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ABSTRACT 

Context 

Sunspots are dark spots appearing in groups on the surface of the Sun as a manifestation of solar 

magnetism. The magnetic field embedded in sunspots is the driving force behind the solar variability that 

influences the Earth space environment on a day-to-day basis.  The Royal Observatory of Belgium (ROB) 

is a key player in sunspot observations: In 1939, the ROB Solar station (called ‘USET’, for Uccle Solar 

Equatorial Table) started up a solar observing program in collaboration with the Zürich Observatory 

consisting of daily drawings of the sunspot configuration. This program is still running today. In addition,  

the USET facility produces white light images, taken since 2002, and CaIIK images, taken since 2012, 

which will be used in this project. The co-temporal and co-spatial acquisition of drawings, white light, 

and CaIIK images makes it favourable to interconnect these datasets using novel image processing 

techniques. 
Objectives 

The over-arching goal of this project is to produce high-level data products for science data exploitation 

and dissemination from USET datasets. First, we want to provide a pipeline for the automatic detection, 

grouping, and classification of sunspot groups  from ground-based  white light USET images alone. 

Second, we want to see if it is possible to fill in gaps in historical records by exploiting observations of 

another correlated modality. Third, we want our results to be used by the community, and also 

participate in citizen science imitative.   

• Objective 1: Automated detection, grouping, and classification of sunspot groups on WL images 

• Objective 2: Connection between photospheric (WL) and chromospheric (CaIIK) observations 

• Objective 3: Provision of open access of data products produced in the project, dissemination and 

valorization of the results 
Conclusions 

For the first objective, we developed SunSCC, an integrated framework for Segmentation, Clustering, and 

Classification of sunspots from ground-based white light observations.  SunSCC uses deep learning models 

for sunspot segmentation and group classification, connected by a dedicated algorithm for clustering 

individual sunspots into groups. The framework employs an innovative supervision strategy that alternates 

between multiple automatically-generated pseudolabels per training sample. This approach shows 

robustness against atmospheric artifacts, detects typically-missed small sunspots, and minimizes manual 

annotation to the test set only. The developed clustering methodology leverages sunspot group extents and 

individual sizes to successfully replicate USET catalog patterns. The proposed CNN architecture for 

McIntosh classification outperforms existing solutions relying on satellite-based imagery, despite using 

ground-based observations and the inherent limitations of the subjective McIntosh scheme. 

For the second objective, we first investigated solutions based on generative adversarial networks (GANs) 

for their ability to perform image to image translation, and hence in our case to generate realistic CaIIK 

images from WL images. We found however that this method introduces physically unfounded artifacts, 

especially when source and target modalities display substantially distinct characteristics. This led us to 

propose I2IwFILM, a novel model architecture for solar physics. By combining advanced feature extraction 

with feature map modulation, this approach enables enriched reconstruction of the target modality through 

explicitly extracted source features.  Evaluations demonstrated that I2IwFILM generates physically 

consistent predictions with fewer hallucinations compared to GAN-based approaches. 

For the third objective, we used virtual observatory approach to distribute our data products. We published 

4 papers and attend several conferences. Finally, we devised a citizen science project to provide sunspot 

classification.  

Keywords 

Sunspot detection, sunspot grouping, sunspot classification, image to image translation, deep 

learning, convolutional neural network.   

 

https://www.astro.oma.be/fr/
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1. INTRODUCTION 

Studying sunspots evolution on a long-term basis is a keystone to several areas of Solar Physics, from 

helioseismology to irradiance modelling and the prediction of space weather. Over the last decades, the 

Royal Observatory of Belgium (ROB) has played an essential role in sunspot observations. In 1939, 

the ROB Uccle Solar Equatorial Table (USET) station started up a solar observing program consisting 

of daily drawings of the Sun with the sunspot configuration, a program still running today which 

constitutes one of the longest and stable series of observations of the Sun. Besides the telescope used 

to obtain drawings, the USET station also hosts three telescopes equipped with CCD cameras: a 

telescope for white light (WL) imaging to observe the surface of the Sun (photosphere), a telescope 

to provide images of the Sun’s chromosphere in the Calcium line (denoted ‘CaIIK’), and a telescope to 

observe the Hα line. In this project, we focus on drawings, WL, and CaIIK images. WL images have been 

taken since 2002, first with a 1024x1024 pixel CCD camera, and in 2012 with an upgraded 048x2048 

pixel camera. In 2012, a 2048x2048 CCD camera for the CaIIK line was acquired as well, see Table 1. 

 

The goal of DeepSun was to exploit and valorize the drawings, WL, and CaIIK images by leveraging 

on recent progress made in signal processing, and in particular deep learning.  

 

Type of 

images 
Available 

since 
Drawings since 

availability 
observation days 

since availability 
Drawings, images 

[2002-2007] 
Drawings, 

images [2012-

2019] 

Drawings Mars 1940 23831 
 

1987 2080 

WL February 

2002 
5135 3895 3465 14680 

CaIIK Augustus 

2012 
1879 1766 0 16034 

Table 1: USET data availability as of July 1, 2019. For CCD cameras, multiple images may be recorded 
on one day.  No images are indicated during [2008-2011] because it was a solar minimum period 
with few sunspots. 
 

Indeed, there is currently a strong drive from the solar physics community to improve on existing solar 

image processing methods by taking advantage of progress made in machine and deep learning 

methods. Most of the time however, existing or preliminary works are dealing with satellite images 

having a high signal to noise ratio (SNR), making it relatively easy to transfer methods from man-made 

to solar images. Few works look at long-range data series. 

 

The DeepSun project deals with ground-based images which might have a low SNR and be of 
inhomogeneous quality.  We leverage on advancement happening in the signal processing field and 
devised the most appropriate deep learning architectures that are adapted to our situation, where  
adequate pre-processing is essential, and where the chosen algorithms must be robust to noise. 
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2. STATE OF THE ART AND OBJECTIVES 

2.1 Detection, grouping, and classification of sunspots 

2.1.1. State of the Art 

The last two decades have seen the development of solar information processing methods for the 

detection, tracking, and classification of solar features (Martens et al. 2012).  These methods are 

typically tailored to the feature of interest, and use manually engineered representation or descriptors 

of the data. 

 

Accurate detection of sunspots is fundamental for the construction of solar activity indices such as 

the International Sunspot Number (Clette et al., 2007), and constitutes the first step towards sunspot 

classification. The delineation and classification of sunspots is however partly subjective as two 

distinct observers might differ in their decisions. Moreover, sunspots are irregular in shape, and have 

variable intensity and contrast with their surroundings. Ground-based images typically also have 

different levels of noise and distortion. Detection of a solar feature such as a sunspot  relies on the 

segmentation of an image, which comes in two flavours: region-based or edge-based. 

 

Region-based methods encompass on one hand histogram-based segmentation, where pixels are 

classified according to their intensities ( Steinegger et al., 1998,  Pettauer & Brandt, 1997 ; Zharkova 

et al., 2005 ) possibly combining this with a Bayesian approach (Turmon et al., 2002), and on the other 

hand region-growing procedures, where the connectivity of individual pixels is used to incorporate 

information about the local neighborhood (Muraközy, 2022). 

 

Edge-based methods focus on discontinuities and thus on locating region boundaries. Zharkov et al., 

2005 used edge detection, followed by mathematical morphology on continuum image from the 

Michelson Doppler Imager (MDI, Scherrer et al., 1995) space instrument. They compared their results 

with NOAA synoptic maps produced manually during one year, and found good correlation. Later on, 

Curto et al., 2008 as well as Watson et al., 2009 used mathematical morphology on WL images, before 

applying thresholding to isolate the sunspots. Curto et al., 2008 applied his algorithm on WL images 

from a ground-based station with the goal to reproduce the Wolf number and to compare it against 

value obtained manually by operators of the same station. Watson et al., 2009 applied his method on 

a 1997-2003 MDI continuum dataset to investigate the effect of center to limb variation on sunspot 

appearance and disappearance. 

 

Carvalho et al., 2020 provided a comparison between intensity-based thresholding and mathematical 

morphology methods. It showed that mathematical morphology-based approaches perform better 

than purely intensity-based methods. They also require less pre-processing to remove atmospheric 

effects in ground-based observations and to correct for limb darkening. These methods are however 

still very much dependent on the choice of parameters such as the size of the morphological 

operators. It is therefore of interest to develop a method which is robust against heuristics or 

parameter’s choice. 

 

Once sunspots have been detected, it is necessary to group the individual sunspots into sunspot 

groups. Indeed, sunspots are formed in groups that share physical properties such as belonging to the 

same magnetic flux loops. Considering a binary mask of sunspots (where ‘0’ means a background pixel 
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and ‘1’ a sunspot foreground pixel), sunspot groups correspond to local maxima in the spatial 

distribution of foreground pixels inside this binary mask. Several attempts were made in previous 

works to find such local maxima. In their work, Curto et al., 2008 used a region growing procedure and 

predefined criteria of neighborhood to group individual sunspots into a sunspot group. Nguyen et al., 

2004 tested various hierarchical algorithms and a simple k-means algorithm. 

Since the number of sunspot groups on a given day is not known, the number of clusters k to request 

from the k-means algorithm cannot be defined, making this method impractical. Similarly, finding an 

appropriate termination condition for the hierarchical algorithms proved to be difficult. The same 

authors then compared in Nguyen et al., 2006 the performance of several hierarchical algorithms with 

that of a density-based clustering algorithm known as DBSCAN (introduced in Ester et al., 1996), and 

found a slightly better performance for the latter  

 

Once a sunspot group is detected in successive frames, the problem of tracking them reduces to a 

data association problem, which is generally handled by graph-based solutions. There, a node 

corresponds to a detection, and an edge represents the link between two regions observed at 

different times. Verbeeck et al. (2014) propose a simple solution adapted to solar features.  More 

complex methods exist in the computer vision literature, where multi-object tracking is formulated as 

the problem of partitioning a graph into disjoint sets of nodes (Zamir et al 2012). 

 

Several sunspot classification schemes have been developed over the years, starting at the end of the 

19th century. The most recent scheme, the McIntosh classification [McIntosh, 1990], is based on the 

combination of 3 letters (Z, p,c) , for a total of 56 admissible McIntosh classes. The number of solar 

eruptions that occur in a given class is at the basis of several space weather forecasting methods 

(McIntosh 1990, Leka et al 2019), including the methods used by forecasters from the  Regional 

Warning Center (RWC) at ROB. Attributing a class to a sunspot group is thus fundamental to predict 

the impact of the Sun on our planet. Most of the time however, it is still being done manually.  

 

Colak & Qahwaji, 2008 combined thresholding and 1-layer artificial neural networks to detect, cluster, 

and classify sunspot groups according to the McIntosh system. Their work, which represents still a 

benchmark today, is using both continuum and magnetogram data from the MDI instrument. Abd et 

al., 2010 used Support Vector Machines on extracted features from MDI continuum images to predict 

the modified Zurich classification using a one-against all method. They claimed a score of average 80% 

precision but the method was applied to a restricted dataset (20 samples per class).  

 

The advent of Deep Learning methods allowed computational models that are composed of multiple 

processing layers to learn representations of data with multiple and hierarchical levels of abstraction 

(LeCun et al., 2015; Goodfellow et al., 2016). Convolutional Neural Networks (CNNs) have proven 

superior to previous methods for image classification (Krizhevsky et al., 2012). In sunspot 

classification, (Knyazeva et al., 2020) used a pre-trained deep neural network and a transfer learning 

approach to provide an automated McIntosh classification using MDI as well as HMI (Helioseismic and 

Magnetic Imager, Scherrer et al., 2012) magnetograms. They achieved an average 50% precision score, 

and significant confusion can be seen between the classes D, E, and F of the modified Zurich class. 

 

Palladino et al., 2022 address sunspot detection and classification using continuum and magnetogram 

images as well as the Solar Region Summary (SRS) tables of the US Air Force/SOON catalog (SOON , 
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2008) as a source of information about the observed sunspot groups. These tables report the location, 

composition and McIntosh classification of the visible sunspot groups daily. A Faster R-CNN model is 

used to detect sunspots, and Inception v3 for classification. The precision score varies between 30% 

and 90% amongst classes, and similarly to Knyazeva et al., 2020, confusion between classes D, E, and 

F of component Z appears clearly. 

 

2.1.2 Objectives  

Our objective is to develop a fully automated system to detect, aggregate, and classify sunspot groups 

according to the McIntosh scheme using ground-based white light (WL) observations from the USET 

facility located at the Royal Observatory of Belgium.  

We aim at developing a detection method which is robust against particular heuristics or parameter’s 

choice, such as a thresholding level. Regarding the grouping of individual sunspots, we are looking for 

a statistically sound method. Finally, for the classification of sunspots, we aim at producing an 

automated McIntosh classification based solely on WL information, where confusion between classes 

is minimized. 

 

 

2.2. Connection between photospheric (WL) and chromospheric (CaIIK) observations  

2.2.1. State of the art 

Deep learning has opened perspectives for new applications in solar physics, in particular in the field 

of image-to-image translation.  Image to image translation have been used in solar physics to mitigate 

the data scarcity problem, defined as the poor coverage over time, in terms of number of vantage 

points, or in the observed modality. 

 

One possible way to tackle image-to-image translation is through the adversarial training paradigm.    

Adversarial training consists in jointly training a pair of CNN networks in competition with each other. 

These generative models, called ‘Generative Adversarial networks’ (GANs), learn to capture the 

statistical distribution of data, and allow to synthesize samples from the learned distribution.  We will 

use conditional GANs (cGANs) which learn a conditional generative model of the data [Isola et al. 

2017]. cGANs are suitable for image-to-image translation tasks, where we condition on an input image 

(e.g. sunspot drawings) and generate a corresponding output image (e.g. sunspot WL image).  

 

 

In solar physics, cGANs were first used to generate magnetograms out of EUV images, in order to 

tackle the lack of solar magnetogram on the STEREO mission. Kim et al. (2019) were the first to adopt 

the Pix2Pix algorithm to produce synthetic magnetograms images from STEREO/EUVI 304 Å data.  

Their results were limited to a maximum magnetic field strength  of ±100 Gauss in the reconstruction 

and showed low correlations in solar quiet regions. Sun et al. (2023) builds on Pix2Pix,  but modifies 

the U-Net architecture of the generator by adding a self-attention block between the encoder and 

decoder parts.  This allows to put more weight on active regions, and better results were reported. 

Wang et al. (2018) proposed Pix2PixHD, a modification of Pix2Pix capable of handling a higher dynamic 

range in the data via a novel adversarial loss and a multi-scale network architecture. Jeong et al. (2020) 

improved Pix2PixHD to handle ± 3000 Gauss dynamic range in the EUV-to-magnetogram translation,  

and considered multi-channel input. Jeong et al. (2022) further considered adding a correlation  
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coefficient (CC) component to the overall objective loss function of the Pix2PixHD model, resulting in 

a model called Pix2PixCC, whose goal is to provide more realistic backside magnetograms to improve 

solar coronal magnetic field extrapolations.  

 

Besides the EUV-to-magnetogram cross-modality translation, cGANs were applied in other I2I 

translation context, such as: the generation of white light (Lawrance et al. 2022) or He I 1083 nm 

images (Son et al. 2021) from EUV images; the generation of  solar magnetograms and EUV images 

from Galileo sunspot drawings (Lee et al. 2021), and of  pseudo-magnetograms from Hα images (Gao 

et al. 2023) or from CaII-K images (Shin et al.  2020). 

 

Next to adversarial training strategies, diffusion models (DM) have recently emerged as deep 

generative models that produce new samples by simulating a Markov chain. The Markov chain in  DMs 

starts with pure noise and gradually refines it into a sample that matches the target distribution (Ho 

et al. 2020). During training of DMs, samples drawn from the target distribution are degraded with 

noise in what is called a forward process and a denoising model is trained to reverse the degradation 

in a backward process. DMs have been used in many applications to generate realistic images and 

have shown promising results in various image synthesis tasks. 

In some applications, the backward process of DMs can be guided by integrating the encoded feature 

of the reference image as input to the U-Net in the reverse process, leading to conditional diffusion 

models (Choi et al. 2021; Rombach et al. 2022; Saharia et al. 2022). 

These methods are well suited to applications where the conditional input has high similarity with the 

output, such as for inpainting and super-resolution end, but tend to perform poorly in cases where 

the input and output domains significantly differ, as encountered in solar and heliophysics research. 

 

Although generative deep learning methods have become popular in solar physics, their scientific 

validity has been so far largely overlooked. In particular, it is known that they may suffer from so-

called hallucinations, that is, the generation of features that are not present in the original data.  

 

2.2.2. Objective  

Our goal is here is to obtain chromospheric information from photospheric input. We aim at 

developing an image-to-image translation technique that suffers less from hallucinations than cGANS, 

and that provides consist3.ent results even when the training dataset is of relatively small size.   
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3. METHODOLOGY  

The DeepSun project was divided into 5 work packages; with the breakdown structure is provided in 

Figure 1. 

• WP1: Management 

• WP2: Preparation of USET dataset 

• WP3: Static photospheric data exploitation, where we devised an algorithm for the 

segmentation, clustering and classification of sunspots 

• WP4: Dynamic photospheric and chromospheric data exploitation, where we provide cross-

modality translation between photospheric and chromospheric images  

• WP5: Data access, dissemination, and valorization, whose achievements are described in 

Section 5 of this report. 

 

 

Figure 1 Work breakdown structure and overall planning of WP2 to WP5 

 

3.1. WP1 Management 

3.1.1. Task 1.1. Interfacing with BELSPO 

The present report constitutes the fourth deliverable of Task 1.1. 

3.1.2. Task 1.2. Coordination of the work 

Minutes of each meeting of the consortium are recorded on the Gitlab platform (https://gitlab-

as.oma.be/SIDC/SILSO_USET/deepsun/).  The DeepSun consortium met around every three weeks for 

progress meetings, and more often when necessary, e.g. when preparing a paper submission. 
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3.2. WP 2 Preparation of USET data  

3.2.1. Task 2.1 Drawing pre-processing: Removing annotations on sunspot drawings 

The USET station is equipped with a Visual White light telescope, that projects the image of the Sun 

on a paper and is used to produce sunspot drawings. Since the 1940s, human operators have made 

annotations on these drawings regarding the sunspot groups classification and total sunspot counts. 

These manual annotations need to be removed to make further automated processing possible. We 

hired job students to do this task with the GIMP editor, freely available at https://www.gimp.org/. 

Drawings from the solar archive recorded between 1954 and 2021 were processed and auxiliary 

annotations and spurious effects were removed.  (Deliverable of Task 2.1) 

The goal of Task 3.3. was to perform image translation from drawings to WL observations. As explained 

below, we encounter some serious challenges to achieve this task. Nevertheless, the dataset of pairs 

of (annotated drawings, non-annotated drawings) produced in Task 2.1 is of high value: it could be 

used in future projects where a machine learning algorithm would learn how to remove annotations 

automatically on drawings. This would constitute a great help in the exploitation of all sunspot drawing 

collections around the world. 

 

3.2.2. Task 2.2 USET pipeline upgrade 

 

We pre-processed the USET White Light (WL) images to accurately center the solar disk within each 

image, achieving a precision of one pixel. The images were then translated so that the solar disk center 

aligns with the center of the image frame. This pre-processed dataset is referred to as L1c, short for 

"Level 1 centered." It is openly accessible to registered users via the SOLARNET Virtual Observatory 

(Mampaey et al., 2025). (Deliverable 1 of Task 2.2) 

 

To meet the requirements of WP3 and WP4, we standardized all USET WL images to a uniform 

resolution of 2048 × 2048 pixels. This adjustment was necessary due to a camera upgrade in June 

2008, which resulted in a change in image dimensions—from 1024 × 1024 pixels before the upgrade 

to 2048 × 2048 pixels afterward. To ensure consistency across the dataset and eliminate issues caused 

by varying resolutions, we upsampled the earlier images using nearest neighbor interpolation. 

 

We also computed several quality indices for USET images: 

• To characterize the diffusion due to high altitude clouds, we compute the median of intensity 

on and outside of the solar disk.  

• To assess the level of atmospheric turbulence we calculate the median filter-gradient 

similarity (Deng, 2015), which compares the gradient similarity between the raw image and 

the corresponding filtered image.  

• To estimate the presence of clouds we use the cloud cover index (Feng, 2014), we compute 

an index based on the cross-correlation coefficients between pair of intensity radial profiles 

for various quadrants of the solar disk. If the Sun is not covered by clouds, the cross-

correlation coefficients between each pair are close to one. In presence of clouds, some of the 

radial profiles are degraded and the cross-correlation coefficients are low. 
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3.2.3. Task 2.3 Resampling scheme 

Some functions now exist in SunPy to resample an image into a coordinate system where the solar 

rotation is corrected for, and we use these functions in DeepSun. 

3.2.4. Task 2.4. Consolidated sunspot group database (SGDB) 

From the previous BRAIN project Val-U-Sun,  information about drawings have been included into two 

linked databases:   

1.  the Drawing Database (DDB), which stores global metadata such as the observer's acronym, total 

number of spots, sunspot groups, and Wolf number pertaining to one solar drawing,   

2.  the Sunspot Group Database (SGDB), whose entries contain specific information about a sunspot 

group, such as its heliographic coordinates,  area, or manually made classification in  the Zurich and 

McIntosh systems.  

 

The goal of this Task was to add supplementary information to the SGDB. 

• We computed information about the Bounding box (BBox) for each sunspot group from the 

information about the McIntosh class contained in the SGDB and the value of the solar radius 

retrieved from  the Visual WL observations.   

• The SunSCC pipeline developed in this project provides binary maps of Sunspot group, as well as a 

simplified McIntosh classification. It runs on ROB IT infrastructure. 

• The SGDB is integrated into the SIDC Event Database, where a sunspot tracking module has been 

integrated.  

 

 

 

3.3. WP3: detection, clustering, and segmentation of sunspots 

 

We describe methodology adopted to accomplish Task 3.1 (Detection of sunspot groups) and Task 

3.2 (Segmentation of sunspot) as a whole, since we gather these two tasks, together with the 

clustering of sunspots, in a common pipeline.  

 

The SunSCC pipeline depicted in Figure 2 takes as input images obtained from the USET White Light 

telescope and prepared according to Task 2.2.  It returns as output segmentation masks of individual 

sunspots, as well as the sunspot groups and their McIntosh classification, with a reliability score. It is 

divided in three independent blocks as follows. The first block, dealing with the sunspot segmentation, 

is addressed by a CNN in the form of  Unet architecture (Ronneberger et al., 2015) composed of an 

auto-encoder with skip connections. The second block receives as input the segmentation from the 

first block, and aggregates the detected sunspots into sunspot groups using an original clustering 

method inspired by the mean-shift algorithm.  Each identified sunspot group is provided along with 

an angular distance map to the third block. The latter constitutes a classification network designed to 

predict the McIntosh 3-{components} classification. It is composed of a ResNet34 (He et al., 2016) 

iimage encoder and three Multi-Layer Perceptrons (MLP) organized in a hierachical way, each having 

4 hidden layers and Rectified Linear Units (ReLU) activation functions (Agarap, 2019). We now detail 

the construction of each block. 

 



Project  B2/191/P2/DeepSun – Interconnection and valorisation of long-term solar datasets via deep learning 

BRAIN-be 2.0 (Belgian Research Action through Interdisciplinary Networks) 15 

 
 
Figure 2: SunSCC pipeline for sunspot segmentation, clustering, and classification. Full-disc images 2048x2048 images are 

subdivided into a 4x4 grid, each containing segments of dimensions 512x512. A U-net segmentation network predicts masks 

for each segment that are reassembled into a 2048x2048 segmentation mask. The detected sunspots are aggregated into 

sunspot groups by a modified mean-shift algorithm. Each identified group is provided along with an angular distance map to 

a classification network composed of a Resnet34 image encoder and three Multi-Layer Perceptron’s with 4 hidden layers and 

ReLU activation function. Each MLP is specialized in the classification of one component in the McIntosh system. 

 

3.3.1. Task 3.1. Detection and segmentation of sunspots on WL images 

We choose to first build a set of unsupervised but error-prone segmentation masks, using 

conventional image processing techniques, and next used those masks as pseudo-labels to train a CNN 

model. 
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To generate unsupervised segmentation masks, also called pseudo-label’, we first correct the image 

for limb darkening.  Next, mathematical morphology operations, in the form of a black top-hat 

transform is applied, similarly to (Watson et al., 2009). This allows to find dark areas surrounded by a 

bright environment corresponding to sunspots. Finally, a thresholding is applied to obtain a binary 

mask. 

 

We then train the CNN with stochastic pseudo-labels as follows: We adopt a U-Net architecture (He 

et al, 2016) for our CNN segmentation model since it has proved its accuracy in delineating high 

resolution segmentation masks in various fields such as medical imaging and natural images analysis. 

 

 Since the smallest sunspots represent only a few pixels and thus may disappear when down-sampling 

large images, we feed the CNN at full original resolution but use patches of the full image (called \lq 

segment') of size 512 x 512 pixels in our segmentation models. Note that unlike during the generation 

of the segmentation masks by thresholding methods in previous section, the limb darkening effect is 

not corrected on the images given as input to the CNN. Instead, raw white light images are used, and  

we count on the regularization properties of the CNN to be robust to limb darkening and the presence 

of clouds.  

  

Finding a single threshold value during the mask generation process is a non-trivial task as the level of 

illumination may differ not only locally due to the presence of clouds and other artifact source such 

as atmospheric seeing, but it may also differ from image to image. Moreover, CNNs trained with a 

systematic labelling error are known to produce predictions with the same error patterns. To 

circumvent these issues, we consider multiple thresholds per WL images, each of them generating a 

specific mask or pseudo-label, and we train our model using these various pseudo-labels. This is 

expected to increase the error patterns variability, thereby preventing the CNN to learn them. Our 

experimental results demonstrate that this original strategy is effective in mitigating the bias 

introduced by pseudo-labels in the trained model prediction behaviour. 

 

Clustering of sunspots (added Task) 

Once we have a binary segmentation at the pixel level, we need to group together pixels belonging to 

a same sunspot group, before being able to classify this group.  

 

 We devised an original method to find sunspot groups in a WL image, given the sunspot masks 

provided by our CNN segmentation model. Our approach adapts to the context of sunspot group 

retrieval the mean-shift clustering algorithm introduced by (Fukunaga & Hostetler, 1975) and 

popularized in computer vision by (Comaniciu & Meer, 2002). The mean-shift clustering algorithm 

exploits local gradients of a density function to locate its maxima, or modes, given discrete data 

samples from that function. In the sunspot clustering context, the procedure to discover the modes, 

and to associate the observed sunspot to those modes, works as follows. Starting from the center of 

an observed sunspot, it iteratively shifts according to the gradient of the density function obtained by 

placing at the center of each observed sunspot a kernel shape weighted by the area of the sunspot. 

This is repeated until convergence to a local maximum, defining a mode. The convergence procedure 

is repeated for all the sunspots, which ends up in defining a discrete number of modes, to which 

sunspots are associated. 
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The rationale for choosing this method is that it adopts a conventional linear kernel, but takes the 

shape of sunspot group into account, as well as the aspect of individual sunspots when defining the 

kernel spatial support in longitudinal and latitudinal directions.  

 

3.2.2. Task 3.2 Classification of sunspots 

Input to the classification task are the sunspot groups retrieved by the clustering algorithm.   However, 

sunspot groups that are close to one another deserve a specific treatment, to avoid their mixed 

patterns misleading the classification network during training and validation. Such cases are identified 

as groups whose bounding box image contains sunspots belonging to other group(s).  

For each of these groups, before presenting the corresponding image to the classifier, we erase the 

sunspots of other close group(s) by setting their pixel intensity values to the mean value of the 

background pixels around their contour. In that way, only one group is available to the classifier at a 

time. 

   

In the training dataset used in this supervised classification task, each of the samples gets an 

associated label that corresponds to the McIntosh class of the matched sunspot group in the Sunspot 

group database (SGDB). 

 

The McIntosh classification scheme contains as much as 56 admissible classes, and therefore some of 

them are poorly observed in our training dataset. On the other hand, some classes have similar 

morphology and are differentiated only by their sizes.  We decided to use a reduced set of classes, as 

depicted in Figure 3, to tackle imbalance in class sample size. Below we explain our CNN-based 

classification, and how we used ensemble classifier to get a measure of confidence in the classification 

prediction. 

CNN-based classification 

As shown in Figure 2, our classifier relies on a ResNet34 convolutional backbone to encode the visual 

information associated to the sunspot group to be classified. The network is fed with standard-sized 

256x 256 images for all sunspot groups.  The cropped images are composed of two channels: the first 

channel contains the square segment of the WL image centered at center location of the sunspot 

group formed during clustering, and the second channel contains the corresponding segment of an 

angular distance map aligned with the WL image. This second channel provide information about the 

location of the sunspot group on the Sun so that knowledge about distortion of sunspots shape 

approaching the limb can be learned. 
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Figure 3: Reduced McIntosh classification scheme used in SunSCC. Red fonts indicate how some of the initial McIntosh 

classes were merged in a single class.  

The embedding representation of the images provided to the ResNet34 backbone is given as input to 

three Multi-layer perceptrons (MLPs) named MLPZ,  MLPp and MLPc, respectively specialized in the 

classification of each of the Z, p and c component of the McIntosh system. The MLPs are organized 

hierarchically as shown in Figure Full Pipeline. The objective of this architecture is to mimic the 

dependency of the p- and c-component classifications on Z. 

The classification network was trained using the cross-entropy loss and Adam optimization algorithm 

(Paske et al, 2019). 

From hard to soft predictions using ensemble of classifiers 

We applied the precepts of ensemble learning (Dietterich, 2000; Peake et al., 2020) to soften the 

prediction of a sample by a single classification network into a confidence measure of belonging to a 

particular class. Indeed, the biases of a single classifier are likely to be compensated by biases of other 

classifiers when combining their predictions, and hence the ensemble prediction accuracy is expected 

to surpass that of a single classifier (see Dietterich, 2000 for a review).  

 

In our experiments, we initialized with different seeds multiple instances of the classification network, 

and each of these instances were trained independently.  This produced multiple classifiers, hence for 

each sunspot group, we obtain a pool of predictions. These predictions are then combined into one 

single output via a majority vote. 

 

Our results show that the class prediction inconsistency across the ensemble of classifiers is a valuable 

clue to identify the cases for which the majority vote prediction is likely wrong (see Section 4). 

 

Deliverables: The SunSCC algorithm and its results on USET dataset has been published in Sayez et al 

2023; the codes and scripts have been adapted to run on the IT infrastructure at ROB.   
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3.3.3. Task 3.3. Image translation between drawings and WL images 

 

Translation algorithms perform best when the coordinates of the input and target images are 

aligned—what is known as pixel-to-pixel translation. To achieve this, sunspot drawings need to be 

registered to the corresponding White Light (WL) images. 

 

As a first step, we examined the uncertainties in sunspot group positions within the drawings. We 

observed distortions in the shapes of the sunspots, with these deformations becoming more 

pronounced toward the solar limbs.  Additional sources of misalignment—such as those introduced 

by variations in optical systems—further complicate the process. These factors make the registration 

non-rigid and inherently challenging. Due to these complexities, we chose to focus instead on 

translations between CCD photospheric images and CCD chromospheric images, where alignment is 

more straightforward. (cfr Task 4.3).  

 

3.4. WP4: Dynamic photospheric and chromospheric data exploitation 

3.4.1. Task 4.1 Tracking of WL sunspot group 

A sunspot tracking module has been integrated into the SIDC Event Database, based on a graph 

approach.  

3.4.2. Task 4.2 Preparation of sequence of sunspots 

Various quality indices have been computed on USET dataset, as explained in Task 2.2. For now, these 

indices are not combined into a single index, but it is possible to select a dataset based on the high 

value of quality index provided by the USET operator, which we did. In Task 4.3, we will make the 

interconnection between pairs of WL and CaIIK images, but not between sequences of WL and CaIIK 

images. Integrating time information into image-to-image translation is far from trivial and will be 

considered in future work.  

3.4.2. Task 4.3. Interconnection between WL and CAII K images  

We explain here the pre-processing step, and the methods we used translate WL images into CaII K 

images.  

3.4.2.1. Dataset preparation  

We consider the USET dataset that simultaneously monitors the photosphere in WL and the lower 

chromosphere in Ca II K since 2012. We selected daily pairs of (WL, Ca II K) images, which are of size 

2048 × 2048, through a careful process: highest-quality daily WL images are identified using the quality 

index provided by the USET operator when making the sunspot drawing, then images are paired with 

the best available Ca II K images, minimizing the time difference between them. A maximum temporal 

difference of four hours is considered to avoid discrepancies due to too large displacements. For each 

pair, de-rotation is applied to co-align WL and CaIIK images using the SunPy module [The Sunpy 

Community, 2020].  

The (WL, Ca II K ) image pairs then undergo further processing as follows: sub-image of size 512 × 512, 

called ‘segments’, are extracted from the original full disc images. These segments are centered at 

sunspot locations, obtained from the USET sunspot group catalog Table Access Protocol (TAP) service 

(Bechet & Clette, 2024). To reduce computational cost, the segments are resized to 256 × 256 pixels. 

Figure 4 shows an example of (WL, CaII-K) segment pair. 
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Figure 4. Sample pair of WL and CaII-K segments, which have been spatially aligned and centered near an active region. 

3.4.2.1.  Translation from WL to Ca II K images 

We considered two approaches to translate images:  one based on conditional adversarial network , 

and one based on non-adversarial strategies. We explain these methods and next we introduce our 

train-test data splitting strategy. 

Conditional adversarial network approach 

 

We first adopted the conditional generative adversarial network approach (cGAN) proposed in Jeong 

et al. (2022) and called Pix2pixCC. It is composed of two sub-networks trained simultaneously: a 

generator G and a discriminator D. The generator is a CNN shaped according to the U-Net architecture 

(Ronneberger et al., 2015) while the discriminator is implemented as a patchGAN (Isola et al., 2017) 

which manipulates pairs of patches (cropped in the pair of full images) instead of the image pair itself.  

Figure 4 depicts Pix2pixCC in the context of WL-to-CaIIK translation.  
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Figure  5: Diagram of Pix2PixCC model and adversarial training for WL-to-CaIIK translation. The generator G converts a WL 

image to the CaIIK modality, the discriminator D distinguishes original WL-CaIIK pairs from forged pairs. The ‘Inspector’ 

module  contributes to the update of the weights of G by computing correlation coefficients between original CaIIK image 

and forged CaIIK image, at multiple scales. 

The network receives as input a white light view and outputs an estimation of the corresponding 

calcium view. The generator is trained to make it close to the original calcium image, when available. 

Besides, the discriminator D is given a pair of images that can either be the original pair  P or the forged 

pair 𝑃.̂ The role of D is to distinguish real pairs from the forged ones.  

 During training, G is updated to improve the ability to fool D using a weighted sum of three loss 

functions:  

a) the least-squares adversarial loss function for generators (Mao et al. 2017)  

b) a feature-matching (FM) loss  

c) a correlation coefficient based loss based on the computation from the Inspector.  

Our experiments reveal that this model results in a significant amount of hallucinations, and hence in 

a second stage we also looked at non-adversarial strategies. 

Non-adversarial strategies 

As the adversarial setup of GAN models often generates outputs with hallucinations, we tested several 

approaches to mitigate this issue in our physics-sensitive application. First, we considered a variant of 

Pix2PixCC trained without adversarial loss or feature modulation and utilizing an L1 loss between the 

reconstruction and the target. We denote it Pix2Pixw/o-Adv. 

Second, to mitigate unwanted artifacts in our physics-sensitive application, we propose an alternative 

approach that utilizes an I2I translation model with enhanced capacity to adapt the output 

reconstruction to the input content. This algorithm modulates the model’s internal feature maps 

based on Feature-wise Linear Modulation (FiLM, Perez et al.), thereby offering the network the ability 

to inject input-related information through the image translation process. 
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Formally, image-to-image translation with feature-wise linear modulation (I2IwFiLM) is implemented 

as depicted in Figure 6. To increase the chance that the guidance vector captures information that is 

relevant to the output, in a preliminary training stage, the guidance vector E P  is defined based on the 

complete WL and CaIIK pair P. Specifically, an encoding convolutional neural network denoted GVPP , 

and named Guidance Vector Prediction network is trained to extract a 256-dimensional guidance 

vector E P from the concatenated input and output signals. The guidance vector E P modulates the 

output of several convolutional layers in the main U-Net through dedicated linear layers. Each 

modulated convolutional layer is paired with its own linear layer which takes E P as input and produces 

an additive modulation signal that is combined with the convolutional layer’s output. Then, in a second 

step, another CNN is trained to predict the guidance vector E P   from the input (WL) signal only. 

 

Figure 6: First training stage of I2IwFiLM:   a) Main U-net model predicts Calcium image from input WL image  and from      

E P, the guidance vector extracted from  the pairs of WL and CaII K images  using a Guidance Vector Prediction network 

denoted GVPp.  b) Details on the modulation of an intermediate feature map of the U-net model by E P,   using a FiLM 

layer. The height, width and number of channels (depth) of the intermediate feature map are denoted W, H and C, 

respectively. 
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Train-test data splitting 

To create the test sets of our translation task, two months were selected from each year for both 

datasets: one winter month and one summer month, to ensure sample diversity. All samples 

corresponding to these selected months were allocated to the respective test sets. All other samples 

were selected for training, except the ones falling within a 12-day window on either side of the test 

samples. The window size was chosen as half of the Sun's rotation period. This results in a WL-to-CaIIK 

translation dataset including 6,387 samples for training and 1,410 for testing. 

Deliverables: This work has been submitted to Astronomy & Astrophysics, see Sayez et al.,(2025)  

and is currently under revision.  

 

 

 

4. SCIENTIFIC RESULTS AND RECOMMENDATIONS 

4.1 Segmentation, clustering, and classification of sunspots 

4.1.1. Segmentation 

We used a manually annotated dataset as ground truth to evaluate the quality of the segmentation.  

A classical metric is the F1-score, defined as: F1-score =  2TP / (2TP+FN+FP), where TP( ‘True Positive') 

is the number of correct sunspot detections,  FN (‘False negative’) is the number of missed detections 

and FP( ‘False Positive’) is the number of undesired detections. The F1-score thus decreases when 

there are undetected sunspots (FN) or erroneous sunspot detection (FP). 

We compared the performance of three methods: 

1. Unsupervised threshold-based segementation 

2. CNN-based segmentation that is trained with one pseudo-label corresponding to one 

threshold value 

3. CNN-based segmentation trained with three pseudo-labels per WL images, each pseudo-

label being obtained with a different threshold, and being selected alternatively with equal 

chance of training.  

As an illustration of the relative performance of these three methods, we show in Figure 7 the trade-

off between the number of non-detected sunspots and the number of merged sunspots - i.e. fusions 

- for each threshold-based segmenter and CNN-based segmenter. One can observe that CNN-based 

segmentation regularises sunspot detections since the number of misdetections is significantly 

reduced when compared with thresholding. The segmentation using three alternating pseudo-labels 

per WL image during training achieved performance comparable to that of the best CNN-segmenter 

using a single pseudo-label, both in terms of F1-score and in terms of fusion versus non-detected 

sunspots trade-off.  
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Figure 7 R Trade-off between sunspots remaining undetected and sunspots being merged in a single entity. The thresholding 

method (orange) labels as sunspot the pixels lying above a threshold value in the Black-TopHat transformed image. CNN-1 

(blue) corresponds to the models whose training has been supervised with pseudo-labels obtained with a single and fixed 

threshold. CNN-3 is trained with 3 distinct pseudo-label images per WL image (green). Markers indicate the threshold used 

(diamond: τ = 300, down triangle: τ = 325, left triangle: τ = 350, circle: τ = 375, right triangle: τ = 400, up triangle: τ = 425, 

hexagon: τ = 450, square: τ = 475, pentagon: τ = 500, star: τ1 = 325 τ2 = 375 τ3 = 425). The F1 scores indicate performance 

on the smallest sunspots (size boundaries < 50 pixels), which are the most challenging to detect. 

4.1.2. Clustering 

To retrieve sunspot groups, we use the masks produced with the best performing CNN classifier in our 

segmentation experiments.  

The performance of the proposed clustering method is done by measuring the concordance between 

clusters found by the automatic method, and the SGDB entries. To quantify this concordance, 

bounding boxes computed from SGDB entries are compared with bounding boxes of groups found by 

clustering. We performed a grid search to find appropriate values for the latitude bandwidth as well 

as maximum longitude bandwidth to define the kernels used for clustering. This reveals that our 

method achieves 80% accuracy when appropriate mean-shift parameters are adopted. 

4.1.3. Classification 

In our experiments, we used 85% of the available samples for training, and 15% for testing.  Each test 

sample was provided to every CNN such that a majority vote could be performed on the predictions 

of each component Z, p and c. 

Figure 8 shows confusion matrices presenting the performances of the classification of the Z, p and c 

components. Formally, each entry M(i, j) of the confusion matrix M denotes the rate at which the 

ground-truth class i is assigned to class j. The diagonal elements represent the per-class recall values, 

defined as TP/(TP+FN), where in this context TP (resp. FN) indicates a correctly (resp. uncorrectly) 
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predicted class. On these matrices, one can observe that the majority votes lead to a significant 

number of correct predictions. Indeed, the diagonal entries have high values and the off-diagonal 

entries are low or show consistency with possible confusion between ’adjacent’ classes in the lifecycle 

of sunspot groups [McIntosh, 1990]. For instance, confusion between class B and class C and between 

C and LG for the Z component is expected due to the intermediate status of class C between class B 

and the classes grouped under LG. The same observation can be done regarding the confusion 

between class r and others for the p component. Such confusions could be done by a human annotator 

as well, depending on the meticulousness of their observation of both poles, or their interpretation of 

a ‘rudimentary’ penumbra. Therefore, due to the definition of the McIntosh classes themselves, any 

classification method will present minor confusion cases, up to some extent. 

 

Figure 8 Test set confusion matrices of classification with majority vote for the classification of the Z (left), p (center), c (right) 

components. In each matrix, the rows represent the true label of test samples while columns represent the label predicted by 

majority vote. The matrices are row-normalized such that per-class recall values are shown on the diagonals. 

Finally, our experiment also showed that: 

- The performance of CNN-classifier decreases near the limb, even if some 

information about limb is provided to the algorithm,  

- The CNN-classifier is able to find annotation errors in the SGDB, 

- The ensemble classifier allows to identify ambiguous cases in sunspot classification. 

4.2 Interconnection between White light and Ca II K images  

To evaluate the image-to-image translation model, we used both generic metrics and application-

specific metrics.  

4.2.1. Generic metrics 

Table 2 shows the reconstruction performances using the root mean squared error (RMSE), peak 

signal-to-noise ratio (PSNR), structure similarity index measure (SSIM) and a multi-scale extension of 

SSIM (MS-SSIM). All these metrics are common in the context of image reconstruction. 

As we can see in Table 2, removing adversarial training indeed improves reconstruction performance: 

Pix2PixCCw/o-Adv outperforms Pix2PixCC across all generic metrics. Furthermore, incorporating 

modulation based on FiLM principles further enhances translation quality. 



Project  B2/191/P2/DeepSun – Interconnection and valorisation of long-term solar datasets via deep learning 

BRAIN-be 2.0 (Belgian Research Action through Interdisciplinary Networks) 26 

 

4.2.2. Application-specific performance metrics 

Figure 9 shows examples of WL to CaIIK modality translation of high quality, when the sunspot was 

situated close to the limb. It shows typical model behaviors: Pix2PixCC, trained with adversarial setup, 

produces visually appealing results with high-frequency features but exhibits a tendency to generate 

plage regions where there are none, a behaviour termed as ‘hallucination'.  

In contrast, I2IwFiLM generates outputs that appear blurrier but achieve more physically accurate 

reconstructions without hallucinations. 

In this application, we also observe a variation in translation quality with respect to the angular  sin(θ) 

distance between sun centre and sunspot location: regions close to the center show poor translation 

performance, while regions with sin(θ) > 0.6 exhibit increasingly accurate reconstructions as they 

approach the limb. This is explained by the fact that the contrast between features belonging increases 

with sin(θ).  Hence faculae, which are visible in WL images and have a physical correspondence with 

the plage and extended network in Ca II K images, are more visible close to the limb, and are barely 

visible near the sun center. 

We computed application-specific, physically relevant, metrics to compare the performances of the 

methods, using the plage segmentation masks computed from the original CaIIK and from the AI-

generated CaIIK images.  First, we used the Plage Pixel Ratio (PPR), defined as the ratio of plage pixels 

in generated and original images and second, the Intersection over Union (IoU) was computed as  the 

ratio between the number of pixels that belong to both masks and the number of pixels that belong 

to at least one mask. 

Figure 10 represents histograms of PPR and IoU metrics on test set samples for 3 ranges of sin(θ): (a) 

the center of the Sun (sin(θ) ≤ 0.5) where faculae are indistinguishable from the background in WL 

images, (b) the transitional region (0.5  ≤   sin(θ) ≤ 0.75), and (c) the region nearing the limb (0.75  ≤ 

sin(θ) ≤ 1) with high contrast between faculae and background. 

Both Pix2PixCC and I2IwFiLM models demonstrated improved reconstruction performance as sin(θ) 

increases, with higher mean PPR and IoU values and the reduction in their standard deviations. 

However, both models appear to be limited by the visibility of faculae, resulting in the production of 

plage regions smaller than the actual ones in the targets. This limitation is revealed by both PPR and 

IoU achieving their best values in the regions where faculae are most easily discernible. 

Examining the models individually, I2IwFiLM exhibits low average PPR and IoU with large variance for 

$ sin(θ) ≤ 0.5$, indicating that only a fraction of plages in these active regions are consistently 

reconstructed. In contrast, Pix2PixCC achieves a respectable PPR but poor IoU for these regions, 

suggesting consistent incorrect reconstruction of plages due to hallucinations. 
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Figure 9 Ca II K reconstructions of plages near the center of the solar disc (Top grids) and near the limb (Bottom grids). In 

each 3x3 grid: the top row shows the original CaIIK image (left) and its reconstructions by I2IwFiLM (middle) and Pix2PixCC 

(right). The middle row shows segmentation masks of plages visible in the original CaIIK image (left) and the corresponding 

reconstructions by I2IwFiLM (middle) and Pix2PixCC (right). Bottom row shows input white light (WL) image (left) and 

overlays of the target plage mask with the model-generated plage masks from I2IwFiLM (middle) and Pix2PixCC (right), 

facilitating a direct comparison. The red square corresponds to the sub-image provided as input to the models; a slightly 

larger image is shown to indicate the consistency with the surroundings. 

When comparing the relative performance of the two models, it is noteworthy that the mean PPR of 

I2IwFiLM initially lags behind that of Pix2PixCC for  sin(θ)≤ 0.5 but surpasses it for sin(θ)> 0.75, 

accompanied by a substantial reduction in its standard deviation. Given these results, I2IwFiLM 

appears to be more suitable for white light-to-calcium translation compared to Pix2PixCC.  

 These results illustrate the possibility of reconstructing CaIIK plages from faculae observed in WL 

when these are located at an angular distances of about 40 degrees or more from the disk center. 
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In future work, these generated images could be compared to observations from data archive, and 

help to remove inconsistencies these historical archive might have (Chatzistergos et al. 2024). 

To reconstruct solar irradiance at CaIIK line though, one would need to obtain information also at 

smaller angular distances. This would requires to process not only a single image, but a time series of 

observations, to allow transferring of information from one timestamp to another. 

 

Figure 10 Plage reconstruction performance of Pix2PixCC and I2IwFiLM models for active regions located near the centre of 

the sun (left column), at intermediate distance to the centre(middle column) and near the limb (right column). Top row 

shows PPR metric histograms, bottom row shows intersection over union (IoU) histograms. 

 

4.3. Additional results obtained during the project  

4.3.1. Distinction between umbrae and penumbrae of a sunspot 

We implemented an adaptive thresholding method to discriminate the umbra pixels and penumbra 

pixels of a sunspot see Figures 11 and 12.  This method iteratively sweeps an intensity threshold value 

such that the initial unique region is divided into multiple regions hopefully corresponding to umbra 

regions. 

At each iteration, the contour of each region is compared with edges found using the Canny Edge 

Detection algorithm to get a fitting score. In the final sunspot mask, each umbra region is represented 

with its mask obtained by thresholding with the best fitting of the canny edges during the threshold 

sweep. The other pixels in the initial sunspot mask are considered penumbra. The addition of this 

information in the automated McIntosh classification of a sunspot group were however not 

conclusive, hence it our SunSCC algorithm, it was not included. In a refined version of SunSCC, the 

includion of this algorithm could however be considered.  
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Figure 11 Example of umbra/penumbra discrimination: (A) original image (B) Sunspot mask (C) Canny edges (D) final mask. 

 

Figure 12 Thresholding History: at each step, the contour of each yellow region is compared with Canny edges. The best 

score gives the optimal threshold value for that region as well as the mask of the associated umbra. 

4.3.2. Image to image translation: EUV to magnetogram cross-modality translation 

Another application where I2I translation could help is the ’old magnetogram’ problem faced in space 

weather forecast. Indeed, for most magnetohydrodynamics (MHD) models, magnetograms are the 

primary input (Pomoell and Poedts, 2018) . But as magnetograms are primarily observing the frontside 

of the Sun only, either through ground-based or space-based facilities such as the SDO/HMI, some of 

the information inputted to MHD models through magnetogram synoptic maps were acquired up to 

two weeks earlier. Since the Sun is constantly evolving, such delay causes inaccuracies in the MHD 

model’s output.  

 

Figure 13 Sample pair of AIA-30.4nm and HMI images used for the EUV-to-magnetogram translation task in Sayez et al 

2025. The blue square indicates the region considered in our study.  

 

Extreme Ultraviolet (EUV) telescopes on the contrary are less complex instruments than 

magnetograms, and as such are available on spacecraft which observe the Sun from other vantage 

points. This is the case of the Solar Terrestrial Relations Observatory (STEREO)/Extreme UltraViolet 
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Imager (EUVI, Howard et al, 2008) and the Solar Orbiter (SO)/Extreme Ultraviolet Imager (EUI, Rochus 

et al. 2020). Since magnetograms and EUV images are both giving information about the same 

magnetic field, it is relevant to study how well an I2I translation method may provide information 

about magnetograms using EUV observations as input. 

In Sayez et al. (2025), we considered the task of generating SDO/HMI magnetogram from EUV images 

recorded by the Atmospheric Imaging Assembly (AIA)  on board SDO (Lemen et al. 2012). Figure 13 

illustrates a sample pair (AIA 30.4nm, HMI)  used in our application.  When comparing pix2pixCC with 

I2IwFILM,  the same conclusion as for the WL to Ca II K application holds: generic performance metrics 

were better, and the I2IwFILM would produce less hallucinations. 

Prior to the publication in Sayez et al. (2025), V. Delouille also participated in two studies regarding 

this specific application: 

• In Li et al. (2024), we used pix2pixCC along with transfer learning to generate, not full disk 

magnetogram, but synotpic magnetogram maps that were directly inputted into solar wind models 

• In Dannehl et al. (2024) we made an extensive study of the roles of hyperparameters in Pix2pixCC 

model, and showed in particular the impact of the weights attributed to the various terms in the cGAN 

loss functions 

 

4.4. Discussion and future prospects 

The results from DeepSun have opened new perspectives in various domains, as discussed below. 

The SunSCC pipeline could be ported to other stations observing the full Sun in visible light. Since the 

images will be like the ones of USET, one does not need to re-train the whole network; only fine-tuning 

the last layers is sufficient. There exisist such observing stations e.g. in Kanzelhöhe (Austria) and in 

Catania (Italy). By constituting a network of stations, also from regions located more eastwards, it 

would be possible to have a better coverage, possibly earlier space weather warnings, and a more 

robust classification obtain as an ‘ensemble’ of individual classifications.   

In the image-to-image translation task, we also considered several Diffusion Models, but on our 

limited dataset, we notice either serious artifact and weak correlation between original and 

reconstructed signals. Most of these problems could be attributed to the small size dataset, and one 

avenue to counter this would be to use pre-trained filters.  

Another improvement of I2IwFILM could come from using multimodal inputs, as this would allow to 

better constrain the translation model. The methodology itself could also be utilized in other cross-

modality applications. One interesting avenue would be to look at EUV off-disc signals and use multiple 

EUV wavelengths to reconstruct the visible light observed off-disk, but close to the solar limb. Indeed, 

this region between 1.1. solar radii and 2.5 solar radii is difficult to observe by space coronagraph due 

to stray light effect, and since 2022 this region is no more observed routinely by ground-based 

coronagraphs either. But WL data prior to 2022 could be used to train a model, which would then be 

used to predict WL coronographic data after 2022.  

 



Project  B2/191/P2/DeepSun – Interconnection and valorisation of long-term solar datasets via deep learning 

BRAIN-be 2.0 (Belgian Research Action through Interdisciplinary Networks) 31 

5. DISSEMINATION AND VALORISATION (WP5) 

5.1 Engagement with the scientific community 

Oral presentation: 

● Niels Sayez, Christophe De Vleeschouwer, Véronique Delouille, Sabrina Bechet, Laure 

Lefèvre   Mitigating hallucination with non-adversarial strategies for image-to-image 

translation in solar physics. International workshop on Machine Learning and Computer 

Vision in Heliophysics, Sofia, Bulgaria, April 8, 2025 

● Niels Sayez,  SunSCC: Segmentation, clustering and classification of sunspots from 

ground-based observations using deep learning methods, STCE seminar 14 May 2024, 

Royal Observatory of Belgium 

● Xiaoyue Li, Mark D. Butala, Senthamizh Pavai Valliappan, Jasmina Magdalenic, 

Véronique Delouille, Luciano Rodriguez and Daria Shukhobodskaia, Transfer-Solar-

GAN: Generation of Input Sources for Solar Wind Models with Deep Learning, ML-

Helio 2022 conference, Boulder, USA, March 24, 2022 

Poster presentation: 

● Niels Sayez, Christophe De Vleeschouwer, Véronique Delouille, Sabrina Bechet, Laure 

Lefèvre,  SunSCC: segmenting, grouping and classifying sunspots from ground-based 

observations using deep learning, International workshop on Machine Learning and 

Computer vision in heliophysics, Sofia, Bulgaria, April 20, 2023 

5.2. Open access of data  

Catalogs pertaining from the Drawing data base (DDB), and from the sunspot group database (SGDB) 

have been included in two Table Access Protocol (TAP) services, an international standard protocol for 

data sharing widely used in astrophysics, see https://vo-tap.oma.be/ 

 

The USET L1c data set is available from the SOLARNET Virtual Observatory, see 

https://solarnet.oma.be/ and Mampaey et al. (2025). 

 

5.3. Citizen science project  

 

When working on Task 3.1 and 3.2, we constituted a dataset of about 5000 sub-images representing 

sunspots groups observed by the USET WL telescope. To each sub-image corresponds in a database 

the McIntosh classification made by the USET Operator, as well as the simplified McIntosh class 

obtained with the SunSCC algorithm. We consider here the simplified McIntosh classification depicted 

in Figure 3, and the goal of this Citizen Science project is to have a better view on the possible errors 

in classifying sunspot, by comparing the errors made by a professional (the USET Operator), an 

automated algorithm, and finally citizens familiarised with the concept without being professionals. 

 

 

https://solarnet.oma.be/
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The citizen project is available on the DeeSsun website (https://www.sidc.be/deepsun/ ), see a print 

screen of the home page of the project  in Figure 14.  

 

 

Figure 14: Homepage of the DeepSun Citizen Science project  

We provide explanations and examples on the concepts of: Polarity, Penumbra, Symmetry and 

Distribution of spots. For each of these concepts, the person will have to determine its characteristics;  

for example, the person must determine if the polarity is ‘Unipolar’ or ‘Bipolar’.  

Cut-outs of sunspots groups in WL are submitted for classification. The classification goes step by step, 

as illustrated in Figure 15: the volunteer must find the characteristics of the sunspot group by checking 

the appropriate box. The final classification (using simplified McIntosh scheme) is then automatically 

provided.  

We foresee to present this tool at the next ROB Open doors, to initiate the general public to this 

important activity carried out in our Federal Scientific Institute.  

https://www.sidc.be/deepsun/
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Figure 15: Example of a sunspot group to be classified manually. We use the simplified McIntosh scheme devised in the 

SunSCC algorithm.  
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• Sayez, N . Convolutional Neural Networks for the identification, characterization and 

modality translation of solar active regions from gound-based observations, PhD Thesis, 

UCLouvain, Mai 2025, available on  https://dial.uclouvain.be/pr/boreal/ 

• Sayez, N.,  De Vleeschouwer, C.,  Delouille, V.,  Bechet, S.,  Lefèvre L. (2025) Mitigating 

hallucination with non-adversarial strategies for image-to-image translation in solar physics. 

Astronomy & Astrophysics, under review (minor corrections). 

• Li, X., Senthamizh Pavai V. , Shukhobodskaia, D. , Butala, M.,  Luciano, R.,  Magdalenic, J., 

Delouille, V.  (2024) A Transfer Learning Method to Generate Synthetic Synoptic 

Magnetograms. Space Weather 22. doi: 10.1029/2023SW003499 
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Science 11. doi:10.1029/2023EA002974 

• Sayez, N.,  De Vleeschouwer, C.,  Delouille, V.,  Bechet, S.,  Lefèvre L. (2023) SunSCC: 

Segmenting, Grouping and Classifying Sunspots From Ground-Based Observations Using 

Deep Learning, Journal of Geophysical Research: Space Physics 128(12) doi: 

10.1029/2023JA031548 

 

 

7. ACKNOWLEDGEMENTS 

Beside the funding provided by the Belgian Federal Science Policy Office (BELSPO) through this BRAIN 

DeepSun project,  part of the work was sponsored by the Solar-Terrestrial Centre of Excellence (STCE), 

a collaboration between ROB, the Royal Meteorological Institute, and the Royal Belgian Institute for 

Space Aeronomy funded by BELSPO.  

Computational resources have been provided both by the supercomputing facilities of the UCLouvain 

(CISM/UCL) and the Consortium des Equipements de Calcul Intensif en Fedération Wallonie Bruxelles 

(CECI) funded by the Fond de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under convention 

2.5020.11 and by the Walloon Region.  

We thank the two members of the follow-up committee, Prof. Vincent Barra, and Dr Theodosios 

Chatzistergos for their time dedicated to this project, and their insightful advices and exchanges. We 

also thank Prof. Barra and  Prof Mark Butala, from University of Glasgow, for having accepted to be 

part of the jury members for the PhD defense of Dr Niels Sayez.  We are grateful to Dr Hun-Jin Jeong 

for making the Pix2PixCC code available and  to Galvez et al. for their well-prepared machine learning 

dataset.  We also acknowledge efforts supporting open-source solar data analysis Python packages 

we utilized in this work: NumPy, Matplotlib, PyTorch, SunPy, and Astropy. 

  



Project  B2/191/P2/DeepSun – Interconnection and valorisation of long-term solar datasets via deep learning 

BRAIN-be 2.0 (Belgian Research Action through Interdisciplinary Networks) 35 

ANNEXES 

 
References  
[SOON, 2008] SOON. https://www.swpc.noaa.gov/products/solar-region-summary, 2008. 
 
[SOLARNET, 2021] SOLARNET, 2021. URL https://solarnet.oma.be. 
 
[USET, 2022] USET Database, 2022. URL https://vo-tap.oma.be/. 
 
[Abd et al, 2010] Mehmmood A. Abd, Sarab F. Majed, and V. Zharkova. Automated classification of 
sunspot groups with support vector machines. In Khaled Elleithy, Tarek Sobh, Magued Iskander, 
Vikram Kapila, Mohammad A. Karim, and Ausif Mahmood, editors, Technological Developments in 
Networking, Education and Automation, pages 321–325, Dordrecht, 2010. Springer Netherlands. ISBN 
978-90-481-9151-2. 
 
[Agarap  2019] Abien Fred Agarap. Deep learning using rectified linear units (RELU), 2019. 
 
[Amar and Ben-Sharhar 2024] Elad Amar and Ohad Ben-Shahar. Image Synthesis for Solar Flare 
Prediction. The Astrophysical Journal Supplement Series , 271(1):29, March 2024. doi: 10.3847/1538-
4365/ad1dd4  10.3847/1538-4365/ad1dd4 
 
[Bechet & Clette, 2024] Sabrina Bechet and Frédéric Clette. USET Sunspot Group catalog. Table Access 
Protocol service available at http://vo-tap.oma.be/, 2024.  
 
[Carvalho et al. 2020] S. Carvalho, S. Gomes, T. Barata, A. Louren¸co, and N. Peixinho. Comparison of 
automatic methods to detect sunspots in the Coimbra Observatory spectroheliograms. Astronomy and 
Computing, 32:100385, July 2020. doi: 10.1016/j.ascom.2020.100385.  
 
[Chatzistergos et al. 2024] Theodosios Chatzistergos, Natalie A. Krivova, and Ilaria Ermolli. 
Understanding the secular variability of solar irradiance: the potential of Ca II K observations. Journal 
of Space Weather and Space Climate, 14:9, March 2024. doi: 10.1051/swsc/2024006.  
 
[Choi et al 2021] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. 
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models . In 2021 IEEE/CVF 
International Conference on Computer Vision (ICCV), pages 14347–14356, Los Alamitos, CA, USA, 
October 2021. IEEE Computer Society. doi: 10.1109/ICCV48922.2021.01410.  
 
[Clette et al. 2007] Frédéric Clette, David Berghmans, Petra Vanlommel, Ronald A.M. Van der Linden, 
André Koeckelenbergh, and Laurence Wauters. From the Wolf number to the international sunspot 
index: 25 years of SIDC. Advances in Space Research, 40(7):919–928, 2007. doi: 
10.1016/j.asr.2006.12.045.  
 
[Colak and Qahwaji 2008] T. Colak and R. Qahwaji. Automated McIntosh-Based Classification of 
Sunspot Groups Using MDI Images. Solar Physics, 248(2):277–296, April 2008. doi: 10.1007/s11207-
007-9094-3. 
 
[ Comaniciu and  Meer  2002] D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature 
space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002. 
doi: 10.1109/34.1000236. 
 



Project  B2/191/P2/DeepSun – Interconnection and valorisation of long-term solar datasets via deep learning 

BRAIN-be 2.0 (Belgian Research Action through Interdisciplinary Networks) 36 

[Creswell et al. 2018] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa 
Sengupta, and Anil A. Bharath. Generative Adversarial Networks: An Overview. IEEE Signal Processing 
Magazine, 35(1):53–65, January 2018. doi: 10.1109/MSP.2017.2765202. 
 
[Curto et al. 2008] J. J. Curto, M. Blanca, and E. Martinez. Automatic Sunspots Detection on Full-Disk 
Solar Images using Mathematical Morphology. Solar Physics, 250(2):411–429, August 2008. doi: 
10.1007/s11207-008-9224-6. 
 
[Dannehl et al. 2024] Markus Dannehl, Véronique Delouille, and Vincent Barra. An Experimental Study 
on EUV-To-Magnetogram Image Translation Using Conditional Generative Adversarial Networks. 
Earth and Space Science, 11(4):e2023EA002974, April 2024.  doi: 10.1029/2023EA002974. 
 
[Deng 2015] H. Deng, “Objective Image-Quality Assessment for High-Resolution Photospheric Images 
by Median Filter-Gradient Similarity”, Solar Physics, vol. 290, no. 5, pp. 1479–1489, 2015. 
doi:10.1007/s11207-015-0676-1. 
 
[Dietterich, 2000] Thomas G. Dietterich. Ensemble Methods in Machine Learning. In Multiple Classifier 
Systems, Lecture Notes in Computer Science, pages 1–15, Berlin, Heidelberg, 2000. Springer. ISBN 978-
3-540-45014-6. doi: 10.1007/3-540-45014-9 1. 
 
[Ester et al. 1996] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based 
algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second 
International Conference on Knowledge Discovery and Data Mining, KDD’96, page 226231. AAAI Press, 
1996. 
 
[Feng et al. 2014] S. Feng, J. Lin, Y. Yang, H. Zhu, F. Wang, and K. Ji, “Automated detecting and removing 
cloud shadows in full-disk solar images”, New Astronomy, vol. 32, pp. 24–30, 2014. 
doi:10.1016/j.newast.2014.03.006. 
 
[Fukunaga and L. Hostetler 1975] K. Fukunaga and L. Hostetler. The estimation of the gradient of a 
density function, with applications in pattern recognition. IEEE Transactions on Information Theory, 
21(1):32–40, 1975. doi:10.1109/TIT.1975.1055330.  
 
[Gao et al. 2023] Fei Gao, Tie Liu, WenQing Sun, and Long Xu. Generating Space-based SDO/HMI-like 
Solar Magnetograms from Ground-based Hα Images by Deep Learning. The Astrophysical Journal 
Supplement Series, 266(2):19, June 2023. doi: 10.3847/1538-4365/accbb9.  
 
[Goodfellow et al 2016] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT 
Press, Cambridge, MA,USA, 2016. http://www.deeplearningbook.org. 
[Hu et al 206] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image 
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–
778, 2016. doi: 10.1109/CVPR.2016.90.    
 
[Ho et al 2020] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In 
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information 
Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020. URL 
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-
Paper.pdf. 
 



Project  B2/191/P2/DeepSun – Interconnection and valorisation of long-term solar datasets via deep learning 

BRAIN-be 2.0 (Belgian Research Action through Interdisciplinary Networks) 37 

[Howard et al 2008] R. A. Howard, and the SECCHO consortium: Sun Earth Connection Coronal and 
Heliospheric Investigation (SECCHI). Space Science Review, 136(1-4): 67–115, April 2008. doi: 
10.1007/s11214-008-9341-4. 
 
[Isola et al. 2017] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-Image 
Translation with Conditional Adversarial Networks . In 2017 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), pages 5967–5976, Los Alamitos, CA, USA, July 2017. IEEE Computer 
Society. doi:10.1109/CVPR.2017.632.  
 
[Jeong et al 2020] Hyun-Jin Jeong, Yong-Jae Moon, Eunsu Park, and Harim Lee. Solar Coronal Magnetic 
Field Extrapolation from Synchronic Data with AI-generated Farside. The Astrophysical Journal Letters, 
903(2):L25, November 2020. Doi: 10.3847/2041-8213/abc255 
 
[Jeong et al 2022] Hyun-Jin Jeong, Yong-Jae Moon, Eunsu Park, Harim Lee, and Ji-Hye Baek. Improved  
AI-generated Solar Farside Magnetograms by STEREO and SDO Data Sets and Their Release. The 
Astrophysical Journal Supplement Series , 262(2):50, October 2022. doi: 10.3847/1538-4365/ac8d66 
 
[Kim et al. 2019] Taeyoung Kim, Eunsu Park, Harim Lee, Yong-Jae Moon, Sung-Ho Bae, Daye Lim, 
Soojeong Jang, Lokwon Kim, Il-Hyun Cho, Myungjin Choi, and Kyung-Suk Cho. Solar farside 
magnetograms from deep learning analysis of STEREO/EUVI data. Nature Astronomy, 3:397–400, 
March 2019. 
 
[Knyazeva et al. 2020] Irina Knyazeva, Andrey Rybintsev, Timur Ohinko, and Nikolay Makarenko. Deep-
Learning Approach for McIntosh-Based Classification Of Solar Active Regions Using HMI and MDI 
Images. In Advances in Neural Computation, Machine Learning, and Cognitive Research III, pages 239–
245, January 2020. ISBN 978-3-030-30424-9. doi: 10.1007/978-3-030-30425-6 28. 
 
[Krizhevsky et al. 2012] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification 
with deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, 
editors, Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012. 
 
[Lawrance et al., 2022] Bendict Lawrance, Harim Lee, Eunsu Park, Il-Hyun Cho, Yong-Jae Moon, Jin-Yi 
Lee, A. Shanmugaraju, and Sumiaya Rahman. Generation of Solar Coronal White-light Images from 
SDO/AIA EUV Images by Deep Learning. The Astrophysical Journal , 937(2):111, October 2022. doi: 
10.3847/1538-4357/ac8c24. 
 
[LeCun et al. 2015] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436, 
521 2015. doi:10.1038/nature14539.  
 
[Lee et al. 2021] Harim Lee, Eunsu Park, and Yong-Jae Moon. Generation of Modern Satellite Data 
from Galileo Sunspot Drawings in 1612 by Deep Learning. The Astrophysical Journal, 907(2):118, 
February 2021. doi: 10.3847/1538-4357/abce5f. 
 
[Leka et al. 2019] K. D. Leka, Sung-Hong Park, Kanya Kusano, Jesse Andries, Graham Barnes, Suzy 
Bingham, D. Shaun Bloomfield, Aoife E. McCloskey, Veronique Delouille, David Falconer, Peter T. 
Gallagher, Manolis K. Georgoulis, Yuki Kubo, Kangjin Lee, Sangwoo Lee, Vasily Lobzin, JunChul Mun, 
Sophie A. Murray, Tarek A. M. Hamad Nageem, Rami Qahwaji, Michael Sharpe, Robert A. 
Steenburgh, Graham Steward, and Michael Terkildsen. A Comparison of Flare Forecasting Methods. 
II. Benchmarks, Metrics, and Performance Results for Operational Solar Flare Forecasting Systems. 
The Astrophysical Journal Supplement Series , 243(2):36, August 2019. doi: 10.3847/1538-
4365/ab2e12 



Project  B2/191/P2/DeepSun – Interconnection and valorisation of long-term solar datasets via deep learning 

BRAIN-be 2.0 (Belgian Research Action through Interdisciplinary Networks) 38 

[Lemen et al. 2012] James R. Lemen, and the AIA consortium: The Atmospheric Imaging Assembly 
(AIA) on the Solar Dynamics Observatory (SDO). Solar Physics, 275(1-2):17–40, January 2012. doi: 
10.1007/s11207-011-9776-8.  
 
[Li et al. 2024 ] Xiaoyue Li, Senthamizh Pavai Valliappan, Daria Shukhobodskaia, Mark D. Butala, 
Luciano Rodriguez, Jasmina Magdalenic, and Véronique Delouille. A Transfer Learning Method to 
Generate Synthetic Synoptic Magnetograms. Space Weather, 22(1):e2023SW003499, January 2024. 
doi:10.1029/2023SW003499.   
 
[Mampaey et al. 2025] Benjamin Mampaey, Véronique Delouille, and Robbe Vansintjan. The 
SOLARNET Virtual Observatory: An Effective Way to Search Solar Datasets and Cross-Search with Solar 
Events. Solar physics, 300(2):16, February 2025. doi: 10.1007/s11207-025-02424-0.   
 
[Mao et al. 2017] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, and Stephen Paul 
Smolley. Least Squares Generative Adversarial Networks . In 2017 IEEE International Conference on 
Computer Vision (ICCV), pages 2813–2821, Los Alamitos, CA, USA, October 2017. IEEE Computer 
Society. doi:10.1109/ICCV.2017.304. 
 
[Martens et al. 2012] P. C. H. Martens, G. D. R. Attrill, A. R. Davey, A. Engell, S. Farid, P. C. Grigis, J. 
Kasper, K. Korreck, S. H. Saar, A. Savcheva, Y. Su, P. Testa, M. Wills-Davey, P. N. Bernasconi, N. E. 
Raouafi, V. A. Delouille, J. F. Hochedez, J. W. Cirtain, C. E. DeForest, R. A. Angryk, I. De Moortel, T. 
Wiegelmann, M. K. Georgoulis, R. T. J. McAteer, and R. P. Timmons. Computer Vision for the Solar 
Dynamics Observatory (SDO). Solar Physics, 275(1-2):79–113, January 2012. doi: 10.1007/s11207-
010-9697-y. 

 
[McIntosh, 1990] Patrick S. McIntosh. The Classification of Sunspot Groups. Solar Physics, 125(2):251–
267, September 1990. doi: 10.1007/BF00158405. 
 
[Muraközy, 2022] Judit Muraközy. Variations of the Internal Asymmetries of Sunspot Groups during 
Their Decay. The Astrophysical Journal, 925 (1):87, January 2022. doi: 10.3847/1538-4357/ac3de6.  
 
[Nguyen et al. 2004] Trung Thanh Nguyen, Claire P. Willis, Derek J. Paddon, and Hung Son Nguyen. On 
learning of sunspot classification. In Mieczyslaw A. Klopotek, Slawomir T. Wierzchon, and Krzysztof 
Trojanowski, editors, Intelligent Information Processing and Web Mining, pages 59–68, Berlin, 
Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-39985-8. 
 
[Nguyen et al, 2006] Trung Thanh Nguyen, Claire P. Willis, Derek J. Paddon, and Hung Son Nguyen. A 
hybrid system for learning sunspot recognition and classification. In 2006 International Conference on 
Hybrid Information Technology, volume 2, pages 257–264, 2006. doi: 10.1109/ICHIT.2006.253620. 
 
[Palladino et al. 2022] Luigi Palladino, Evridiki Ntagiou, Johannes Klug, Judit Palacios, and Ralf Keil. 
Sunspot Groups Detection and Classification on SDO/HMI Images using Deep Learning Techniques. In 
2022 IEEE Aerospace Conference (AERO), pages 1–10, March 2022. doi: 
10.1109/AERO53065.2022.9843222. ISSN: 1095-323X. 
 
[Paszke et al. 2019] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory 
Chanan, Trevor 
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kpf, Edward Yang, 
Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie 
Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance deep learning library, 
2019. 



Project  B2/191/P2/DeepSun – Interconnection and valorisation of long-term solar datasets via deep learning 

BRAIN-be 2.0 (Belgian Research Action through Interdisciplinary Networks) 39 

 
[Peake et al., 2020] Edward J Peake, Raphael Chevasson, Stefan Pszczolkowski, Dorothee P Auer, and 
Christoph Arthofer. Ensemble learning for robust knee cartilage segmentation: data from the 
osteoarthritis initiative. BioRxiv, pages 2020–09, 2020. 
 
[Perez et al. 2017] Ethan Perez, Florian Strub, Harm Vries, Vincent Dumoulin, and Aaron Courville. 
Film: Visual reasoning with a general conditioning layer. Proceedings of the AAAI Conference on 
Artificial Intelligence, 32, 09 2017. doi: 10.1609/aaai.v32i1.11671. 
 
[Pettauer and Brandt, 1997] T. Pettauer and P. N. Brandt. On Novel Methods to Determine Areas of 
Sunspots from Photoheliograms. Solar Physics, 175(1):197–203, September 1997. doi: 
10.1023/A:1004903201224. 
 
[Pomoell and Poedts, 2018.] Jens Pomoell and S. Poedts. EUHFORIA: European heliospheric 
forecasting information asset. Journal of Space Weather and Space Climate, 8:A35, June 2018.. doi: 
10.1051/swsc/2018020. 
 
[Ramunno et al. 2024] Francesco Pio Ramunno, Hyun-Jin Jeong, Stefan Hackstein, André Csillaghy, 
Svyatoslav Voloshynovskiy, and Manolis K. Georgoulis. Magnetogram-to-Magnetogram: Generative 
Forecasting of Solar Evolution. In Dominik Dold, Alexander Hadjiivanov, and Dario Izzo, editors, 
Proceedings of SPAICE2024: The First Joint European Space Agency / IAA Conference on AI in and for 
Space, pages 75–80, October 2024. doi: 10.5281/zenodo.13885515. 
 
[Rochus et al. 2020] P. Rochus and the EIT Consortium, The Solar Orbiter EUI instrument: The Extreme 
Ultraviolet Imager. Astronomy & Astrophysics, 642:A8, October 2020. doi:10.1051/0004-
6361/201936663. 
 
[Rombach et al. 2022] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn 
Ommer. High-Resolution Image Synthesis with Latent Diffusion Models . In 2022 IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (CVPR), pages 10674–10685, Los Alamitos, CA, USA, June 
2022. IEEE Computer Society. doi: 10.1109/CVPR52688.2022.01042. 
 
[Ronneberger et al. 2015] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional 
networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted 
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, 
Proceedings, Part III 18, pages 234–241. Springer, 2015. 
[Saharia et al. 2022] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim 
Salimans, David Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM 
SIGGRAPH 2022 Conference Proceedings, SIGGRAPH ’22, New York, NY, USA, 2022. Association for 
Computing Machinery. ISBN 9781450393379. doi: 10.1145/3528233.3530757.  
 
[Sayez et al. 2023] Niels Sayez, Christophe De Vleeschouwer, Véronique Delouille, Sabrina Bechet, and 
Laure Lefèvre. SunSCC: Segmenting, Grouping and Classifying Sunspots From Ground-Based 
Observations Using Deep Learning. Journal of Geophysical Research (Space Physics), 
128(12):e2023JA031548, December 2023. doi: 10.1029/2023JA031548.  
 
[Sayez et al 2025] Niels Sayez, Christophe De Vleeschouwer, Véronique Delouille, Sabrina Bechet, and 
Laure Lefèvre. Mitigating hallucination with non-adversarial strategies for image-to-image translation 
in solar physics. Astronomy & Astrophysics, 2025. (Submitted) 
 



Project  B2/191/P2/DeepSun – Interconnection and valorisation of long-term solar datasets via deep learning 

BRAIN-be 2.0 (Belgian Research Action through Interdisciplinary Networks) 40 

[Scherrer et al 1995] P. H. Scherrer, R. S. Bogart, R. I. Bush, J. T. Hoeksema, A. G. Kosovichev, J. Schou, 
W. Rosenberg, L. Springer, T. D. Tarbell, A. Title, C. J. Wolfson, I. Zayer, and MDI Engineering Team. 
The Solar Oscillations Investigation - Michelson Doppler Imager. Solar Physics, 162(1-2):129–188, 
December 1995. doi: 10.1007/BF00733429.  
 
[Scherrer et al. 2012] P. H. Scherrer, J. Schou, R. I. Bush, A. G. Kosovichev, R. S. Bogart, J. T. Hoeksema, 
Y. Liu, T. L. Duvall, J. Zhao, A. M. Title, C. J. Schrijver, T. D. Tarbell, and S. Tomczyk. The Helioseismic 
and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar Physics, 
275(1-2):207–227, January 2012. doi: 10.1007/s11207-011-9834-2. 
 
[Shin et al. 2020] Gyungin Shin, Yong-Jae Moon, Eunsu Park, Hyunjin Jeong, Harim Lee, and Sung-Ho 
Bae. Generation of High-resolution Solar Pseudo-magnetograms from Ca II K Images by Deep Learning. 
The Astrophysical Journal Letters, 895(1):L16, May 2020. doi: 10.3847/2041-8213/ab9085.  
 
[Son et al. 2021] Jihyeon Son, Junghun Cha, Yong-Jae Moon, Harim Lee, Eunsu Park, Gyungin Shin, and 
Hyun-Jin Jeong. Generation of He I 1083 nm Images from SDO AIA Images by Deep Learning. The 
Astrophysical Journal , 920(2):101, October 2021. doi: 10.3847/1538-4357/ac16dd 
 
[Song et al. 2024] Wei Song, Ying Ma, Haoying Sun, Xiaobing Zhao, and Ganghua Lin. Improving the 
spatial resolution of solar images using super-resolution diffusion generative adversarial networks, 
Astronomy and Astrophysics,  686:A272, June 2024. doi: 10.1051/0004-6361/202349100.  
 
[Steinegger et al. 1998] Michael Steinegger, Jose A. Bonet, Manuel Vázquez, and Antonio Jim´enez. 
On the Intensity Thresholds of the Network and Plage Regions. Solar Physics, 177(1-2):279–286, 
January 1998. doi: 10.1023/A:1004920125173. 
 
[Sun et al 2023] Wenqing Sun, Long Xu, Yin Zhang, Dong Zhao, and Fengzhen Zhang. Solar Active 
Region Magnetogram Generation by Attention Generative Adversarial Networks. Research in 
Astronomy and Astrophysics, 23(2):025003, February 2023. doi: 10.1088/1674-4527/acaa92.  
 
[SunPy 2020] The SunPy Community, Will T. Barnes, Monica G. Bobra, Steven D. Christe, Nabil Freij, 
Laura A. Hayes, Jack Ireland, Stuart Mumford, David Perez-Suarez, Daniel F. Ryan, Albert Y. Shih, 
Prateek Chanda, Kolja Glogowski, Russell Hewett, V. Keith Hughitt, Andrew Hill, Kaustubh Hiware, 
Andrew Inglis, Michael S. F. Kirk, Sudarshan Konge, James Paul Mason, Shane Anthony Maloney, 
Sophie A. Murray, Asish Panda, Jongyeob Park, Tiago M. D. Pereira, Kevin Reardon, Sabrina Savage, 
Brigitta M. Sipocz, David Stansby, Yash Jain, Garrison Taylor, Tannmay Yadav, Rajul, and Trung Kien 
Dang. The sunpy project: Open source development and status of the version 1.0 core package. The 
Astrophysical Journal, 890:68–, 2020. doi: 10.3847/1538-4357/ab4f7a.  
[Turmon et al. 2002] M. Turmon, J. M. Pap, and S. Mukhtar. Statistical Pattern Recognition for Labeling 
Solar Active Regions: Application to SOHO/MDI Imagery. The Astrophysical Journal, 568(1):396–407, 
March 2002. doi: 10.1086/338681. 
 
[Verbeeck et al. 2014] C. Verbeeck, V. Delouille, B. Mampaey, and R. De Visscher. The SPoCA-suite: 

Software for extraction, characterization, and tracking of active regions and coronal holes on EUV 

images. Astronomy & Astrophysics, 561:A29, January 2014. doi: 10.1051/0004-6361/201321243. 

 
[Wang et al., 2018] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan 
Catanzaro. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs . In 
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 8798–8807, Los 
Alamitos, CA, USA, June 2018. IEEE Computer Society. doi: 10.1109/CVPR.2018.00917.  



Project  B2/191/P2/DeepSun – Interconnection and valorisation of long-term solar datasets via deep learning 

BRAIN-be 2.0 (Belgian Research Action through Interdisciplinary Networks) 41 

 
[Watson et al. 2009] F. Watson, L. Fletcher, S. Dalla, and S. Marshall. Modelling the Longitudinal 
Asymmetry in Sunspot Emergence: The Role of the Wilson Depression. Solar Physics, 260(1):5–19, 
November 2009. doi: 10.1007/s11207-009-9420-z 
 
[Zamir 2012] A. Roshan Zamir, A. Dehghan, and M. Shah. GMCP-tracker: Global multi-object tracking 

using generalized minimum clique graphs. In Proceedings of the European Conference on Computer 

Vision (ECCV), 2012. 

[Zharkov et al. 2005] S. Zharkov, V. Zharkova, S. Ipson, and A. Benkhalil. Technique for Automated 
Recognition of Sunspots on Full-Disk Solar Images. EURASIP Journal on Applied Signal Processing, 
2005:318462, December 2005. doi: 10.1155/ASP.2005.2573 
 
[Zharkova, et al. 2005] V. V. Zharkova, J. Aboudarham, S. Zharkov, S. S. Ipson, A. K. Benkhalil, and N. 
Fuller. Solar Feature 
Catalogues In EGSO. Solar Physics, 228(1-2):361–375, May 2005. doi: 10.1007/s11207-005- 
5623-0. 
 


