts.

Although different packages exist to plot CUSUM charts, here, the qcc package for quality

control charting and statistical process control has be chosen . This package offers “cusum” 1

function calculating CUSUM values and generating one-sided CUSUM chart with the

possibility to choose different parameters.

The formula used to calculate CUSUM values is slightly different from the one described

above. Indeed, the R function calculates the standardized CUSUM. This is obtained by

dividing the deviations by the process standard deviation. The formula could then be write as

follows:

For the upper values: C+i = max(0, C+i-1 +) 

For the lower values: C-i = min(0, C-i-1 +)

The example below illustrates the result that can be obtained using R “cusum” function

applied to the Uccle observations between 2010 and 2015. Observations out of control are

marked in red. The exact values of lower and upper CUSUM can be obtained using $pos and

$neg call.

(xi − T)
sd

− K

(xi − T)
sd

+ K

 Scrucca, L. (2004). qcc: an R package for quality control charting and statistical process control. R News 4/1, 1

11-17.

C

3) Applying CUSUM charts to sunspot number

The sunspots observations are not a typical example of industrial quality control problem.

Thus, some modifications and adaptations need to be made to apply CUSUM charts in order

to analyse a particular station’s performance.

a) Data preparation and transformation

The aim of applying CUSUM chart to a particular station observing sunspots is to detect

irregularities in observations. It is done by comparing the station’s observations with the

estimated sunspots number (called further SSN), supposing that this one is true. The simplest

way to obtain this estimation is to take the average or median of daily observations from

every station but more complex methods exist. The basic visualisation of sunspots

observations from Locarno and from the estimated SSN is shown below.

D

Contrary to the industrial process where target is generally constant, the sunspot number has

its intrinsic variation following the solar activity. The number of sunspots is sometimes equal

to zero while sometimes it is counted in hundreds. Therefore, it is not possible to choose a

constant as a target. The solution is to take the deviation of the station’s observation from the

estimated sunspot number. Thus, the target should be equal to zero (no deviation) but this is

not so evident (the question will be discussed further).

Moreover, the variations of those deviations are heteroscedastic. When there are no sunspots

(low cycle), the deviation is very low or null and when there are hundreds of sunspots (high

cycle), the deviation is very high (daily differences between stations can sometimes be

counted in hundreds). To reduce the effect of the heteroscedasticity, a data transformation

should be applied. Variance stabilization can be obtained through Anscombe transform as the

data follow kind of Poisson distribution. In the following of this paper, the simplified

transformation will be applied: the square root transformation.

Another problem when working with sunspot data are missing values. Indeed, the cloudy

weather sometimes makes it impossible to observe the number of sunspots. Thus, the

percentage of missing values varies according to the stations geographical localisation but no

station has complete data. As CUSUM values are calculated based on the successive values, it

should be used with data that have no missing values. The missing observations from data

used in this paper were replaced by the general trend scaled by the individual station factor

and an intercept with the fit done on the Anscombe scale.

b) Calculating the deviation of one station’s observations from the estimated SSN

There are different methods to calculate the deviation of one station’s observations from the

estimated SSN. Here, they are all applied after square root transformation as described before.

Three different methods will be discussed but this list does not pretend to be exhaustive.

The main aim of those methods is to distinguish two sources of station’s deviation. The first

one is a permanent deviation that might be due to the quality of equipment. Some stations are

measuring constantly 20% more or 20% less sunspots than there are in the estimated SSN

while others are very close to the estimated SSN. The application of CUSUM chart is not

E

aimed here to explain this kind of variation. The second type of deviation is more temporary

or starts only in some point in the time. It might be, for example, a temporary change of

observer for a less qualified one that would observe for some time more or less sunspots than

this station does usually. The utility of a CUSUM chart for sunspot observation is more linked

to detecting irregularities regarding station usual performance than comparing it with the

estimated SSN. To extract the constant deviation, the estimated SSN is scaled by a certain

factor whose value depends on method chosen.

Method 1: regression residuals

In the first method, a simple linear regression without intercept is run with the station’s

observations as dependent variable and the estimated SSN as independent variable. The

residuals from regression are then used to plot the CUSUM chart with the target either equal

to 0 or equal to the mean of residuals.

Method 2: regression coefficient

The second method is very similar to the first one, a simple linear regression without intercept

is also run with those two variables, but instead of taking the residuals, the regression

coefficient is used to scale the estimated SSN. Then, the difference between the station’s

observations and the scaled SSN is calculated and used to plot the CUSUM chart.

F

Method 3: sums ratio

In the third method, a sum of all station’s observations and sum of all estimated SSN (in both

cases, after the root square transformation) are calculated. The global factor is calculated as

the ratio of those two sums (sum of station divided by the sum of SSN) and used to scale the

estimated SSN. Again, the difference between the station’s observations and the scaled SSN is

calculated and used to plot the CUSUM chart. This method is less sensible to the choice of

target (between 0 or the mean). Moreover, the global factor indicates the proportion of

station’s observations regarding the estimated SSN (constant deviation) but it can also be

taken from the regression coefficient in previous methods.

c) Choice of parameters

There are different parameters to choose when plotting CUSUM charts. The choice alters the

appearance of the charts.

Target

The choice of the target may sometimes have an impact on the appearance of the CUSUM

chart. Choosing zero as the target may seem obvious. Indeed, when studying a deviation, it is

generally expected to be null if model is perfect. However, behind the choice of target equal

to zero there is a strong hypothesis that the estimated SSN is true and that station’s

observations should be equal to those estimated ones. The choice of the mean seems then

more neutral.

The importance of this choice is illustrated by the following examples. First two represent

CUSUM charts for Uccle for 2000-2015 (residuals method). On the left, the target was forced

to be zero while on the right the target was equal to the mean of deviations. As the mean is

G

rather close to zero, both graphs are very similar and the only slight difference is visible

around 2006-2007 when the peak is higher when target is equal to zero. However, two

following charts are quite different. They represent observations from 2000-2015 from

Catania (residuals method). While the same drifts are visible, their scale differs. There is no

such difference when using sums ratio method and both charts look like the one on the left.

Allowance value

As explained before, allowance value corresponds to the half of the shift that is expected to be

detected. In the examples shown before, the shift was fixed at 1 (default value) so from every

standardized deviation 0,5 (=0,5 standard deviation) was extracted. This method is commonly

used as it emphasizes important drifts.

In the example below, 3 different shift values are compared. Regarding the high number of

observations out of control (in red), a higher allowance value than 1 could be considered but it

could also be corrected with the control limits (see further).

H

The advantage of using no shift is an easier interpretation what is illustrated below. When no

allowance value is used, a positive slope indicates deviation superior to 0, a negative slope

indicates deviation below 0 and horizontal slope indicates no deviation. When a shift is added,

the slope is negative when there is no deviation at all. Thus, when using an allowance value,

the positive slope should only be observed in upper line and the negative slope in lower line.

On the other side, the value of CUSUM (number of standard deviations above/below the

target) makes more sense when using an allowance value because it only describes a single

drift and does not refer to the whole cumulated deviation. Thus, both charts, with and without

an allowance value, could be complementary. The first one (K=0) illustrated better the

evolution in time while the second one (K>0) helps better to detect shifts and drifts.

Control limits

By default, the control limits are fixed as 5 standard deviations below and above the target. As

numerous observations are out of control, a higher threshold could be considered.

Time period

Shorter time periods are more visible on CUSUM charts. Scaling and global factor are

calculated based on the period chosen so the choice may change the appearance of the chart.

A longer period permits to observe slow shifts.

I

Expressing CUSUM values as percentage

Expressing the CUSUM values as percentage has been considered. However, it would only

make sense during the high cycles (lots of sunspots) so it is not the best option for a general

model. Moreover, the CUSUM charts presented here are plotted based on standardized values

so they are comparable. Thus, the use of percentage would not only be complex but seems

also unnecessary.

d) Interpreting a CUSUM chart

Because of the scaling of the estimated SSN, the interpretation of CUSUM chart is not

obvious. It might not be true that when a deviation is positive, the station’s observations are

above the estimated SSN. Thus, the interpretation refers more to the station’s usual

performance. When a deviation is positive, the station is observing more than usually and

when a deviation is negative, the station is observing less than usually.

The strength of the slope indicates the magnitude of the deviation. A strong slope indicates an

important deviation while weaker slope indicates a small deviation. As the CUSUM chart

represents a cumulative sum of deviations, small deviations that are constant for a certain

period of time may become very visible on the chart.

4) CUSUM charts for Uccle, Locarno and Kanzelhöhe

The CUSUM charts below were calculated based on the sums ratio method with target equal

to 0 and K equal respectively to 0 and 1. In the beginning of 80s, observations were

underestimated regarding the later observations. Since the end on 80s a progressive growth in

estimations can be seen on the left chart followed by a period of stable observations. The

slope is rather weak what explains why it is less visible on the second chart with an allowance

value (0,5 standard deviation). End on 90s and the beginning of 200 is marked by an

important shift that started by a slight underestimation followed by a very strong positive

peak. It is then recovered progressively to relapse importantly since 2011, a trend that is

continuing.

J

Deviations from Uccle observations are rather variable with one very important shift.

However, when comparing the CUSUM values with other stations, they are quite low. The

highest peak in Uccle is a little bit above 200 standard deviations while the highest peak in

Locarno is above 1000. On the other hand, Locarno station after overestimations (regarding

its own performance) has known a long period of stable observations. However, since 2000,

their observations are progressively underestimated. Regarding the constant deviation, the

Uccle global factor is 0,99 (positive deviations correspond thus to the observations above the

estimated SSN) while the Locarno global factor is 1,15.

Choosing a shorter period of time enables to see more detail. Below two charts for

Kanzelhöhe are presented. They show a period of underestimation followed by a long period

of stable observations. Since 2011 an important upward drift is observed which is now slowly

progressing. Unsurprisingly, around 2011 a new high solar cycle starts. Even though a root

square transformation is applied, deviations are generally observed during high cycles. The

Kanzelhöhe factor is 1,05.

K

Conclusion

This paper explains the applicability of CUSUM charts to the sunspots observations in order

to detect shifts and drifts in observations of particular stations. Modifications required, as data

transformation or calculations of deviation, were explained and different parameters of

CUSUM charts were discussed. However, the final choice of methods and parameters

depends on the needs of each user. The R code provided enables to visualize quickly different

charts and to evaluate the rapidly the effect of parameters and method chosen. An example

and indications for interpretation have been given but it remains open as the choice of

parameters is large.

The CUSUM chart enables to perceive the periods when a particular station recedes from its

usual performance. The question remains what should be done with the observations out of

control and whether they should be removed, corrected or left intact.

L

Annexe: R code

Advice regarding the use of the code:

This code provides a function adapted to the sunspots observations. It requires the installation of the
package “qcc”. 4 arguments need to be indicated:

data : the database with the sunspots observations

SSNVariable : name of the variable (between “”) containing the estimated SSN

stationVariable : name of the variable containing the station’s observations

timeVariable : name of the variable containing date information.

Other arguments are optional:

startTime : starting year of the observations to plot (default is 1981)

endTime : end year of the observations to plot (default is 2015)

target0 : if TRUE then target is equal to zero, if false then target is equal to the mean (default is T)

method : method for calculating deviations (choose one between "residuals", "sumRatio", "coefficient"

shift : shift that is expected to be detected in standard deviation (the allowance value will be equal to
the half of shift chosen, default value is 1)

interval : the measure of control limits in standard deviations (default is 5).

statistics : if TRUE, statistics are printed below the chart (default is FALSE)

stationName: name of the station to be plotted above the chart (between “”)

work directory to fill in

setwd("")

#data importation

Sunspots <-

 read.table("SSNfilledChris.csv", header=TRUE, sep=",",
na.strings="NA", dec=".", strip.white=TRUE)

#Library

#for the first use: install.packages("qcc")

library(qcc)

#function

SSNcusum=function(data, SSNVariable, stationVariable, timeVariable,
startTime=1981, endTime=2015, target0=T, method=c("residuals",
"sumRatio", "coefficient"), shift=1, interval=5, statistics=F,
stationName){

 #choice of the period of time and key variables

 time=as.name(timeVariable)

 dataB=data[which(data$time>=startTime&data$time<endTime),]

 date=data[which(data$time>=startTime&data$time<endTime),timeVariable]

M

station=data[which(data$time>=startTime&data$time<endTime),stationVaria
ble]

 SSN=data[which(data$time>=startTime&data$time<endTime),SSNVariable]

 SSN[which(SSN<0)]=0

 #residuals method

 if(method=="residuals"){

 regression=lm(sqrt(station)~sqrt(SSN)- 1) #calculating résiduals

 if(target0==T) {

 cusumChart=cusum(regression$residuals, center=0,
std.dev=sd.xbar.one(regression$residuals), se.shift=shift,
decision.interval=interval, label=round(date, 1), add.stats=statistics,
data.name=stationName) #cusum chart

 summary(cusumChart)

 return(paste("method", method, ';', "Factor:",
round(regression$coefficiens, 2)))}

 if(target0==F) {

 cusumChart=cusum(regression$residuals, se.shift=shift,
decision.interval=interval, label=round(date, 1), add.stats=statistics,
data.name=stationName) #cusum chart

 summary(cusumChart)

 return(paste("method:", method, ';', "Factor:",
round(regression$coefficiens, 2)))}

 }

 #sumRatio method

 if(method=="sumRatio"){

 factor = sum(sqrt(station))/sum(sqrt(SSN)) #calculating the global
factor

 bias=sqrt(station)-sqrt(SSN)*factor #rescaling and calculating the
bias

 if(target0==T) {

 cusumChart=cusum(bias, center=0, std.dev=sd.xbar.one(bias),
se.shift=shift, decision.interval=interval, label=round(date, 1),
add.stats=statistics, data.name=stationName) #cusum chart

 summary(cusumChart)

 return(paste("Method:", method, ';', "Factor:", round(factor,
2)))}

 if(target0==F) {

 cusumChart=cusum(bias, se.shift=shift,
decision.interval=interval, label=round(date, 1), add.stats=statistics,
data.name=stationName) #cusum chart

 summary(cusumChart)

 return(paste("Method:", method, ';', "Factor:", round(factor,
2)))}

 }

 #coefficient method

 if(method=="coefficient"){

 regression=lm(sqrt(station)~sqrt(SSN)- 1) #calculating the
coefficient

 bias = sqrt(station) - sqrt(SSN)*regression$coefficients #rescaling
and calculating the bias

N

 if(target0==T) {

 cusumChart=cusum(bias, center=0, std.dev=sd.xbar.one(bias),
se.shift=shift, decision.interval=interval, label=round(date, 1),
add.stats=statistics, data.name=stationName) #cusum chart

 summary(cusumChart)

 return(paste("Method:", method, ';', "Factor:",
round(regression$coefficients, 2)))}

 if(target0==F) {

 cusumChart=cusum(bias, se.shift=shift,
decision.interval=interval, label=round(date, 1), add.stats=statistics,
data.name=stationName) #cusum chart

 summary(cusumChart)

 return(paste("Method:", method, ';', "Factor:",
round(regression$coefficients, 2)))}

 }

 if(method!="residuals" & method!="coefficient" & method!="sumRatio")
{

 print("Incorrect method, choose between 'residuals', 'coefficient'
and 'sumRatio'")

 }

}

#example of calling of the function

SSNcusum(data=Sunspots, SSNVariable="SSN",
stationVariable="wnUC_d.txt", timeVariable="times", startTime=2000,
endTime=2015,target0=T, method="sumRatio", shift=0, interval=5,
statistics=F, stationName = " Uccle")

O

Ilham Sebban - LSTAT2390 Statistical Consulting

RAPPORT

The Sunspot numbers
Royal Observatory of Belgium

Ilham Sebban 15/05/2017

 2

Table des matières

Résumé...3

1) Mise en contexte...4

2) Méthodologie adoptée..4

3) Carte CUSUM : Uccle...5

a) Période 1981-2014...5

b) Période 2010-2014...6

4) Carte CUSUM : Locarno...7

a) Période 1981-2014...7

b) Période 2010-2014...8

5) Exploration des données...9

a) Données manquantes...9

b) Stations actives...10

c) Cartes CUSUM des stations actives...11

Conclusion...17

Liste des graphes et tableaux..18

Annexe..19

 3

Résumé

La production du nombre de tâches solaires international (ISN) est passée de l'Observatoire de

Zurich à l'Observatoire Royal de Belgique en 1981, en construisant une série ISN à partir des

observations fournies par des stations individuelles du réseau mondial SILSO.

Ce travail se veut mettre en lumière la qualité des données communiquées par le réseau des

observateurs, et ce, en tenant compte de l’influence du facteur humain sur les données observées

et plus précisément de l’erreur de l’observateur. Pour cette fin, une exploration des données

sous l’angle des données manquantes et des variances a été conjuguée à la constitution des

cartes de contrôle chronologiques CUSUM.

Les cartes de contrôle ont été construites sur la base de trois approches d’estimation de l’erreur

de l’observateur, et ce, au profit de la station de référence Locarno et de la station Uccle. Il en

a résulté que l’allure des cartes de contrôle demeure la même pour les trois scénarii

d’estimation. Aussi, on a constaté que les deux stations ont connu des périodes d’instabilité

différentes, sauf que Locarno se caractérise par la présence de drifts qui s’étalent sur des

périodes de temps assez longues, et Uccle par des shifts accentués qui présentent des écarts

brusques des limites de contrôle en de courtes périodes de temps.

Il est à noter que sur les 40 stations étudiées, juste 18 sont actives depuis 2010, avec des

variances hétérogènes, mais particulièrement faible en 2010. Par ailleurs, les cartes CUSUM

afférentes aux stations actives ayant moins de 50% de données manquantes en 2010-2014 ont

révélé que toutes les stations en question étaient instables en 2010 excepté les stations HU et

HE.

Finalement, la conjugaison des trois critères d’appréciation des stations a permis d’identifier

des stations actives qu’on peut qualifier de crédibles, tel est le cas pour la station EB marquée

par une stabilité des données depuis début 2012. Et vice versa, des stations qui n’ont pas réussi

à maintenir sous contrôle leurs observations durant toute la période 2010-2014, tels que les

stations FRI et QU.

 4

1. Contexte

Depuis 1981, l'Observatoire royal de Belgique se charge de mettre à disposition le nombre de

tâches solaires international (ISN). Ce dernier est calculé en fonction de données provenant de

30 pays, principalement européens. 270 stations ont contribué à l'indice et 80 contribuent

régulièrement. La majorité des observateurs sont des amateurs. Ceci étant, le facteur humain

influence fortement les observations et constitue une source d’erreur.

Le ISN est largement utilisé comme principal indice solaire de référence sur lequel se fondent

des recherches scientifiques et des centaines d'études publiées dans divers domaines de la

science. Ainsi, il est important de contrôler en permanence la qualité des données, en analysant

la stabilité des stations individuelles dans le temps.

Ce travail se veut pour objectif de déterminer un ensemble de critères pour l'évaluation de la

stabilité des stations et d’identifier les points d’arrêt éventuels dans le temps.

2. Méthodologie adoptée

L’analyse a porté sur une base de données comportant le ISN et les observations par station, il

s’agit de 59 observations provenant de 40 stations.

De prime abord, pour apprécier la stabilité des données à travers le temps et identifier les points

d’arrêt, on a fait le choix d’appliquer une carte de contrôle CUSUM1.

Le principe de la carte CUSUM se définit par la construction d’une carte capable de détecter

des petites dérives en utilisant des informations antérieures pour la décision et pas uniquement

le dernier point. Il s’agit de représenter la somme des différences à la cible depuis la dernière

alarme : les sommes cumulées.

Voulant établir une carte de contrôle mettant en exergue l’erreur de l’observateur, on a procédé

à une estimation des résidus selon trois méthodes.

- Méthode1 : établir une régression basée sur les données transformées via la

transformation Anscomb et en déduire les résidus, à savoir :

• 2/Yt +3/ 8*² (pour les stations)

• 2/Xt +3/ 8*² (pour le ISN)

- Méthode 2 : réaliser une régression basée sur la racine carrée des données brutes et en

déduire les résidus ;

- Méthode 3 : calcul des résidus selon la formule suivante :

• Résidu= Yt -  *SSN

•  = médiane (Yt / SSN)

Il importe de signaler qu’avant de faire la régression un lien positif entre le ISN et les

observations par station a été vérifié et confirmé.

1 Logiciel utilisé : QI Macros SPC Software pour Excel

 5

Le diagramme CUSUM se compose des éléments suivants :

- Une valeur cible

- Le paramètre h : représente les limites

inférieure et supérieure de contrôle : Il s’agit

de 4*Ecart-type ; en effet, la carte CUSUM

déclare que le processus devient instable une

fois qu’il est au-delà 4 fois l’écart type de la

moyenne ;

- Les lignes C+ et C- qui représentent la somme

cumulative des écarts des valeurs successives

à partir de la cible2.

Les formules de calcul se présentent comme suit :

• C+=Xvar+(valeur cible+k)+cumul

• C-=Xvar-(valeur cible+k)+cumul

• K=Ecart-type/2

Quant à la définition de la valeur cible, on a fait le choix de maintenir la moyenne. Une réflexion

logique qui peut se justifier pourrait nous inciter à fixer la valeur cible à 0, voulant avoir une

erreur de l’observateur nulle. Néanmoins, cette valeur influence fortement l’allure de la carte

CUSUM, et cette option ne nous permettra pas d’avoir une carte neutre et balancée.

Le processus ci-dessus a été exécuté au profit de la station Uccle et la station Locarno3 pour la

période allant de 1981 à 2014, et ce, sur la base des trois estimations de l’erreur en vue de

constater des différences éventuelles.

Par la suite, et dans le but d’avoir une visibilité actualisée sur une période récente, une

appréciation de la fiabilité du processus sur la phase réduite de 2010-2014 a été réalisée.

L’objectif de ce travail étant de mettre en lumière la fiabilité des stations, on a procédé dans un

deuxième temps à une exploration globale des données brutes observées. Ladite exploration a

été faite sous l’angle des données manquantes et de la variance pour la période allant de janvier

1981 à décembre 2014.

Il en a résulté l’identification des stations qui ont été actives durant les 5 dernières années, et

une appréciation de la stabilité des données y afférentes a été mise en exergue via la carte

CUSUM sur la période 2010-2014, et ce, sur la base des résidus calculés à travers la méthode

3.

3. Carte CUSUM : Uccle

a. Période 1981-2014

Ci-dessous les cartes CUSUM établies sur les trois versions de résidus de la station Uccle pour

la période 1981-2014, on voit clairement que les tendances sont les mêmes, ainsi que les

2 Les résultats de la carte CUSUM sont en valeur et non pas en pourcentage pour des raisons de simplicité d’interprétation
3 La station de référence pour assurer la continuité avec les observations précédentes de Zurich

Graphe 1 : exemple d’une carte CUSUM

 6

périodicités qu’on pourrait qualifier comme hors contrôle. Egalement, ces tendances

correspondent aux fluctuations observées au niveau de la représentation graphique des données

brutes transformées en racine carré.

Graphe 2 : Cartes CUSUM de la station Uccle (Basées sur les trois méthodes de calcul de résidus)

1981-2014

La carte ci-dessus révèle généralement la présence de certaines périodes de stabilité mais aussi

d’une pointe particulièrement élevée d’une valeur de 111, 62, après laquelle le signal a rechuté

pour passer à -15,31en septembre 1999.

Un autre shift tout aussi important est détecté en 1982 et précisément entre la fin du mois de

juillet et le mois de novembre où la valeur Cusum est passée de -24,57 à 18,67 pour chuter par

la suite à -41,33.

Par ailleurs, il existe aussi quelques dérives pas aussi importantes que celles précitées après

2010, qu’on va examiner dans la prochaine sous-section.

b. Période 2010-2014

 7

Sur cette sous-section, on fait le focus sur la période 2010-2014, période durant laquelle la

station Uccle se caractérisait par la présence d’un nombre de dérives relativement réduit mais

qui sont surtout négatives, ceci dit, elles ne sont certes pas nombreuses, mais demeurent très

importantes. En effet, Les shifts constatés ont atteint une valeur C- de -13,22 en juin 2012 et

-10, 23 en juillet 2014, sachant que la limite inférieure est de -2,166, seuil au-delà duquel la

station peut être qualifiée comme instable.

Graphe 3 : Carte CUSUM de la station Uccle 2010-2014

Ceci étant, la station Uccle se caractérise relativement par une certaine stabilité, toujours est-il,

il y est des shifts importants avec des écarts brusques et accentués.

4. Carte CUSUM : Locarno

a. Période 1981-2014

Les résultats des 3 scénarii pour Locarno sont aussi similaires, et s’inscrivent bien dans les

tendances des données originaux, ceci conforte ce qui a été avancé pour la station Uccle.

 8

Graphe 4 : Cartes CUSUM de la station Locarno (Basées sur les trois méthodes de calcul de résidus)

1981-2014

Pour la présente station, on constate 2 importants drifts, un premier qui a atteint une valeur C+

de 398 en novembre 1990 et un second d’une valeur C- de -58,45 en septembre 2004,

néanmoins, Locarno reste relativement stable et n’inscrit pas des écarts prononcés.

b. Période 2010-2014

Le graphe ci-après retrace l’état du processus en 2010-2014, il met en lumière une vingtaine de

dérives, dont les plus importantes qui ont cumulé un écart relativement important ont été

constaté en 2010 et précisément en janvier avec une valeur C- de -6,267 et en avril avec un C+

positif de 8,321, sinon, il y a eu par la suite des dérives mais qui ne sont pas très prononcées et

restent moins importantes que celles enregistrées en 2010.

 Graphe 5 : Carte CUSUM de la station Locarno 2010-2014

 9

Finalement, on remarque que la carte CUSUM de la station Locarno sur toute la période 1981-

2014, n’a pas mis en exergue les différentes dérives constatées sur la carte portant sur la période

2010-2014.

Cela nous apprend qu’une carte établie sur une longue période couplée à la présence des dérives

relativement moins importantes ou qui ne s’écartent pas trop des limites inférieure ou

supérieure, ne permet pas de détecter facilement les petits décalages pouvant exister.

A cet égard, On peut faire le constat que la station Uccle, contrairement à la station Locarno se

caractérise par la présence des écarts accentués et plus importants constituant des shifts

considérables.

5. Exploration des données

a. Données manquantes

Une exploration des données nous a permis de faire un premier constat relatif à la disponibilité

des stations, en effet, un bon nombre de stations ne fournissent pas ou peu de données depuis

les années 80. En effet, 36 observations sur 59 proviennent de stations dont plus de 50% de

données sont manquantes depuis 1981.

Graphe 6 : Etat des données manquantes 1981-2014.

Le nombre d’observations provenant de stations ayant arrêté de fournir des données depuis

1989 ou moins sont au nombre de 15, il s’agit notamment de : AT ; BK.S ; FR.S ; BR.110aS ;

BR.110bS ; MY.S ; LF ; LF2 ; LF2L ; LFm ; LFmL ;LK ; MA ; MD ; KO2.

D’autres stations ont arrêté d’observer le soleil depuis les années 90 (entre 1990 et 1999), il

s’agit exactement de 14 observateurs : BR.50S ; BR.60S ; BR.80S ; BR.S ; BR ; BRm ; A3 ;

AN ; GU.S ; TR ; HP.S ; HT.S ;KO ; KOm.

Depuis les années 2000 (entre 2000 et 2010), 6 stations ont cessé de fournir des mesures SSN,

à savoir : SC.S ; GA.S ; RO ; SA ; PO ; CRA.

Ceci étant, 50% des mesures sont estimées depuis les années 90, vu qu’elles émanent de stations

inactives.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
R

.1
10

aS
B

R
.1

10
bS

B
R

.5
0S

B
K

.S A
T

M
Y.

S
KO

2
M

D
G

A
.S LK

FR
.S

H
T

.S
G

U
.S LF TR LF
2

LF
2L

LF
m

LF
m

L

SA
_

A
N

M
A

PO

B
R

.6
0S A

3
B

R
.S

H
P

.S
B

R
.8

0S KO
Ko

m R
O

SC
.S B
R

B
R

m SK
B

N
.S

H
D

.S
SM

 F
R

I
 Q

U
 H

U

 C
R

A
 H

E
 M

T

 M
O

 F
U

 U
C

 U
C

3
 U

C
2

 U
C

2o
ld

 K
H

 C
A

 E
B

 K
Z

 K
Z2

 K
Zm L

O
 K

S
 K

S2

Données enregistrées Données manquantes

 10

b. Stations actives

Sur l’ensemble des stations, 18 ont été actives durant les 5 dernières années (2010-2014). Par

active on entend qu’elles ont fourni en moins une observation pendant cette période.

Les graphes ci-dessous présentent lesdites stations, et illustrent respectivement l’état des

données manquantes et observées par station, et la variance enregistrée par année et par

station.

Graphe 7 : Etat des données manquantes chez les stations actives 2010-2014

 Graphe 8 : Variances chez les stations actives 2010-2014.

3%

10%

20%

26% 26% 26%
29% 30% 31% 32%

40%

46%
49%

53%

61%

81%
84%

87%

97% 90% 80% 74% 74% 74% 71% 70% 69% 68% 60% 54% 51% 47% 39% 19% 16% 13%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FRI KS2 KZm LO MO HU KH MT FU UC EB HE QU CA HD.S BN.S SK SM

Données manquantes Données observées

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FRI KS2 KZm LO MO HU KH MT FU UC EB HE QU CA HD.S BN.S SK SM

2010 2011 2012 2013 2014

 11

Il résulte du classement des stations selon la proportion des données manquantes illustré par le

graphe 7 que la station FRI est la plus assidue avec juste 3% de données manquantes sur toute

la période, suivi de KS2 avec 10%, la station Locarno enregistre 26% des données manquantes,

quant à la station Uccle elle occupe la 10ème position (32%).

Le graphe 4 illustre la variance observée par année et montre globalement que les variances ont

les mêmes tendances par station, avec une variance en 2010 particulièrement basse relativement

aux autres années. (Annexe1 : un tableau détaillé des variances par station).

Les deux graphes ci-dessus nous renseignent sur l’assiduité des stations mais ne mettent pas en

évidence la qualité des observations fournies par ces dernières. qu’il n’y a pas de liens évidents

entre la proportion des données manquantes et les variances enregistrées, De ce fait, il serait

approprié de renforcer notre analyse via des cartes Cusum en vue d’éclairer notre lanterne par

rapport à la qualité des données par station.

Ayant le souci d’avoir une visibilité actualisée qui tient compte même des petits écarts au niveau

des stations actives, l’exécution de ce procédé va porter les stations ayant moins de 50% de

données manquantes, et ce, sur la période 2010-2014.

c. Cartes CUSUM des stations actives

Certes, la station FRI est la plus assidue, toutefois, sa variance est la plus élevée, sauf en 2010

où elle a occupé la deuxième position après la station SM. De surcroît, sa carte CUSUM illustre

un processus instable marqué par la présence de plusieurs dérives sans aucune ou de très courtes

périodes de stabilité.

Graphe 9 : Carte CUSUM de la station FRI (2010-2014)

La station KS2 combine une variance relativement dans la moyenne des autres stations ainsi

qu’une très bonne disponibilité. Néanmoins, son processus est marqué par la présence de quatre

dérives importantes. Les deux premières se sont succédées et se sont étalées sur une période

allant d’avril 2011 à janvier 2012.

 12

Egalement, un drift considérable a marqué l’année 2014 avec une valeur C- de -31, 717 atteinte

en mois de juillet.

 Graphe 10 : Carte CUSUM de la station KS2 (2010-2014)

La station MT a enregistré durant la période 2010- 2014 une variance un peu en dessous de la

moyenne, elle est assez disponible avec juste 30% de données manquantes, et son processus est

relativement stable avec un drift important entre juillet et octobre 2010, et un deuxième moins

accentué en janvier 2014.

Graphe 11 : Carte CUSUM de la station MT (2010-2014)

La carte de contrôle de la station KH illustre à son tour un processus instable avec quelques

périodes de stabilité en 2011, et des points d’arrêt dont les plus importants sont constatés en

juillet 2010 et juillet 2012. Par ailleurs, les données sont complètement instables depuis

novembre 2013.

-40.000

-30.000

-20.000

-10.000

0.000

10.000

20.000

30.000

40.000

20
1

0.
00

1
20

1
0.

10
3

20
1

0.
20

4
20

1
0.

30
5

20
1

0.
40

7
20

1
0.

50
8

20
1

0.
61

0
20

1
0.

71
1

20
1

0.
81

2
20

1
0.

91
4

20
1

1.
01

5
20

1
1.

11
6

20
1

1.
21

8
20

1
1.

31
9

20
1

1.
42

1
20

1
1.

52
2

20
1

1.
62

3
20

1
1.

72
5

20
1

1.
82

6
20

1
1.

92
7

20
1

2.
02

9
20

1
2.

13
0

20
1

2.
23

1
20

1
2.

33
2

20
1

2.
43

3
20

1
2.

53
4

20
1

2.
63

5
20

1
2.

73
6

20
1

2.
83

7
20

1
2.

93
9

20
1

3.
04

0
20

1
3.

14
1

20
1

3.
24

2
20

1
3.

34
4

20
1

3.
44

5
20

1
3.

54
7

20
1

3.
64

8
20

1
3.

74
9

20
1

3.
85

1
20

1
3.

95
2

20
1

4.
05

3
20

1
4.

15
5

20
1

4.
25

6
20

1
4.

35
8

20
1

4.
45

9
20

1
4.

56
0

20
1

4.
66

2
20

1
4.

76
3

20
1

4.
86

4
20

1
4.

96
6

R
és

id
u

s
K

S2

times

CUSUM KS2 Upper Cusum C+

C- Lower Cusum

-15.000

-10.000

-5.000

0.000

5.000

10.000

15.000

20.000

25.000

30.000

20
10

.0
01

20
10

.0
73

20
10

.1
44

20
10

.2
15

20
10

.2
86

20
10

.3
58

20
10

.4
29

20
10

.5
00

20
10

.5
71

20
10

.6
42

20
10

.7
14

20
10

.7
85

20
10

.8
56

20
10

.9
27

20
10

.9
99

20
11

.0
70

20
11

.1
41

20
11

.2
12

20
11

.2
84

20
11

.3
55

20
11

.4
26

20
11

.4
97

20
11

.5
68

20
11

.6
40

20
11

.7
11

20
11

.7
82

20
11

.8
53

20
11

.9
25

20
11

.9
96

20
12

.0
67

20
12

.1
38

20
12

.2
09

20
12

.2
80

20
12

.3
51

20
12

.4
22

20
12

.4
93

20
12

.5
64

20
12

.6
35

20
12

.7
06

20
12

.7
77

20
12

.8
48

20
12

.9
19

20
12

.9
90

20
13

.0
62

20
13

.1
33

20
13

.2
04

20
13

.2
75

20
13

.3
47

20
13

.4
18

20
13

.4
89

20
13

.5
60

20
13

.6
32

20
13

.7
03

20
13

.7
74

20
13

.8
45

20
13

.9
16

20
13

.9
88

20
14

.0
59

20
14

.1
30

20
14

.2
01

20
14

.2
73

20
14

.3
44

20
14

.4
15

20
14

.4
86

20
14

.5
58

20
14

.6
29

20
14

.7
00

20
14

.7
71

20
14

.8
42

20
14

.9
14

20
14

.9
85

R
és

id
u

s_
M

T

times

CUSUM_MT
Upper Cusum

C+

C-

Lower Cusum

 13

Graphe 12 : Carte CUSUM de la station KH (2010-2014)

La station KZm se caractérise par une bonne disponibilité, et un niveau de variance relativement

dans la moyenne, de surcroit, son processus durant les cinq dernières années a connu une

certaine stabilité à partir de septembre 2012, après deux importants drifts enregistrés entre 2010

et juillet 2012.

Graphe 13 : Carte CUSUM de la station KZm (2010-2014)

Les dérives de la station HU sont principalement des shifts importants, les données passent d’un

dépassement de la limite supérieure à un écartement de la limite inférieure de manière brusque

et en une courte période de temps.

Les principaux shifts sont au nombre de 4, et ont été constaté respectivement en juillet 2011,

juillet 2012, mai 2013 et avril 2014

.

-30.000

-20.000

-10.000

0.000

10.000

20.000

30.000
20

1
0.

00
1

20
1

0.
10

5

20
1

0.
21

0

20
1

0.
31

4

20
1

0.
41

8

20
1

0.
52

2

20
1

0.
62

6

20
1

0.
73

0

20
1

0.
83

4

20
1

0.
93

8

20
1

1.
04

2

20
1

1.
14

7

20
1

1.
25

1

20
1

1.
35

5

20
1

1.
45

9

20
1

1.
56

3

20
1

1.
66

7

20
1

1.
77

1

20
1

1.
87

5

20
1

1.
97

9

20
1

2.
08

3

20
1

2.
18

7

20
1

2.
29

1

20
1

2.
39

5

20
1

2.
49

9

20
1

2.
60

2

20
1

2.
70

6

20
1

2.
81

0

20
1

2.
91

4

20
1

3.
01

8

20
1

3.
12

2

20
1

3.
22

6

20
1

3.
33

0

20
1

3.
43

4

20
1

3.
53

8

20
1

3.
64

2

20
1

3.
74

7

20
1

3.
85

1

20
1

3.
95

5

20
1

4.
05

9

20
1

4.
16

3

20
1

4.
26

7

20
1

4.
37

1

20
1

4.
47

5

20
1

4.
57

9

20
1

4.
68

4

20
1

4.
78

8

20
1

4.
89

2

20
1

4.
99

6

R
és

id
u

s_
K

H

times

CUSUM_KH Upper Cusum

C+

C-

Lower Cusum

-120.0000

-100.0000

-80.0000

-60.0000

-40.0000

-20.0000

0.0000

20.0000

40.0000

60.0000

80.0000

20
1

0.
00

1
20

1
0.

10
3

20
1

0.
20

4
20

1
0.

30
5

20
1

0.
40

7
20

1
0.

50
8

20
1

0.
61

0

20
1

0.
71

1
20

1
0.

81
2

20
1

0.
91

4
20

1
1.

01
5

20
1

1.
11

6
20

1
1.

21
8

20
1

1.
31

9
20

1
1.

42
1

20
1

1.
52

2
20

1
1.

62
3

20
1

1.
72

5
20

1
1.

82
6

20
1

1.
92

7
20

1
2.

02
9

20
1

2.
13

0
20

1
2.

23
1

20
1

2.
33

2
20

1
2.

43
3

20
1

2.
53

4
20

1
2.

63
5

20
1

2.
73

6
20

1
2.

83
7

20
1

2.
93

9
20

1
3.

04
0

20
1

3.
14

1
20

1
3.

24
2

20
1

3.
34

4
20

1
3.

44
5

20
1

3.
54

7
20

1
3.

64
8

20
1

3.
74

9
20

1
3.

85
1

20
1

3.
95

2
20

1
4.

05
3

20
1

4.
15

5
20

1
4.

25
6

20
1

4.
35

8
20

1
4.

45
9

20
1

4.
56

0
20

1
4.

66
2

20
1

4.
76

3
20

1
4.

86
4

20
1

4.
96

6

R
és

id
u

s_
K

Sm

times

Cusum_KZm
Upper Cusum C+

C- Lower Cusum

 14

 Graphe 14 : Carte CUSUM de la station HU (2010-2014)

A l’image d’un bon nombre d’observateurs, la station EB s’est écartée de la limite inférieure

de contrôle (-4,24) avec une valeur de -53,51en 2010, et s’en est suivi un drift pas aussi

important que le premier en décembre 2011.

A partir de 2012, une certaine stabilité est constatée avec quelques petites dérives.

Graphe 15 : Carte CUSUM de la station EB (2010-2014)

La station MO présente également des shifts tout au long de la période 2010-2014 avec

certaines périodes de stabilité, notamment entre janvier et juillet 2012 et entre juin 2013 et

juillet 2014

Graphe 16 : Carte CUSUM de la station MO (2010-2014)

-15.0000

-10.0000

-5.0000

0.0000

5.0000

10.0000

15.0000

20.0000

20
1

0.
00

1

20
1

0.
11

9

20
1

0.
23

7

20
1

0.
35

5

20
1

0.
47

3

20
1

0.
59

0

20
1

0.
70

8

20
1

0.
82

6

20
1

0.
94

4

20
1

1.
06

2

20
1

1.
17

9

20
1

1.
29

7

20
1

1.
41

5

20
1

1.
53

3

20
1

1.
65

1

20
1

1.
76

8

20
1

1.
88

6

20
1

2.
00

4

20
1

2.
12

2

20
1

2.
23

9

20
1

2.
35

7

20
1

2.
47

4

20
1

2.
59

2

20
1

2.
70

9

20
1

2.
82

7

20
1

2.
94

4

20
1

3.
06

2

20
1

3.
17

9

20
1

3.
29

7

20
1

3.
41

5

20
1

3.
53

3

20
1

3.
65

1

20
1

3.
76

8

20
1

3.
88

6

20
1

4.
00

4

20
1

4.
12

2

20
1

4.
24

0

20
1

4.
35

8

20
1

4.
47

5

20
1

4.
59

3

20
1

4.
71

1

20
1

4.
82

9

20
1

4.
94

7

R
és

id
u

s_
H

U

times

Cusum_HU
Upper Cusum

C+

C-

Lower Cusum

-60.0000

-50.0000

-40.0000

-30.0000

-20.0000

-10.0000

0.0000

10.0000

20.0000

30.0000

40.0000

20
1

0.
00

1

20
1

0.
12

5

20
1

0.
24

8

20
1

0.
37

1

20
1

0.
49

5

20
1

0.
61

8

20
1

0.
74

1

20
1

0.
86

4

20
1

0.
98

8

20
1

1.
11

1

20
1

1.
23

4

20
1

1.
35

8

20
1

1.
48

1

20
1

1.
60

4

20
1

1.
72

7

20
1

1.
85

1

20
1

1.
97

4

20
1

2.
09

7

20
1

2.
22

0

20
1

2.
34

3

20
1

2.
46

6

20
1

2.
58

9

20
1

2.
71

2

20
1

2.
83

5

20
1

2.
95

8

20
1

3.
08

1

20
1

3.
20

4

20
1

3.
32

7

20
1

3.
45

1

20
1

3.
57

4

20
1

3.
69

7

20
1

3.
82

1

20
1

3.
94

4

20
1

4.
06

7

20
1

4.
19

0

20
1

4.
31

4

20
1

4.
43

7

20
1

4.
56

0

20
1

4.
68

4

20
1

4.
80

7

20
1

4.
93

0

R
és

id
u

s_
EB

times

Cusum_EB
Upper Cusum

C+

C-

Lower Cusum

-10.0000

-5.0000

0.0000

5.0000

10.0000

15.0000

20
1

0.
00

1
20

1
0.

11
4

20
1

0.
22

6
20

1
0.

33
8

20
1

0.
45

1
20

1
0.

56
3

20
1

0.
67

5
20

1
0.

78
8

20
1

0.
90

0
20

1
1.

01
2

20
1

1.
12

5
20

1
1.

23
7

20
1

1.
34

9
20

1
1.

46
2

20
1

1.
57

4
20

1
1.

68
6

20
1

1.
79

9
20

1
1.

91
1

20
1

2.
02

3
20

1
2.

13
5

20
1

2.
24

7
20

1
2.

35
9

20
1

2.
47

1
20

1
2.

58
3

20
1

2.
69

5
20

1
2.

80
7

20
1

2.
91

9
20

1
3.

03
2

20
1

3.
14

4
20

1
3.

25
6

20
1

3.
36

8
20

1
3.

48
1

20
1

3.
59

3
20

1
3.

70
5

20
1

3.
81

8
20

1
3.

93
0

20
1

4.
04

2
20

1
4.

15
5

20
1

4.
26

7
20

1
4.

37
9

20
1

4.
49

2
20

1
4.

60
4

20
1

4.
71

6
20

1
4.

82
9

20
1

4.
94

1

R
és

id
u

s_
M

O

times

Cusum_MO
Upper Cusum

C+

C-

Lower Cusum

 15

Contrairement à la station FRI, la station QU présente la variance la moins élevée durant les

cinq dernières années. Son processus est entièrement instable, avec 2 dérives importantes

enregistrées respectivement en juillet 2010 et en Avril 2014,

Graphe 17 : Carte CUSUM de la station QU (2010-2014)

Alors que presque l’ensemble des stations ont connu une grande instabilité en 2010, la station

HE se distingue par une bonne qualité de donnée en cette année.

Par ailleurs, elle a connu un drift important en 2011, après lequel, une stabilité est constatée, et

elle est due probablement à la proportion de données manquantes qui avoisine 86% en 2013-

2014.

Graphe 18 : Carte CUSUM de la station HE (2010-2014)

La station FU se caractérise par une bonne stabilité des données en 2012-2013 avec juste 30%

de données manquantes dans cette période.

Sinon, une grande phase d’instabilité a couvert la phase 2010-2011, également, le processus

s’est éloignée de la limite inférieure en 2014.

-35.0000

-30.0000

-25.0000

-20.0000

-15.0000

-10.0000

-5.0000

0.0000

5.0000

10.0000

15.0000

20.0000

20
1

0.
00

1
20

1
0.

11
1

20
1

0.
22

1
20

1
0.

33
0

20
1

0.
44

0
20

1
0.

54
9

20
1

0.
65

9
20

1
0.

76
8

20
1

0.
87

8
20

1
0.

98
8

20
1

1.
09

7
20

1
1.

20
7

20
1

1.
31

6
20

1
1.

42
6

20
1

1.
53

6
20

1
1.

64
5

20
1

1.
75

5
20

1
1.

86
4

20
1

1.
97

4
20

1
2.

08
3

20
1

2.
19

3
20

1
2.

30
2

20
1

2.
41

1
20

1
2.

52
0

20
1

2.
63

0
20

1
2.

73
9

20
1

2.
84

8
20

1
2.

95
8

20
1

3.
06

7
20

1
3.

17
7

20
1

3.
28

6
20

1
3.

39
6

20
1

3.
50

5
20

1
3.

61
5

20
1

3.
72

5
20

1
3.

83
4

20
1

3.
94

4
20

1
4.

05
3

20
1

4.
16

3
20

1
4.

27
3

20
1

4.
38

2
20

1
4.

49
2

20
1

4.
60

1
20

1
4.

71
1

20
1

4.
82

1
20

1
4.

93
0

R
és

id
u

s_
Q

U

times

Cusum_QU
Upper Cusum

C+

C-

Lower Cusum

-120.0000

-100.0000

-80.0000

-60.0000

-40.0000

-20.0000

0.0000

20.0000

20
1

0.
00

1

20
1

0.
10

8

20
1

0.
21

5

20
1

0.
32

2

20
1

0.
42

9

20
1

0.
53

6

20
1

0.
64

2

20
1

0.
74

9

20
1

0.
85

6

20
1

0.
96

3

20
1

1.
07

0

20
1

1.
17

7

20
1

1.
28

4

20
1

1.
39

0

20
1

1.
49

7

20
1

1.
60

4

20
1

1.
71

1

20
1

1.
81

8

20
1

1.
92

5

20
1

2.
03

1

20
1

2.
13

8

20
1

2.
24

5

20
1

2.
35

1

20
1

2.
45

8

20
1

2.
56

4

20
1

2.
67

1

20
1

2.
77

7

20
1

2.
88

4

20
1

2.
99

0

20
1

3.
09

7

20
1

3.
20

4

20
1

3.
31

1

20
1

3.
41

8

20
1

3.
52

5

20
1

3.
63

2

20
1

3.
73

8

20
1

3.
84

5

20
1

3.
95

2

20
1

4.
05

9

20
1

4.
16

6

20
1

4.
27

3

20
1

4.
37

9

20
1

4.
48

6

20
1

4.
59

3

20
1

4.
70

0

20
1

4.
80

7

20
1

4.
91

4

R
és

id
u

s_
H

E

times

Cusum_HE
Upper Cusum

C+

C-

Lower Cusum

 16

Graphe 19 : Carte CUSUM de la station EB (2010-2014)

Ci-après un tableau récapitulatif qui résume la situation par station active avec moins de 50%

de données manquantes, et ce, en termes de niveau variance et de la qualité des données issues

de leurs cartes CUSUM respectives.

Stations

% Données

manquantes
Variance

Périodicité des dérives

2010 2011 2012 2013 2014

FRI 3% ↑ Instable

LO
26% ↑ Instable Octobre Stable Stable

Janvier et

Avril

KS2

10% ___

De Juillet

à

septembre Janvier Octobre

De Avril à

juillet

KZm
20% ↑ Instable Instable

De janvier

à Juillet Stable Stable

UC
32% ↓ Instable Août Juin

Octobre et

Juillet Juillet

KH
↓ ↓ Juillet Décembre Juillet

Avril et

décembre

Janvier et

Juillet

MO 26% ↑ Instable avec de courtes périodes de stabilité

HU 26% ___ Stable Juillet Juillet Mai Avril

MT
30% ___

De juillet à

octobre Assez Stable Janvier

QU 49% ↓ Instable

EB 40% ___ Instable Décembre Stable Stable Stable

HE
46% ↓ Stable Juillet

Stabilité due probablement au

manque de données

FU
31% ___

Instable jusqu’à octobre

2011 Stable Stable Instable

Tableau 1 : Récapitulatif de l’état des stations actives 2010-2014

-60.000

-40.000

-20.000

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

20
1

0.
00

1
20

1
0.

11
6

20
1

0.
23

2
20

1
0.

34
7

20
1

0.
46

2
20

1
0.

57
7

20
1

0.
69

2
20

1
0.

80
7

20
1

0.
92

2
20

1
1.

03
7

20
1

1.
15

2
20

1
1.

26
7

20
1

1.
38

2
20

1
1.

49
7

20
1

1.
61

2
20

1
1.

72
7

20
1

1.
84

2
20

1
1.

95
8

20
1

2.
07

2
20

1
2.

18
7

20
1

2.
30

2
20

1
2.

41
7

20
1

2.
53

1
20

1
2.

64
6

20
1

2.
76

1
20

1
2.

87
6

20
1

2.
99

0
20

1
3.

10
5

20
1

3.
22

1
20

1
3.

33
6

20
1

3.
45

1
20

1
3.

56
6

20
1

3.
68

1
20

1
3.

79
6

20
1

3.
91

1
20

1
4.

02
6

20
1

4.
14

1
20

1
4.

25
6

20
1

4.
37

1
20

1
4.

48
6

20
1

4.
60

1
20

1
4.

71
6

20
1

4.
83

2
20

1
4.

94
7

R
és

FU

times

Cusum_ FU
Upper Cusum

C+

C-

Lower Cusum

 17

Conclusion

En conclusion, on peut dire que le suivi des données manquantes et des variances par station

permet de faire, respectivement, une appréciation de l’assiduité des stations et du niveau de

dispersion des observations. En outre, ce travail a affirmé l’importance de prendre en ligne de

compte la qualité des observations fournies par chaque station, étant donné la contribution de

celles-ci dans la construction de l’ISN.

L’exécution de ce processus sur la période 2010-2014 nous a permis d’identifier des stations

assidues et relativement stables durant des périodes assez longues tels que les stations EB, KZm

et FU ; et également des stations instables avec de très courtes périodes de stabilité, tels que les

stations FRI, MO et QU.

Il est à noter que des cartes de contrôle sur de courtes périodes sont plus sensibles même aux

petits décalages et permettent d’identifier facilement les petites dérives. D’ailleurs, ceci a été

illustré par les cartes établies sur la période 2010-2014 au profit de la station Locarno. En effet,

on a vu clairement que les petits écarts des limites sur cette dernière période n’ont pas été

fortement perceptible sur la carte réalisée sur la phase 1981-2014.

Eu égard aux éléments avancés, une appréciation de la qualité des données sur de courtes

périodes, de manière automatique et régulière aura certainement une valeur ajoutée

considérable. De ce fait, il serait intéressant d’automatiser un processus d’appréciation de la

fiabilité des données de manière ponctuelle.

 18

Liste des graphes et tableaux

Graphe 1 : Exemple d’une carte CUSUM……………………………………………..………5

Graphe 2 : Cartes CUSUM de la station Uccle (Basées sur les trois méthodes de calcul de

résidus) 1981-2014…………………………………………….……………………..………...6

Graphe 3 : Carte CUSUM de la station Uccle 2010-2014………………………….………….7

Graphe 4 : Cartes CUSUM de la station Locarno (Basées sur les trois méthodes de calcul de

résidus) 1981-2014…….…………………………..…………………………………….……..8

Graphe 5 : Carte CUSUM de la station Locarno 2010-2014……………...…………………...8

Graphe 6 : Etat des données manquantes 1981-2014………………………………………….9

Graphe 7 : Etat des données manquantes chez les stations actives 2010-2014……………....10

Graphe 8 : Variances chez les stations actives 2010-2014…….……………………………..10

Graphe 9 : Carte CUSUM de la station FRI (2010-2014)…………………………………....11

 Graphe 10 : Carte CUSUM de la station KS2 (2010-2014)...……………………………….12

Graphe 11 : Carte CUSUM de la station MT (2010-2014)…….…………………………….12

Graphe 12 : Carte CUSUM de la station KH (2010-2014)…..………………………………13

Graphe 13 : Carte CUSUM de la station KZm (2010-2014)……...…………………………13

Graphe 14 : Carte CUSUM de la station HU (2010-2014)………..…………………………14

Graphe 15 : Carte CUSUM de la station EB (2010-2014)…….….…………………………14

Graphe 16 : Carte CUSUM de la station MO (2010-2014)……….…………………………14

Graphe 17 : Carte CUSUM de la station QU (2010-2014)……….…………………………15

Graphe 18 : Carte CUSUM de la station HE (2010-2014).……….…………………………15

Graphe 19 : Carte CUSUM de la station EB (2010-2014).……….…………………………16

Tableau 1 : Récapitulatif de l’état des stations actives 2010-2014…………………………...16

 19

Annexe : Variances par station active 2010-2014

Année 2010 2011 2012 2013 2014

QU 137,419 784,962 566,232 720,119 890,213

HE 188,733 1201,586 690,512 847,894 1004,171

HD.S 193,926 1199,604 820,9 1084,494 1371,162

SK 224,259 1470,093 967,198 1164,579 1402,857

UC 270,342 1578,248 1059,76 1295,108 1427,927

KH 272,656 1640,744 1099,227 1293,079 2155,643

HU 285,982 2280,936 1773,684 1788,119 2394,997

FU 302,264 1873,122 1199,926 1503,007 1860,118

MT 306,275 1732,52 1291,449 1411,568 1856,466

KS2 313,728 2108,025 1408,632 1775,791 1614,463

EB 322,177 1961,823 1335,848 1555,619 2075,355

KZm 366,543 3263,928 2090,719 2057,564 2495,363

CA 382,619 2221,741 1700,647 1612,923 2024,954

MO 409,189 2481,609 1596,38 1923,191 2284,483

LO 415,708 2538,463 1617,486 2218,882 2440,574

BN.S 421,442 2544,028 1711,037 2168,23 2652,52

SM 557,112 4281,325 1885,296 2368,487 2630,002

FRI 564,918 3903,607 3051,467 3628,37 4319,702

Val-U-Sun Project : Computational Aspects
to Handle Missing Values
LSTAT2390 Statistical consulting (C.Ri�er)

Antoine Pissoort

Friday 5th May, 2017

Executive Summary

�is project will give a �rst emphasis on the analysis of solar activity through the Sunspot
Number. We have �rst put our e�orts on the code translation and adaptation from Matlab® to
Rwith focus on vectorization issues and parallel computing for e�ciency. Aware of the in-depth
work that the client will have to do into this project in the future, we put emphasis on giving
ideas together with reusable and easily tunable features (tools) to make relevant future analysis.
We have then created a R package to gather functions and form a �rst basis for future work. We
developed visualization tools such as shiny applications. A re�ned cross-validation procedure
has led us to reconsider the results of Dudok de Wit (2011) for parameters tuning. �is cross-
validation scheme has been made repeated and K-fold where we found the importance of other
parameters on the tuning of SVDnumber of components. Interesting results have been provided
with new computational ideas allowing to expand our vision and to think further in the area.

Contents

Introduction 1

0 Development Tools 1
0.1 R Package (Github) . 1
0.2 Visualization . 2

1 Code Translation : ”Interpolating SVD-EM” method 3
1.1 Explanation of the Function : interpolsvd em() . 4
1.2 Example : Uccle2 . 5

2 Languages Comparisons 6
2.1 Improvements : Low-level Language . 7
2.2 Pro�ling . 7

3 Improvements : Other Methods and Comparisons 7
3.1 Method implemented by C.Ri�er . 8
3.2 Splines as Smoothing method . 8
3.3 Comparisons . 8
3.4 Improvements : based on So�Impute . 8

4 Parameter Tuning : Cross-Validation 9
4.1 Mathematical Notations . 9
4.2 Computational Problems . 9
4.3 Methodology . 10
4.4 K-fold cross-validation . 10
4.5 Repeated Cross-Validation . 12
4.6 Improvements . 12

5 Conclusion 12

A Appendix 14
A.1 Figure : Shiny application Example . 15
A.2 Figure : Example of the �lling method for Uccle2 . 15
A.3 Figure : Cross-Validation example . 15
A.4 R Package : /data . 16
A.5 R Package : R scripts . 17

Introduction

�is project (Val-U-Sun) will study the solar activity through a quantity called the Sunspot Number. �is
quantity is widely used as the main reference solar index on which hundreds of published studies are based
(see Cle�e et al. (2007) for more details). �e Sunspot Number (SSN) is a combination of the numberNg of
sunspot groups that are present on the Sun and the total number of sunspotsNS , (see de Wit et al. (2016)).
�is quantity is subject to various uncertainties, which behave as Poisson-like random variables. More
information on the Sunspot Number can be found on the references cited above.
�is project will more focus on the computational aspect, trying to �ll the gaps that occur for quite dif-
ferent reasons. We will rely on a method originated from Dudok de Wit (2011) to �ll data gaps in multi-
wavelength or in multichannel records using a data-adaptive and nonparametric method.
�is report have the following structure : in section 0 we will present the tools that have been developed
during this project (i.e., the R package and the Shiny applications). In section 1we will present the method
of Dudok deWit (2011) to �ll the gaps and our reimplementation. In section 2wewill compare 2 languages
(Python and R) that have been used to translate this method. In section 3 we will try to do be�er with
other methods such as the one from C.Ri�er or by replacing the gaussian smoothing by splines. In section
4 we will present a big cross-validation scheme before drawing a 5.
As we will do computational time analysis (pro�ling, benchmarking, . . .), we must notice that the follow-
ing computations are run on a i7-2820QM CPU 2.30GHz, 24GB RAM.

0 Development Tools

We would like to start by introducing the tools we developed. We put this section here as we will mention
this package during the project for be�er comprehension1.
A R package to ease the use of the project four ourself but also especially for future user (e.g., the reader).
And a shiny application to summarize smoothly the huge amount of results and outputs we obtained.

0.1 R Package (Github)

We have chosen to locate the package on github as it is the easiest way for the users to use it. You can
directly �n it in the following address.

https://github.com/proto4426/ValUSunSSN

It only requires the devtools package, so make sure to have it installed on your machine ! To install it,
you just have to type

d e v t o o l s : : i n s t a l l g i t hub (” p ro to4426 / ValUSunSSN ”)

in the R console. Or you can also look (e.g. if any error) and follow instructions from the README.md in
the github repository.
In this repository, you can �nd the whole content of the package, that is the following folders :

1But if you prefer, you can go directly in the next section to introduce the subject.

1

https://github.com/proto4426/ValUSunSSN

• /R : contains all .R �les containing the functions we have build and used during the project. �ese
are the functions you are allowed to use when you have loaded the package. Note that a single �le,
e.g. UsedFunc.R, can contain several functions. See appendix A.5 for more details on the .R
�les.

• /Scripts (?) : contains some scripts realized during the project. We included them for smoother
understanding of the project. It is not part of the package, but as their size is limited, it will not
slower the package’s installations. See appendix A.3 for more details on these �les.

• /data : gathers all the data we have computed to use it more conveniently, for example inside the
Shiny applications. From that, these are in .Rdata but they can be easily transformed in other for-
mats such as.csv. �ese can be used inside a R session simply by typing e.g. data(”ssn splines81
.RData”) if you want the �lled data computed with the splines method (see section 3.2) starting
at 1981. See appendix A.2 for more details of each datasets available.

• /inst : contains the Shiny applications for use directly through the R package. See next subsection
for more information on these applications.

• /man : Contains the documentation of the functions builded by the package roxygen2.

• /vignettes (not updated) : have been created for be�er understanding of the usage of the package’s
functions and some results, and to make links with the projects. We leave them in the repository
because it is a convenient way to explain a package. �ese are old versions based on the non-
transformed data . We thought a�erwards that it would be more smooth to summarize all informa-
tion in the Shiny applications (see next subsection) and hence we did not update it.

0.2 Visualization

For the sake of this project, we have developed Shiny applications to improve visualization abilities directly
located inside the package. �is comes from the fact that we did not want to discard arbitrarily some
stations. We wanted any users to be able to represent the observed values of every stations together with
the �lling method of his choice, to compare it with other stations and other �lling methods.
To run these application (1 at a time), be sure to have the package loadedwithlibrary(ValUSunSSN)
to enable the use of the data inside the application and then run either

runExample (’ s t a t i o n s ’) # To o b t a i n p l o t s o f t h e s t a t i o n s . Or

runExample (’ r e s i d u a l s ’) # To o b t a i n p l o t s o f t h e r e s i d u a l s .

�is would open two di�erent applications which are each doing the following :

• �e �rst one only compares the observed value with the �lled value, for the di�erent �lling methods.

• �e second one compares the ’residuals’ of two stations obtained by our method with another
selected method. We allow the user to express it in % scale. To do so, we normalized the residuals

2

with the SILSO to obtain more meaningful results. �e SILSO method will be explained in section
3. �is normalization is probably not the best method and this could be easily improved. Moreover,
note that when comparing with the SILSO itself, this gives weird/positive(?) results.

We are aware that the methods already provided in these applications are not exhaustive. By making this
application, we aimed at allowing the interested user to be able to easily modify the code to introduce any
other methods he would want.
A important di�cultywe have faced was to translate stations with di�erent names across the datasets we
were provided to build the applications. We put e�orts to make individual corrections, but this is possible
that there remains a very few errors in this part especially for stations whose name �nish by ”-S”. �at
should be corrected yet. However, individual correction is not preferable and the goal would be to look at an
automated method which could match any pair of station’s names. �is would be an easy text recognition
case but this should have 100% accuracy. Finally note that this is important for
Note that a more accurate method (statistically) can be implemented relying on the variability analysis
which could give us estimates of the standard errors. For example, we could assess if there is a signi�cant
di�erence between themethodswe considered, or between the stations themselves, for a given time period,
and then take be�er decisions.
We give an example of the outputs provided by the ”residuals” application in �gure 3 in appendix A.1. Ac-
tually, we remark by exploring other stations the huge di�erence with the ”Chris method” around January
2009 arise for most stations, negative or positive (…) �is is an example of what things we can detect with
this tool, but we will not inspect this further.

Improvements : An implementation with the well known Javascript library plotlywould be prefer-
able to obtain be�er visualization with dynamic graphs, i.e. by allowing to be�er select areas of interests,
etc2… It would be quite easy to translate it as the syntax of plotly in R is very similar to ggplot2
which has been used to build this application so far. �e old ”vigne�e” available in the /vignettes folder
of the github repository makes use of plotly.
Note that an implementation of Highcharts3 with the R package highcharter would be also an inter-
esting idea and not too di�cult to realize.

1 Code Translation : ”Interpolating SVD-EM” method

�e method is nonparametric and data-adaptive based on singular value decomposition (SVD) with close
relationship to Expectation-Maximization (EM) method (originated from Dempster et al. (1977)).
�e method is based on Dudok de Wit (2011) where it is explained in details. Let y ∈ Rn×m denotes the
matrix representing the time index (in days) in rows and the stations as columns. �e main assumption
for this method is the linear correlation between the time records.
As the explanations are rich in the above cited article, we will try to present a more speci�c explanation
based on our speci�c case and comprehension with the data at hand and the reimplemented code.

2see https://plot.ly/r for the o�cial R reference
3see https://www.highcharts.com

3

https://plot.ly/r
https://www.highcharts.com

We have put e�orts to design the most e�cient code we can do so far, e.g. by minimizing the for loops,
i.e. by vectorizing the code.

1.1 Explanation of the Function : interpolsvd em()

We �rst note that an advantage of building a R package is that you can have directly access to the help
page of each function, sayinterpolsvd em(), by doinghelp(interpolsvd em) or?inter-
polsvd em() in the console. Hence, we will not repeat ourself4 and we only present a brief summary
of the function’s inputs :

• y : Matrix containing the numeric data of interest. Here, it will be typically time units in rows and
station(s) in column(s).

• nembed (=2) : number of dimensions to which the input matrix will be embedded. It Must be
> 1 if only one single time series is given. Embedding involves a weighted averaging over time and
is thus appropriate when there is a high correlation in time.

• nsmo (=81) : Cuto� time scale (in number of samples). Set it to 0 if only one single time scale is
desired.

• ncomp (=4) : Maximum number of components retained from the SVD. (check with cv)

• niter (=30) and threshold1 (=10−5): control the ”convergence” of the algorithm by
specifying the number of iterations for each number of components during

�e default values given in () will be used to develop the �rst algorithms. We study more deeply these
values by cross-validation in section 5.
Note also that relevant comments have been added to the R �le where the function is implemented5. You
are invited to refer to it. We now explain this function step by step :

1. A�er the de�nition of the function, it normalizes the input matrix. Indeed, as the SVD is scaling
dependent, it is important to normalize the data. �en, it performs some tests to check if there are
enough observed values per stations.

2. A�er applying the embedding (if asked), it will weigh each records according to the number of each
station’s missing values. Larger weights are given to records with fewer gaps which will improve
the quality of the method since larger gaps are harder to interpolate. �e inverse transformation is
done at the end of the algorithm (see step 6).

3. A �rst approximation to �ll the gaps is made by doing a simple linear interpolation. Improvements
could be found by changing this simple interpolation method, even if the impact on the whole func-
tion is expected to be small. �is will provide a new matrix on which the SVD will be applied. �is
step is needed as the SVD cannot work with missing values.

4And as the old adage goes in scienti�c computing : Don’t Repeat Yourself
5you can retrieve it in /R/interpolsvd em.R in the package’s Github repository

4

4. �e 1st mode of the SVD is then computed. It replaces the cases which had gaps with the values
given by the SVD. Note that, same as with the other incoming modes, this will iterate niter times
but it will stop at iter = i if the mean squared di�erence between the values at iteri−1 and iteri for
cases which had gaps is below the threshold1.

5. �e huge loop start and the other modes are computed iteratively (thus from 2 to ncomp) with the
same iteration scheme as for the 1st mode. But the gaussian smoothing (see ?smooth gauss)
has been applied at the beginning of each (nested) iterations on the new matrix given by step 4. We
subtract the new average (over the stations) on each case for stability.

6. Finally, we recompose the data by doing the inverse transformations (see step 1 and 2) and we return
a list with the new matrix with �lled gaps (and also he distribution of the weights of the initial SVD
in a vector as the other component of the named list).

Square Root transformation

�e provided code had made a square root transformation of the initial data, i.e.

ynew =
√
y + 1 (1)

where y contains the initial data matrix. �en, we process the algorithm on ynew and we get the �lled
values y�lled. Finally, we transform back :

y�nal = (y�lled × y�lled)− 1, (2)

where the ”−1” term applies to all entries of the obtained matrix.
Following again Dudok deWit (2011), this is desirable since this will increase the linear correlation between
the records. Actually, we made this mistake of omi�ing this step, and we started writing a ”vigne�e” based
on these results. It can be retrieved in the /vignettes/OLD/ folder of the Github repository. We let these
results available as we think that indeed, it could be interesting to see how the results are di�erent.

1.2 Example : Uccle2

Wepresent an example of the outputwe can get from this function : see �gure 4 thatwe leave in appendix as
these kind of individual results are not much insightful. �e information provided is not really e�ective and
this is the reason why we developed the Shiny application discussed in section 0.2 to be able to maximize,
not only the information we can have from the method, but also the access to this information and its
readability. With our knowledge on the subject, we were not able to arbitrarily choose one (or a group of)
station(s) to display and to centralize analysis from it.
�e comments we can do from this graph on �gure 4 are :

• �e period from the start of the series (1924) and ≈ 1945 is quite unreliable because there are only
a few stations that have observations at this time. �is happens for most of stations and this is why
at this period the �lled SSN does not follow the solar cycle().

5

• �e �lled values do not necessarily follow perfectly the observed values (due in particular to the
in�uence of other stations), and sometimes there happen to be a very large values when the solar
activity is high (one is above 800 here around 1990 !).

2 Languages Comparisons

As Matlab® is a commercial product, we were not able to bring it to the comparison and hence, we will
’only’ compare the two most used languages in data analysis, Python and R.
Based on the (slightly re�ned) script in Python given bymy project’s partner Caroline, we have constructed
the plot in �gure 1 showing the computation time complexity of interpolsvd em() with its default
values (see section 1.1). We selected the 7 stations which have more than 17000 observed values and
we took observations between 18000 and 22000 to balance between computation time, accuracy of the
comparison and the fact there must be enough observed values for the algorithm to converge. �e graph
is depicted in the following �gure 1 :

10

12

14

16

18

18000 20000 22000

Number of observations

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Language
Python

R

Language's computation time for interpolsvd_em()

Figure 1: shows the computational complexity analysis between Python and R for the implemented method inter-
polsvd em().

We have to be prudent concerning this comparison as the computation time is very variable and it depends
on lots of conditions. Hence, we must be prudent when interpreting it. We illustrate this here, because we
did the ’error’ to do another computation in the same time as doing the R simulation (and not in parallel)
and hence, the big decrease around 22500 (that is, right to the vertical do�ed line, i.e. the region that is
crossed in black) is not reliable.
Regarding the R computations, we had to take a slightly re�ned function (which is a bit faster) to perform
the tests as the R IDE were crashing all the times during the simulation. We expect our machine not to be
powerful enough and this shows us how huge is the computation of this method. �e function we take is
the one we will use for cross-validation (interpol CrossVal(), see section 4).
We remark that before the �rst iteration, R is faster and this is perhaps thanks to the more e�cient imple-
mentation of the function, which is notably smoother before the main loop.

6

From our point of view, as R is statistical-oriented language, it is more ’e�cient’ (and intuitive) in the
sense that more re�ned methods exist to compute the large amount of statistical this method requires. An
example of a R method is sweep() which permits to easily compute the normalization steps.

2.1 Improvements : Low-level Language

We have seen that the methods perform slowly. Hence, it is very important to take advantage of compiled
languages such as C++ which should easily do the job. R facilitates implementation of C++ since the
apparition of Rcpp thanks to Eddelbue�el et al. (2011). Moreover, the RcppEigen package (see Bates
et al. (2013)) provides a huge library for numerical linear algebra. Together with other similar packages
such as RcppArmadillo, and assuming a global knowledge of the C++ language 6, the work would be
very precious to consider.
From that, drastic gains in computation time are expected. When looking at the computation times we
had with he three languages, and when thinking of further deep cross-validation analysis (see section 4),
this could lead to considerable improvements on the (hyper)parameters tuning. It is also easily possible to
export some part of the functions such as those we have found quite slow (smooth gauss(), see just
a�er) and then reuse it in the main function.

2.2 Pro�ling

Indeed, we did some pro�ling in R, relying on both the package profvis and the pro�ling tool proposed
by the Rstudio7 IDE. It showed us, in particular, that the sole smooth gauss() takes nearly 50% of
the total time computation of interpolsvd em(). An other 40% is taken for the SVD co mputation
by rank reduce() and the rest comes from all the (re)normalization steps made on the matrix.
Hence, assuming the SVD computation will be hard to improve, it is advised to either improve the R
implementation of smooth gauss() which is not computationally e�cient, or to pass this function
to a low-level language implementation, or even to �nd another smoothing method that could perform
equally and which is less time consuming. �is will be in fact the subject of the section 3.2.

3 Improvements : Other Methods and Comparisons

So far, we have followed the providedmethod andwe did notmake signi�cant departures from thismethod.
Now, we will present three other methods that comes from di�erent sources and that can make good
benchmarking of the implemented method of section 1. �ese methods include :

• A completely di�erent method coming from C.Ri�er. (section 3.1).

• A slightly re�ned method from Dudok de Wit (2011) by replacing the interpolation method (section
3.2).

6We sure expect this will not be a problem for physicians…
7seehttps://support.rstudio.com/hc/en-us/articles/218221837-Profiling-with-RStudio

7

https://support.rstudio.com/hc/en-us/articles/218221837-Profiling-with-RStudio

• �ere also exist a global method that is builded by experts the SILSO (section �). �is is included
in the Shiny application for relevant comparisons purpose we we will not develop it here. More
information can be found in http://sidc.oma.be/silso/newdataset .

3.1 Method implemented by C.Ritter

�emethod implemented by C.Ri�er, namely the ”Chris method”, relies on the Anscombe Transformation
to stabilize variance and make ≈Gaussian with constant variance the initially Poisson distributed SSN .
�en, linear regression on these transformed data and the gaps are �lled with the ��ed values. �e ’global’
SSN is computed by taking the median accross stations and a new linear regression is made on these new
values. Finally, imputation is made and the ’global’ SSN is computed by a trimmed mean.
More information can come from C.Ri�er. We still need to update this method to be able to ’functionize’
for sake of generalization.

3.2 Splines as Smoothing method

�is method simply replace the interpolation method from a gaussian smoothing to a smoothing with
splines. Besides, this ’simple’ re�nement could have drastic impacts. �is method comes from the fact that
we have found the gaussian interpolation method too slow in the preceding section. We did not really play
with the parameters (not necessary here) and we ’only’ the na.splines() from zoo package.
Note that there exist a bunch of for doing interpolation and this could be easily study. Again, a cross-
validation procedure (similar to that later presented in section 5) would be recommended to choose be-
tween the interpolating method.

3.3 Comparisons

�e following small table will summarize the computation time for the 3 method :

Methods→ Gaussian interpol. Splines interpol. Chris’ method
Computation time (seconds) 305.24 203.64 ≈20

where the time for Chris’ method is more approximative as the methodology is quite di�erent and we did
not have time to ”functionize” this method. We see that the other methods are well faster.
Visual comparisons between these methods are made through the Shiny application (see section 0.2)

3.4 Improvements : based on So�Impute

�is is not (yet?) included in this project but there is amount of literature on this subject and there are
high similarities with the method we have presented.
�e idea relies on the nuclear norm regularization. �is can be formulated by the following convex problem
:

min ||ŷ||∗, s.t.
∑
i,j∈ω

(
yij − ŷij

)2 ≤ δ, (3)

8

http://sidc.oma.be/silso/newdataset

where ω ⊂ {1, . . . , n} × {1, . . . ,m} is the set of observed entries and where the nuclear norm || · ||∗ is
another approach to relax the rank of the matrix. Eq.(3) aims to minimize the complexity subject to a
maximum error.
�is method has been �rst presented byMazumder et al. (2010) and a lot of research have emerged from the
same idea, the so-called online matrix completion problem as presented in Dhanjal et al. (2014) for example,
among others. �e R package SoftImpute has also emerged from Hastie et al. (2014).
We think that this can represent a non-negligible source of information from which we can create novel
ideas for improving the existing method.

4 Parameter Tuning : Cross-Validation

In this section we aim at looking more deeply at the (hyper)parameters of the model and then tune them
accurately. Following Dudok de Wit (2011), the three tuneable parameters are :

• �e number of signi�cant components retained (ncomp).

• �e number of scales into which the data are decomposed (nsmo).

• the embedding dimension (nembed).

4.1 Mathematical Notations

For smoother comprehension in this section, we re-adapt the notation of Dudok de Wit (2011). Hence,
let yi,j = y(ti, λj) denote the matrix of observed entries for the SSN with i rows and j columns. �us, t
denotes the time index in days and λ is the set of stations. More speci�cally here, it means

i =
[
1/1/1924; 5/4/2015

]
, j =

{
wnA3, . . . ,wnUC3

}
. (4)

for the complete series. But here for computational (and error) concerns, we let i start at ≈ 1950.

4.2 Computational Problems

A di�culty arises for memory and computational load as the complete �nal matrix involves a number of
i = 33333 rows and j = 52 stations.
Whereas parallel computingwill not improve drastically computational performance (around 50% of saved
time), it is a good idea to focus on locating (parts of) the analysis on a external cluster such as proposed
by Apache Spark. �is could considerably decrease the computational complexity.

9

4.3 Methodology

Now, we present the cross-validation procedure which consist in checking how the residual error of the
model varies with those parameters (the 3 above). Dudok de Wit (2011) focused on the normalized error :

εK(λj) = 1
σλj

√√√√ 1
Ngaps

∑
i={gaps}

(
y(ti, λj)− ŷK(ti, λj)

)2
, (5)

where ŷK denotes the reconstructed estimatematrixwithncomp= K signi�cantmodes for the SVD. It is a
kind of a normalized RMSE.We will rather use the RMSE by omi�ing the normalization by σ−1

λj
. �is could

be improved. We build the cvFromInterpolsvd() function to compute this, where methodology
follows this path :

1. Remove randomly a fraction of the observations which are not missing for each stations (say 5%),
namely the synthetic gaps. �is set is denoted by

{
gaps

}
. �is fraction must be high enough for

the cross-validation criterion to be accurate, but small enough to leave stations with enough kept
observed values to train the model. �is is the famous bias-variance dilemma. �is fraction is
controlled by min keep frac parameter (∈ [0, 1]) which takes the fraction of the number of
observed values for the station that has the smallest amount of observed value. �is will prevent
errors due to the low number of observed values for a particular station.

2. Compute the interpolsvd em()method on the new matrix with replaced observations as NA
and save the new �lled values of the synthetic gaps.

3. Compute the error criterion by the traditional Root Mean Squared Error (RMSE) as explained above,
comparing the synthetic gaps of the �lled values and the true values.

Note that we have suppressed some unnecessary steps in the initial interpolsvd em function (such
as the case where ncomp< 1, the display parameter,. . .) to slightly fasten the cross-validation. �is new
function is called interpol CrossVal().

Example

�e�gure 5 depicts the output of this method made in parallel and with repetitions (see section 4.5), for the
default value of the parameters and splines smoothing. However, it gave unexpected results as we obtained
decreasing (CV) RMSE with respect to the number of components, and this for all the experiments we have
made on this function. �is is probably an example of the possible bias (underestimation of the true error.)
when this is computed for only a fraction of the observed values.

4.4 K-fold cross-validation

As the �rst method was a bit ”limited”, we have considered the ”k-fold” cross-validation.
Indeed, with this variant, the algorithm takes the whole set of non-missing values and place them in groups
(=folds), and then it applies the methodology on each of them iteratively, for each folds.

10

Note that the number of folds now also determines the number of synthetic gaps. For example, if we make
it 10-fold, we will have 16000 synthetic gaps, assuming there are 160000 observed values in the considered
matrix.

Bias-Variance Dilemna : the number K

As we said, in the k-fold scheme the number of folds K will now determine the number of synthetic gaps
we will create. Hence,

• If K↗=⇒ number of synthetic gaps will↘ in each groups and the number of groups will then↗.

Hence, this will induce more bias but make the results less variable, and the reverse if K↘ .

Examples

We have run several simulations with di�erent ’parametrizations’. �e outputs are shown in �gure 2,
together with their parametrizations and the computation time. For all simulations, we took the 5 stations
that has the largest number of observed values.

comp. time :
 305 sec.

35

40

45

2 4 6

of Components (to 7)

R
M

S
E

 C
V

5 folds, 10 iter, splines

comp. time :
 617 sec.

40

50

60

70

2 4 6

of Components (to 7)

R
M

S
E

 C
V

10 folds, 10 iter, splines

comp. time :
 2010 sec.

40

45

2.5 5.0 7.5 10.0

of Components (to 10)

R
M

S
E

 C
V

5 folds, 30 iter, gaussian

comp. time :
 2300 sec.

50

60

2 4 6

of Components (to 6)

R
M

S
E

 C
V

10 folds, 30 iter, gaussian

Cross−Validation Methods : Comparisons

Figure 2: representing the outputs of 4 k-fold cross-validation procedures with cvFromInter-
polsvd kfolds() .

11

�e results are ’weird’ and we remark that the in�uence of the (controlled) parameters are in fact very
important. In fact, we retrieve the initial �nding of ”4 components” only in one con�guration… �is must
be analysed further and we put doubt on this �nding. �e next subsection will try to reduce the variability.
An interesting �nding may be that we forgot to change the seed between these 4 computations. Hence,
the ”random” sampling of the NA indices are the same for all the 4 methods…

4.5 Repeated Cross-Validation

One could consider the usual cross-validation giving too variable results. Hence to obtain more accurate
estimate of the error, we consider a repeated cross-validation scheme (see e.g. Burman (1989) for detailed
results). �e drawback of this scheme is the computational load which is roughly multiplied by the number
of repetitions.
Hence, we did it in parallel in R, thanks to the foreach and the doParrallel packages. It actually
saved us ≈ 50% of computation time by using 7 cores. We did 10 repetitions but note that it would have
been more e�cient to do a number of repetitions which is a multiple of 7. .
�e results are shown in the same �gure 5 as before but there were no ’improvements” here, compared with
the method with no repetitions (not shown here), thus nothing more to say than in section 4.3. Relying
on the simple cvFromInterpolsvd() is too short.

4.6 Improvements

Repeated K-fold and other

As we found so variable results in �gure 2 it would be interesting to do the repeated cross-validation
scheme on the K-fold CV in order to get more reliable results. But we will need cores….

Individual tuning vs Grid tuning

Following Dudok de Wit (2011), the two other parameters are not really important. Hence, he proposed
the individual (sequential) tuning method we have followed, �xing the other parameters.
�is idea now would be to take a grid for the 3 parameters of interest. And hence, for each ”triplet” of
values, compute the algorithm and see how the RMSE varies. But this will drastically make the algorithm
more complexity as it will roughly follow O(n3) where n is the (assumed equal) grid length for each
parameter.

5 Conclusion

During this project, lots of results have been found and we are now questioning the results found in
Dudok de Wit (2011) concerning the optimal parameters.
We note that a key element of the method that we presented in section 2 is the assumption of a linear
relationship between records of di�erent stations. We have not strictly checked this assumption and this

12

should interesting to verify it, to perhaps be�er identify an other smoothing method as we found the one
used is very slow.
Considering the cross-validation is an important issue and we have to rethink the implementation of the
methods which are too slow to obtain reliable results. Moreover, the cross-validation criterion can be
thought as a minimal check but it will not save us if there are serious non-ignorable missingness (e.g.
large values more likely than small values to be misreported), but it can be thought of as a minimal check.

References

Douglas Bates, Dirk Eddelbue�el, and others. Fast and elegant numerical linear algebra using the
RcppEigen package. Journal of Statistical So�ware, 52(5):1–24, 2013. URL http://cran.irsn.
fr/web/packages/RcppEigen/vignettes/RcppEigen-Introduction.pdf.

Prabir Burman. A comparative study of ordinary cross-validation, v-fold cross-validation and the re-
peated learning-testing methods. Biometrika, pages 503–514, 1989. URL http://www.jstor.
org/stable/2336116.

F. Cle�e, L. Wauters, D. Berghmans, A. Koeckelenbergh, R. a. M. Van der Linden, and P. Vanlommel. From
theWolf number to the International Sunspot index: 25 years of SIDC. Advances in Space Research, 40(7):
919–928, 2007. doi: 10.1016/j.asr.2006.12.045,10.1016/j.asr.2006.12.045. URL https://publi2-as.
oma.be/record/233.

�ierry Dudok de Wit, Laure Lefvre, and Frdric Cle�e. Uncertainties in the Sunspot Numbers: Estimation
and Implications. Solar Physics, 291(9-10):2709–2731, November 2016. ISSN 0038-0938, 1573-093X. doi:
10.1007/s11207-016-0970-6. URL http://arxiv.org/abs/1608.05261. arXiv: 1608.05261.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete data via
the EM algorithm. Journal of the royal statistical society. Series B (methodological), pages 1–38, 1977. URL
http://www.jstor.org/stable/2984875.

Charanpal Dhanjal, Romaric Gaudel, and Stphan Clmenon. Online Matrix Completion �rough Nu-
clear Norm Regularisation. arXiv:1401.2451 [stat], January 2014. URL http://arxiv.org/abs/
1401.2451. arXiv: 1401.2451.

T. Dudok de Wit. A method for �lling gaps in solar irradiance and solar proxy data. Astronomy & Astro-
physics, 533:A29, September 2011. ISSN 0004-6361, 1432-0746. doi: 10.1051/0004-6361/201117024. URL
http://www.aanda.org/10.1051/0004-6361/201117024.

Dirk Eddelbue�el, Romain Franois, J. Allaire, John Chambers, Douglas Bates, and Kevin Ushey. Rcpp:
Seamless R and C++ integration. Journal of Statistical So�ware, 40(8):1–18, 2011. URL http://r.
adu.org.za/web/packages/Rcpp/vignettes/Rcpp-introduction.pdf.

Trevor Hastie, Rahul Mazumder, Jason Lee, and Reza Zadeh. Matrix Completion and Low-Rank SVD via
Fast Alternating Least Squares. arXiv:1410.2596 [stat], October 2014. URL http://arxiv.org/
abs/1410.2596. arXiv: 1410.2596.

13

http://cran.irsn.fr/web/packages/RcppEigen/vignettes/RcppEigen-Introduction.pdf
http://cran.irsn.fr/web/packages/RcppEigen/vignettes/RcppEigen-Introduction.pdf
http://www.jstor.org/stable/2336116
http://www.jstor.org/stable/2336116
https://publi2-as.oma.be/record/233
https://publi2-as.oma.be/record/233
http://arxiv.org/abs/1608.05261
http://www.jstor.org/stable/2984875
http://arxiv.org/abs/1401.2451
http://arxiv.org/abs/1401.2451
http://www.aanda.org/10.1051/0004-6361/201117024
http://r.adu.org.za/web/packages/Rcpp/vignettes/Rcpp-introduction.pdf
http://r.adu.org.za/web/packages/Rcpp/vignettes/Rcpp-introduction.pdf
http://arxiv.org/abs/1410.2596
http://arxiv.org/abs/1410.2596

Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral Regularization Algorithms for Learning
Large Incomplete Matrices. J. Mach. Learn. Res., 11:2287–2322, August 2010. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=1756006.1859931.

A Appendix

14

http://dl.acm.org/citation.cfm?id=1756006.1859931

A.1 Figure : Shiny application Example

Figure 3: Static printscreen of the created application comparing our (re-)implemented imputation method with the
imputation method of C.Ri�er. �is compares the station of Locarno with Uccle2 with points (instead of lines), put
on the SILSO scale. Here, a major remark goes for a series of observation in January 2009 in Locarno. �is means in
this period we have days that have quite higer SSN with the method of Chris and this must be inspected (…)

A.2 Figure : Example of the �lling method for Uccle2

A.3 Figure : Cross-Validation example

15

Solar Cycles

0

250

500

750

1920 1940 1960 1980 2000

Date

w
nU

C
2

Data
Filled

Raw

 interpolsvd_em() Filling Method for Uccle2

Figure 4: Representing the comparison between the �lled values from the interpolsvd em()method (in blue)
and the observed values (in red).

comp. time :
 84 sec.

 (in parallel)7.3

7.5

7.7

7.9

8.1

2.5 5.0 7.5 10.0

of Components (to 10)

R
M

S
E

 C
V

CV with 30 iter; splines; 10 repetitions

Figure 5: Repeated cross validation with the splines smoothing method (30 iterations), and 10 repetitions

A.4 R Package : /data

We saved the important data that have been computed during the project with the methods we have used.
�is allows to use them inside the R package.
Each �le contains one R object which has the same name of the �le without the extension .RData.
So far, the following �les are stored in /data/ :

16

• data.mat.RData : �e complete SSN data.frame in matrix form with all stations in columns.
�e �rst columns represent the time : ”year”, ”month”, ”day”, ”decdate”, ”Date”.

• data.mat2.fin.RData : �e complete SSN data.frame in matrix form with all stations that
have enough observation, that is more than 5%, thus 52 columns and no columns for the time
index. �e observations are ordered by time. Used to compute the function on it.

• SSN filled all.RData : �e value given by the algorithm interpolsvd em() (see sec-
tion 1.1) for the 52 kept stations with �lled gaps, for all the time period we had at hand (since 1924).

• z final60.RData : Same as above but values are taken since 1960. (for comparisons with
Chris’s method).

• silsoSSN.RData : data.frame with the value of the SILSO index, from 1924 and a column for
decdate.

• ssn chris.RData : data.frame with 120 columns giving the values of the SSN with �lled gaps
for 59 stations with the method of Chris’ (see section 3.1), starting at year 1960. �e other columns
are boolean showing if the value has been �lled or not.

• ssn splines.RData : Matrix giving the 52 stations with �lled values by the method of splines
(see section 3.2) for the full period since 1924.

• ssn splines81.RData : Matrix giving the 52 stations with �lled values by the method of
splines (see section 3.2) since 1981.

A.5 R Package : R scripts

Additional informations on the use of the functions, interpretations, etc… are available directly in the
scripts (comments).

Located in the /R folder : i.e. the functions that are made available by the package for the user. Since
they are used through the roxygen2 package, the structure is adapted. �ese are all in .RData format
:

• Cross-ValidationFun.R : contains the functionswhich allow to compute the cross-validation.

• cross-val kfolds.R : contains the function allowing to compute the K-FOLD Cross Valida-
tion.

• UsedFunc.R : contains all the functions that are used in the �nalinterpolsvd em()method,
that have been translated from Dudok de Wit (2011).

• interpolsvd em.R : contains the main method allowing to directly compute the method of
Dudok de Wit (2011) with a gaussian smoothing method for interpolation.

• interpol splines.R : contains the samemethod asinterpolsvd em() but with a spline
smoothing method for interpolation, which is quite faster.

17

• interpolsvd em2.R : Slightly di�erent version of interpolsvd em(), but not used from
now.

• runExample.R : Function which enable to run the shiny application.

Located in the /Scripts folder : i.e. some various scripts that have been realized during the project :

• Comparison caro.Rmd : Markdown script to compare the results of CARO for the initial func-
tion and the result from R. �is allowed to see the error of ”not using the squared root transforma-
tion”.

• Cross-Validation.R : Scripts which computes the cross-validation schemes used in the
project.

• Test interpolem piss2.R : Script using and testing the initial methods, drawing some plots,
etc…

18

Sunspot Number
Exploration of the uncertainties

Lorraine Dawirs

April 2017

Sunspot number has been studied for years as a record of sunspot activity. Sunspot number
is based on the observation of multiple observers across the world. Unfortunately, there are
uncertainties about this number coming from two majors sources: the observers (dispersion
errors) and the source itself (time-domain errors). This work attempts to decompose and
studies these errors. It is based on an article from Thierry Dudok de Wit [3].

As expected, we shown that both errors depend on the sunspot number and are higher at high
sunspot number. It also indicates that dispersion errors are more important than time-domain
errors and that the difference is more important at high sunspot number. Also, as expected,
replacing missing values by an estimation leads to higher dispersion errors. Unexpectedly, we
shown that variance stabilization transformation (square root, anscombe and Haar-Fisz) do
not break the relation between dispersion errors and sunspot number even if global variability
looks more random.

We also shown that, on the opposite of the methodology used in the article, an ARIMA model
is more adapted than an AR(8) model in term of model validation, AIC and RMSE. But we
also found that the difference is not big.

Exact relation between errors and between time-domain error and sunspot number are station-
dependent but have the same shape (square root).

Executive summary

1 Introduction
The sunspot number is an astronomical indicator related to the solar activity. It is the longest

available record for the solar activity. Solar activity and so sunspot number have various influence
on Earth. For example, solar activity is related to climate change and atmospheric drag.

Different observers among the world count, day by day, the number of sunspot since years. All
these observations are used to determine and compute the International Sunspot Number [1]. As this
number stand for the real sunspot number and as it is a combination of different observations, it is
important to evaluate the uncertainties of these observations.

The sunspot number is calculated as the Wolf number, Nw, and has been introduced in 1848 by
Rudolf Wolf. It is computed as the combination of the number of sunspot groups, Ng and the number
of isolated sunspot, Ns.

Nw = k(10Ng +Ns)

where k is a scaling factor associated to each observer.

This work focuses on sunspot uncertainties and is based on an article from Thierry Dudok de
Wit [3]. A part of the work consists in the reproduction of the article and another part focuses on
alternative method or complementary analysis.

1

2 Data
As the Sunspot Index and Long-Term Solar Observations (SILSO) database is hosted, since 1981,

by the Royal Observatory of Belgium, data used in this work are all available data since the 1st

January 1981.

Two databases are used. The Total Sunspot Number (TSN) from the SILSO database between
1st January 1971 to 9 February 2015 is considered as the true sunspot number. The other dataset is
the sunspot number observed for 52 stations during the same period.

The TSN database contains an estimation for the sunspot number for each day but the observa-
tions database contains only the sunspot number observed by the observers of the station thus this
file contains missing value. Missing values can have several origins: sun not visible on the days due
to whether condition, observers did not give their observations, ...

3 Methodology
This work compares different methodology for variance stabilization and studies to types of errors:

observers and time domain errors.

The uncertainties about the real sunspot numbers can come from different origins. Firstly, the
sun himself is a natural cause of variation. Sunspot Number, Nw, is a combination of sunspot groups
and sunspots. Small spots, Ns, can emerge and disappears in a time-scale between hours and weeks
while groups of spot, NG, have a time-scale that can go to month. The sunspot number is not fixed
at one days, it varies all along the time and therefore, one important part of the uncertainties of the
sunspot numbers is due to the solar variation itself. It is estimated by the "time domain errors".

Secondly, the spots are counting by human eyes and it is another important source of variation.
Two observers, even if they observed the same sun, will not count the number of groups and spots in
the same way. The differences between observers is a combination of different factors that can lead
to different results: telescope resolutions, seeing conditions, ... These uncertainties are estimated by
the "dispersion errors".

3.1 Missing values
The implementation of time-series domain requires data without missing values. As the obser-

vations data from the different observers contains a lot of missing values, we cannot only consider
period and station for which we do not have missing values.

Therefore, it is necessary to fill the missing values by an estimation. The missing values estimation
method used is described in an article from Thierry Dudok de Wit [2].

3.2 Variance stabilization
The sunspot number follows the solar cycle and consists in time-series data. Therefore, major of

analysis require a homoscedastic variance with time. Sunspot number are typically heteroscedastic
because variance increases with sunspot numbers. One of the goal of this analysis is to compare three
different variance stabilization method and their effect on errors.

The three different method for stabilization are the following:

• Square Root transform:
√
SSN

• Simple Anscombe transform: 2
√
SSN + 3/8

• Haar-Fisz transform: based on wavelet (more information in appendices 10.1.1)

2

3.3 Dispersion errors
This error, as explain previously, attempts to explain the part of uncertainties due to the ob-

server’s conditions. The methodology used in this work is the same methodology than in the article
about uncertainties in the Sunspot Number from Thierry Dudok de Wit [3].

To estimate the dispersion, the first step consists in scaling the sunspot number observed by each
station at each time to the International Sunspot Number from SILSO, ISN .

N∗
W,i(t) = γiNW,i(t) where γi = ISN/NW,i

Where γi is estimated by total least squares.
Then, for each station i, the residual errors are computed as:

εi(t) = N∗
W,i(t)− ISN(t)

Finally, for each time, t, the time-dependent standard deviation is obtained:

σ(t) =

√√√√ 1
N − 1

N∑
i=1

ε2i (t)

We only consider, σ(t), for which we have at least 2/3 of observations.

3.4 Time domain errors
This error is focus on the uncertainties due to the sun itself. It is computed as the prediction

errors based on a time-series model.
Two time-series models have been taken into account (more information about these models are

available in appendices 10.1.2):

• auto-regressive model with 8 parameters: AR(8)

• auto-regressive - integrated - moving average model: ARIMA

For the auto-regressive model AR(8), the 8 parameters (a1, ...a8) of the model are estimated
first and then they are used in order to predict "new observations":

x̂(ti) = a1x(ti − 1) + a2x(ti − 2) + ...+ a8x(ti− 8)

An ARIMA model is characterized by three meta-parameters : p, d and q that define an
ARIMA(p,d,q) model. p is the number of auto-regressive parameters, d is the degree of differencing
and q is the number of moving average parameters. In the following work, d will be fixed to one.
Therefore, the prediction model is defined as:

x̂t = µ+ ϕ1x(t− 1) + ...+ ϕpx(t− p)− θ1e(t− 1)− ...− θqe(t− q)

For each new observation estimated, the time-domain error is computed as the difference
between the real sunspot number observed and the sunspot number predicted :

η(ti) = x(ti)− x̂(ti)

4 Variance stabilisation
Wolf number follows solar cycle and is collected each day by different stations. The sunspot

number of one particular day is depending on the solar cycle and on previous observation. One solar
cylce takes almost 11 years. As each sunspot number depends on the previous sunspot numbers,
time-series analysis is required. Time-series analysis can deal with high correlation between successive
observations and are made for temporal data. It requires equal variance over time. Figure 1 represents
the variation of the data over time. Each boxplot is made on 1000 following observations. If variance

3

were constant over time, each box would have the same size even if they aren’t at the same level. Here,
it appears that when the sunspot number is lower, the box is smaller and inversely. It means that
the variance depends on the time. Therefore, it is necessary, in order to apply time-series analysis,
to stabilize the variance over time.

Figure 1 – Boxplot of sunspot numbers for UC2 stations. Each boxplot is an aggregation of 1000 consecutive
days.

As variance is time-dependent, three variance stabilization have been compared: square root,
simple anscombe and Harr-Fisz as presented in the methodology section.

4.1 Short-term variability
Figures 2 and 3 represent the short-term variance of International Sunspot Number before (a) and

after transformation (b-c-d). Short-term standard deviation is computed as the classical standard
deviation but on a subsample of data. Here, it is estimated on subgroups of 100 observations.

On the top-right [figure 2(a)], when no transformation is applied to the data, it is clear that
the short term standard deviation is not constant over time. Indeed, we can retrace the solar cy-
cle. Lower variations correspond to lower sunspot number and higher variations correspond to high
sunspot number.

On the top-left [figure 2(b)], when the standard deviation is computed after square root transform
of the data, we cannot distinguish the solar cycle anymore. Even if the short-term variability is not
fully constant over time, it seems to be more random that when no transform was applied. Same
conclusions are available for data after anscombe transform [figure 3(c)] and after Haar-Fisz transform
[figure 3(d)].

4

(a) (b)

Figure 2 – Comparison of short term variability before (a) and after (b) square root transformation

(a) (b)

Figure 3 – Comparison of short term variability after (c) anscombe transform and after (b) Haar-Fisz
transformation

5 Dispersion errors
Different data transformations were applied. The goal of these transformations was to find the

more appropriate way to stabilize the variance. The homoscedasticity of the data is not required for
the dispersion errors analysis but is required for time-series models. In order to compare directly the
two sources of errors, same transformation will be used for both analysis.

The dispersion errors are studied on three different axis. First, we discuss about the dispersion
errors based on data without any transformation. Secondly, we discuss the effect of transformation
on dispersion errors and finally we discuss the effect of replace missing values by an estimation on
dispersion errors.

5.1 Dispersion errors without transformation
Methodology used to compute the dispersion errors is detailed in the methodology section. On the

article [3], dispersion error is computed based on 13 stations that "exhibit high and rather uniform

5

time-coverage between 1967 and 2014". On this work, we did not follow the same strategy and we
choose to use all the 52 stations.

Figure 4 represents the evolution on time of the dispersion errors. As expected, it clearly shows
that this error is time dependent. We also observe that the dispersion errors (black points) follow the
sunspot number fluctuation (blue line). High sunspot numbers are related to high standard deviation
and inversely. It indicates that, in average, observers make more mistakes when then have to count
a lot of sunspot number or group and make less mistakes when the sunspot number is lower.

Figure 4 – Dispersion Errors without transformation of sunspot number.

5.2 Effect of transformation on dispersion errors
In this part, we look at the effect of the variance stabilization on dispersion errors. Haar-Fisz

requires absence of missing values and so only two transformation will be compared: square root and
anscombe.

On figure 5, dispersion errors of square root data (a) and anscombe data (b) are represented. It
shows that, even if the variance is globally stabilized and is not dependent on the sunspot number,
dispersion errors is still depending on the sunspot number.

(a) (b)

Figure 5 – Comparison of dispersion errors after square root transform (a) and anscombe transform (b)

6

Dispersion errors for in the different case cannot be directly compare because of difference in the
scaling. To face this issue, dispersion errors can be expressed as a coefficient of variation:

Coefficient of variation = σ(t)
SSN(t)

On figure 6, coefficient of variation of dispersion errors are represented before (black points) and
after square root transformation (a - blue points) or after anscombe transform (b - blue points).

(a) (b)

Figure 6 – Comparison of dispersion errors express as a coefficient of variation before (black points) and
after square root transform (a) and anscombe transform (b)

These figures clearly show that the dispersion errors are time-dependent. Ratio of dispersion
errors on sunspot number is not constant over time and appears more important when the sunspot
number is low. Figure 6 (a) indicates that ratio is less important when data are square root transform.
Similarly, figure 6 (b) indicates that ratio is less important when data are anscombe transform. Form
both transformed data, it also appears that the coefficient of variation is less important when the
sunspot number is higher. It is link to the fact that for both transformation, we take the square root
of the sunspot number. Therefore, 2 high sunspots numbers, even with a "big" difference between
them will be "shrink" to small and closer values. Difference between the observed sunspot number
and the "true" sunspot number appears lower.

Figure 7 – Comparison of dispersion errors express as a coefficient of variation after square root transform
(blue points) and anscombe transform (black points)

Figure 7 represents the coefficient of variation of the dispersion errors on the sunspot number.
For high sunspot number, both transform leads to similar values. For low sunspot number, anscombe
transform gives bigger coefficient of variation.

5.3 Effect of replace missing value on dispersion errors
As explain the precedent part, Haar-Fisz transform requires absence of missing values. Therefore,

the effect of the estimation of missing values will only be observed for data without transformation

7

and with square root and anscombe transform.

Figure 8 compares the dispersion errors with and without missing values replaced for initial data.

Figure 8 – Comparison of dispersion errors before (black points) and after have estimated missing values
(blue points) - Based on initial data - No transformation

On the look of figure 8, it appears that considering no data-transformation, replace missing values
by an estimation increases the dispersion errors. This effect is observed for low and for high sunspot
number.

(a) (b)

Figure 9 – Comparison of dispersion errors before (black points) and after (blue points) the replacement of
missing values. (a) data after square root transform and (b) data after anscombe transform

Figures 9 also represent the dispersion errors before and after the replacement of missing values
but are based on square root data (a) and anscombe data (b). Same observations is available: as
expected, replace the missing values increases the dispersion errors. This effect seems more important
for lower sunspot number.

8

6 Time-domain errors
Time-domain errors are prediction errors of the best ARIMA model according to AIC criteria.

AIC and parameters are available in appendices 10.2.1 By this error, we attempt to represent the
uncertainties in sunspot number due to the sun itself.

In the article of Dudok de Wit et al. [3], time-domain errors correspond to the prediction errors
based on AR(8) model.

In this work, two types of model were compared: AR(8) and ARIMA. The parameters significa-
tion and theoretical model are available in the methodology section. Models were compared based on
AIC (Akaike Information Criterion) criterion. The best model for each station is estimated in order
to minimize this criterion.

If we compare the different models obtained in term of AIC and in term of RMSEP (Root Mean
Square Error of Prediction), it appears that, in all case, ARIMA models give better results (mini-
mization of AIC criteria). If we compare the different transformations applied in term of RMSEP,
square root transformation gives better results (minimization of RMSEP criteria). It is important to
notice that the effect of transformation is not very important and that the difference between stations
is more important. Full tables with results is available in appendices 10.2.1.

Relation between errors and sunspot number and comparison between errors are studied on non-
transformed data and ARIMA model.

7 Relation between errors and sunspot numbers
7.1 Dispersion errors

Plotting the sunspot number on the dispersion errors reveals a shape of square root relation [figure
10]. Relation between dispersion errors and sunspot number is based on non-transformed data. Best
modelization is obtained with the red model: SSN = α+ β ∗ σDisp(t)γ

Figure 10 – Relation between dispersion errors
and sunspot numbers - Data without

transformation

Figure 11 – Relation between mean of dispersion
errors and sunspot numbers - mean of 7 days

The estimated model is:
SSN = −11.7 + 8.3 ∗ σD(t)0.8 + ε

As expected this relation shows that dispersion error grows up with sunspot number.

In the previous figure [figure 10], plot is done on all data date by date. In the figure 11, each
point is an average of 7 consecutives values (both for SSN and dispersion errors).

9

It appears that taking an average over 7 days leads to more linear model. Red model corresponds
to the following linear model:

σD(t) = 1.5 + 0.2 ∗ SSN

7.2 Time-domain errors
Same type of relation can be modelized for time-domain errors. Time-domain errors used here

correspond to prediction error of the best ARIMA model for station based on centered data (no
transformation applied).

Dispersion errors is studied on global errors and a sort of average is taken for all stations. Here,
time-domain errors are station dependent and no global errors are estimated. Studied the relation
between time-domain errors will be made station by station.

Figure 12 represents the time-domain errors on the sunspot number. Each point is an average of
27 consecutive points.

Figure 12 – Relation between time-domain errors
and sunspot numbers.

Figure 13 – Relation between time-domains
errors and sunspot numbers for five stations

Globally, for the five different stations studied, relation between SSN and prediction errors has a
square root shape. If we look at each station separately [figures in appendices 10.2.2], it is clear that
the modelization is station-dependent but has always a square root shape. Data are modeled by the
following model:

σT (t) = α+ β ∗ SSNγ + errors

Coefficient of the different models are also available in appendices 10.2.2. It appears that the five γ
coefficients are around 0.5.

8 Comparison between errors
This section is based on non-transformed data for both errors and ARIMA model for prediction

errors. Dispersion errors are not the global dispersion errors but correspond to the intermediate
dispersion errors, station-dependent.

Figures 14 compare the dispersion errors and the time-domain errors for two stations: Locarno
(a) and Uccle (b). Figures are made on an averaging over 27 days.

10

(a) Locarno station (b) Uccle station

Figure 14 – Comparison between dispersion errors and time-domains errors

These figures show that not only both errors depend on sunspot numbers but the relation between
errors depends on the station. On low sunspot number, both errors seem equivalent in both cases
but for high sunspot number, relation is not the same. For Locarno station, dispersion error is more
important at both rise of the sunspot numbers but for Uccle station, dispersion error only diverges
from prediction error at the first rise of the sunspot number. It highlights the fact that relation is
station-dependent.

If we represents the relation between the two errors for the five stations [figure 15], it appears that
the relation also have a square root shape but that the exact relation is station dependent.

Figure 15 – Relation between dispersion and
time-domain errors for five stations

Figure 16 – Relation between errors and
sunspot numbers. Data for five stations: LO -

CA - UC2 - KZ - KS2

Relation between sunspot numbers and errors [figure 16] shows, as expected, that dispersion errors
is more important than time-domain errors, moreover at high sunspot number.

9 Conclusion
This work focused on different aspect of uncertainties of sunspot number. Firstly, we looked at

different data transformation in order to stabilize the variability. Secondly, errors have been sep-
arated in time-domain errors (representing the errors due to the sun variability) and in dispersion
errors (representing the errors due to the observers). For each error, global comportment and relation
with the sunspot number are studied. Impact of replacing missing values is studied for dispersion
errors and impact of variance stabilization is studied for both errors. Finally, comparison between
errors is performed.

11

In term of variance stabilization, we shown that applied one of the three transformation (square
root, anscombe and Haar-Fisz) on data allows us to have data with more random variation. With-
out transformation, variation directly follows solar cycle but transform the data "breaks" this direct
relation.

In term of dispersion errors, different points have been studied.
Firstly, as expected, we illustrated the fact that dispersion errors are directly related with sunspot

number and that dispersion error is more important at high sunspot number. As expected, we also
shown that replacing missing values by an estimation leads to higher dispersion errors.

Unexpectedly we also found that, even if global variation seems random, data transformation
did not "break" the relation between dispersion error and sunspot number. It means that even when
we worked with transformed data, dispersion error is still higher at high sunspot number and inversely.

Study of time-domains error shown that an ARIMA model is more adapted than an AR(8) model
in term of model validation, AIC and RMSEP. But it also indicates that differences are not big.

As expected, we found that time-domain error depends on the sunspot number and, as for the
dispersion error, time-domain error is higher when the sunspot number is high.

Relation between errors and sunspot number indicates that the relation of sunspot number on
dispersion errors has a shape of square root relation and if we average the observation, this relation
becomes more linear.

Relation between sunspot number and time-domain errors have shown that the relation also has
a square root shape but that the relation is station-dependent.

Finally, comparison of errors shown, as expected, that both errors rise with sunspot number and
that dispersion errors is higher than time-domain errors. The difference is more important at high
sunspot number.

References
[1] F. Clette, D. Berghmans, P. Vanlommel, R. A. M. Van der Linden, A. Koeckelenbergh, and

L. Wauters. From the Wolf number to the International Sunspot Index: 25 years of SIDC.
Advances in Space Research, 40(7):919–928, 2007.

[2] T. D. d. Wit. A method for filling gaps in solar irradiance and solar proxy data. Astronomy &
Astrophysics, 533:A29, Sept. 2011.

[3] T. D. d. Wit, L. Lefèvre, and F. Clette. Uncertainties in the Sunspot Numbers: Estimation and
Implications. Solar Physics, 291(9-10):2709–2731, Nov. 2016.

10 Appendices
10.1 Methodology : details
10.1.1 Haar-Fisz transform

Haar-Fisz transform is a method used to stabilize the variance in a non-parametric way. This
method consists in four major step:

1. applied an Haar wavelet transform to the data

2. estimated the mean-variance relation between the smoothing and the detailed wavelet coefficient

3. divide the wavelet detail coefficient by smooth of mean-variance relation

4. perform the inverse Haar wavelet transform

12

10.1.2 ARIMA and AR(8) model

An ARIMA model tries to modelize temporal data and is characterized by three meta-parameters:
ARIMA(p,d,q). ARIMA stands for auto-regressive - integrated - moving average model. The three
meta-parameters are the following:

• p: the number of auto-regressive parameters

• d: the degree of differencing

• q: the number of moving average parameters

The prediction model of an ARIMA is:

x̂t = µ+ ϕ1x(t− 1) + ...+ ϕpx(t− p)− θ1e(t− 1)− ...− θqe(t− q)

Auto-regressive p : auto-regressive model are model that estimate a new observation on the
basis of the p previous values (linear relation).

Integrated d : one of the hypothesis of ARIMA model is the stationarity of variance over time.
It means that not only mean but also variance is constant in time. The best method to obtain this
type of series is to differentiate the data. Here, for all stations, d is fixed to one. It means that two
successive values of sunspot number are constant:

y(t)− y(t− 1) = µ+ ε(t)

Moving average q : moving average model indicates that data vary around a mean value. The
new observation estimation is based on an average of the q latest observations.

An AR(8) model is an ARIMA model were :

• p, the number of auto-regressive parameters, is fixed to 8

• data are not differentiated: d=0

• q, the number of moving average parameters is null: q=0

10.2 Results : details
10.2.1 Time-domains errors : ARIMA models

The following table contains the best ARIMA model obtained for five stations (CA, LO, UC2, KS2
and KZ) and for the four transformation (centered, square root, simple anscombe and Haar-Fisz).

Station Centered Square root Anscombe Haar-Fisz

CA (4,1,5) (4,1,3) (4,1,3) (1,1,5)

LO (5,1,3) (5,1,5) (3,1,5) (3,1,2)

UC2 (5,1,2) (3,1,1) (3,1,1) (1,1,1)

KS2 (3,1,5) (4,1,2) (4,1,2) (3,1,4)

KZ (5,1,2) (4,1,5) (4,1,5) (1,1,5)

Table 1 – Best ARIMA model obtained - ARIMA (p,d,q) - p : number of auto-regressive parameters - d :
degree of differentiation - q : number of moving average parameters

The following table contains the AIC criteria for the different model of the different station and
transformation.

13

Station Centered Square Root Anscombe Haar-Fisz

CA 6513 5874 3699 3053 3849 3207 4081 3670

LO 1742 1055 944 215 1224 565 2368 1929

UC2 13130 12533 9659 9088 9718 9148 8151 7745

KS2 8525 7852 5726 5075 5871 5225 4013 3568

KZ 8145 7468 5427 4770 5593 5012 5541 5158

Table 2 – AIC values for the best ARIMA model obtained and for AR(8) model

The following table contains the RMSE criteria for the different model of the different station and
transformation.

Station Centered Square Root Anscombe Haar-Fisz

CA 0.314 0.306 0.283 0.275 0.284 0.275 0.316 0.304

LO 0.239 0.232 0.240 0.233 0.243 0.236 0.280 0.80

UC2 0.362 0.353 0.328 0.319 0.329 0.320 0.384 0.371

KS2 0.310 0.302 0.287 0.278 0.288 0.280 0.280 0.300

KZ 0.308 0.301 0.299 0.292 0.301 0.294 0.347 0.338

Table 3 – AIC values for the best ARIMA model obtained and for AR(8) model

10.2.2 Time-domain errors : Relation between errors and SSN

Relation between sunspot numbers and time-domain errors for the five stations. Each point is an
averaging over 27 days

Figure 17 – Relation between Sunspot Numbers
and Prediction Errors - CA station

Figure 18 – Relation between Sunspot Numbers
and Prediction Errors - UC2 station

14

Figure 19 – Relation between Sunspot Numbers
and Prediction Errors - LO station

Figure 20 – Relation between Sunspot Numbers
and Prediction Errors - KZ station

Figure 21 – Relation between Sunspot Numbers
and Prediction Errors - KS2 station Figure 22

Theoretical model used:
σT (t) = α+ β ∗ SSNγ

Estimation of the coefficients for the five stations:

Station α β γ

LO -0.71 1.69 0.52

CA 1.75 0.81 0.66

UC2 0.18 1.82 0.54

KZ 0.54 1.27 0.60

KS2 1.09 0.84 0.66

Table 4

15

 LSTAT2390 – Guisset 1

Analysis of the variability of the International Sunspot Number

VALUSUN project for the Royal Observatory of Belgium

LSTAT2390 Statistical Consulting - UCL

Executive summary
The Sunspot Number (SSN) is an astronomical indicator measuring the number of sunspots present
on the surface of the sun on a daily basis. The purpose of this report is to analyse the uncertainty
structure of the SSN data collected between 1981 and 2015 for over 40 observation stations, using
a 2016 article on uncertainties in the sunspot numbers as a starting point.1 The article divides the
error in the SSN data in two parts: time-domain errors, linked to natural variations in solar activity,
and observation or dispersion errors, linked to differences between observers.

A preliminary objective was to identify a method to stabilise the variance of the time series. The
square root, simple Anscombe and Haar-Fisz transforms were assessed. All three methods are
suitable to stabilise the variance, but the square root transform is sufficient to obtain a good model
fit.

The 2016 article on uncertainties estimates the time-domain error of the SSN by fitting an
autoregressive model with 8 parameters (AR(8)) on centred SSN data. This approach was
implemented for a subset of 5 stations and 4 data transforms and compared with a standard time
series approach based on autoregressive integrated moving average (ARIMA) modelling. In all 20
cases, the ARIMA model was a better fit for the data and more closely met the validation conditions.

However, the root mean square error in prediction (RMSEP) for the ARIMA models was only
marginally smaller than for the AR(8) models. The results obtained with the standard time series
approach therefore confirm the magnitude of the time-domain error estimated in the 2016 article.

Time-domain errors have a square root relationship to the SSN, while observation errors follow the
solar cycle and are proportional to the SSN. Both errors are of similar magnitude at low points in the
solar cycle, while observation errors tend to be more important when the solar cycle is in a high point.
This highlights the importance of reducing the dispersion of observations between stations through
better guidelines or the selection of a smaller selection of stations.

Two other approaches to the time-domain errors could be further explored: seasonal time series
modelling and the use of one overall ARIMA model for all stations. Computing time-domain errors
with one overall ARIMA model could be a more robust alternative to the AR(8) approach in future
analyses.

Context and objectives
Sunspots are manifestations of solar magnetism appearing as dark spots on the solar surface. The
Sunspot Number (SSN) is an astronomical indicator measuring the number of individual sunspots
and groups of sunspots present on the surface of the sun on a daily basis. The sunspot data
stretches back to the 17th century, with the introduction of the Wolf Number W in the 19th century.
The formula W = 10 Ng + Ns is still used today to compute the SSN, with Ng the number of sunspot
groups and Ns the number of single sunspots observed on a given day. Since 1981, the Royal
Observatory of Belgium hosts the Sunspot Index and Long-term Solar Observations (SILSO)
database. The Observatory compiles the observations made in over 30 countries to compute the
SSN per station and the overall International Sunspot Number (ISN).

The overall objective of this project is to better understand the SSN data set to improve its processing.
More specific research objectives identified during the project are:

1. Categorisation of the stations

1 Dudok de Wit, T.; Lefèvre, L.; Clette, F. (2016) Uncertainties in the Sunspot Numbers: Estimation and Implications, Solar
Physics, Volume 291, Issue 9-10, pp. 2709-2731 http://adsabs.harvard.edu/abs/2016SoPh..291.2709D

 LSTAT2390 – Guisset 2

2. Analysis of a missing values imputation MATLAB code2 and transposition into R and Python
3. Analysis of the sources of variability

This report addresses the third objective, using an article from 20163 on the uncertainties in the
sunspot numbers as a starting point. The purpose is to better understand the uncertainty structure
in the data by reproducing some of the analyses presented in the article, comparing them with other
approaches and evaluating the results.

Methodology

Data
The analyses were conducted on a set of 52 series of sunspot observations collected between 1981
and 2015 and coming from over 40 stations that are part of the SILSO network. The measure of
interest is the SSN (and not the group or individual counts) as computed daily for a single station.

The original data set includes missing values, which may be due to the weather, changes in
participation in the network or other factors. These were imputed using a method based on singular
value decomposition4 for the time-domain errors analysis.

Due to the computation time needed to fit time series models, a subset of five stations was selected
for the time-domain errors analysis: Locarno (LO), Uccle (UC2), Catania (CA), Kislovodsk (KS2) and
Kanzelhöhe (KZ). These stations have an adequate coverage for 1981-2015 with a limited number
of missing values. Uccle data (UC2) was used to illustrate the general behaviour of the SSN data.

Approach
In a preliminary phase, different variance stabilisation methods were compared as subsequent steps
require a stabilised data set. The analysis then followed the structure of the 2016 article on
uncertainties, which distinguishes between time-domain errors (errors over time) and observation or
dispersion errors (errors between stations).

The present report will focus on the time-domain errors. In the article, time-domain errors were
estimated using an auto-regressive model with 8 parameters (AR(8)) based on centred data. This
approach was compared with a more standard ARIMA approach. Observation errors were computed
as per the article. The errors were then compared with each other and with the SSN.

All analysis was implemented in R using additional packages, existing functions written by UCL
researchers (FonctionsSeriesChrono file5) and custom-made code.

Variance stabilisation
Figure 1 shows the SSN for Uccle for the selected time frame. The series clearly follows the solar
cycle, with high points in the early 1990s, 2000s and 2010s. The data variability is time-dependent:
the variance increases with the SSN and is the largest during the high points in the cycle.

2 Dudok de Wit,T. (2011), A method for filling gaps in solar irradiance and solar proxy data, Astronomy & Astrophysics,
533 http://adsabs.harvard.edu/abs/2011A%26A...533A..29D
3 Dudok de Wit, T.; Lefèvre, L.; Clette, F. (2016) Uncertainties in the Sunspot Numbers: Estimation and Implications, Solar
Physics, Volume 291, Issue 9-10, pp. 2709-2731 http://adsabs.harvard.edu/abs/2016SoPh..291.2709D
4 Dudok de Wit,T. (2011)
5 Please see file for details of the authors and copyrights.

 LSTAT2390 – Guisset 3

Figure 1 – The Sunspot Number series for Uccle from 1981 to 2015

Standard time series modelling typically requires a data set with a stable variance. An adequate
variance stabilisation method needs to be identified before performing the main analyses. Three
approaches were compared:

 Square root transform: √SSN
 Simple Anscombe transform: 2√(SSN+3/8)
 Haar-Fisz Transform (HFT) 6 : data-driven transform based on Haar wavelets and Fisz

coefficient scaling

The HFT was implemented using the DDHFm package in R.7 8 It consists of four steps: 1. Haar
wavelet transform 2. Isotonic regression to estimate the mean-variance relationship 3. Scaling of the
wavelet coefficients by the results of the regression 4. Inverse Haar wavelet transform.

Figure 2 and Figure 3 (as well as Figure 17 in annex) present the results of the variance stabilisation
methods. The three transforms lead to a stabilisation of the variance, with the square root and simple
Anscombe transforms leading to very similar results. The HFT can only be applied to series of 2J
time points and had to be applied to a subset of the data. A major difference with the other two
transforms is the shorter length of the transformed time series.

Two blips appear in the Uccle time series. In December 1988, the SSN for Uccle went above 500 for
two days, which is reflected in the square root and Anscombe transforms. In August 2008, the series
was very close to 0, which leads to a blip in the Haar-Fisz transformed data series.

6 P. Fryzlewicz, V. Delouille and G. Nason (2007), GOES-8 X-ray sensor variance stabilization using the multiscale data-
driven Haar-Fisz transform. Journal of the Royal Statistical Society Series C, 56, 99-116.
7 Delouille, V., Fryzlewicz, P. and Nason, G.P. (2005), A data-driven Haar-Fisz transformation for multiscale variance
stabilization. Technical Report, 05:06, Statistics Group, Department of Mathematics, University of Bristol
8 Package ‘DDHFm’ documentation available on https://cran.r-project.org/web/packages/DDHFm/DDHFm.pdf

 LSTAT2390 – Guisset 4

Figure 2 - Impact of the variance stabilisation - time series

Figure 3 - Impact of the variance stabilisation - transformed time series

Since all three transforms lead to a stabilisation of the variance, the different approaches will be
compared further in the modelling sections.

Rationale for the ARIMA modelling

Standard approach to time series
Figure 4 presents the steps of the standard Box-Jenkins approach to ARIMA modelling. These steps
were applied to the SSN time series to provide an alternative approach to the AR(8) model previously
applied to the data.

Figure 4 - Steps of the ARIMA modelling approach9

9 Based on Brockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting. New York: Springer

Transform the
series to obtain

stationarity

• Variance
stabilization

• Differencing

Identify the
possible model

orders

• (Partial)
Autocorrelation
functions (ACF and
PACF)

Estimate and
select the
model(s)

• ARIMA(p,d,q)
• AIC/BIC criteria

Validation

• Coefficients
• Residuals

Prediction

• Root Mean Square
Error of Prediction
(RMSEP)

 LSTAT2390 – Guisset 5

Stationarity
The first step of the process is to obtain a (weakly) stationary time series10. Figure 5 (a) shows that
the centred data, used for the AR(8) models in the 2016 article, is not stationary. Both the mean and
variance of the series are time-dependent. Differencing the data with a lag of 1 stabilises the mean
(b) while transforming the data leads to a stabilisation of the variance (c). Both are needed to obtain
a weakly stationary time series (d).

Figure 5 - Impact of transforming and differencing the data

(Partial) Autocorrelations Functions
After transforming and differencing the data to reach weak stationarity, the (partial) autocorrelation
functions (ACF and PACF) can be used to identify possible model types (Figure 6). The ACF for
the differenced transformed data is 0 after a few lags, while the PACF tends to 0. This points
towards a moving average (MA) model and indicates that an ARIMA approach may be more
suitable than a pure autoregressive model.

10 A weakly stationary process has a finite variance and a mean and autocovariance that do not vary with
respect to time, i.e. a constant mean and a covariance structure which only depends on the lag between
observations.

 LSTAT2390 – Guisset 6

Figure 6 - (Partial) Autocorrelation Functions for Uccle based on the centred data and on the
differenced and square root transformed data

ARIMA modelling of the time-domain errors

Approach
For each of the five stations included in the analysis, four data sets were compared: the centred data,
the square root transformed data, the simple Anscombe transformed data and the Haar-Fisz
transformed data.

To easily compare the RMSEP between different models, all data sets were centred and reduced
after the transformations (Figure 18 in annex).

Given the large number of models to compare and the required computing time, the best ARIMA
model for each series was selected automatically using the auto.arima function of the forecast
package, which selects models based on the corrected Akaike’s Information Criterion (AICc).

The root mean square error in prediction (RMSEP) of the model was computed with the “one step
ahead” approach on the final t observations of the series. The full data set was used for modelling
but only non-missing values in the original data set were included in the calculation of the RMSEP.

Following preliminary analyses, t was set at 6000. This is close to half of the available observations
and provides a good compromise between model robustness, the number of predictions and the
computing time (+/- 10min per model). Besides, the RMSEP on the original data follows the solar
cycle, with a smaller RMSEP when the solar cycle is at a low point. A large t therefore ensures that
the RMSEP is computed over more than a full solar cycle.

Model selection and comparison
ARIMA models have three parameters (p,d,q): p is the number of AR parameters, d the degree of
differencing and q the number of MA parameters. An AR(8) model is therefore an ARIMA (8,0,0)
model.

Figure 7 presents the ARIMA models selected for each station and data set. In all cases, models
with a degree of differencing of 1 and at least one moving average parameter were selected. This
indicates that differencing the data and including moving average parameters could give a better fit
than pure autoregressive models.

 LSTAT2390 – Guisset 7

Figure 7 – ARIMA models selected by auto.arima for 5 stations and 4 transforms

Station Centred Square root Simple Anscombe Haar-Fisz

LO (5,1,3) (5,1,5) (3,1,5) (3,1,2)

UC2 (5,1,2) (3,1,1) (3,1,1) (1,1,1)

CA (4,1,5) (4,1,3) (4,1,3) (1,1,5)

KS2 (3,1,5) (4,1,2) (4,1,2) (3,1,4)

KZ (5,1,2) (4,1,5) (4,1,5) (1,1,5)

Figure 8 presents the Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC)
for all models. In general, the lower the criterion (for a given data set), the better the model fit. Based
on the AIC and BIC, the ARIMA models are a better fit for the data in comparison with the AR(8)
models in all cases.

Figure 8 - Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC) for all models

 Centred Square root
Simple

Anscombe
Haar-Fisz

Station Criteria\Model AR(8) ARIMA AR(8) ARIMA AR(8) ARIMA AR(8) ARIMA

LO
AIC 1742 1055 944 215 1224 565 2368 1929
BIC 1816 1122 1018 304 1298 632 2438 1971

UC2
AIC 13130 12533 9659 9088 9718 9148 8151 7745
BIC 13204 12592 9734 9125 9793 9185 8221 7766

CA
AIC 6513 5874 3699 3053 3849 3207 4081 3670
BIC 6587 5948 3773 3113 3924 3267 4151 3720

KS2
AIC 8525 7852 5726 5075 5871 5225 4013 3568
BIC 8599 7918 5780 5127 5946 5277 4084 3623

KZ
AIC 8145 7468 5427 4770 5593 5012 5541 5158
BIC 8219 7528 5502 4845 5667 5012 5612 5207

Model validation
As per the standard time series approach presented above, the model validation includes an analysis
of the model coefficients and residuals. Coefficients were generally significant at the 95% level for
all models tested. The section below presents the general results obtained in terms of model
validation, with illustrations based on the Uccle data. Results for other stations were similar unless
otherwise stated.

The residuals of a valid ARIMA model should be Gaussian (QQ-plot close to a diagonal line),
uncorrelated (ACF within the boundaries), white noise (non-significant values for the Box-Pierce
statistic) and have a stable variance (stable variance of the standardised residuals). When the data
is only centred, the residuals generally do not meet any of these criteria, whether for the AR(8) or
ARIMA models (Figure 9).

 LSTAT2390 – Guisset 8

Figure 9 - Model validation for an AR(8) model on the centred Uccle data (QQ-plot, plot and ACF of
residuals, p-values of the Box-Pierce statistic11)

Transforming the data leads to residuals with a stable variance, but residuals for the AR(8) models
are not necessarily Gaussian and fail the white noise test (Figure 19 in annex).
The ARIMA residuals are generally closer to being Gaussian (Figure 10). The residuals still cannot
be considered white noise according to the autocorrelation function and the Box-Pierce statistic, but
this varies across stations, with for instance residuals closer to white noise for Kislovodsk (Figure 20
in annex).

Figure 10 - Model validation for an ARIMA model (3,1,1) on the square root transformed Uccle data

Overall, the ARIMA models applied to transformed data meet most validation criteria, while AR(8)
models and models on centred data cannot be considered valid.

Root Mean Squared Error in Prediction (RMSEP)
Figure 11 present the RMSEP per station and data set. The first two columns (Centred – Original
data) are based on the original data and give an idea of the magnitude of the RMSEP before
transforming the data. These results show that the RMSEP is between 20 and 30 and that this

11 The null hypothesis of the Box-Pierce test is that the data is white noise. P-values below the threshold indicated on the
plot correspond to a rejection of the null hypothesis : the residuals cannot be considered white noise.

-4 -2 0 2 4

-2
0

0
0

1
0

0
3

0
0

Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
til

e
s

Standardized Residuals

Time

4000 6000 8000 12000 16000

-5
5

0 10 20 30 40

0.
0

0.
6

Lag

A
C

F

ACF of Residuals

20 40 60 80 100

0.
0

0
.6

p values for Box-Pierce statistic

lag

p
va

lu
e

 LSTAT2390 – Guisset 9

estimate of the time-domain error is comparable to the results obtained in the 2016 article.

The « Reduced » columns allow for a comparison of the different models. Overall, the RMSEP is
almost always smaller for the ARIMA models than for the AR(8) models, but the difference is small.
ARIMA models fit the data better than AR(8) models, but lead to an equivalent estimate of the time-
domain error.

Furthermore, the Haar-Fisz transform leads to slightly higher RMSEP than the other transforms. The
square root transform gives similar results to the Anscombe transform. Given all three method
stabilise the variance, the square root transform seems to be the best choice, with a simple formula
and a small RMSEP.

Figure 11 - RMSEP for each data set and station

Station Centred -
Original data

Centred

Reduced

Square root

Reduced

Anscombe
Reduced

Haar-Fisz

Reduced
AR(8) ARIMA AR(8) ARIMA AR(8) ARIMA AR(8) ARIMA AR(8) ARIMA

LO 21.6 22.2 0.239 0.232 0.240 0.233 0.243 0.236 0.280 0.280

UC2 27.1 26.4 0.362 0.353 0.328 0.319 0.329 0.320 0.384 0.371

CA 24.4 23.8 0.314 0.306 0.283 0.275 0.284 0.275 0.316 0.304

KS2 22.0 21.5 0.310 0.302 0.287 0.278 0.288 0.280 0.280 0.300

KZ 25.1 24.6 0.308 0.301 0.299 0.292 0.301 0.294 0.347 0.338

Observation errors
The observation errors correspond to the dispersion between observers. They were computed for
each station and each time point in three steps:

1. Scaling the SSN to the International Sunspot Number:

2. Computing residual errors:
3. Computing the standard deviation of residual errors for each time point with at most one third of

missing values:

The standard deviation of residuals is used as an estimate for observation errors. Figure 12 show
the observation errors over time. They clearly follow the solar cycle and are more important during
the high points in the cycle, when more sunspots need to be counted and results are more likely to
differ between observers, and less important during the low points.

Figure 12 - Observation errors over time compared with the smoothed SSN

 LSTAT2390 – Guisset 10

Stabilising the variance does not change the behaviour of the series, which remains time-dependent
(Figure 21 in annex). Imputing missing values tend to increase dispersion errors (Figure 22 in annex).

Relationship between errors and with the Sunspot Number

Relationship between errors and the Sunspot Number
The relationship between the SSN and observation errors is proportional and can be modelled with
a polynomial model (Figure 13, left). However, averaging over 7 days leads to a linear relationship
between the errors and the SSN (Figure 13, right), which is unexpected and should be further
analysed.

Figure 13 - Relationship between the SSN and observation errors

The relationship between the time-domain errors and the SSN varies between stations but is close
to a square root relationship (Figure 14).

Figure 14 – Relationship between the SSN and time-domain errors

Comparison between errors
Figure 15 presents the smoothed SSN together with the observation errors and the time-domain
errors for Uccle, both averaged over 27 days. The errors tend to be of similar magnitude when the
solar cycle is in a low point. When the solar cycle is in a high point, the observation errors tend to be
become more important than the time-domain errors, but this is not the case for all cycles, nor for all

 LSTAT2390 – Guisset 11

stations.

Figure 15 - Comparison between the two types of errors and the SSN

Ideas for further analyses of the time-domain errors

SARIMA
Given the periodicity of the sun’s activity, Seasonal ARIMA (SARIMA) models could also be used to
model the data. However, fitting a SARIMA model based on the solar cycle periodicity failed. This
could be linked to the fact that the solar cycle is not of stable length and, while it is close to 11 years,
cycles can vary between 9 and 14 years in practice.

SARIMA models with a seasonality of 27 days (one solar rotation) were also fitted to the data but
gave worse results in terms of AIC/BIC and validation diagnostics than the ARIMA models presented
in this report.

Further analyses could assess whether other methods are available to model time series data with
varying periodicity or with a cyclic variance.

Overall ARIMA
The results obtained for ARIMA models were based on the best model selected individually for each
data series. It could be interesting to compare the AR(8) model with a “blanket” approach of one
overall ARIMA model for all stations.

A comparison of ARIMA models with p=1 to 5 and q=1 to 5 shows that most ARIMA models have a
lower AIC than the AR(8). Based on preliminary analyses, a (3,1,3) ARIMA model is a good
candidate for an overall model. Figure 16 presents the results of a comparison between the AR(8)
and ARIMA(3,1,3) models on square root transformed data for the subset of 5 stations. These results
show that using the same model for all stations also tend to give better results than the AR(8) models,
in terms of AIC, BIC and RMSEP. The models also seem to meet the validation criteria to the same
extent as the individual ARIMA models.

Selecting an overall ARIMA model therefore seems a valid approach. Further analyses to assess
the performance of an overall ARIMA model on all stations in the data set could be useful, as these
models have a better fit and rely on a more robust approach than the AR(8) model while giving
comparable results.

 LSTAT2390 – Guisset 12

Figure 16 - Comparison of the AIC and BIC for the AR(8) and ARIMA(3,1,3) models on square root
transformed data

 Square root

Station Criteria\Model AR(8) ARIMA(3,1,3)

LO
AIC 40217 39549
BIC 40291 39601

RMSEP 1.16 1.14

UC2
AIC 46569 45995
BIC 46644 46032

RMSEP 1.44 1.41

CA
AIC 41009 40361
BIC 41084 40420

RMSEP 1.27 1.23

KS2
AIC 41987 41333
BIC 42061 41385

RMSEP 1.23 1.20

KZ
AIC 43362 42702
BIC 43436 42776

RMSEP 1.37 1.34

Conclusions
Stabilising the variance of the data can be implemented through square root, simple Anscombe or
Haar-Fisz transforms. The square root transform is sufficient to obtain a good model fit and has one
of the smallest RMSEP. This transform could therefore be used as the main variance stabilisation
method for the SSN data.

Fitting individual ARIMA models to the data gives a better fit than the AR(8) models. However, the
RMSEP of the more robust ARIMA models is only marginally smaller than the one for the AR(8). The
results obtained with the standard time series approach confirm the magnitude of the time-domain
error estimated in the 2016 article.

Observation errors are time-dependent and proportional to the SSN, while time-domain errors have
a square root relationship to the SSN. Both errors are of similar magnitude at the low point in the
solar cycle, observations errors tend to be more important when the solar cycle is in a high point.

This highlights the importance of reducing the dispersion of observations between stations. This
could be obtained through standard guidelines to the stations or the selection of a smaller selection
of stations producing more robust results.

Two approaches to the time-domain errors could be further explored: seasonal time series modelling
and the use of one overall ARIMA model for all stations. First tests with seasonal ARIMA models
gave poor results, but further research in this area could lead to more interesting results. Applying
one overall ARIMA model to all stations, for instance an ARIMA(3,1,3), gave promising results and
could be a more robust alternative to the AR(8) approach to compute time-domain errors.

In summary, the analysis of the SSN data presented in this report confirms the magnitude of the
time-domain errors and the relationships between the errors and the SSN outlined in the 2016 article.
It further suggests the use of the square root transform to stabilise the data variance and of an overall
ARIMA model to compute time-domain errors in a more robust fashion.

 LSTAT2390 – Guisset 13

ANNEXES
Figure 17 - Impact of the variance stabilisation - histograms12

Figure 18 - Transformed, centred and reduced Uccle data – Data series on shifted scales

12 Please note the original data is on a different scale than the transformed data.

 LSTAT2390 – Guisset 14

Figure 19 - Model validation for an AR(8) model on the square root transformed Uccle data

Figure 20 - Model validation for an ARIMA(4,1,2) on square root transformed data for Kislovodsk

-4 -2 0 2 4

-1
0

-5
0

5
Normal Q-Q Plot

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
til

e
s

Standardized Residuals

Time

4000 6000 8000 12000 16000

-6
0

4

0 10 20 30 40

0.
0

0.
6

Lag

A
C

F

ACF of Residuals

20 40 60 80 100

0.
0

0.
6

p values for Box-Pierce statistic

lag

p
va

lu
e

 LSTAT2390 – Guisset 15

Figure 21 – Observation errors - Effect of variance stabilisation

Figure 22 – Observation errors - Effect of missing values imputation

	Introduction
	Method 1: regression residuals
	Method 2: regression coefficient
	Method 3: sums ratio
	Target
	Allowance value
	Control limits
	Time period
	Expressing CUSUM values as percentage

	Conclusion
	Annexe: R code
	Introduction
	Development Tools
	R Package (Github)
	Visualization

	Code Translation : "Interpolating SVD-EM" method
	Explanation of the Function : interpolsvd_em()
	Example : Uccle2

	Languages Comparisons
	Improvements : Low-level Language
	Profiling

	Improvements : Other Methods and Comparisons
	Method implemented by C.Ritter
	Splines as Smoothing method
	Comparisons
	Improvements : based on SoftImpute

	Parameter Tuning : Cross-Validation
	Mathematical Notations
	Computational Problems
	Methodology
	K-fold cross-validation
	Repeated Cross-Validation
	Improvements

	Conclusion
	Appendix
	Figure : Shiny application Example
	Figure : Example of the filling method for Uccle2
	Figure : Cross-Validation example
	R Package : /data
	R Package : R scripts

	Introduction
	Data
	Methodology
	Missing values
	Variance stabilization
	Dispersion errors
	Time domain errors

	Variance stabilisation
	Short-term variability

	Dispersion errors
	Dispersion errors without transformation
	Effect of transformation on dispersion errors
	Effect of replace missing value on dispersion errors

	Time-domain errors
	Relation between errors and sunspot numbers
	Dispersion errors
	Time-domain errors

	Comparison between errors
	Conclusion
	Appendices
	Methodology : details
	Haar-Fisz transform
	ARIMA and AR(8) model

	Results : details
	Time-domains errors : ARIMA models
	Time-domain errors : Relation between errors and SSN

