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Abstract

Observing and counting sunspots constitutes one of the longest-running scientific experiments, with first
observations dating back to Galileo (around 1610). Today the sunspot number (SN) time series acts as a benchmark
of solar activity in a large range of physical models. An appropriate statistical modeling, adapted to the time series’
complex nature, is, however, still lacking. In this work, we provide the first comprehensive uncertainty
quantification analysis of sunspot counts. We study three components: the number of sunspots (Ns), the number of
sunspot groups (Ng), and the composite Nc, defined as ≔ +N N N10c s g. Those are reported by a network of
observatories around the world and are corrupted by errors of various types. We use a multiplicative framework to
provide, for these three components, an estimation of their error distribution in various regimes (short-term, long-
term, minima of solar activity). We also propose a robust estimator for the underlying solar signal and fit density
distributions that take into account intrinsic characteristics such as overdispersion, excess of zeros, and multiple
modes. The estimation of the solar signal underlying the composite Nc may be seen as a robust version of the
International Sunspot Number (ISN), widely used as a proxy of solar activity. Therefore, our results on Nc may
help characterize the uncertainty on ISN as well. Our results pave the way for a future monitoring of the
observatories in quasi-real time, with the aim of alerting the observers when they start deviating from the network
and preventing large drifts from occurring.

Unified Astronomy Thesaurus concepts: Sunspot groups (1651); Sunspot number (1652); Sunspots (1653); Model
selection (1912); Mixture model (1932)

1. Introduction

1.1. The International Sunspot Number (ISN)

On white-light images, sunspots are visible as dark areas. They
correspond to regions of locally enhanced magnetic field and act
as an indicator of changing solar activity over time. They have
been observed and counted since the invention of the telescope at
the beginning of the seventeenth century. As such, the counting
of sunspots constitutes one of the “longest-running scientific
experiment[s]” (Owens 2013). In 1848, J. R. Wolf from Zürich
Observatory created an index, denoted Nc, of solar activity by
summing up the total number of sunspots Ns with 10 times the
total number of sunspot groups Ng on a daily basis:

( )= +N N N10 . 1c g s

Figure 1 displays smoothed averages of the median value of
these three quantities across a set of 21 observatories (also
called “stations”) chosen for the present study (see Section 2).
Modeling the statistics of Nc is far from trivial, as this quantity
jumps from 0 to 11 when a sunspot appears on the Sun
(Ns=1, Ng=1, and thus Nc=11). By construction, each
active region appears thus twice in Nc. The multiplication factor
inEquation (1) was introduced by J. R. Wolf to put the number
of groups on the same scale as the number of spots. Indeed,
during this historical period, a group contained on average 10
spots (Izenman 1985). Note that in recent solar cycles the
average number of spots per group is rather around six.

The index Nc, or rather the formula behind it, is at the basis
of the ISN. The ISN is distributed through the World Data
Center Sunspots Index and Long-term Solar Observations
(WDC-SILSO).3 The Nc values from each observing station in

the SILSO network are collected and rescaled, i.e., multiplied
by a factor k, to compensate for their differing observational
qualities. The Nc values are then combined on a monthly basis
to produce the ISN (Clette et al. 2007), which constitutes the
international reference for modeling solar activity over the long
term. Despite the fact that it is arguably the most intensely used
times series in all of astrophysics (Hathaway 2010), its
historical part suffers from a number of errors and incon-
sistencies that have been partly addressed by the recalibration
of the ISN in 2015 (Clette & Lefèvre 2016). Even the most
recent part (1981–now) lacks proper error modeling and
uncertainty quantification; see Section 1.2 below.

1.2. ISN: Origin and Computation

In order to place our work in context, we first describe how
the ISN is currently obtained at the WDC-SILSO center. Ns and
Ng are entered through an interface (www.sidc.be/WOLF) and
stored in a database. The main processing is described in Clette
et al. (2007), and we summarize a more recent version of it in
Figure 2. The processing uses a pilot station, here the Locarno
station, as a reference. It compares the values obtained by a
station i to the pilot station via a scaling factor ki, often referred
to as the “k-coefficient”:

( ) ( )
( )

( )=k t
t

Y t

pilot
, 2i

i

where Yi(t) is the composite index of station i, observed at time
t (expressed in days), and pilot(t) is the value of the pilot
station. The monthly scaling factors are computed from a
sigma-clipping mean of Equation (2), i.e., values differing by
more than two standard deviations from the mean are
eliminated from the computation process. This processing still
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suffers from its historical heritage, summarized in Table 1 of
Dudok de Wit et al. (2016). For example, this table shows that
between 1926 and 1981 (when the sunspot collection center
was in Zurich) there were several standard observers, and no
pilot station. As an index derived from count data, Nc (or Ns

and Ng) does not necessarily follow a Gaussian distribution
(Vigouroux & Delache 1994; Usoskin et al. 2003; Dudok de
Wit et al. 2016). A processing based on sigma-clipping is thus
not fully adapted, but still undoubtedly better than what was
done during the Zurich era. Finally, some steps in the
processing date back from the mid-nineteenth century (when
J. R. Wolf introduced the sunspot index) and have not been
upgraded when the collection and preservation center was
moved from Zurich to Brussels in 1981. There were two
reasons for this: (1) the new curators of the ISN wanted to keep
the uniformity of the series, and (2) the numerical tools
available at that time were limited.

The WDC-SILSO team is currently working on improving
the ISN computation and coordinates an important community
effort to correct past errors. Such effort includes, among others,
work by a team from the International Space Science Institute
(ISSI) on recalibration of the SN,4 organization of sunspot
workshops,5 and editorial work for a Solar Physics topical issue
on SN recalibration (Clette et al. 2016).

1.3. Previous Works on SN Uncertainty Quantification

Long-term analyses started with models of the shape of the
sunspot number time series (Stewart & Panofsky 1938; Stewart
& Eggleston 1940). They pursued the works by M. Waldmeier
himself (Waldmeier 1939), who tried to understand the solar
cycle and predict upcoming cycles. Later on, Morfill et al.
(1991) investigated the short-term dynamical properties of the
SN series using a Poisson noise distribution superimposed on a
mean cycle variation. Vigouroux & Delache (1994) also use a
Poisson distribution to approximate the dispersion of daily

values of the SN at different regimes of solar activity. Usoskin
et al. (2003) develop a reconstruction method for sparse daily
values of the SN and model the monthly number of groups
corresponding to a certain level of daily values by a Poisson
distribution. Schaefer (1997) emphasizes the need for error bars
on the AAVSO sunspot series6 (Foster 1999), and more recent
results in Dudok de Wit et al. (2016) present a first uncertainty
analysis of the short-term error, through time domain errors and
dispersion errors among observing stations, still assuming a
Poisson distribution. In Dudok de Wit et al. (2016), however,
the authors uncover the presence of overdispersion in the SN
and approximate the SN by a mix of a Poisson and a Gaussian
distribution in an additive framework. Although non-Poisso-
nian, this additive model fails to capture some of the
characteristics of sunspot data. Chang & Oh (2012), on the
other hand, use a multiplicative model to simulate sunspot
counts in view of assessing the dependency of correction
factors on the solar cycle.

1.4. Motivation and Contribution

Our goal in this work is to go beyond the above-mentioned
historical heritage by developing a comprehensive uncertainty
quantification model for the count data Ns, Ng, and Nc. These
quantities are subject to different types of errors and do not
behave exactly like Poisson random variables: (1) they
experience more dispersion than the Poisson distribution, (2)
they are not independent from one day to another (since
sunspots can last from several minutes to several months on the
Sun), and (3) they exhibit a large number of zeros owing to
periods of minimal solar activity.
Our contribution is twofold. First, we develop robust

estimators for the physical solar signal, denoted “true” signal
in this paper, underlying Ns, Ng, and Nc. We propose a model
for their densities that takes into account characteristics such as
overdispersion and large number of zero counts. Our proces-
sing and estimators are robust to missing values and do not
require filling in missing observations, contrarily to previous
studies.
Second, we propose an uncertainty model that is motivated

by first studies in Dudok de Wit et al. (2016) and that works
within a multiplicative framework. Our model distinguishes
three error types. The short-term error accounts for counting
errors and variable seeing conditions from one station to
another (e.g., weather, atmospheric turbulence), whereas the
long-term error provides an overall bias in the number of spots
(e.g., gradual ageing of the instrument or observer). Finally, a
third error type aims at modeling inaccuracies occurring at solar
minima and helps differentiating true from false zero counts.
As an illustration, the short-term variations coming from the
solar variability and the observational errors are clearly visible
in Figure 1, superimposed on the approximate seasonality of
the 11 yr solar cycle.
In future prospects, our work paves the way for a more

robust definition of the ISN. Indeed, the analysis of the
different error types allows studying the stability of observa-
tories involved in the computation of ISN. Our study lays the
ground for a future monitoring of all active stations within the
SILSO network in quasi-real time, with the aim of (1) defining
a stable reference of the network, (2) alerting the observers
when they start deviating from the network, and (3) preventing

Figure 1. Time evolution during 1947–2013 of the median values across 21
observing stations (see Table 1) for the sunspot counts: (top) Ns, (center) Ng,
and (bottom) Nc. The data are averaged over 81 days (black dotted line), 1 yr
(red dashed line), and 2.5 yr (blue solid line).

4 http://www.issibern.ch/teams/sunspotnoser/
5 https://ssnworkshop.fandom.com/wiki/Home 6 https://www.aavso.org/category/tags/american-relative-sunspot-numbers
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large drifts from occurring. A new ISN could then be defined
from a stable reference rather than a single pilot station and
could benefit from the robust estimators and procedures
(including rescaling of observing stations; see Section 4)
developed in this work.

Our paper is structured as follows. Section 2 introduces the
data set considered. The uncertainty model is presented in
Section 3, while Section 4 details the preprocessing of the data.
Section 5 provides the estimators (or proxy) for the “true” solar
signal underlying Ns, Ng, and Nc, as well as their densities.

Finally, Section 6 displays our results on quantification of the
different error types, as well as a first stability analysis that
takes into account both short- and long-term variability.

2. Data

Similarly to what is done in Dudok de Wit et al. (2016), we
study a subset of 21 stations, whose main characteristics are
listed in Table 1. The period under study goes from 1947
January 1 until 2013 December 31. It ranges from the

Figure 2. Flowchart of the WDC-SILSO data import procedure, illustrating the succession of hierarchical tests applied to raw observing reports (adapted from Clette
et al. 2007).

Table 1
Main Characteristics of the Subset of Stations

ID Name Location Prof. versus Team versus Observing Level % % Obs.
Amateur Individual Period Obs. Period

A3 Athens Obs. Athens (Greece) Prof. team 1949–1995 1.039 30.16 44.01
BN-S WFS Obs.* Berlin (Germany) Am. team 1965–2013 1.179 23.50 32.74
CA Catania Obs. Catania (Italy) Prof. team 1950–2019 1.039 61.87 64.80
CRA Cragg† Australia Am indiv. 1947–2009 0.904 72.43 77.44
FU Fujimori Nagano (Japan) Am indiv. 1968–2019 1.055 45.73 67.32
HD-S Hedewig* Germany Am indiv. 1967–2013 0.931 25.42 36.96
HU Public Observatory Hurbanovo (Slovakia) Am team 1969–2019 1.004 35.452 52.80
KH KOERI Kandilli (Turkey) Prof. team 1967–2019 0.968 48.81 51.38
KOm Koyama Tokyo (Japan) Am indiv. 1947–1996 1.052 40.18 54.84
KS2 Kislovodsk Mountain Obs. Kislovodsk (Russia) Prof. ∼indiv. 1954–2019 1.057 85.96 95.98
KZm University of Graz Kanzelhohe (Austria) Prof. team 1944–2019 1.110 74.23 74.24
LFm Luft New York (USA) Am indiv. 1944–1988 0.985 34.06 54.68
LO Specola Solare Locarno (Switzerland) Prof. ∼indiv. 1958–2019 1.260 68.27 81.68
MA Manila Obs. Manila (Philippines) Prof. team 1971–1988 1.023 20.85 78.69
MO Mochizuki (Urawa) Saitama (Japan) Am indiv. 1978–2019 1.073 35.51 66.09
PO Observatory Postdam (Germany) Prof. team 1955–1999 0.991 22.12 29.73
QU PAGASA weather Bureau Quezon (Philippines) Prof. ∼indiv. 1957–2019 0.829 45.46 53.83
SC-S Schulze* Germany Am indiv. 1960-2007 0.943 23.32 33.16
SK Skalnate Pleso Obs. Vysoke Tatry (Slovakia) Prof. team 1950–2012 0.992 37.95 40.75
SM San Miguel Obs. Buenos Aires (Argentina) Prof. team 1967–2013 1.220 39.09 56.34
UC USET Uccle (Belgium) Prof. team 1949–2019 0.991 57.00 59.64

Note. Main characteristics on the set of 21 stations used in this study: acronym (ID), last name of observer or name of station, location, type of observatory
(professional versus amateur), type of observer (individual or team), observing period, averaged scaling factor with respect to the network over the studied period
(level), and percentage of observations on the full period studied and on their observing period (% Obs. period). Note that ∗ and † symbols represent stations or
observers from the SONNE and AAVSO networks, respectively. They are two distinct networks of observing stations that are not members of the WDC-SILSO
network and hence are not used to produce the ISN.
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maximum of solar cycle (SC) 18 until the ascending phase of
SC 247 and covers thus almost six solar cycles.

Table 1 summarizes properties of the stations such as their
location, name, type (amateur vs. professional, individual vs.
team), observing period, percentage of missing values, and
mean scaling factor (level) with respect to the network over
the period studied. The procedure that was used to compute the
mean scaling factors will be described in Section 4. These
mean scaling factors may be viewed as an indication of the
general level of counts recorded by the station as compared
to the median of the network. Thus level=1 corresponds to a
station that observes the same number of spots as the median of
the network. For example, Locarno (LO) with a level of 1.26
observes in general around 20% more spots than the others.

The location of the observatories gives an indication of the
weather conditions of the stations and might explain part of the
missing values. Moreover, the type of observatory usually
impacts the quality of observations and the length of observing
periods: an individual might experience less short-term
variability than a team (alternating the observer from one
week to another), and/or amateurs may have shorter observing
periods than professionals.

Our data set contains the daily number of spots Ns, groups
Ng, and the composite Nc observed in each of the 21 stations.
As Table 1 indicates, the data present an important amount of
missing values due to weather conditions preventing stations
from observing, periods of instrument maintenance or
definitive closures, or births of new observatories.

3. Model

In this section, we present step by step our uncertainty
model. It characterizes the observations of the stations (either
for the number of spots Ns, groups Ng, or composite Nc) in a
multiplicative framework and involves different types of
observing errors, as well as a quantity generically denoted by
s(t), for Ns, Ng, and Nc. s(t) is a latent variable representing the
“true” solar signal, i.e., the actual number of spots Ns, groups
Ng, or composite Nc lying on the Sun. It cannot be directly
observed, as the counts of the stations are corrupted by
different error sources. Our goal is to estimate the distribution
of the “true” solar signal and of the errors degrading it. In
particular, we are interested in the mean and the variance of
these distributions, but also in higher-order moments since the
estimated densities are far from Gaussian.

The mean of s(t), denoted by μs(t), will be estimated in
Section 5 based on the entire network (to be robust against
errors of an individual station) and will be used as a proxy for
s(t) in the remaining part of the article. Since our model is
multiplicative, a good estimation of μs(t) is the key to get
access to the multiplicative errors; see Equation (6). Moreover,
a precise estimation of the mean level of an individual station is
required for future monitoring, and this depends on the
accuracy of the estimation of s(t).

We use a model that is conditional on the latent s(t) and
decomposes the observations along two regimes: when s(t)=0
(solar minima) and when s(t)>0 (outside periods of minima);
see Section 3.1. This allows introducing, outside of minima, a
model with short-term observing errors and long-term drifts;
see Section 3.2. A specific error model is then developed for
periods of solar minima in Section 3.3, and the complete model

is shown in Section 3.4. Finally, Section 3.5 introduces the
Hurdle model in order to fit distributions exhibiting an excess
of zero values, as is the case here owing to the presence of solar
minima and observing errors.

3.1. Conditional Model

The observed counts are studied in two distinct situations:
when there are sunspots (s>0) and when there are none
(s= 0). This separation is motivated by the idea that the
absence or the presence of sunspots is led by a series of
phenomena involving complex dynamo processes in the solar
interior, and which can be modeled by a latent variable with
two states. This analysis will lead to a better understanding of
the observations and allows differentiating the “true” zeros of
the counting process from the “false” zeros that occur when a
station reports zero sunspot count in the presence of one or
more spots on the Sun.
Let Yi(t) represent either the number of spots, groups, or

composite actually observed (raw, unprocessed data). The
index 1�i�N denotes the station, and 1�t�T is the time.
The probability density function (pdf) of ≔ ( )Y Y ti may be
decomposed as

( ) ( ∣ ( ) ) ( ( ) )
( ∣ ( ) ) ( ( ) )

( ) ( ∣ ( ) ) ( ( ) )
( ∣ ( ) ) ( ( ) )

( )

  
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Terms “1” and “3” in Equation (3) represent the short-term
error in the presence of one or more sunspots. Term “1” reflects
a situation where no sunspots are reported while there are
actually some spots on the Sun (“false” zeros or observational
errors due, e.g., to a bad seeing) and leads to an excess of zeros
in short-term error distribution.
Term “2” captures the “true” zeros (no sunspot and no

sunspot reported), while term “4” reflects a situation where the
station reports some sunspots when there are no sunspot on the
Sun. Term “4” is neglected outside of solar minima periods.
Together, these two terms form the distribution of the error at
minima, which has an excess of “true” zeros and a tail
modeling the errors of the stations and the short-duration
sunspots.

3.2. Short-term and Long-term Errors

Results in Dudok de Wit et al. (2016) evidence a short-term,
rapidly evolving, dispersion error across the stations that
accounts for counting errors and variable seeing conditions. We
define a similar term allowing a possible station dependence,
and we denote it ò1(i, t). Assuming ( ( )) = i t, 01 , where  is
the expectation sign, our interest lies in modeling its variance
and its tail to study the short-term variability of the stations.
Next, we introduce ò2(i, t) to handle station-specific long-

term errors such as systematic biases in the sunspot counting
process. We want to estimate its mean, μ2(i, t), and detect
whether this mean experiences sudden jumps or drifts on longer
timescales.7 https://en.wikipedia.org/wiki/List_of_solar_cycles
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Both ò1(i, t) and ò2(i, t) are multiplicative errors, as an
observer typically makes larger errors when s(t) is higher
(Chang & Oh 2012). Assembling these two types of errors, we
propose the following noise model outside of solar minima:

( ) ( ( ) ( )) ( ) ( ) ( )= + > Y t i t i t s t s t, , when 0. 4i 1 2

3.3. Errors at Solar Minima

Let ò3 denote the error occurring during minima of solar
activity, when there exist extended periods with no or few
sunspots. We assume the error ò3 to be significant when there
are no sunspots (s(t)=0) and otherwise negligible in order to
not interfere with the errors ò1 and ò2. ò3 captures effects like
short-duration sunspots and nonsimultaneity of observations
between the stations. At solar minima, the model becomes

( ) ( ) ( ) ( )= =Y t i t s t, when 0. 5i 3

3.4. General Model

Combining the three error types, we may write our
uncertainty model in a compact and generic way as follows:

⎧⎨⎩( ) ( ( ) ( )) ( ) ( )
( ) ( ) ( )=

+ >
=

 


Y t
i t i t s t s t

i t s t
, , if 0

, if 0.
6i

1 2

3

We assume the random variables (r.v.) ò1, ò2, and ò3 to be
continuous, and the r.v. s, ò1, ò2, and ò3 to be jointly
independent. Although the “true” number of counts s(t) is
discontinuous, its product with a continuous r.v. (ò1+ò2)
remains continuous. This is consistent with the fact that, after
the preprocessing, the observed data Yi(t) may be modeled by a
continuous r.v.

3.5. Excess of Zeros

All terms in Equation (6) exhibit an excess of zeros, that is,
an unusual local peak in the density at zero, due to solar
minima periods. As the solar minimum is an important part of a
solar cycle, the zeros must be properly treated. Specific models
such as the zero-altered (ZA) or the zero-inflated (ZI) two-part
distributions may be used for this purpose (Zuur et al. 2009;
Colin Cameron & Trivedi 2013). The main difference between
both models is that the ZI distribution allows the zeros to be
generated by two different mechanisms, contrarily to the ZA
model, which treats all zeros in the same way.

As “true” and “false” zeros do not appear together in a single
term of Equation (6), we find it appropriate to work with the
ZA two-part model (also called the “Hurdle” model) and
denote its density by f (x). In this model, the zero values are
modeled by a Bernoulli distribution ( ) ( )= --f x b b1x x

0
1 of

parameter b. Nonzero values follow a distribution described
generically by f1(x), either another discrete distribution (in case
of modeling the counts μs(t) in Section 5) or a continuous
distribution for ò1 and ò3 in Section 6:

⎧
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The ZA distribution will be used to model the estimated
densities of μs(t) in Section 5 and those of ò1(i, t) and ò3(i, t) in
Section 6.

4. Preprocessing

Due to the different characteristics of the observing means
(telescope aperture, location, personal experience, etc.), each
station has its own scaling. These differences mainly impact the
count of small spots, which cannot be observed with low-
resolution telescopes, and the splitting of complex groups,
where the personal experience of the observer matters. A
preprocessing is thus needed to rescale all stations to the same
level when comparing stations on the short term and at solar
minima. It is also required to compute a robust estimator of the
solar signal based on the entire network. For the analysis of
long-term errors, however, the preprocessing will not be
applied, as it would suppress long-term drifts that we want to
detect. Our proposed preprocessing is robust to missing values
and proceeds in two steps.
First, we compute the “timescale,” that is, the duration of the

period where the scaling factors are assumed to be constant. It
is a trade-off between short periods and long periods: the
former tends to standardize the observations of the stations,
thereby suppressing any differences between the observers,
whereas the latter may be too coarse to correct for important
changes in observers and instruments. A statistically driven
study based on the Kruskal–Wallis (KW) test (Kruskal &
Wallis 1952) shows that the appropriate timescale varies with
the stations and with the type of counts Ns, Ng, and Nc; see the
Appendix for a full description of the test. This timescale may
also evolve over time when a station is constant over several
months before suddenly deviating from the network. However,
to avoid introducing potential biases between the stations, we
use the same timescale, generically denoted by τå, for all
stations over the entire period studied. The selected values of τå

are 8 months for Ns, 14 months for Ng, and 10 months for Nc.
We note that that these periods are close to the 12-month period
chosen by J. R. Wolf to compute the historical version of the
scaling factors.
Second, having determined the timescale τå, we compute the

scaling factors using ordinary least-squares regression (OLS) as
follows. Recall that Yi(t) represents either the number of spots,
groups, or composite actually observed in a station i,
1�i�N at time t, 1�t�T (daily values). For conve-
nience, we rearrange the time by an array of two indices
t=(t1, t2), where 1�t1�τå and 1�t2�T/τå. Thus, t1
corresponds to the index of an observation inside a block of
length τå and t2 is the index of the block.
Let ≔ [ (( ))] t Y Y t t,i t i t, 1 2 12 1 denote the vector of the daily

observations in station i on block t2 of length τå and
≔ [ (( ))] t

 
 X Y t tmed ,i t

i N
i t,

1
1 2 12 1 be the vector containing the

daily values of the median of the network, also of length τå.
The scaling factors are computed using the slope of the

( ∣ )Y XOLS i t i t, ,2 2
regression:

( ) ( ) ( )k = -X X X Yt . 8i i t
T

i t i t
T

i t2 , ,
1

, ,2 2 2 2

The new definition of the scaling factors in Equation (8) is a
robust version of a ratio between the observations of the
stations and the median of the network. It is similar to the
definition of the historical k in Equation (2), where the median
of the network replaces the single pilot station as the reference
level. The rescaled data, denoted Zi in the sequel, are defined as

( ) ( )
( )k

=Z t
Y t

t
,i

i

i
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where the reference appears now in the denominator. In a
sense, the ratio in Equation (2) is inverted in order to limit the
problem of dividing by zero whenever the stations observe no
spots. We explored other methods such as orthogonal
regression (also called total least-squares) and ( ∣ )X YOLS i t i t, ,2 2

(Feigelson & Babu 1992). We choose the ( ∣ )Y XOLS i t i t, ,2 2

method since it leads to the smallest Euclidean and total
variation distances between the median of the network and the
individual stations.

5. Solar Signal Estimation

5.1. Choice of the Estimator

To use Equation (6), we need an estimate of a proxy for s(t).
We choose this proxy to be the mean of s(t), denoted μs(t). We
propose as a robust estimator for μs(t) a transformed version of
the median of the network:

ˆ ( ) ( ) ( )m =t T M , 9s t

where ( )=
 

M Z tmedt
i N

i
1

represents the median of the network

and T denotes a transformation composed of an Anscombe
transform and a Wiener filtering (Davenport & Root 1968).
This filtering is applied in order to clean the data from very
high frequencies, which can lead to instabilities in the
subsequent analysis. The generalized Anscombe transform
stabilizes the variance (Murtagh et al. 1995; Makitalo &
Foi 2013). It is written as

( ) ( )
a

a a= +A x x
2 3

8
. 102

It is commonly applied in the literature to Gaussianize near-
Poissonian variables. It is needed here, as the Wiener filtering
performs better on Gaussian data. Similarly to Dudok de Wit
et al. (2016), pp.14–15, we fix α=4.2 in Equation (10). This
is the optimal value found for the composite Nc. Before
applying the Wiener filtering, missing values of the median of
the network are imputed using the algorithm described in
Dudok de Wit (2011). Only 49 values are imputed, which
represents 0.2% of the total number of values on the period
studied. The Wiener filtering is then applied on the transformed
and complete set of median values and suppresses the highest
frequencies of the signal. Finally, the imputed missing values
were reset to NaN (“not a number”) in ˆ ( )m ts . The block diagram
of the procedure is described in Figure 3.

Among other tested estimators (based on the mean, the
median of the network, or a subset of stations), with or without
application of T, the estimator proposed in Equation (9) turns
out to be the most robust to outliers.

5.2. Comparison with Space Data

To test the quality of our estimator m̂s, we compare it with a
sunspot number extracted from satellite images of the Sun. We
expect less variability when Ns, Ng, and Nc are retrieved from
satellite images using automated algorithms, as the rules to
count spots and groups are clearly defined. Nevertheless, the
measurements are biased by these rules, and the most complex
cases, e.g., at maxima, most often require either human
intervention or a specific procedure in the algorithm. In any
case, a measure of the “true” number of spots and groups does
not exist.
As exercise for this comparison, we use the sunspot Tracking

And Recognition Algorithm (STARA) sunspot catalog (Watson
& Fletcher 2010), regrouping observations from 1996 May to
2010 October (solar cycle 23). This number is extracted using an
automated detection algorithm from the images obtained by the
MDI instrument on Solar and Heliospheric Observatory. It has a
lower scaling than our estimator for the number of spots, m̂Ns

, as
expected since the definition of a spot in the detection algorithm
excludes the pores (spots without penumbra).
We compare three quantities on the period where STARA

data are available (1996–2010): Ns (STARA), m̂Ns
, and Ns as

recorded by the Locarno station. These are shown in Figure 4.
We test the level of variability by computing the mean value of
a moving standard deviation over a window of 81 days. It is
equal to 14.07 for Ns (STARA) rescaled on m̂Ns

(5.38 for Ns

(STARA) without scaling) against 15.68 for m̂Ns
and 27.13 for

Locarno. As expected, Ns (STARA) experiences less variability

Figure 3. Block diagram of the T procedure defining the solar signal estimator ˆ ( )m ts , where ( )=
 

M Z tmedt
i N

i
1

is the median of the network. An Anscombe transform is

first applied on the median, and missing values are imputed. Then, a fast Fourier transform (FFT) is used to convert the signal to a power spectrum in the frequency
domain, followed by an attenuation from a Wiener filter. A step function cancels the amplitude of the frequencies corresponding to the periods inferior to 7 days (low-
pass filter). The threshold at 7 days is selected from Dudok de Wit et al. (2016; see Figure 5). It is the smallest visible timescale of the signal, corresponding to the
weekly shift of some observatories. Finally, an inverse FFT and an inverse Anscombe transform are applied to the signal.

Figure 4. Comparison between the SN obtained from STARA and that from
our procedures, for the period 1996 May to 2010 October. The number of spots
obtained from the STARA catalog is represented in blue, the actual
(unprocessed) number of spots observed in Locarno (LO) is represented in
yellow, and mNs

is plotted in orange. The three quantities shown are averaged
over 81 days.
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than a single station, but its variability is comparable to the one
of our estimator.

Nevertheless, satellite images of the Sun have only been
available since 1980, and data extracted from those images
cannot be traced back until the seventeenth century. Gathering
space observations during several decades also requires the use
of different satellites and instruments, as instruments age in
space. These instruments need calibrations that create addi-
tional inaccuracies to the extracted numbers. We thus conclude
that ( )m ts is a more robust estimator of the solar activity, and it
will be used as a proxy for s(t) in the sequel.

5.3. Solar Component for Ns and Ng

We present here the statistical modeling of the number of
spots Ns and the number of groups Ng. We do this separately
for each component since their physical origins are driven by
different phenomena: the groups convey information about the
dynamo-generated magnetic field in the solar interior, whereas
the emergence of individual spots would rather come from
fragmented surface flux and agglomeration of small magnetic
fields (Thomas & Weiss 2008). Together, the analysis of the
spots and groups helps us to better understand the composite Nc

and the solar activity, which is not satisfactorily described by

only one of the two numbers (Dudok de Wit et al. 2016). In the
remainder of this paper, we define a specific notation for the
generic ˆ ( )m ts from Equation (9): ˆ ( )m tNs

for the number of spots,
ˆ ( )m tNg

for the number of groups, and ˆ ( )m tNc
for the composite.

The authors in Dudok de Wit et al. (2016) showed that the
numbers of spots and groups experience more overdispersion
than actual Poisson variables. In order to estimate how far the
distribution of the “true” s(t) departs from a Poisson distribution,
we regress the conditional variance ( ( )∣ ˆ ( ) )m m=Var Z t ti s versus
the conditional mean ( ( )∣ ˆ ( ) )m m= Z t ti s by OLS; see Figure 5.
Whereas in a Poisson context the slope of the fit should be close
to 1, for Ns>10, our fit shows a slope of 1.5, with confidence
interval (CI) CI95%=[1.48, 1.51]. This points to overdispersion
and the need for a generalization of a Poisson pdf. On the
contrary, the same plot for Ng>0 displays a slope of 0.96, with
CI95%=[0.93, 0.99], confirming the validity of a Poisson
process assumption. Note that values <11 are excluded from the
fit of Ns, as they seem to indicate a different regime. This change
in the alignment may indicate the presence of a multimodal
distribution; see Figure 6.
Count data with overdispersion are widely modeled by the

negative binomial (NB) distribution in the literature (Colin
Cameron & Trivedi 2013; Rodriguez 2013) or by its generalization

Figure 5. Estimation of the conditional mean–variance relationship for Ns (left) and Ng (right). The red line is a linear fit of the points (shown on a log–log scale),
starting at Ns>9 and Ng>0, respectively. In both plots, the legend shows the value of the fitted slope together with its confidence interval at 95%. The value of the
intercept is −1.21 for Ng and −0.57 for Ns. The same fit starting at Ns>0 (not shown here) leads to a slope of 1.25 and CI95%=[1.23, 1.28].

Figure 6. Left: histogram of ( )m tNs
values, computed with a bandwidth (binning) equal to 3, and estimated density for nonzero values of ( )m tNs

(shown by the black
line). The complete density is modeled by a ZA mixture of generalized NBs. For the zero values, the MLE value of the Bernoulli parameter is equal to b=0.1. For
nonzero values, the MLE values of the parameters inEquation (12) are r1=1.25, p1=0.11, r2=2.39, p2 = 0.04, and w1=0.32. Right: histogram of ( )m tNg

values,
computed with a bandwidth equal to 1, and corresponding density fitted by MLE (shown in black line). The density is modeled by a mixture of an NB and a Poisson
distribution as defined in Equation (13). The fitted parameter values are μ2=8.62, r1=1.65, p1=0.37, and w1=0.36.
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(Jain & Consul 1970):

( ) ( )
( ) ( )

( )=
G +

G G +
g x r p

r x

r x
p q, ,

1
, 11r x

where r>0, p ä (0,1), q=(1−p) and Γ is the gamma
function.

A visual inspection of the histogram of estimated values
( )m tNs

in the left panel of Figure 6 reveals a local maxima in the
distribution around 20–40. We refer to these local maxima as
modes in the remainder of the article. The underlying density of
ˆ ( )m tNs

may thus be multimodal, as suspected from the left panel
of Figure 5. Such pdf’s are classically modeled by a mixture
model. As the density shows a typical excess of zeros as well, it
requires the use of a ZA distribution defined in Equation (7).
We thus fit the complete pdf of the estimated number of spots,
ˆ ( )m tNs

, by a ZA mixture of generalized NB distributions. The
density at zero, f0(x), is represented by a Bernoulli distribution,
whereas the density outside zero, f1(x) in Equation (7), is
identified by a mixture of NB distributions:

( ) ( ) ( ) ( )
( )

= + -f x r r p p w g x r p w g x r p, , , , , , 1 , , ,

12
1 1 2 1 2 1 1 1 1 1 2 2 2

where g1, g2 are NB densities and w1 is the mixture weight.
Similarly, the histogram of ˆ ( )m tNg

exhibits a clear excess in
the range of 1–3 compared to a Poisson-like distribution
centered between 5 and 8. The pdf of ( )m tNg

shows thus two
modes: one around 1–3, and one around 5–8. Such a pdf may
be modeled by a mixture of NB and Poisson distributions:

( ) ( ) ( )
!

( )m
m

= + - mf x r p w g x r p w
x

e, , , , , 1 , 13
x

1 1 2 1 1 1 1
2

2

where μ2>0 and, as above, w1 is the mixture weight.
The fit of these parametric densities is shown in Figure 6 by

a black line superimposed on the histograms. All the fits in this
article are computed using the maximum likelihood estimation
(MLE). The nature of the different modes in the pdf of m̂Ns

and
m̂Ng

will be discussed in Section 5.5.

5.4. Solar Component for Nc

We now use Equation (9) to estimate the mNc
, the “true”

value of the composite Nc=Ns+10Ng. Again looking at the
conditional mean–variance relationship, we observe in the left

panel of Figure 7 an overdispersion with a slope of 1.29 and
CI95%=[1.27, 1.31] for Nc>20. As a compound of both
quantities, Nc experiences less overdispersion than Ns and more
than Ng. A visual inspection of the histogram of ˆ ( )m tNc

values
in the right panel of Figure 7 indicates an excess of zeros and
several modes, most probably coming from the modes
observed in the pdf’s of m̂Ng

and m̂Ns
. We thus find it

appropriate to approximate the density of ˆ ( )m tNc
by a ZA

mixture of three NB distributions, where the density outside
zero values, f1(x) in Equation (7), is identified with

( ) ( ) ( )å¼ =
=

f x r r p p w g x r p, , , , ,.., , , , 14
i

i i i i1 1 3 1 3
1

3

where wi are the mixture weights and å == w 1i i1
3 . The fit of f1

is represented in the right panel of Figure 7 by a black line.
A statistical analysis (not presented here) shows that the

distribution of the ISN is statistically close to the distribution of
m̂Nc

. The uncertainty analysis for m̂Nc
, presented in the

remainder of the article, remains thus valid for the ISN.

5.5. Conditional Correlation

Due to the physical nature of the data, the local maxima for
the densities of mNs

and mNg
are not independent. We therefore

look at the conditional correlation ( ∣ )m =N N sCorr ,s g Nc
with

the goal to better understand the nature of the modes observed
in these two densities, and thus also in the density of m̂Nc

.
Figure 8(a) shows the conditional correlation for different

values of m̂Nc
between 0 and 400. Note that even when m̂ = sNc

,
the value of the composite Ns+10Ng for a particular station
may be larger (resp. smaller) than s. Our analysis highlights
three regimes of activity:

Minima: ˆ [ ]m Î 0, 11Nc
. Here, the number of spots and groups

oscillates between 0 and 1. As the number of spots equals
exactly the number of groups, the correlation is high.

Medium activity: ˆ [ ]m Î 12, 60Nc
. The correlation progressively

decreases, because the number of spots increases faster
than the number of groups and then stabilizes. This regime
is characterized by the development of smaller spots
without penumbra or with a small penumbra. Figure 8(b)
shows the bivariate boxplot of Ns and Ng when m̂ = 40Nc

.
For Ng=1 or Ng=2, we observe values of Ns as high as
40. We clearly observe groups containing a large number

Figure 7. Left: conditional mean–variance relationship for Nc, shown on a log–log scale. Right: histogram of ˆ ( )m tNc
values, with a binning equal to bw=3. The

estimated density outside of zero values is shown by a black line. It is modeled as a mixture of three NB distributions (see Equation (14)), with MLE parameter values
equal to r1=3.18, p1=0.48, r2=4.02, p2=0.15, r3=3.05, p3=0.02, w1=0.08, and w2=0.19. The Bernoulli parameter of the density f0 at zero is equal
to b=0.07.
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of spots, as well as groups, composed of fewer spots, that
appear progressively as the penumbra grows and that
indicate a transition toward groups with fewer but larger
spots. The effect of this transition from small to larger spots is
observed in Figure 5 from Clette & Lefèvre (2016).

High activity: m̂ > 60Nc
. Figure 8(c) shows the bivariate

boxplot of Ns and Ng when m̂ = 70Nc
. The plot has a

potato shape around (Ns=30, Ng=4). We now observe
all kinds of groups. The correlation between groups and
spots slightly increases as the number of groups begins to
grow as well.

The medium and high regimes are reflected in the estimated
densities of mNs

and mNg
in Figure 6. The first mode of m̂Ng

,
ranging from 1 to 3, corresponds to the medium regime, while
the second mode, ranging from 5 to 8, reflects the high regime.
The two distinct regimes provide another justification for the
use of a multimodal distribution to characterize the pdf of m̂Ng

.
Similarly, there is also a mode in the distribution of mNs

around
20–40 that comes from the transition between the medium and
the high regime. The mode is correctly represented by a
mixture model. The study of the conditional correlation
constitutes the first step toward retrieving the distribution of
Nc from its composites Ns and Ng. However, this task is
challenging and goes beyond the scope of the article because
(1) the distributions of Ns and Ng are complex mixtures and (2)
the number of spots is nontrivially correlated to the number of
groups.

6. Distribution of Errors

We are now in a position to analyze the error distribution in
sunspot counts, the modeling of the distributions of ò3, ò1, and
ò2. To do so, we separate minima from nonminima regimes. We
also consider two timescales: short-term periods, that is,
timescales smaller than one solar rotation (27 days), and
long-term periods. Section 6.1 estimates error at solar minima,
i.e., when s(t)=0. Section 6.2 analyzes short-term variability
of the preprocessed observations when s(t)>0. For the study
of long-term error in Section 6.3, we use raw data that did not
undergo any preprocessing, in order to be able to detect sudden

jumps and/or large drifts in the time series. The correct
timescale for the long-term period is also determined in this
section, based on a statistically driven procedure. Finally,
Section 6.4 compares the characteristics of the different stations
based on the error analysis.

6.1. Error at Minima

The study of solar minima periods is complex, as the data
show a large variability and dichotomy. Observed values of the
error at minima, ò3, are defined as counts made by the stations
when the proxy for s(t), defined in Equation (9), is equal to
zero:

ˆ ( ) ( ) ˆ ( ) ( )m= = i t Z t t, when 0, 15i s3

where Zi(t) corresponds to Ns, Ng, or Nc, and where the generic
( )m ts has to be replaced by ( )m tNs

for Ns, ( )m tNg
for Ng, and

( )m tNc
for Nc.

A visual inspection of the histogram of Ns (resp. Ng) in the
left (resp. middle) panel of Figure 9 shows an important
amount of “true” zeros together with two modes around one
and two. Similar modes occur around 11 and 22 in the
distribution of Nc in the right panel of Figure 9, as expected.
These modes represent short-duration sunspots. Due to the
nonsimultaneity of the observations between stations, the
proxy for s(t) might be equal to zero even if some spots appear
shortly (from several minutes to several hours) on the
Sun. These modes can be represented by a t-location-scale
(t-LS) distribution, which is a generalization of the Student
t-distribution. This distribution has three parameters to
accommodate for asymmetry and heavy tails: the location μ,
scale σ>0, and shape ν>0 (see Taylor & Verbyla 2004;
Evans et al. 2000). Its pdf is defined as

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )
( )

( )
( ) ( )

( )

m s n
s np

n

n
=

G

G

+
n

n

m
s

-

+ - - n+

g x, , , . 16t

x

LS

1

2

2

2

2

1
2

The large proportion of zero values for ̂3 requires the use of a
ZA model as in Equation (7). We choose a ZA mixture of t-LS

Figure 8. (a) Conditional correlation of Ns and Ng: ( ∣ ˆ )m =N N sCorr ,s g Nc
for [ ]Îs 0, 400 . Bivariate boxplot (also called “bagplot”) of Ns and Ng when (b) m̂ = 40Nc

and (c) m̂ = 70Nc
. The white cross represents the depth median (Rousseeuw et al. 2012). The bag contains 50% of the observations, and it is represented by a polygon

in red. The fence (not represented) is obtained by inflating the bag by a factor three. The observations that are outside of the bag but inside of the fence are indicated by
a light-gray loop. Outliers are represented by a black star. The correlation is indicated by the orientation of the bag.
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for the complete distribution of ̂3. The density outside of zero,
f1(x) in Equation (7), is thus identified by such a mixture of
t-LS distributions:

( )
( ) ( ) ( )

( )

m s n m s n
m s n m s n= + -- -

f x

w g x w g x

, , , , , ,

, , , 1 , , , ,

17
t t

1 1 1 1 2 2 2

1 1 1 1 LS 1 2 2 2 LS

where, as before, w1 is the mixture weight. The histograms and
fitted distributions for 3 are shown in Figure 9. The visual
closeness between the histogram and the fitted distribution was
used as a criterion to select the best pdf among a few intuitive
candidates, while the parameters of the distribution are
estimated via MLE.

In the previous figures, where the error at minima is
represented for all stations combined, outliers defined as
ˆ ( ) > i t, 23 are not visible for Ng and Ns. A separate analysis
(not presented here) shows that the percentage of outliers in
each station is low (inferior to 0.5% for Ns). Some stations also
observed a high maximal value at minima (e.g., a value of 35
was recorded in QU [Quezon, Philippines] for Ns). This
extreme value for minima may correspond to a transcription
error that might be verified in the future, before being encoded
in the SILSO database.

6.2. Short-term Variability

When the proxy for s(t), defined in Equation (9), is different
from zero, the short-term error  may be estimated using

( ) ( )
ˆ ( )

ˆ ( ) ( )
m

m= > i t
Z t

t
t, when 0. 18i

s
s

To select the best distribution, we proceed as follows. Different
densities are fitted to the values of  , outside of zero, using
MLE.8 Then, the AIC criterion is used to choose the best pdf,
which in this case is a t-LS distribution.
As we observe an excess of zero, we need a ZA t-LS

distribution to represent the complete distribution of  .
Figure 10 shows the histogram and the fitted pdf of  outside
of zero. For the latter, the mean is close to 1, indicating that on
average the stations are aligned with ˆ ( )m ts . The histogram
exhibits a probability mass at zero representative of “false”
zeros, that is, of stations that do not observe any sunspot when
there are actually some on the Sun. The histogram also shows a
tail on the right-hand side, caused by outliers. This asymmetry
requires a t-LS rather than a Gaussian distribution to be fitted.

Figure 9. Truncated histograms of ̂3 for Ns (left), Ng (middle), and Nc (right). The solid line shows the fits using a ZA mixture of t-LS distributions, defined in
Equation (17). The values of the Bernoulli parameter in Equation (7) are equal to b=0.9 (left), b=0.86 (middle), and b=0.96 (right). They represent the
proportion of “true” zeros. The parameter values for the t-LS fit are (left, for Ns) μ1=0.91, σ1=0.14, ν1=31.16, μ2=1.85, σ2=0.71, ν2=2.09, w1=0.6;
(middle, for Ng) μ1=0.89, σ1=0.07, ν1=6.89, μ2=1.75, σ2=0.14, ν2=1.33, w1=0.09; and (right, for Nc) μ1=10.24, σ1=1.37, ν1=3.89, μ2=20.57,
σ2=2.33, ν2=1.93, w1=0.08. The bin width (bw=0.0917) is the same for the histograms of both Ns and Ng. It is related to the sample size and the data range of
Ns by a simple rule proposed by Scott (1979). The bin width of the histogram of Nc (right) is equal to bw=0.4192 and is also computed by Scott’s rule. Note that the
right panel is enlarged: the value at zero is 0.96 and not 0.03.

Figure 10. Histograms of ̂ for Ns (left), Ng (middle), and Nc (right). The solid line shows the fits using a t-LS distribution defined in Equation (16). The values of the
Bernoulli parameter in Equation (7) are equal to b=0.04 (left), b=0.02 (middle), and b=0.06 (right). They represent the proportion of false “zeros,” i.e., stations
reporting no sunspot where there are some. The parameter values for the t-LS fit are (left, for Ns) μ=1, σ=0.26, ν=2.8; (middle, for Ng) μ=0.99, σ=0.16,
ν=2.33; and (right, for Nc) μ=1.01, σ=0.17, ν=2.12. The bin widths (bw) of the histograms are computed using Scott’s rule. For Ns and Ng they are the same
(bw=0.0328 ) and for Nc it is equal to bw=0.0433.

8 We use the function “’allfitdist.m,” last modified in 2012, in Matlab
R2016b.
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The violin plots of four different stations are shown in
Figure 11 for the number of spots Ns, where the differences
between the stations are the most visible. The mean of the
Locarno station (LO), the current reference of the network, is
slightly higher than the three other means (and higher than the
means of all other stations), around 1.19. This results from its
particular way of counting: large spots (with penumbra) count
for more than small spots without penumbra.

Another characteristic feature is how the error is distributed
around the mean. A violin plot may be seen as a pdf with the
x-axis of the density drawn along the vertical line of the
boxplot. For example, the pdf of the short-term error of LO is
concentrated around the mean, but the entire distribution is
shifted upward, unlike the pdf of Uccle (UC), which has much
lower values. UC is a professional observatory. Different
observers record from one week to another the number of spots,
groups, and composite on the Sun. As their experience and
methodology slightly change, the shift of observers probably
increases the short-term variability of the station. Usually a
team of observers experience more variability than a single
person, like in FU (Fujimori, Japan). This station has
remarkable short-term stability.

Similarly, the San Miguel (SM) station shows the typical
shape of a professional observatory. On the other hand, the LO
station shows an  distribution almost characteristic of a single
observer: that is because until recently LO had one dominant
main observer.

6.3. Long-term Variability

A generic estimator for the long-term error ò2(i, t) may be
defined by

⎛
⎝⎜

⎞
⎠⎟ˆ ( ) ( ) ( )m = >


i t
Y t

M
M, when 0, 19i

t
t2

where the å denotes the smoothing process, Yi(t) are the raw
observations, and ( )=

 
M Z tmedt

i N
i

1
is the median of the

network. The T transform from Equation (9) is not required
here, as we apply a moving average (MA) of length L defined
below.

This length L should be larger than what is considered as
short-term, that is, periods inferior to one solar rotation (27
days). Long-term, on the other hand, is usually defined as
periods above 81 days (Dudok de Wit 2011), beyond which the
effects of the solar rotation and of the sunspot’s lifetime are
negligible. The midterm temporal regime corresponds to
periods between 27 and 81 days. To select the long-term scale
for a given station i, we make the assumption that, for all t
belonging to a window of length L, we have

( ( )) ( ) ( )m= i t i t C, , , 20i2 2

where Ci is a constant, which might differ from 1. Having
Ci=1 means that the station i is at the same level as the
median of the network. We test different lengths L (L>27
days) for the MA window and select the long-term regime as
the shortest length for which the above assumption is valid. We
consider thus ˆ ( )m i t, s2 of Equation (19) in sliding windows of
length L over the total period (1947–2013). We apply a
nonparametric equivalent of the t-test (the Wilcoxon rank sum
test; Bridge & Sawilowsky 1999) on the ˆ ( )m i t, s2 to test
whether Equation (20) is verified within each window. Longer
windows correspond thus to a stronger smoothing but also
contain more values to test. As a result of this procedure, we
define the long-term regime as all scales above 81 days, as we
found this to be the shortest length such that the constant
assumption on μ2(i, t) is not violated more than roughly 10% of
the time. This ties in with what solar physicists consider as the
long-term regime.
Depending on our interest in detecting long-term drifts or

jumps, different window lengths may be chosen in Equation (19)
(some well above 81 days). Indeed, drifts require long smoothing
periods (several months, or even years) to be observed, whereas
jumps might be oversmoothed by such long smoothing and hence
need a smaller MA window.
Figures 12(a)–(d) represent the long-term drifts associated

with Ns in four stations starting from 1960. Figures 12(e)–(h)
show the scaling factors κi(t2)s for the same stations used at
short-term and minima regimes. We do not represent years
before 1960 because FU and SM show too few observations in
that period. FU and UC appear relatively stable, unlike stations

Figure 11. Truncated violin plots of the estimated short-term variability  for Ns in four stations (FU, LO, SM, and UC). A violin plot (Hintze & Nelson 1998)
combines a vertical boxplot with a smoothed histogram represented symmetrically to the left and right of the box. The white dot in the center of the violin locates the
mean of the distribution. The thick gray bar shows the interquartile range, and the thin gray bar depicts the interdecile range. The bin width (bw=0.05) is the same for
all stations and is computed with Scott’s rule.
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LO and SM, which display severe drifts. Bias in the counting
process is also larger during solar minima when there are short-
duration sunspots. This effect is clearly visible in LO. Indeed,
erroneous encoding of counts leads to much higher relative
errors during minima than during the remaining part of the
solar cycle. Some jumps are also visible on the graphs with
the smallest MA length (81 days) in green. This scale is more
appropriate to observe the jumps, while longer scales only
highlight the long-term drifts of the stations.

We emphasize here the strong link between the preproces-
sing and the long-term analysis. Indeed, the scaling factors
presented in Section 4 are a rough estimate of the long-term
error, inspired by the historical procedure of J. R. Wolf. This
rough estimation is required to rescale the stations to the same
level. This rescaling is used to compute the median Mt of
Equation (19). Contrarily to the piecewise constant κis
computed in Section 4, the ˆ ( )m i t, s2 are smooth over time
and hence are more adapted to a future monitoring of the
stations.

6.4. Comparing Stations with Respect to Their Stability

In previous sections, we presented separately the estimations
of the short-term error ˆ ( ) i t, , the long-term error ˆ ( )m i t,2 , and
the error at minima ˆ ( ) i t,3 . All three types of errors are needed
to assess the quality and stability of one station. It is more
important for a station to have a low variability (low
interquantile range) than to be aligned on the mean on the
network. Indeed, as seen in Section 4, it is easy to rescale a
station on the mean of the network.

Figure 13 displays a visual representation of long-term
against short-term error for each station. It shows the long-term
versus short-term empirical interquantile range on a 2D plot
and thus characterizes the stability of the stations outside of
minima. Stations in red are the teams of observers. They
usually experience more short-term variability than an
individual. We see that MO (Mochizuki, Japan), FU, and
KOm (Koyama, Japan) have low variability in both the short
and long term. They correspond to long individual observers

with stable observation practices. On the other hand, the LO
station shows a poor long-term stability, while its short-term
variability is remarkably low for a professional observatory. As
mentioned earlier, this is due to the fact that there is a main
observer. UC shows a large variability in the short term (due to
many observers) but an interesting long-term stability, as
already noticed in Figure 11. SM experiences the most severe
long-term variability of the network. It also has a large short-
term variability, characteristic of a team of observers. QU
shows a large short-term variability and a low long-term
variability level. Although it seems that it is a single observer, it
appears there was a move from one place to another during the
observing period, and maybe a change of instrument that would
impact the short-term variability. This surprising behavior will
prompt SILSO to ask for more metadata.

Figure 12. (a–d) Estimation of ˆ ( )m i t,2 for Ns in four stations (SM, FU, LO, and UC). ˆ ( )m i t,2 is computed with different MA window lengths: 81 days (green dotted
line), 1 yr (red dashed line), and 2.5 yr (blue solid line). (e–h) Estimation of the scaling factors for Ns in the same stations. The κi(t2)s, with 1�t2�T/τ, are
computed using the ( ∣ )Y XOLS i t t, ,2 2 regression in Equation (8) on a block of τ=81 days (green dotted line), 1 yr (red dashed line), and 2.5 yr (blue solid line). The
solar cycle is represented in black at the bottom of the figures for Ns.

Figure 13. Scatter plot showing the interquantile range of the estimated short-
term error ˆ ( ) i t, and the interquantile range of the estimated long-term error
ˆ ( )m i t,2 , station by station. Stations in red represent the teams of observers; the
others are single observers.
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7. Conclusion and Future Prospects

In this article, we propose the first comprehensive uncer-
tainty model in a multiplicative framework for counting spots,
groups, and composite on the Sun. Our approach is robust to
missing values and was applied on 66 yr of data (1947–2013).
We presented several parametric models for the density of the
“true” Ns, Ng, and Nc, as well as for the density of their error
distribution at minima, short term, and long term. This error
quantification allows proposing a first classification of the 21
stations of our pool based on their stability. It shows that the
observatories are affected differently by the various types of
errors: some are stable with respect to the network at short term
but experience large drifts, and vice versa. The analysis
highlights the hazards of using a single pilot station as the
unique reference of the network.

We intend to use the error models presented in Section 6 for
a parametric monitoring of all stations of the network, with a
particular focus on new stations. Data from newborn
observatories can be recorded for several months. Their
distributions may then be compared to the density of the
short-term error (or the error at minima if we are in a minima
period) of the entire network obtained in this paper. If the
stations experience similar errors, they may be included in the
network. Otherwise, the stations might need to improve or
correct their observing procedure before entering the SILSO
network.

A nonparametric monitoring that aims to detect in quasi-real
time the long-term drifts of the stations in the network is also
under development. An example of a classical monitoring
procedure is the CUSUM chart (Koshti 2011). It is frequently
used to control the production quality in industry. The chart
accumulates the deviations of the mean value above a reference
level in a statistic. If the value of the statistic exceeds a predefined
threshold depending on the standard deviation of the process, the
process is considered out of control and an alert is given. This
simple method based on the two first moments of the distribution
is obviously not adequate to control heavily skewed variables
such as the number of spots. More complex methods need to be
developed that will strongly depend on the models of the data.

The work presented here enhances our comprehension of the
ISN and its error. It is part of a larger project that aims at
improving the quality of the ISN. We started this project a few
years ago when a revised version of the ISN was published
(Clette & Lefèvre 2016), and we will pursue with the future
monitoring of the stations to provide a yet missing quality-
control procedure for the ISN. As the ISN is used as a
benchmark in several fields of astrophysics and space physics,
this is a much-needed task.

This work benefited from highlighting discussions with T.
Dudok de Wit. The first author gratefully acknowledges funding
from the Belgian Federal Science Policy Office (BELSPO)
through the BRAIN VAL-U-SUN project (BR/165/A3/VAL-
U-SUN). We also want to thank the International Space Science
Institute (ISSI-Bern) and the members of the “Recalibration of
the sunspot Number Series” team for providing support.

Appendix
Timescales of the Preprocessing

This appendix details the statistical procedure selecting the
timescales of the preprocessing described in Section 4. It is

composed of three steps. First, the daily scaling factors are
computed using

(( )) (( ))
(( ))

( )k =
 

t t
Y t t

Y t t
,

,

med ,
, 21i

i

i N i
1 2

1 2

1 1 2

where, as in Section 4, we rewrite the time by an array of
two indices 1�t1�30 and 1�t2�T/30, corresponding,
respectively, to the day and the month of the observation.
Second, the nonparametric KW test (Kruskal & Wallis 1952)

is applied on blocks of 30 factors, since the “k-coefficients” of
Equation (2) are currently estimated on a monthly basis at the
WDC-SILSO. Let [ (( ))]k k=  t t,i t i t, 1 2 1 302 1

denote the vector
of the daily factors on 1 month. The test assesses whether the
k si t, 2 of consecutive months are statistically different. The
procedure starts by comparing the distribution of the first
month of the period studied, ki,1, to the distribution of the
second month, ki,2. If the test shows that both distributions are
significantly different, the next two distributions ki,2 and ki,3

are tested. Otherwise, the distribution of the first two months
[ki,1 ]ki,2 is compared to the distribution of the third monthki,3.
The algorithm is iterated until the end of the period, for each
station. Note that the KW test performs well when comparing
two or more independent samples of unequal sizes. The
correlation of the data is thus neglected in this procedure.
Despite the presence of correlations between consecutive days,
the correlation between consecutive months is low. The test
provides thus a station-specific segmentation, shown in
Figure 14 for Ns. The length of the segments indicates the
number of consecutive blocks of scaling factors that come from
the same distribution. We assume that these factors are constant
within each segment.
In the last step, the global timescales for each index are

defined from the segmentations of the individual stations. The
length of the most frequent segment is first selected in each
station. Then, a global scale is estimated from the median of the
most frequent lengths by station, for Ns, Ng, and Nc.

Figure 14. Bar chart representing the results of the KW test applied to the
scaling factors for Ns. The x-axis represents the stations indexed from 1 to 21,
and the y-axis shows the total period studied expressed in months (1 unit ≈ 30
days). The y-axis is not ordered in time, for readability purposes, but it is
ordered with respect to the length of the segments. The colors of the chart
correspond to the number of blocks that may be grouped into a single factor
(“κ=5” means that a single scaling factor may be computed for a period of
5 months).
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Nonparametric monitoring of sunspot1

number observations2

Abstract3

Solar activity is an important driver of long-term climate trends and must be ac-4

counted for in climate models. Unfortunately, direct measurements of this quantity5

over long periods do not exist. The only observation related to solar activity whose6

records reach back to the seventeenth century are sunspots. Surprisingly, determining7

the number of sunspots consistently over time has remained until today a challeng-8

ing statistical problem. It arises from the need of consolidating data from multiple9

observing stations around the world in a context of low signal-to-noise ratios, non-10

stationarity, missing data, non-standard distributions and many kinds of errors. The11

data from some stations experience therefore severe and various deviations over time.12

In this paper, we propose the first systematic and thorough statistical approach for13

monitoring these complex and important series. It consists of three steps essential14

for successful treatment of the data: smoothing on multiple time-scales, monitoring15

using block bootstrap calibrated CUSUM charts and classifying of out-of-control sit-16

uations by support vector techniques.17

This approach allows us to detect a wide range of anomalies (such as sudden jumps18

or more progressive drifts), unseen in previous analyses. It helps us to identify the19

causes of major deviations, which are often observer or equipment related. Their20

detection and identification will contribute to improve future observations. Their21

elimination or correction in past data will lead to a more precise reconstruction of22

the world reference index for solar activity: the International Sunspot Number.23

Keywords: Statistical process control; Support vector machine; Correlation; Missing data;24

Control chart; Block bootstrap25
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1 Introduction26

The main objective of this paper is to provide an efficient monitoring for the sunspot27

numbers. Until recently, such a monitoring could not be developed with the available28

statistical methods due to the complexity of the series. Moreover, existing modeling and29

error quantification of the data were lacking. Advances in statistical process control for30

panel data combined with a thorough uncertainty model for the sunspot numbers (Mathieu31

et al., 2019) allow us to construct an appropriate monitoring method for these important32

data.33

1.1 Overview34

(a) White light image

(b) Drawing

Figure 1: (a) White (visible) light image of the Sun taken by the Uccle solar equatorial table (USET)
on 1st September 2014. (b) The corresponding drawing of the sunspots based on the projected image.
Nineteen individual sunspots (Ns) and five groups of sunspots (Ng) are identified in this image. Credit:
USET data/image, Royal Observatory of Belgium, Brussels.

Sunspots appear as dark areas in visible light images of the Sun due to their relative35

lower temperatures. They correspond to regions with a high local magnetic field, which36

2



inhibits the convection of heat coming from the solar interior. They are represented in37

Figure 1a. Figure 1b also displays the corresponding drawing that is performed by an ob-38

server based on the projected image of the Sun. Those drawings are then used to count the39

number of individual spots, Ns and groups of sunspots, Ng on a daily basis. Both numbers40

vary with time following a cycle of approximately eleven years that is directly related to41

the magnetic activity of the Sun (Hathaway, 2010). This cycle is represented for Ns in the42

lower panel of Figure 2, below. The numbers of spots and groups are the building blocks of43

a composite, Nc = Ns + 10Ng, which is at the basis of the International Sunspot Number44

(ISN), the reference for modelling long-term solar activity. The multiplication factor was45

introduced to put Ng on the same scale as Ns since a group contained on average ten spots46

when the ISN was constructed (Izenman, 1985). This index contains information about47

Ns and Ng, as it appears that only one of those quantities cannot fully describe the solar48

activity. Both numbers are thus required. The ISN is nowadays one of the most intensely49

used time-series in astrophysics (Hathaway, 2010). It enters into models of e.g. the Earth50

climate (Haigh, 2002; Ermolli et al., 2013) and in space weather predictions (Temmer et al.,51

2001; Wang and Colaninno, 2014).52

53

Although astronomers started observing sunspots in the beginning of the seventeenth54

century, it remains surprisingly difficult to arrive at an accurate daily determination of55

their numbers. Three main difficulties stand out: observability, resolution and interpreta-56

tion. For Earth-based observatories, the Sun cannot be observed when there are clouds.57

Instruments with different resolutions may give rise to different counts of sunspots. Distin-58

guishing sunspots and groups of sunspots, which differ essentially by size and shape of their59

appearance, requires experience and even experts sometimes disagree. Different observers60

may thus vary in skill and their skills may vary over time. There are also intrinsic sources61

of variability. Some sunspots are only visible over short periods. Their number may thus62

change during the day. Moreover, the sunspot activity itself is subject to substantial vari-63

abilities, with the most prominent example being the eleven-year solar cycle. The ISN is64

therefore a weighted consensus among all observatories, also called “stations” participating65

in the effort.66

67

Due to the multiple sources of variability, we are facing a panel of non-stationary data68

with many deviating patterns. Those patterns have been partially studied on the short-69

term in the previous works by Morfill et al. (1991), Vigouroux and Delache (1994) and70

Dudok de Wit et al. (2016). More recently, Mathieu et al. (2019) developed a comprehen-71

sive uncertainty model that reveals drifts that span over several years in the data. Assuring72
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the quality of the series therefore calls for an automated tool for supervising the observa-73

tions in quasi real-time. This procedure should be adaptive to the non-normality and the74

autocorrelation of the data. It should monitor the stations and send alerts when they75

start deviating to prevent the occurrence of large drifts in future observations. Owing to76

methodological advances in the sunspot numbers uncertainty modeling and in statistical77

process control (SPC), it is now possible to develop such a method.78

1.2 Univariate dynamic screening system79

Many different monitoring procedures have been developed in the SPC literature. Those80

methods cannot be directly used here however for two main reasons: (1) the mean and81

variance of the stations change over time (due to e.g. the eleven-year solar cycle) and (2)82

some stations are deviating in their entire observing period and hence do not have non-83

deviating or in-control (IC) periods. All stable stations should therefore be used together84

to judge if a particular station is deviating. To this end, we propose in the following a85

method based the dynamic screening system developed by Qiu and Xiang (2014). To the86

best of our knowledge, this method is the only one that can be adapted to the particular87

characteristics of our data: the non-normality, autocorrelation and non-stationarity of the88

data as well as the absence of IC periods in all series.89

The method of Qiu and Xiang (2014) is based on extensions of the classical CUSUM (Page,90

1961) chart. It is composed of two steps. First, the regular patterns (i.e. the mean and the91

variance) of the data are estimated on a subset of IC series. Second, the data are standard-92

ized by these patterns and monitored by a CUSUM chart designed by a block bootstrap93

method. This procedure constructs, without any parametric assumption, a control scheme94

that is valid for non-normally distributed and serially correlated data. We can estimate the95

regular patterns of the data locally in time, since we have at each time point a collection96

of stable series at our disposal. The method can therefore detect shifts in the mean level97

of each series, where the means change over time. It can thus accommodate the intrinsic98

quasi-periodic variations in the sunspot numbers that are related to the solar cycle.99

Our method is not in the spirit of a multivariate monitoring. We rather face the situa-100

tion of a panel with multiple observations of the same phenomena and are interested in101

monitoring the individual behavior (and errors) of each particular station. Although the102

ISN is obtained by combining the observations of the panel, the final aim is not to monitor103

this index directly but to compute it from a subset of non-deviating series, which will be104

selected by the proposed method.105

106
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In the following, we use and extend the work of Qiu and Xiang (2014), to bridge the gaps107

between the method and the specific requirements of our problem. Those gaps are two-fold.108

(1) The method of Qiu and Xiang (2014) —as all other methods that we encountered in the109

literature— cannot be used without knowing a priori which stations are in-control. This110

information is not available for our data, where all stations are expected to contain several111

kinds of deviations (jumps, oscillating shifts, etc) in their observation period. (2) The112

method operates with a control chart which sends an alert when a deviation is detected,113

yet without providing any information about the nature of the shift. Such information114

is however crucial for us, since it allows to further investigate the causes of the shifts.115

Although several methods have been developed to automatically predict the size of a shift116

after an alert (see for instance Cheng et al. (2011) and the references therein), they are117

not adapted to data which are simultaneously non-normally distributed, serially correlated118

and contaminated by strong noise.119

1.3 Aims120

In the following, we propose a nonparametric monitoring that is tailored to the complex121

features of the sunspot numbers: (a) the missing values, (b) the strong noise, (c) the com-122

plex autocorrelation structure and (d) the non-normality. Our method extensively exploits123

the information contained in the panel to establish a robust IC reference from the network.124

This allows us to monitor the stations without prior information on their stability. We125

complete the method by a support vector machine (SVM) procedure that efficiently pre-126

dicts the size and the shape of a shift once an alert has been raised. Although we could127

manually build a library with typical shapes and sizes to be compared to the deviations,128

we select the automatic SVM approach instead.129

The control scheme is then applied on past observations to study the deviations of the130

sunspot numbers. The procedure automatically detects major deviations identified recently131

by hand in some stations. It also unravels many other deviations, unseen in previous ana-132

lyzes. In particular, small and persistent shifts that are difficult to identify manually are133

detected by the method. The precise information about the deviations predicted by the134

SVM procedures allows us to determine the causes of some prominent deviations. This sets135

the ground for a future enhancement of the quality of the series. Moreover, the monitoring136

procedure provides the possibility to be used in real-time to preserve the long-term stability137

of the stations. It also paves the way to a future redefinition of the International Sunspot138

Number based on several stations that are stable over time.139

140

5



This article is structured as follows. In Section 2, we present the main properties of the141

data and their model. The methods are explained in Section 3. This includes the complete142

monitoring scheme as well as the SVM procedures to predict the size and shape of the143

deviations. In Section 4, we apply the proposed method on the sunspot data at different144

scales, in order to detect both high- and low- frequency shifts and discuss the results on145

actual stations. In a final section 5, we give some concluding remarks and perspectives.146

Supplementary materials provide some more details about the monitoring scheme as well147

as more examples of monitored stations.148

2 Data149

The data and their specific features are first presented in this section. Then, we introduce150

the uncertainty model associated to the sunspot numbers. The component of the model that151

will be monitored in this paper is finally presented alongside with its estimating procedure.152

2.1 Presentation of the dataset153

The period under study embraces the most recent part of the series and extends from154

January 1, 1981 till December 31, 2019. It covers thus three complete (eleven-year) solar155

cycles. The data are composed of the daily observations of a network of 278 Earth-ground156

observatories disseminated across the world. The records contain the number of spots157

Ns, groups Ng and composite Nc. They are distributed through the World Data Center158

Sunspots Index and Long-term Solar Observations (WDC-SILSO)1. In the following, we159

denote by t, t ∈ 1, ..., T , the date-time of the observation and represent the index of the160

stations by i, i ∈ 1, ..., N = 278.161

The data have complex features that are described below. Those should be taken into162

account in the design of the monitoring procedure.163

1. As studied in Mathieu et al. (2019) and previous works, the data are by nature164

non-normally distributed.165

2. The data contain around 70% of missing values over the period studied. Those are166

mainly caused by the non-overlapping observing periods of the stations. Indeed, some167

stations started observing only recently while older stations stopped their activity168

well before 2019. The stations also contain various percentages of missing values169

1The data are available at the following link: http://www.sidc.be/silso/
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(ranging from 15% to 75%) over their active observing period, mainly due to weather170

conditions that prevent the observation of the Sun.171

3. The stations are also correlated across the panel and along time since a sunspot may172

stay from several minutes up to several months on the solar surface.173

4. Due to the observing conditions and the solar variability, the series experience a wide174

range of deviations that vary in shape and size.175

2.2 Uncertainty model176

Let Yi(t) represent either the number of spots, groups or composite observed in station i177

at time t. The observations may be decomposed into a common solar signal, generically178

denoted by s(t), corrupted by three types of station-dependent errors (Mathieu et al., 2019)179

in a multiplicative framework:180

Yi(t) =

{
(ε1(i, t) + ε2(i, t) + h(i, t))s(t) if s(t) > 0
ε3(i, t) if s(t) = 0.

(1)

• s(t) is a latent variable representing the actual number of spots (Ns), groups (Ng)181

or composite (Nc = 10Ng + Ns) of the Sun. This latent variable cannot be directly182

observed but its mean will be estimated based on the observations of the network183

and later used as a proxy for s(t).184

• ε1 is a short-term error, which is prevailing at scales that are lower than 27 days185

(i.e. one solar rotation). It typically represents counting errors. We assume that186

E(ε1(i, t)) = 0 where E denotes the expectation sign.187

• ε2 denotes a long-term error, which corresponds to scales between 27 days and eleven188

year (one solar cycle). We are interested in estimating and monitoring its mean,189

denoted by µ2(i, t), which represents the bias of the stations.190

• h is defined at time-scales equal to or longer than eleven years. It corresponds to191

the background level of the stations (accounting e.g. for differences of instruments or192

counting methodologies of the stations). For identification purpose, we assume that193

E(ε2(i, t) + h(i, t)) = 1.194

• ε3 is an additive error capturing effects like short-duration sunspots during solar195

minima, i.e. periods of minimal activity in the eleven-year solar cycle.196
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The errors ε1, ε2 and h vary on different time-scales and are multiplicative quantities197

since an observer typically makes larger errors when s(t) is higher (Chang and Oh, 2012).198

The random variables ε1, ε2, ε3 and h are assumed to be continuous and ε1, ε2, ε3, h and199

s(t) to be jointly independent. Note that ε1, ε2 and ε3 would be equal to zero and h be200

equal to one for a station that would be – in absence of any measurement errors – perfectly201

aligned with the solar signal.202

2.3 Long-term bias203

h is not the target of our monitoring procedure since it models the intrinsic level of the204

stations (and not an error). Similarly, we are not interested in monitoring the short-term205

error ε1, which does not affect the long-term stability of the data, nor the error at minima206

ε3, which only corresponds to a small part of the solar cycle. Our monitoring aims at the207

component ε2 and more specifically its mean µ2. To this end, we isolate the long-term error208

from the other components of the model in the step-wise approach (described below) that209

is similar to those of Mathieu et al. (2019).210

We first divide the observations by scaling factors to roughly compensate for different211

observing conditions: Zi(t) = Yi(t)
κi(t)

. These piece-wise constant scaling factors κi(t) are212

computed as the slope of the ordinary least-squares regression between the observations of213

the stations and the median of the observations ( med
1≤i≤N

Yi(t)) on periods of 8 months for214

Ns, 14 months for Ng and 10 months for Nc. These values are selected by a statistical-215

driven study based on the Kruskal-Wallis test (Kruskal and Wallis, 1952) that is completely216

described in the section 6.3 of Mathieu et al. (2019).217

Afterward, we compute Mt, a robust proxy for s(t) based on the median of the rescaled218

observations:219

Mt = med
1≤i≤N

Zi(t). (2)

Motivated from (1), the observations Y are then divided by Mt to remove the main influence220

of the solar signal. They are also smoothed by a moving-average (MA) filter, represented221

by a ? in the following equation. This smoothing process untangles eh, eh = ε2 + h, from222

the short-term error ε1:223

êh(i, t) =

(
Yi(t)

Mt

)?
when Mt > 0, (3)

where êh denotes the estimator of the mean of eh, which is used as a proxy for eh. To224

analyze the various deviations of the data, different MA-filter window lengths may be used225
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Figure 2: Long-term bias, µ̂2(i, t) for Nc, in the Kanzelhöhe Observatory (Austria) over its observing
period. The µ̂2s are smoothed on 27 days (dotted line) to allow the detection of high-frequency shifts and
smoothed on 365 days (plain line) to emphasize the low-frequency deviations. Mt is also represented in the
lower plot as an estimation of the actualNc. This figure clearly shows the eleven-year solar cycle (Hathaway,
2010) that is intrinsic to the signal.

in (3). The low-frequency shifts such as persisting drifts are first studied at a yearly scale226

(i.e. with a window length of 365 days). Then, a window of length equal to 27 days will227

also be used to examine the high-frequency deviations such as sudden jumps. This value228

of 27 days corresponds to a physical scale of the data: one solar rotation. It appears229

to be sufficiently high to overcome the effects of the short-term regime, as demonstrated230

in Mathieu et al. (2019).231

Finally, the levels of the stations are separated from the mean of the long-term, µ2(i, t), by232

applying once again a MA smoothing process denoted by ??:233

µ̂2(i, t) = êh(i, t)− êh
??

(i, t), (4)

where the MA-filter window length should be larger than those of (3). It is selected here at234

eleven years, a physical value that is larger than the time-scales of the long-term error ε2235

considered here. It also seems appropriate since the location of the observatories or their236

telescope are unlikely to change much over time. Since we removed the solar signal (s(t))237

from the long-term error, we assume that the ε2s are independent across the stations. The238
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main factors that impact those errors (e.g. the location of the station, the instrument or239

the counting methodology) are indeed intrinsic to each station.240

All previously-mentioned quantities are represented in Appendix A. They illustrate the241

different stages of the computation of the long-term bias, µ̂2(i, t). Those µ̂2s smoothed on242

27 and 365 days are also represented in Figure 2 for a particular station.243

3 Ingredients of the method244

In this section, the complete monitoring procedure depicted in Figure 3 is explained. It is245

intentionally presented in a generic framework to allow the application of the method on246

the number of spots Ns, groups Ng as well as composites Nc. There are three phases: (I)247

estimation of the in-control (IC) parameters of the data, (II) construction and use of the248

monitoring procedure and (III) identification of out-of-control patterns.249

Phase I contains two steps. At first a subset of stations is selected from the panel which250

follows closely the median signal Mt mentioned in Section 2. This pool of stations is then251

used as a proxy for IC series in the nomenclature of Qiu and Xiang (2014). They are used252

to determine the IC patterns (mean and variance) of the data and to provide the basis of253

the block-bootstrap procedure in Phase II. After standardizing all series by the IC patterns,254

the CUSUM control chart is calibrated in phase II by a block bootstrap procedure from the255

pool of IC series. The scheme is then applied to the data for the monitoring. In Phase III,256

support vector machine (SVM) procedures predict the shifts size and shape on sub-series257

detected as out-of-control by the CUSUM, for easier problem diagnostic.258

Selection of
IC processes

Ia

Estimation of
IC patterns

Ib Design of the
chart and

monitoring
of standard-

ized data

II

Estimation
of shifts

size/shape
by SVMs

III

Figure 3: Pipeline of the procedure. The dashed blocks represent the new ingredients that we add to
monitor the sunspot numbers.
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3.1 Phase I: Estimation of the IC longitudinal patterns259

In this phase I, we automatically construct a subset of IC stations from the panel and260

estimate the IC patterns of the data.261

3.1.1 Phase Ia: Selection of the IC processes262

In a first stage, we need a subset (pool) of stations whose observations follow closely the263

median signal Mt. In order to find them, we calculate a stability criterion on each station.264

This criterion is based on a robust version of the mean squared error (MSE) of µ̂2:265

STB(i) = med
1≤t≤T

[µ̂2(i, t)]2 + iqr
1≤t≤T

µ̂2(i, t), (5)

where iqr
1≤t≤T

µ̂2(i, t) and med
1≤t≤T

µ̂2(i, t) denote respectively the interquartile range (IQR) and266

the median of the µ̂2(i, t) over the time for a given station i. Using these values, we can267

then cluster the stations and choose the cluster with the lowest values to form what we268

call the pool of IC stations. For this purpose, we use the k-means clustering (Lloyd, 1957;269

MacQueen, 1967) with two clusters. As these two clusters can be highly unbalanced, the270

clustering in two groups is performed recursively until the smallest cluster contains at least271

25% of the stations. Since we cluster 1D data (one value per station), other methods based272

on the ordering or the distribution of the observations could be used. We choose however273

k-means as we prefer to use an automatic and general-purpose procedure instead.274

The pool contains deviations that will be called disparities in the following, to be dis-275

tinguished from the deviations that are supposed to be actually detected by the method.276

The disparities are expected to be typically smaller and less frequent than the deviations277

occurring in the stations not comprised in the pool. They should be included in the design278

of the chart otherwise the scheme would be over-sensitive.279

The pool suffers in addition from deviations that are of similar magnitude as those of the280

out-of-control (OC) processes. To cope with this and preserve the detection power of our281

scheme, we also apply a Shewhart chart (Shewhart, 1931) with adaptive confidence intervals282

on the data. We remove the IC observations that do not fall into one standard deviation283

around the cross-sectional mean ( 1
N

∑N
i=1 µ̂2(i, t)). This step removes around 8.8% of the284

IC observations. Note that we also tested the method with two standard deviations instead285

of one and the monitoring results were similar (in this case, we only remove around 0.9% of286

the IC data). We emphasize that this adaptive Shewhart chart would not be a substitute287

for our control scheme: it only removes the largest deviations at each time without taking288
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into account the history of the observations. Therefore, contrarily to our method, it cannot289

detect the small and persistent shifts.290

3.1.2 Phase Ib: Estimation of the mean and the variance of the IC series291

We denote by µ0(t) and σ2
0(t) respectively the mean and the variance of the µ̂2 of the pool.292

Those are estimated by the empirical mean and variance using nearest neighbours (K-NN)293

regression method:294

µ̂0(t) =
1

∆(t)

t+∆(t)/2∑
t′=t−∆(t)/2

1

NIC

NIC∑
iic=1

µ̂2(iic, t
′) s.t. K = ∆(t)NIC

σ̂2
0(t) =

1

∆(t)

t+∆(t)/2∑
t′=t−∆(t)/2

1

NIC

NIC∑
iic=1

(µ̂2(iic, t
′)− µ̂0(t))

2
s.t. K = ∆(t)NIC ,

(6)

where iic denotes the index of a station of the pool. With K-NN regression, the temporal295

window ∆(t) can be adjusted to compensate the missing values of the stations, such that296

µ̂0(t) and σ̂2
0(t) are always computed on the same number (K) of observations. For appro-297

priate use in the CUSUM chart statistics (to be defined in (8) below), the data must be298

standardized by the IC mean and variance (as in (7) below). Hence the number of nearest299

neighbors K is selected to obtain the “best” standardization of the complete panel, in the300

sense that their empirical mean becomes close to zero and their empirical variance close to301

one. Then, ∆(t) is chosen in time direction such that K = ∆(t)NIC .302

3.2 Phase II: Monitoring303

We now turn our attention to monitoring the entire panel. As a reminder, we are analyzing304

long-term biases denoted by µ̂2. Using the IC mean and standard deviation µ̂0(t) and σ̂0(t),305

we standardize the (IC and OC) stations to be able to use common monitoring criteria:306

ε̂µ̂2(i, t) =
µ̂2(i, t)− µ̂0(t)

σ̂0(t)
. (7)

Let us now focus on one station (drop the index i). We would like to detect indications of307

patterns which may relate to problems at the station. This includes persistent or gradual308

deviations (shifts or trends) and oscillating patterns as they may occur when the observa-309

tory is used by a rotating pool of observers each of whom has their own particular way of310
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working. A method for accumulating small and gradual deviations is to aggregate them311

over time. A well known method for doing so in the context of statistical process control is312

the cumulative sum (CUSUM) chart (Page, 1961). The two-sided CUSUM chart applied313

on the residuals writes as:314

C+
j = max(0, C+

j−1 + ε̂µ̂2(t)− k)

C−j = min(0, C−j−1 + ε̂µ̂2(t) + k),
(8)

where j ≥ 1, C+
0 = C−0 = 0 and k > 0 is the allowance parameter (Qiu, 2013).315

This chart gives an alert if C+
j > L+ or C−j < L−, where L− and L+ are the control316

limits of the chart. Since the distribution of the residuals is almost symmetric, we use317

L = L+ = −L−.318

319

High deviations may affect the series. Those lead to high values of the CUSUM statistics320

which may stay in alert for longer periods than the actual durations of the shifts. Therefore,321

in case of too high (resp. too low) values, we set the chart to a maximal value 2L (resp.322

−2L). Hence |C+
j |, |C−j | ≤ 2L.323

3.2.1 Design of the chart324

As it is clear from the nature of the data, the series to be monitored have a considerable325

degree of autocorrelation even when they are in control. We therefore need a method for326

determining the control limit of the chart that takes autocorrelation into account. The327

block bootstrap (BB) method does this. It is based on constructing a bootstrap reference328

distribution by resampling blocks of data and thereby preserving the autocorrelation of the329

series.330

The control limit (L) is adjusted here by a searching algorithm that is explained in details331

in Appendix B.1 (in the supplementary material). It works as follows. A target shift size,332

δtgt, is first estimated on the OC series as explained in Appendix B.2. The allowance pa-333

rameter is specified to k = δtgt/2. For an initial value of the control limit, the actual IC334

average run length, ARL0, is then evaluated on IC data that are sampled from the pool335

by the BB procedure. If the actual ARL0 is inferior (resp. superior) to the pre-specified336

ARL0, the control limit of the chart is then increased (resp. decreased). This algorithm is337

iterated until the actual ARL0 reaches the pre-specified ARL0 at the desired accuracy.338

339

As theoretically demonstrated in Lahiri (1999), BB methods using non-overlapping340

blocks and random block lengths are more variable than those based on overlapping blocks341
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and constant lengths. Therefore, we select the popular moving BB (MBB) (Kunsch, 1989;342

Liu and Singh, 1992) to obtain the best performances.343

Since the BB preserves the serial correlation of the data inside the blocks, the length of the344

blocks should be selected appropriately. Large blocks usually model the autocorrelation of345

the data properly but at the same time do not represent well the variance and the mean of346

the series. And conversely. Using the method described in Appendix B.3, the block length347

is selected here as the first value such that the MSE of the empirical autocorrelation of the348

µ̂2 becomes stable. This value intuitively corresponds to the smallest length which is able349

to represent the main part of the autocorrelation of the series.350

351

The data also contain missing values. Among them, the large gaps prevail since the352

smoothing process in (3) removes the shortest gaps of the series. As the observing conditions353

could be different after a large amount of missing values (different weather conditions or354

instruments), we restart the scheme after each gap (C+
j = C−j = 0). Blocks composed only355

of missing values are not used to design the chart. This may happen when some stations356

contain few observations on the period studied here, either because they are ancient and357

stopped observing at the beginning of the period or because they have started observing358

only recently.359

3.3 Phase III: Estimation of the sizes and shapes of the shifts360

using SVMs361

The CUSUM gives an alert when a deviation is detected in the data but does not provide362

information about the characteristics (shape and size) of the shift. Such information is363

however valuable to assign possible causes to the shift or to adapt the type of alerts that364

is sent back to the observers. To that end, Cheng et al. (2011) appended a support vector365

regression (SVR) to the CUSUM. This method is designed to predict, after each alert,366

the magnitude of shifts in independent and identically normally distributed data that only367

experience jumps. In the following, we extend Cheng et al. (2011) and design a method368

that is effective to detect the sizes and the shapes of the deviations in the sunspot number369

data. This is achieved by a SVM classifier (SVC) (Burges, 1998) in addition to a SVR on370

top of the chart.371
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3.3.1 Input vector372

When an alert is triggered, the m most recent observations of the stations are fed into the373

SVR and SVC which then predict the size and shape of the deviation at the origin of the374

alert, as explained in the next subsection. In particular, the SVR prediction model writes375

as:376

δ̂ = f(Vt′) = f(ε̂µ̂2(t
′ −m+ 1), ε̂µ̂2(t

′ −m+ 2), ..., ε̂µ̂2(t
′)), (9)

where t′ denotes the time of the alert and Vt′ represents the input vector, i.e. a sequence377

containing the last m observations of the series.378

The length m of the input vector should thus be sufficiently large to contain the starting379

point of most of the deviations while maintaining the computing efficiency of the method.380

Large shifts are often quickly detected by the chart (short OC run length) while the smallest381

shifts are identified only after a certain amount of time (long OC run length). Therefore,382

the latter require larger input vectors than the former. m is selected here as an upper383

quantile of the OC run length distribution for a shift size equal to δtgt, as explained in384

Appendix B.4. Hence, m should be sufficiently large to allow the identification of shift385

sizes that are superior or equal to δtgt.386

As the SVM procedures do not support missing values, we have to impute them. Missing387

observations occurring at the beginning of Vt′ are simply replaced by the first valid ob-388

servation encountered, while the “intermediate” gaps are filled by a linear interpolation.389

However, when there are too many of them, the analysis makes no sense. We decide to390

only analyze input vectors which have at least 20% of non-missing values.391

3.3.2 Support vector regression392

The support vector machine (SVM) (Vapnik, 1998) is a supervised machine-learning pro-393

cedure, here used as a robust classifier and regressor to predict the shape and size of the394

deviations. The method has a strong theoretical basis that takes root in the optimization395

theory. It is able to perform efficiently non-linear classification or regression using a kernel396

trick that implicitly maps the data into a high dimension where the non-linear problem397

becomes linear. We only introduce the SVR in the following, since the SVC can be ex-398

pressed with a similar framework. Smola and Schölkopf (2004) may also be consulted for399

more detailed explanations.400

We denote by { xj, δj|j = 1, 2, ...,M } the M training pairs. x ∈ Rm represents a training401

input, i.e. a series of m observations that contains a deviation and δ ∈ R is its corre-402

sponding output, the size of the deviation. The SVR aims at estimating the continuous403
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regression function relating the deviating observations to the size of the shift, f(x), based404

on the training pairs. This function writes as:405

f(x) = wTφ(x) + b, (10)

where φ is the non-linear function mapping the input data into the high dimensional feature406

space, where the regression may be expressed into a simpler linear problem. The coefficients407

w and b are then estimated during the training by solving the following optimization408

problem:409

min
w,b

1

2
||w||2 + λ

1

M

M∑
j=1

Lε(δ
j, f(xj)), (11)

where410

Lε(δ
j, f(xj)) =

{
|δj − f(xj)| − ε |δj − f(xj)| ≥ ε

0 otherwise.
(12)

In the objective function of (11), the parameter λ represents a trade-off between mis-411

classification and regularization whereas ε in the loss function of (12) is equivalent to an412

approximation accuracy, i.e. errors below ε are neglected. This optimization problem413

may be rewritten with Lagrange multipliers as a dual problem and easily solved in the414

input space thanks to the introduction of a kernel function K(xj ,xk) = φ(xj)φ(xk). This415

kernel function is an important hyper-parameter of the method that should be carefully416

selected. After testing different kernels, we choose the radial basis function, to obtain the417

best prediction results.418

3.3.3 Creation of the training and testing sets419

The training and testing sets are constructed by simulations since only a limited amount of420

(unlabelled) observations are available. As the SVM procedures predict the characteristics421

of the shift after an alert has been raised by the CUSUM, we generate sets of series that422

will be first monitored by the control scheme before reaching the SVMs. When an alert423

will be triggered by the CUSUM, the m last values of the series will be assembled and used424

as an input vector for the SVMs. Hence, we create series that are initially longer than m.425

Those are randomly sampled from the IC data by BB. To ensure the efficiency and the426

generalization of the predictions, we then add various deviations with different sizes and427

shapes on top of the series.428

Shift sizes The magnitudes of the shifts, δ, are first randomly sampled from two half-normal429
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distributions (Evans et al., 2000) supported by [−∞, ...,−δtgt] and [δtgt, ...,∞] respectively.430

We select the scale parameter of the half-normals equal to 3.5, a value that is sufficiently431

high to reproduce the highest values/deviations observed in the data.432

Shift shapes : For each δ, a series xic of length T ′ is generated from the IC pool by the433

BB. Here, we choose T ′ = 500. Three types of general deviations are then artificially434

constructed on top of the series:435

1. jumps: x(t) = xic(t) + δ ;436

2. drifts with varying power-law functions: x(t) = xic(t) + δ
T ′ (t)

a, where a is randomly437

selected in the range [1.5, 2] ;438

3. oscillating shifts with different frequencies: x(t) = xic(t) sin (ηπt)δ, where η is ran-439

domly selected in the range [ π
m
, 3π
m

].440

These deviations are selected to visually correspond to the deviations observed in the data.441

442

Time of the shift : In the data, the shifts may happen not immediately but after an ini-443

tial IC period. Therefore, we also start the monitoring after a random delay in the range444

[m, 3m/2], to train the methods at identifying shifts appearing anywhere within the input445

vector. Note that the SVMs as well as the control chart should be started after m obser-446

vations are gathered.447

448

The SVR is trained on these constructed sets to predict the size of the deviations449

in the continuous range [−∞, ...,−δtgt, δtgt, ...,∞]. In practice, we observe that the SVR450

generalizes well and can make predictions on R even if it was only trained in a smaller451

range of interest. The SVC also learns on the same sets to identify three different shapes:452

jumps, drifts and oscillating shifts. If a wide range of deviations are simulated, only three453

classes are therefore involved in the classification problem.454

4 Monitoring the composite sunspot index Nc455

In this section, we use the previously-described scheme to solve the monitoring problem of456

the sunspot numbers. We do so for the composite Nc = Ns+10Ng (the same approach also457

works for the two components, Ns and Ng and is presented in the supplemental material).458

We first study the low-frequency deviations on data that have been smoothed on a year459

to extract and analyze low-frequency patterns such as trends and persistent shifts. Then,460
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we examine on data that have been smoothed on 27 days (one solar rotation) the higher461

frequency patterns such as sudden jumps. The section ends with an example of a monitoring462

at multiple frequencies applied to a particular observatory. Simulations comparing our463

control scheme to a purely univariate method are also presented in the supplementary464

material.465

4.1 Lower frequency monitoring466

In the first step of low-frequency monitoring of Nc, we smooth the long-term bias (µ̂2) with467

a window length of one year as described in Section 2.3. As explained in Section 3.1.1, the468

network of stations is first reduced to a pool of 119 in-control (IC) stations. In the next469

step, we extract the IC mean and standard deviation using the K-NN regression described470

in Section 3.1.2. The selection mechanism finds K = 4600 for this step. The resulting471

mean and standard deviation are then used to standardize all series.472

In the second stage, we use the block bootstrap method described in Section 3.2.1 to473

calibrate the CUSUM chart at an average run length of 200. This requires choosing the474

block length first. In our situation, a choice of two solar rotations (54) appears appropri-475

ate. It is longer than the lifetime of most sunspots but not too long for practical use. The476

calibration then leads to a control limit of L = 19 and a target shift size of δtgt = 1.5.477

478

Finally, the support vector method for extracting and classifying out-of-control patterns479

is deployed. It is composed of a SVR to predict the size of the shifts and a SVC to classify480

the shape of the encountered deviations. We obtain them by creating a set of artificial481

series of 500 values generated from the IC pool by the BB. These give us series as we482

would observe in reality including correlations. We then artificially add jumps, trends, and483

oscillating shifts to them as described in Section 3.3.3. These series are then fed to the484

CUSUM chart which identifies the out-of-control observations. When an alert is triggered485

by the chart, an input vector containing the m last observations of the series is assembled.486

This input vector is then analyzed by the SVR and SVC for predicting the characteristics487

of the shift. In our case, we harvested 63000 such series from the IC pool and we enriched488

them with artificial patterns. We then calibrated SVR and SVC models by splitting this489

set into a training set (80%) and a testing set (20%).490

The length of the input vector is specified here at m = 80, as explained in Section 3.3.1.491

This value of 80 corresponds to the 90-th quantile of the OC run length distribution, for a492

shift of size δtgt. The other parameters of the support vector machines are automatically493

selected from a searching interval to obtain the best prediction results. Those are evaluated494
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Figure 4: (a) Upper panel: the residuals ε̂µ̂2(i,t) for Nc smoothed on one year from the KZ over the
period studied (1981-2019). In addition to their disparities, the residuals also contain the actual deviations
of the station, which have been removed for the design of the chart as explained in Section 3.1.1. Middle
panel: the (two-sided) CUSUM chart statistics applied on the residuals in square-root scale. The control
limits of the chart are represented by the two horizontal thick lines. Lower panel: the characteristics of
the deviations predicted by the SVR and SVC after each alert. (b) Similar figure for MT over the same
period.

using the mean absolute percentage error (MAPE) for the regression and the accuracy for495

the classification problem, see Appendix C. With this method, the regularization parame-496

ter λ of the classifier and regressor is set to 13 and the accuracy error ε of the SVR is fixed497

at 0.001. The performances of the SVMS are presented in Appendix C.1. Overall, they are498

sufficient to achieve our goals: identify the origins of the deviations.499

500

Figure 4 shows results for two stations labeled KZ2 and MT3. The observatory of KZ is501

rather stable and belongs to the IC pool. It relies on a stable team of well trained observers.502

2The Kanzelhöhe Observatory in Austria.
3The National Observatory of Japan, in Mitaka (Tokyo)
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The observatory MT is less stable and shows a severe downward trend around 1998. The503

cause of this downward trend could be traced to the replacement of visual counts from the504

direct optical solar image by automatic computerized counts based on digital images from505

a CCD camera. Given the image sensor technology then available, the spatial resolution506

of the images was limited, and many small spots that were fully detected in earlier visual507

observations were not detected anymore by the new equipment.508

4.2 Higher frequency monitoring509

The method described above can also be applied to the biases (µ̂2) smoothed on a shorter510

time window such as the duration of a solar cycle (27 days). Here the selection of the511

IC pool yields 100 stations and the number of nearest neighbors comes out to K = 2400.512

This number is smaller than before since we are working at a higher frequency. The block513

bootstrap and SVMs with the same settings as above can be used to calibrate the CUSUM514

chart. For δtgt = 1.4, the control limit of the chart is selected at L = 13 to obtain an515

average run length of 200. The length of the input vector is fixed here at m = 70, which516

corresponds to the 90-th quantile of the OC run length distribution.517

518

Figure 5 shows the methodology applied to KO4 and SM5. KO was a Japanese obser-519

vatory run by a single dedicated observer whose records (which stopped during 1996) were520

very stable. On the contrary, SM is a severely OC station that experiences large known521

deviations (Mathieu et al., 2019, Figure 12). The large variations observed in SM are likely522

caused by the rotation of several observers involved in the counting process. In some coun-523

tries, the public observatories have also an educational function. Their team of regular524

observers are usually small and are often completed by student or amateur astronomers525

that are frequently replaced, which causes large variations. Unfortunately, we could not526

identify more precisely the origin of the deviations since their observations stopped several527

years ago and we have not succeeded in contacting them yet. The lack of information is528

a common problem we face when investigating past deviations in stations that are now529

inactive and is therefore worth mentioning.530

As we see in the figure, the biases vary a lot at 27 days, a scale which is close to the531

short-term regime. The actual monitoring should be based on a larger scale otherwise532

some stations such as SM would receive almost constant alerts. If a particular deviation is533

detected at higher scale (such as one year), it might be interesting however to analyze it534

4Name of the observer known to the authors, kept for privacy.
5The observatory of San Miguel in Argentina.

20



10

0

10
2(

i,t
)

Monitoring in KO

10

0

10

CU
SU

M
 st

at
ist

ics C + C

1981 1986 1991 1996 2001 2006 2011 2016
year

10

0

10

De
vi

at
io

ns

jumps trends oscill

(a)

10

0

10

2(
i,t

)

Monitoring in SM

10

0

10

CU
SU

M
 st

at
ist

ics C + C

1981 1986 1991 1996 2001 2006 2011 2016
year

10

0

10

De
vi

at
io

ns

jumps trends oscill

(b)

Figure 5: (a) Upper panel: the residuals ε̂µ̂2(i,t) for Nc smoothed on 27 days for KO over the period
studied (1981-2019). In addition to their disparities, the residuals also contain the actual deviations of
the station, which have been removed for the design of the chart as explained in Section 3.1.1. Middle
panel: the (two-sided) CUSUM chart statistics applied on the residuals in square-root scale. The control
limits of the chart are represented by the two horizontal thick lines. Lower panel: the characteristics of the
deviations predicted by the SVR and SVC after each alert. (b) Similar figure for SM over the same period.

at 27 days, to better identify its origin.535

4.3 Monitoring at multiple frequencies536

Figures 4 and 5 display instances of a stable IC station included in the pool and a typical537

out-of-control observatory for the high- and low- frequency monitoring respectively. To538

better grasp the motivations of a monitoring at multiple frequencies, the method is applied539

to the data smoothed on 27 days and one year of FU6 in Figure 6. The FU station is540

composed of a single dedicated observer in Japan, who has observed without interruption541

6Name of the observer known to the authors, kept for privacy.

21



5

0

5
2(

i,t
)

Monitoring in FU

10

0

10

CU
SU

M
 st

at
ist

ics C + C

1981 1986 1991 1996 2001 2006 2011 2016
year

5

0

5

De
vi

at
io

ns

jumps trends oscill

(a)

5

0

5

2(
i,t

)

Monitoring in FU

10

0

10

CU
SU

M
 st

at
ist

ics C + C

1981 1986 1991 1996 2001 2006 2011 2016
year

5

0

5

De
vi

at
io

ns

jumps trends oscill

(b)

Figure 6: (a) Upper panel: the residuals ε̂µ̂2(i,t) for Nc smoothed on 365 days from FU over the period
studied (1981-2019). In addition to their disparities, the residuals also contain the actual deviations of
the station, which have been removed for the design of the chart as explained in Section 3.1.1. Middle
panel: the (two-sided) CUSUM chart statistics applied on the residuals in square-root scale. The control
limits of the chart are represented by the two horizontal thick lines. Lower panel: the characteristics of
the deviations predicted by the SVR and SVC after each alert. (b) Similar figure for the values of ε̂µ̂2(i,t)

smoothed on 27 days in FU.

since 1968 until today, producing one of the longest individual series. His observations are542

included in the IC pool but yet suffer from recent deviations. In particular, the upward543

deviation (which looks like a spike) reported in 2007 in FU (Clette, 2013) as well as the544

downward drift occurring after 2014 are well identified in Figure 6a. Figure 7 shows a zoom545

of Figure 6a on the time period from 2007 to 2008. After a progressive upward shift, the546

station experiences a rapid downward trend over five days. This trend, which looks like a547

jump in the whole period view, it thus correctly classified by the SVC. Even by taking a548

closer look on the figure however, it remains difficult to precisely identify the origin of the549

shifts on data that are smoothed on a year. By looking at a smaller scale of 27 days in550

Figure 6b, we can better characterize the shift in 2007 as a short event and pinpoint its551
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location. After investigations, this deviation appears to be related to a small over-count552

that appeared in early 2007 (three groups were reported in FU while most of the network553

only observed two groups) while the drift might be associated to the health condition of554

the observer. Note that the long-term biases are not defined (i.e. set to missing values)555

when the median of the network is equal to zero, see (3). This regime corresponds to556

those of the variability at minima, represented by ε3. Due to the smoothing procedure of557

(3), the deviations that appeared close to solar minima, such as the jump in FU, are thus558

particularly visible.559

As shown in the figures, the monitoring and the SVM procedures can cope with a large560

variety of shifts ranging from small and persistent deviations to large oscillating shifts. The561

procedures automatically detect major deviations recently discovered by hand as mentioned562

above. More identified prominent deviations as well as results for other stations are shown563

in Appendix E. In addition, the chart also unravels many other shifts, typically smaller,564

that are otherwise difficult to identify.565
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Figure 7: Sizes and shapes of the deviations (taken from Figure 6a) predicted by SVMs in FU over
2007-2008.

Note that the figures represent past observations, which have not been monitored by any566

control scheme. Consequently, the stations may stay in alert for long consecutive periods.567

If this method is applied on future observations, any major deviation will be promptly568

corrected. Therefore we expect better results for data that have already been monitored.569

5 Conclusion and perspectives570

We presented a nonparametric control scheme to monitor challenging and important datasets571

related to the observations of sunspots across a wide network of stations. The approach572
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allows us to deal with the missing values, autocorrelations, and non-normality of the data,573

to detect and classify station-related anomalies on different frequencies. The procedure574

is based on a particular choice of methods for smoothing, robust anomaly detection, and575

anomaly classification. Other methods exist for these steps; yet we believe that our choices576

are particularly suitable for the problem at hand.577

The features of our approach are smoothing on multiple frequencies, CUSUM chart-578

ing, SVM classification and detailed graphical displays. They also include an automatic579

pre-selection of an in-control pool and the powerful calibration of the chart using block580

bootstrap procedures. The associated advantages are robustness, flexibility, automation,581

and guided interpretation of results. The method allows us to detect and identify the causes582

of major deviations that occurred in the series. We have seen that monitoring on at least583

two time-scales is essential to capture these anomalies. Some patterns first attract interest584

on a long-term scale but it is at the short-term scale that their potential root-causes can be585

suggested. The method also identifies a wide range of deviations unseen in previous analy-586

ses. Most of them have not been related to specific causes yet but will soon be investigated.587

588

This automated method allows us and the researchers at the Royal Observatory who589

are in charge of producing the International Sunspot Number to have a harmonized view590

across the network of stations. It provides a way to give specific and targeted advice to the591

observers. As demonstrated in this paper, the method also delivers easy to interpret graphi-592

cal displays which facilitate root cause analysis of deviations. The complete re-examination593

of past data of the whole panel has just started. When they will be finished, these analyses594

will allow us to arrive at a cleaner data stream and to release an improved version of the595

International Sunspot Number. Additionally, the implementation of the method in the con-596

tinuous surveillance of future observations will lead to a faster detection and identification597

of inconsistencies, their elimination by better observer training or equipment maintenance,598

and finally to a more precise determination of the sunspot numbers in the future.599

600

The control scheme can also be applied in general to monitoring other panels of time-601

series. It has been used in Mathieu (2021) to monitor the photovoltaic energy production602

in Belgium, as one example.603

SUPPLEMENTARY MATERIAL604

Python package (codes) The subset of data and the codes that we used in this paper605

are available at https://github.com/sophiano/SunSpot.606

24



Figures related to the uncertainty model The Appendix A of the supplementary ma-607

terial contains figures displaying the different quantities appearing in the computation608

process of the long-term bias.609

Algorithms The pseudo-algorithms to design the CUSUM chart, to select the target shift610

size, to choose the block length and the length of the input vector are explained in611

the supplementary material in Appendix B.612

Performance criteria The performances of the support vector procedures for the high613

and low frequency monitoring are displayed in the supplementary material in Ap-614

pendix C.615

Simulations A comparison between the proposed scheme and a purely univariate control616

chart is also provided in the supplementary material in Appendix D.617

Additional figures Additional analyzes and figures are also provided in the supplemen-618

tary material in Appendix E.619
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The Sunspot Number time series: a benchmark in space science

1. Introduction
Sunspots are dark areas on the sun corresponding to regions of locally en-
hanced magnetic field and act as an indicator of the solar activity. They have
been counted since the invention of the telescope in the 17th century. The
count of spots from each observing stations are later combined on a monthly
basis at the Royal Observatory of Belgium to produce the International Sunspot
Number (ISN) [1]. While the time series of the ISN acts as a benchmark in a
large variety of physical sciences, as of today it lacks proper uncertainty quan-
tification and modeling.
We build upon the work in [3], which presents a first uncertainty analysis of
time domain errors and dispersion amongst the stations assuming a Poisson
distribution. In this poster, we propose a more comprehensive error model that
accounts for all types of errors known to the experts, taking into account the
zero-inflated and overdispersed nature of the data.

2. Model of Interest
We propose the noise model for the count of spots Ns

Yi(t) = (ε1(t)+ ε2(i , t))s(t)+ ε3(t),

where Yi(t) is the Ns recorded by station (i.e. observatory) i at time t and

s(t) true number of sunspots (integers)
ε1(i , t)∼ (0,σ2

1 (t)) dispersion error across stations
ε2(i , t)∼ (µ2(i , t),σ2

2 (i)) long term bias
ε3(t) error at minima : when s(t) = 0 (integers)

We assume that all terms are non-negative and jointly independent.

• Short-term (< 27 days or a solar rotation)
As ε1 is dominant at short term, we set µ2(i , t) = 1.
The short-term variability is i.d. among the stations, with ε̃(t) := ε1(t)+ ε2

Y (t) =

{
ε̃(t)s(t) if s(t)> 0
ε3(t) if s(t) = 0

• Long-term (> 27 days or a solar rotation)
We look at the long-term regime by applying a low pass-band filter on the
time series, typically a MA with a window larger than 27 days (? denotes the
smoothing process). ε2(i , t) is dominant in the long-term regime

Y ?
i (t) =

{
ε2(i , t)s(t)? if s(t)> 0
ε3(t)? if s(t) = 0

By analogy with the analysis of variance models, the identification constraint
of the model is

N

∏
i=1

µ2(i , t) = 1,

leading to the following estimator of the long-term bias

µ̂2(i , t) =
Y ?

i (t)(
∏

N
i=1 Y ?

i (t)
)1/N . (1)

3. Data

Fig. 1: Actual network of observing stations.

Characteristics of our dataset
I Period from January 1st, 1947 till December 31, 2013
I Subset of 21 stations
I Scaling

Due to different characteristics of the observing means (telescope, location,
etc.), a pre-processing is needed to rescale all stations to the same level.
We use a criteria of stability in time with respect to the median of the network
to select a pool Γ of Q ‘good’ stations.
medi denotes the median of Yi(t) over the pool Γ.
For each station i , we define a yearly scaling factor ki that is constant over
a year:

ki =
1
T

T

∑
t=1

medi∈Γ
Yi(t)

,

where we choose T equal to one year.

4. Solar signal estimation
We define a proxy for the true number of spots as :

µ̂s(t) = med
i∈Γ

Yi(t),

The PDF of µ̂s(t) for Ns may be approximated by a zero-altered generalized
negative binomial (ZANB).
A ZA distribution models the zero values by a Bernoulli distribution f0(x) and
non-zero values with a PDF f1(x) to be specified and defined with respect to a
different discrete point measure [5, 2]:

f (x) =

f0(0) if x = 0

(1− f0(0))
f1(x)

1−f1(0)
if x > 0

(2)

Here f1(x) is a generalized negative binomial.

Fig. 2: Histogram of µ̂s(t) for the count of spots Ns.The black line represents the fit of
the distribution. The parameters values are pbern = 0.115, p = 0.016, r = 0.602 for the
ZA-NB.

5. Short-term variations
When the median of the pool is different from zero, we have access to esti-
mated values of ε̃ by taking:

̂̃ε(i , t) = Yi(t)

µ̂s(t)

The PDF that fits best the distribution is a ZA t location-scale (t LS) [6, 4],
where the density function f1(x) of Eq. 2 is a t LS. Such distribution allows the
modeling of r.v. with heavier tails than the normal distribution.
The density of a t-Location-Scale is defined (for ν > 0 and σ > 0) by

f (x , µ,σ ,ν)tLS =
Γ( ν+1

2 )

σ
√

νπ
Γ(

ν

2
)

ν + (x−µ)2

σ

ν

−( ν+1
2 )

Fig. 3: Histogram of ̂̃ε for the count of spots Ns. The continuous line shows the fit using
a t LS distribution, with parameters values equal to µ = 1.02 (mean), σ = 0.30 (standard
deviation), and ν = 3.13 (shape factor). The enclosed box represents a zoom on outliers
with values larger than 3.

6. Errors during solar minima

Observed values of ε3 are defined as counts made when the median of the
pool (a proxy for s(t)) is equal to zero.

Y (t) = ε3(t) when µ̂s(t) = 0

Its PDF may be described by a ZANB for the Ns.

Fig. 4: Histogram of ε̂3 for the counts of spots Ns. The continuous line shows the
fit using a ZANB distribution, with parameters values equal to pbern = 0.93, p = 0.4,
r = 0.07. The enclosed box represents a zoom on outliers with values larger than 1.

7. Long-term drifts
A moving average (MA) on 54 days was applied as a low-pass filter in order
to ensure that the denominator in Eq (1) is non-zero, even in periods of solar
minima.

Fig. 5: Estimation of the long-term drifts µ̂2(i , t) of Ns in four stations (CA, FU, UC and
SM). µ̂2(i , t) is shown averaged over 27 days (orange dotted line), 81 days (red dash-dot
line), 1 year (green dashed line) and 2.5 years (blue plain line).

Fig. 5 represents the long-term drifts associated to four stations for the period
studied. (We only represent it from 1970). Stations CA, FU, and UC are in-
cluded in the pool Γ and are relatively stable, unlike the last station, SM, which
displays severe drifts.

8. Summary
Estimated PDF

µ̂s(t) ε̃ ε3

Ns ZANB ZA t−LS ZANB

The best fit for the short-term error ε̃ was obtained with the Matlab function
allfitdist.m, while for µ̂s(t) and ε3 different distributions were tested manu-
ally.

Our model takes into account:
I Multiplicative and additive framework
I Incorporates prior information on all types of error
I Excess of zeros
I Over-dispersion

Key results
I Short-term error distribution
→ Detection of daily outliers

I Estimation of long-term drifts
→ Quality control of the stations

9. Discussion
This study paves the way for a more comprehensive statistical monitoring of
the stations. Such monitoring should include the definition of a robust and reli-
able pool of reference stations possibly evolving over time, and the triggering
of alert in real-time when a station begins to drift or if a break-point is observed.

An iterative procedure may be devised to redefine the pool of stations Γ from
this analysis. Indeed, once we have estimates for µ2(i , t) and the daily outliers
ε̃, it is possible to iterate the process by first recomputing the ki using the
median over a more stable set of stations. And afterward reevaluating the
different errors using a proxy µ̂s(t) defined on more stable stations.
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The ISN time series: a benchmark for the solar activityIntroduction
We provide the following main contributions:
I A robust estimator for the unobserved number of spots (Ns) and a model of

its density (taking into account the overdispersion and large number of zero
counts).

I An uncertainty model motivated by first studies in [2] in a multiplicative
framework. The model distinguishes three types of errors

I Similar results (not shown here) are proposed for the number of sunspot
groups Ng and composite Nc = 10Ng + Ns at the basis of the Internal
Sunspot Number (ISN)

I The study is robust to missing values (do not require to fill-in missing obser-
vations)

Model

Yi(t) =

{
(ε1(i , t)+ ε2(i , t))s(t) if s(t)> 0
ε3(i , t) if s(t) = 0.

(1)

Yi(t) counts of spots (Ns) recorded by station i , 1 ≤ i ≤ 21, at time t
(rescaled to adjust for variable instruments and seeing conditions in the different stations)

s(t) true (i.e. without errors) number of sunspots (discontinuous r.v.)

ε3(i , t) error at minima : when s(t) = 0 (continuous r.v.)

ε1(i , t) short-term variability (continuous r.v.)

ε2(i , t) long term bias (continuous r.v.)

We assume s, ε1, ε2 and ε3 to be jointly independent.
µ̂s(t)

µ̂s(t) = 0

ε̂3(i , t)

µ̂s(t)> 0

< 27 days

̂̃ε(i , t) = ε̂2(i , t)+ ε̂1(i , t)

> 81 days

µ̂2(i , t)

1. Solar signal estimation

µ̂s(t) = T ( med
1≤i≤N

Yi(t)) (2)

T is a transformed version of the median of the network composed of:
I Anscombe transform [4] (variance stabilisation)
I Wiener filtering (clean data from high frequencies)

Fig. 1: Histogram of µ̂s(t) for Ns. The density µ̂s(t) may be approximated by a zero-
altered mixture of generalized negative binomials [1]. The black line represents the fit
of the distribution outside zero.

Simulation
A simulation of Ns was designed to study :

I the origin of the solar variability
I the effects of the filtering procedure
I (future) the impacts of the rescaling of the data
I (future) the influence of missing values on a future quality control of the

stations

The algorithm is based on statistical distributions (instead of solar dynamo).
The simulation highlights:
I The important solar variability which guides us to apply the filtering
I The presence of an excess around Ns ≈ 40 (mainly hidden by the solar vari-

ability in the unfiltered median).
This excess probably corresponds to the different regimes of sunspots grow-
ing (from small spots to larger spots with penumbra)

2. Errors at solar minima

ε̂3(i , t) = Yi(t) when µ̂s(t) = 0 (3)

We mainly observe at minima:
I True zeros (no sunspots and no sunspots are reported)
I Short-duration sunspots (local excesses around 1 et 2)

Fig. 2: Histogram of ε̂3 for the count of spots Ns. The black line represents the fit of the
density by a mixture of t location-scale [3] distributions.

3. Short-term variations

̂̃ε(i , t) = Yi(t)
µ̂s(t)

when µ̂s(t)> 0 (4)

Usually a team of observers experience more variability than a single person
(due to the shift of observers with different experiences and methodologies).

FU (Fujimori, Japan) Individual observer
LO( Locarno, Switzerland) Professional obs. with one main observer
SM (San Miguel, Argentina) Team of observers
UC (Uccle, Belgium) Team of observers

Fig. 3: Truncated violin plots of the estimated short-term variability ̂̃ε for Ns in four
stations (FU, LO, SM and UC). A violin plot combines a vertical box-plot with a smoothed
histogram represented symmetrically to the left and right of the box.

4. Long-term drifts
Let the ? denote a moving average (MA) on windows of different lengths

µ̂2(i , t) =

 Yi(t)
med

1≤i≤N
Yi(t)

?

when med
1≤i≤N

Yi(t)> 0 (5)

I Severe drifts in SM and LO
I FU and UC appear relatively stable
I Bias in the counting process is larger during solar minima:

higher relative errors during minima than during the remaining part of the
solar cycle

I Some jumps are visible with the MA length of 81 days while longer scales
highlight the drifts

Fig. 4: Estimation of µ̂2(i , t) for Ns in four stations (SM, FU, LO and UC). µ̂2(i , t) is
computed with different MA window lengths: 81 days (green dotted line), 1 year (red
dashed line) and 2.5 years (blue plain line)

Conclusion
Key results
I Short-term variability
I Estimation of long-term drifts

Toward a monitoring
With aim to alert the stations in quasi real-time when they start deviating from

the network to prevent large drifts observed in the series (see Fig.4).
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