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ABSTRACT 

 

Context 

A substantial part of the timber trade is still illegal, and illegal logging is the most profitable 

biodiversity crime. UN Environment estimates that illegal logging and the associated timber trade 

counts up to US$50 to $152 billion per year. Illegal logging involves a high risk of irreversible 

damage to ecosystems associated with the exploitation of highly sought after, sometimes 

protected, species. Timber regulations are already active (CITES, FLEGT, EUTR), but 

implementation and enforcement are a challenge. Currently, Belgium has the negative 

connotation of being the ‘hub of illegal timber trade’. 27.5% of the total EU28 imports of primary 

tropical timber products are imported via Belgium (mainly via the port of Antwerp). Wood 

identification is a key process in the enforcement that needs to check whether the shipment 

corresponds with the products mentioned on the accompanying documents. For this reason, there 

is a growing demand for timber identification tools that can be applied by law enforcement 

officers. 

The Tervuren xylarium is the Belgian governmental collection of wood samples. It is an 

internationally renowned part of the federal scientific heritage, housed by the Royal Museum for 

Central Africa and comprises reference material of 13 000 different botanical species. One of the 

growing actual functions of the collection is supporting forensic research through verification of 

a species’ identity. The most common technique of timber identification is a wood anatomical 

assessment. Machine Learning methods are likely to be able to assist the wood identification 

process for non-specialists. Wood species have indeed characteristic features at different 

microscopical magnifications. However, some of those features are highly variable, which 

hampers the development of classical dichotomy identification keys that can be used by non-

specialists. Moreover, many features seen on wood surfaces are to be understood as artifacts 

(fissures, traces of mechanical damage, fungi and insect attacks) and are not always easy to 

distinguish from diagnostic characteristics for the untrained eye. The Tervuren xylarium offers the 

most complete assemblage of reference material for the development of new wood identification 

approaches. 

The project aimed at automating part of the wood identification process by applying artificial 

intelligence techniques for the analysis of wood anatomical images of timber species of the 

Democratic Republic of the Congo. The tree flora of Central Africa comprises 3013 species, 27 

of these belong to the class 1 commercial timber species of the DRC and are actually intensively 

logged and traded, 20 to class 2 (have potentially a big commercial value), 44 to class 3 (are 

considered to be promoted) and 879 to class 4 (commercial value is not yet known). The project 

used xylarium samples of all the species of the four classes and took advantage of the power of 

modern deep learning approaches. The project relied on expert wood anatomical descriptions 

which served as annotated training data to develop the software. The project was unique because 

of the large number of African species, the application of deep learning and a database of 

standardized descriptions that are available online. In a first work package expert annotations of 

microscopic and mesoscopic images of transverse surfaces of 1000 Congolese wood species were 

made. In Work package 2 we developed an image processing pipeline for semi-automated 

annotation of microscopic and mesoscopic wood sections. In Work package 3 we focused on the 

production of a user-friendly interface. 
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Objectives 

The SmartwoodID project aimed at improving the process of analysis of timber species from the 

Democratic Republic of the Congo (DRC), a large species-rich country where identification is a 

daunting task, leading to regular law breaches. The general ambition was to explore the 

possibilities for automating identification of timber species by applying machine learning, using 

large datasets of macroscopic features and high-resolution optical scans of endgrain surfaces. 

The project had three research objectives:  

• Research objective 1: Constructing a database of flat-bed scans from end-grain surfaces 

and macroscopic features of timber species from the Democratic Republic of the Congo.  

• Research objective 2: Development of illustrated classification keys for wood 

identification of Congo.  

• Research objective 3: Developing of an illustrated classification key assisted by machine 

learning. 

Conclusions 

The SmartWoodID image database offers new opportunities for developing identification systems 

based on recognition of diagnostic wood anatomical features. This database is unique since it 

covers a large number of African tree species and lower taxa of which the macroscopic structure 

is visualized and described. The Tervuren Wood Collection provides this thanks to its heritage of 

collecting reliable reference material over the span of more than a century. A total of 56% of all 

DRC tree species and lower taxa are currently available within the Tervuren Wood Collection. 

The first version of the SmartWoodID image database that is presented here consists of a set of 

954 timber species and lower taxa present in the DRC forests. The database focuses on the 

macroscopic anatomical features that can be encountered on a high-resolution scan of end-grain 

wood surface. The database accounts for irregularities and natural variability, using multiple 

specimens with large end-grain surfaces. This makes it a robust reference database for research 

on wood in general and will allow the development of tools for aiding in law enforcement to 

combat illegal logging. 

The study into identification keys (WP2) highlights the inherent limitations of the 31 expert-

defined, accessible macroscopic cross-sectional features for taxonomic identification across a 

diverse range of timber species, such as those found in the Congo Basin. While classification 

accuracy improves at higher taxonomic ranks, genus- and family-level predictions remain limited 

due to overlapping anatomical features among taxa. Nevertheless, macroscopic cross-sectional 

features retain diagnostic value when applied within narrower taxonomic scopes. The successful 

discrimination of Pterocarpus species—once considered indistinguishable without laboratory-

based methods—demonstrates that readily observable anatomical features can enable species-

level identification in the field. Further improvements in diagnostic accuracy can be achieved by 

incorporating high-resolution, large-area imaging and multi-specimen datasets. These approaches 

more effectively capture intra-specific anatomical variability than conventional single-sample 

methods and enable the extraction of quantitative anatomical information at a finer scale. 

Integrating such enhancements offers promising pathways to increase both taxonomic resolution 

and classification reliability. However, practical constraints in field environments—such as time 

pressures and limited equipment—necessitate alternative strategies for reliable in situ wood 

identification. Continued progress will depend on advancing CV–based identification systems, 
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particularly CNNs, which can directly process macroscopic images to deliver accurate and rapid 

classification. These models offer strong potential for scalable, efficient, and field-ready timber 

verification applications. 

The results on WP3 show that CNN, such as the applied Xception architecture, can successfully 

extract features for classifying image patches of sanded cross-sectional images to classify different 

timbers at the genus level, and distinguishing between anomaly-free and anomalous wood. The 

performance on the test data varied for individual genera, with some benefiting from training on 

anomaly-free images, while for other genera, like Cynometra, higher recall was observed for the 

model trained on anomalous images. Grad-CAM analysis revealed the model's preference for 

regions on patches showing unobscured wood anatomical tissue, underscoring the importance of 

clear wood anatomy in training CNNs for wood identification. This could enable CNNs to capture 

diagnostic patterns more effectively, which in turn would lead to better discrimination between 

timbers, even when applied to anomalous specimens in the field. The inclusion of anomalous 

patches had a limited impact, but subtly enhanced performance on anomalous patches. The 

findings therefore suggest that CNNs (like Xception) demonstrate the highest proficiency in timber 

classification when trained on anomaly-free images, making this approach highly effective for 

developing CV-based wood identification models for deployment in the field. This demonstrates 

the potential of deep learning for automated timber genus identification. The results highlight that 

while all classification models capture similar underlying patterns, CNNs outperform 

identification keys on the 31 macroscopic cross-sectional IAWA features due to their ability to 

extract discriminative image features without relying on predefined descriptors. Performance 

trends across different taxonomic scopes emphasize the importance of training data diversity, as 

models trained on broader datasets exhibit greater generalization capabilities compared to those 

trained exclusively on commercial timbers. 

Beyond standard multiclass classification CNN, object re-identification CNN approaches provide 

valuable alternatives, particularly in forensic contexts where identification may be less critical 

than ruling out certain timbers. The binary verification approach demonstrates strong performance 

in this regard, though effectiveness is constrained by ranking limitations and computational 

demands. Embedding-based re-identification, while computationally efficient, underperforms in 

this study, suggesting that improved mining strategies and loss functions could enhance its 

reliability. Additionally, object re-identification produces information on similarity to specific 

reference specimens, rather than producing a direct prediction of classes (e.g. genera in this 

study), providing valuable information for forensic researchers.  

The results on an integrated key using CV and the 31 expert-defined features demonstrate that 

while integrating expert-defined macroscopic anatomical features can yield moderate 

improvements in CNN-based genus predictions, these benefits are highly dependent on both the 

specific genera and the depth of re-ranking applied. The overall results affirm that CNN models 

alone already encode substantial taxonomic information, likely due to their training on 

challenging diagnostic comparisons that extend beyond traditional anatomical descriptors. 

Crucially, re-ranking within the top two to five CNN predictions offers the most consistent 

performance gains across accuracy, precision, and recall—especially at the top three threshold. 

Beyond this range, performance diminishes due to misclassifications introduced by 

overemphasizing weak or misleading anatomical features. This finding underscores the limited 

but strategic utility of macroscopic cross-sectional wood anatomy for refining identifications. 
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From a field application perspective, particularly in the context of frontline timber verification, 

the implications are twofold. First, the CNN model offers a rapid and accessible method for genus-

level identification that already performs well in most cases. Second, refinement methods such as 

re-ranking must be applied selectively, as indiscriminate use—especially on protected taxa—can 

reduce recall, increasing the risk of overlooking high-priority timbers such as Khaya.  

Future research should address the limitations of embedding-based models using the current state-

of-the-art to offer a powerful approach for automated wood identification. These models should 

be explored in hybrid studies that integrate multiple diagnostic data modalities—macroscopic 

images, microscopic wood anatomy, and chemical fingerprinting—to improve classification 

accuracy and enable identification at sharper taxonomic resolution. As global efforts to combat 

illegal logging and enforce sustainable trade regulations intensify, advancing AI-driven timber 

identification will be essential for strengthening forensic capabilities and ensuring responsible 

resource management. 

 

Keywords 

Wood Anatomy 

Wood Identification 

Macroscopic wood anatomical assessment 

Cross-section 

Computer Vision-based wood identification 

Object re-identification 

Gradient-weighted class activation mapping 

  



Project  B2 / 202 / P2 / SmartWoodID - Smart classification of Congolese timbers: deep learning techniques for enforcing forest 
conservation 

BRAIN-be 2.0 (Belgian Research Action through Interdisciplinary Networks) 10 

1. INTRODUCTION 

Illegal logging: A major threat to global forests and sustainability 

Environmental crimes—illegal activities that exploit natural resources and harm ecosystems—are 

among the most pressing global challenges (van Uhm, 2024; White, 2018). They contribute to 

biodiversity loss by driving deforestation, habitat destruction, and the decline of vulnerable 

species through illegal logging, poaching, and land degradation (FAO, 2022; Gibbs and Boratto, 

2017; Lirëza and Koçi, 2023). These activities disrupt entire ecosystems, reducing species 

richness and threatening key species that maintain ecological stability. Furthermore, these crimes 

undermine sustainable development by depleting essential natural resources such as timber, 

freshwater, and soil fertility, which local communities and economies rely on for their livelihoods, 

jeopardizing the well-being of future generations (Gabris, 2025). Protecting forests, wildlife, and 

other natural resources is therefore crucial to preserving ecological balance and ensuring long-

term environmental sustainability. (DeFries et al., 2007; Inatimi, 2023). Among environmental 

crimes, illegal logging is the most profitable, representing 50 to 152 billion USD per year 

(equivalent to 10-30 % of the total global timber trade (Nellemann and INTERPOL Evironmental 

Crime Programme (eds), 2012)), posing a high risk of irreversible damage, particularly when 

targeting threatened species (Lowe et al., 2016; Tacconi et al., 2016). It leads to widespread 

deforestation and endangers the survival of vulnerable tree species. 

The importance of forests in tropical regions 

The problem is particularly severe in tropical regions, where forests play an indispensable role in 

regulating climate and sustaining species richness (Stokstad, 2014). Tropical forests sequester and 

store vast amounts of carbon, acting as one of the planet’s most important carbon sinks and 

helping to mitigate the effects of anthropogenic climate change (Lewis et al., 2015; Watson et al., 

2000). Forest degradation not only releases stored carbon into the atmosphere but also reduces 

the planet’s capacity to sequester future emissions, intensifying global warming (Mitchell et al., 

2017). Estimates suggest that 30% to 90% of traded tropical timber is harvested illegally, making 

illegal logging a major driver of forest loss (Hirschberger, 2008; Hoare, 2015; Magrath et al., 

2009). Among these regions, the Congo Basin stands out as a crucial stronghold for climate 

stability and biodiversity conservation (Shapiro et al., 2021). As the second-largest tropical 

rainforest in the world, it spans approximately 178 million hectares (Mayaux et al., 2013) and 

plays a pivotal role in carbon sequestration, acting as a significant and stable carbon sink in 

aboveground biomass—sequestering 0.66 tonnes of carbon per hectare per year over the three 

decades leading up to 2015 (Dargie et al., 2017; Hubau et al., 2020). However, illegal logging 

threatens this critical biome, not only accelerating forest degradation but also disrupting 

indigenous communities that depend on these forests for their livelihoods (Aleman et al., 2017; 

Mulvagh, 2006; Piabuo et al., 2021; Réjou-Méchain et al., 2021). This problem is especially 

pertinent in the DRC. Approximately half of the rainforest area in the Congo Basin is located 

within the boundaries of the DRC (Potapov et al., 2012), and the DRC features the highest area 

of annual forest cover loss compared to other Central-African countries ((Rome), 2010; Lawson, 

2014). Other forest types in the DRC, such as the dry deciduous Miombo woodlands, are also 

being overexploited, particularly for tree species that are currently—or soon may be—threatened 

with extinction (CITES, 2019, 2022). In southern DRC, Miombo woodlands cover nearly 23% of 

the national forest area and dominate the former Katanga province (Kabulu Djibu et al., 2008; 

Potapov et al., 2012). These forests face increasing anthropogenic pressure from agricultural 

expansion, fuelwood collection, charcoal production, and rapid urbanisation (Hourticq and 
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Carole Megevand, 2013; Münkner et al., 2015; Potapov et al., 2012). This has led to loss in 

species diversity and abundance, reduced availability of non-wood forest products, declining 

access to bushmeat, and negative climatic effects such as altered rainfall patterns (Barima et al., 

2011; Kazadi and Kaoru, 1996; Malaisse, 1997). A particularly alarming trend is the illegal 

exploitation of Pterocarpus tinctorius Welw., a high-value timber species. Once used primarily 

in traditional medicine and as a dye (Augustino and Hall, 2008), it has become a target for 

unsustainable logging driven by demand in the non-Congolese luxury furniture market (Hong et 

al., 2020). In areas such as Kasenga territory, this has shifted local labour away from subsistence 

farming toward illicit logging, accelerating forest fragmentation and degradation (Cabala Kaleba 

et al., 2017). Given its ecological significance, protecting tropical regions like the Congo Basin, 

and the DRC in particular, is paramount to mitigating climate change, preserving biodiversity, 

and ensuring the sustainability of tropical forest ecosystems worldwide. 

Law enforcement 

To combat this issue, a complex framework of international and national regulations has been 

established. At the international level, the Convention on International Trade in Endangered 

Species of Wild Fauna and Flora (CITES) plays a central role (UNEP-WCMC (Comps.), 2022). 

CITES regulates the trade of protected species through a tiered system of Appendices: Appendix I 

prohibits commercial trade in species threatened with extinction; Appendix II restricts trade in 

species that are not currently threatened but could become so without strict regulation; and 

Appendix III covers species protected at the request of a Party that requires international 

cooperation to prevent unsustainable exploitation (UNEP-WCMC (Comps.), 2022). Importantly, 

CITES also extends protections to so-called “look-alike” species, which resemble listed taxa 

closely enough to be easily confused in trade (Gasson et al., 2011). Under CITES, importers are 

required to declare both the botanical identity and geographic origin of imported wood 

(Wiedenhoeft et al., 2019). 

Complementing CITES, a variety of policy measures have been adopted at regional and national 

levels to improve forest law enforcement and governance. In the European Union, the FLEGT 

Action Plan was launched in 2003 (Ayed, 2006; EC, 2003; Jonsson et al., 2015). The plan evolved 

into the FLEGT licensing system, operationalized through bilateral voluntary partnership 

agreements with exporting countries, to ensure only legally harvested timber enters the EU market 

(European Commission, 2019; Jonsson et al., 2015). To further strengthen the system, the EUTR 

came into force in 2013, shifting responsibility to importers and first-time suppliers to exercise 

due diligence in minimizing the risk of illegality (Parliament, 2023; Tegegne et al., 2018; Union, 

2010). More recently, the EUDR expanded this framework by imposing stricter requirements on 

deforestation-free supply chains (Köthke et al., 2023; Parliament, 2023). Together, these 

instruments prohibit placing illegally harvested timber on the EU market, mandate risk assessment 

and mitigation measures, and require traceability back to the country, region, or concession of 

harvest (Lowe et al., 2016). 

In the United States, the Lacey Act—originally enacted in 1900 and amended in 2008 to cover 

plants and plant products—prohibits the trade of illegally sourced timber (Alexander, 2014; Lowe 

et al., 2016). This law requires identification at the genus–species level and specification of the 

country of harvest, and violations include importing, exporting, transporting, selling, or acquiring 

plants in violation of any domestic or foreign law, as well as falsifying records or mislabelling 

products.  
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Comparable legislation is enforced in other parts of the world. Australia regulates illegal timber 

through the Illegal Logging Prohibition Act 2012 and Regulation 2012, which criminalize the 

import or processing of illegally harvested timber and require businesses to conduct due diligence 

on supply chains (Lowe et al., 2016; World Resources Institute, 2024). The framework obliges 

importers and processors to collect information on product species, origin, and harvest location, 

assess risks of illegality, and maintain written records. Following a mandatory ten-year review, 

the original act was amended in 2024 through the Illegal Logging Prohibition Amendment 

(Strengthening Measures to Prevent Illegal Timber Trade) Act 2024 and the Illegal Logging 

Prohibition Rules 2024. These were enforced starting March 2025, with a six-month transition 

period. The reforms introduced two streamlined risk-assessment pathways (certified vs. non-

certified timber), a repeat due diligence exception for imports from the same supplier within 

twelve months, and strengthened monitoring through timber testing technologies and mandatory 

pre-import notices. Enforcement has also been tightened. The reforms expand audit powers, 

establish strict liability offenses alongside fault-based ones, and increase penalties. Public 

disclosure of non-compliance further raises reputational risks.  

Canada similarly enforces the Wild Animal and Plant Protection and Regulation of International 

and Interprovincial Trade Act (1992), which prohibits the import or possession of illegally 

harvested plants and imposes penalties for misrepresentation of plant identity or origin 

(Government of Canada, 2025; Lowe et al., 2016). 

Despite these legal frameworks, enforcement remains a major challenge. Enforcing these 

mechanisms is crucial to curbing illegal logging and ensuring forests remain a vital resource for 

future generations (Gasson et al., 2021; Piabuo et al., 2021). The enforcement of timber trade 

regulations depends on the ability to accurately verify both the species and origin of traded wood 

(Lowe et al., 2016).  Species verification ensures that the declared taxon matches the wood being 

sold, which is critical where regulations apply to particular taxa (e.g., Dalbergia spp. under 

CITES). Origin verification, in contrast, establishes the geographic source of the timber, since 

legality is tied to compliance with harvesting laws in the jurisdiction of harvest. Trade documents 

do not always reflect the actual timber being sold enabling illegal timber trade and fraud, and 

underscoring the need to verify claims of legality and ensure compliance with regulatory 

frameworks.  
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2. STATE OF THE ART AND OBJECTIVES 

State of current knowledge at national and international level 

A total of 5 billion m³ roundwood is harvested annually from the world’s forests. A substantial 

part of timber harvest is illegal, and illegal logging is the most profitable natural resource crime 

(May, 2017). The associated illegal timber trade represents 50 to 152 billion USD per year, 

equivalent to 10-30 % of the total (legal + illegal) global timber trade (UNEP & INTERPOL, 2012). 

Illegal logging involves a high risk of irreversible damage to ecosystems, associated with the 

exploitation of highly sought after, sometimes protected, species. This is especially pertinent for 

tropical species, as it is estimated that 30-90% of the tropical timber volume is harvested illegally 

(Deklerck et al., 2020; Vlam et al., 2018; Hoare, 2015; Hirschberger, 2008). Timber regulations 

are already active (CITES, FLEGT, EUTR), but implementation and enforcement are a challenge. 

Currently, Belgium has the negative connotation of being the ‘illegal timber trade hub’ of Europe. 

27.5% of the total European (28 countries) imports of primary tropical timber products are 

shipped via Belgium (mainly via the port of Antwerp). Wood identification is a key process in 

enforcement. Law officers need this to check whether the shipment corresponds with the products 

and species mentioned in the accompanying documents. Hence, there is a growing demand for 

robust and routine timber identification tools that are easily accessible for law enforcement 

officers. This societal context primarily determined the actual themes of research groups involved 

in wood identification. 

Wood identification refers to the process of determining the botanical taxon of a given sample 

with the highest possible certainty based on a set of diagnostic features (Jacobs and Baker, 2018). 

Identification follows a hierarchical refinement process, iteratively adjusting the classification to 

achieve the highest possible taxonomic specificity. Ideally, a sample is identified at the species 

level, but when species-level resolution is not feasible, it may be assigned to a broader genus or 

functional group representing similar timber types. Identification consists of two key steps: feature 

extraction (or assessment) and classification. Feature extraction involves isolating diagnostically 

relevant characteristics from raw data. These features can later be used in classification models to 

distinguish between taxa or other categories, depending on the analytical context. Classification, 

in turn, uses these extracted features to predict class probabilities and assign specimens to one or 

more taxa based on the highest probability.  

Various approaches to extract stable diagnostic patterns are being studied (Schmitz et al., 2019). 

One of the most established methods involves the study of wood anatomy (Koch et al., 2015; 

Richter and Dallwitz, 2000; Wheeler, 2011). Wood is an anisotropic material composed of 

multiple tissues that function together to support tree growth and physiological processes. 

Tracheids, the main cell elements of softwoods and present in some hardwoods, conduct water 

transport and provide mechanical support. Vessels facilitate the transport of water and mineral 

solutes in hardwoods from the roots to the leaves, enabling photosynthesis. Rays serve as 

horizontal transport pathways between the pith and bark. Parenchyma cells act as pathways for 

metabolic products, short-distance transport, and storage. Those pathways form a complex three-

dimensional network that distributes resources throughout the tree. Fibres provide structural 

strength, allowing trees to withstand external forces such as wind and gravity. The unique 

characteristics of these tissues—whether individually, in combination, or as part of larger 

anatomical patterns—contain diagnostic information that can be used to differentiate species and 
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even determine geographic origin based on local environmental influences. (Butterfield, 2012; 

Niemz et al., 2023b) 

Traditionally, wood identification has relied on anatomical assessment, where the structure of the 

cells, cell walls and tissues is visualized using partially destructive techniques such as microtomy, 

sanding, or laser ablation (Arzac et al., 2018; Fukuta et al., 2016; Guo et al., 2021; Spiecker et 

al., 2000; Tardif and Conciatori, 2015). Processed samples are then examined through 

microscopic observation across different planes and magnifications to identify species-specific 

diagnostic features (Niemz et al., 2023b; NS, 1989; Tardif and Conciatori, 2015). The three 

primary anatomical planes considered in wood identification are the transverse plane, radial 

plane, and tangential plane, each providing a distinct perspective on wood structure (Butterfield, 

2012). Their orientation is determined by the natural growth pattern of the tree. The transverse 

plane (also known as the axial plane, cross-sectional plane, or end-grain) is obtained by cutting 

the wood perpendicular to the trunk’s length. This reveals a circular cross-section, exposing 

growth rings, vessel arrangements, and other structural features essential for species 

differentiation. The radial plane (vertical longitudinal section through the centre) is obtained by 

cutting vertically along the trunk’s length, passing through the pith. The tangential plane (vertical 

longitudinal section away from the centre) is obtained by cutting vertically along the trunk’s length 

but not through the pith, following the curvature of the growth rings. Traditionally, these planes 

are studied separately to analyse specific features. Modern imaging technologies, such as X-ray 

CT, enable researchers to examine wood anatomy across all three planes in a three-dimensional 

dynamic, interactive manner, revealing how structures change throughout the tree and how they 

are interconnected (Van den Bulcke et al., 2009). Additionally, some diagnostic features (e.g. 

fluorescence of heartwood, or water/ethanol extracts) are only visible at specific magnifications 

or by using specific wavelengths of the electromagnetic spectrum, necessitating customized 

visualization techniques to enhance accuracy in species identification (NS, 1989; Price et al., 

2021). To ensure consistency in wood anatomical assessment, standardized feature sets have 

been established by the IAWA (Angyalossy et al., 2016; Committee, 2004; Gasson et al., 2011; 

NS, 1989; Ruffinatto et al., 2015; Wheeler, 2011). These descriptors provide a systematic 

framework for comparing species, improving both reliability and reproducibility. The long-

established practice of anatomical assessments continues to be one of the most fundamental 

approaches in forensic and regulatory applications (Wheeler and Baas, 1998). 

Several alternative techniques have been developed in recent decades for identifying botanical 

taxa and determining geographic provenance, by leveraging chemical composition, genetic 

markers, and stable isotope ratios. NIRS is primarily used to analyse the chemical and physical 

properties of wood, but it has potential for species differentiation (Deklerck, 2019; Lowe et al., 

2016; Tsuchikawa et al., 2003). This technique operates by measuring the absorption of near-

infrared light (800–2500 nm), which interacts with high-molecular-weight compounds such as 

cellulose, hemicellulose, lignin, and extractives (Tsuchikawa et al., 2003; Tsuchikawa and 

Kobori, 2015). Because different species exhibit distinct absorption patterns, NIRS can be used to 

distinguish between species or even subspecies. Genetic techniques use deoxyribonucleic acid 

(DNA)-based approaches for species identification and origin determination. Genetic methods 

are particularly effective at distinguishing closely related species through techniques such as 

DNA-barcoding (Jiao et al., 2020, 2019) and, in some cases, even tracing individual logs 

throughout the supply chain using DNA fingerprinting (Lowe et al., 2010). Stable isotope analysis 
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provides insights into the geographic origin of timber rather than species identification (Lin et al., 

2024). This technique examines the ratios of naturally occurring stable isotopes in wood, which 

vary based on geographical location, climate conditions, soil composition, and local geology 

(Camin et al., 2017; Horacek et al., 2009). Since trees absorb elements from their surrounding 

environment, their isotopic composition reflects their growth location, allowing researchers to 

estimate timber provenance (Dormontt et al., 2015; Kagawa and Leavitt, 2010). Mass 

spectrometry serves as a valuable analytical tool for wood identification, with DART-TOFMS 

being extensively studied (Cody et al., 2005). This method produces chemical fingerprint for 

wood by ionizing low-molecular-weight compounds (<1000 Daltons) through thermal 

desorption. A single wood sliver is placed in an open stream of excited helium atoms, which 

ionize the chemical compounds present in the sample. These ionized molecules are then 

propelled into the mass spectrometer, where their mass-to-charge (m/z) ratios are measured and 

shown to the user in real time (DART). The technique operates on the principle of TOFMS, in 

which heavier molecules take longer to travel through the instrument, allowing for their precise 

differentiation based on mass. DART-TOFMS has shown significant potential for both species 

identification and geographic provenance determination, making it a promising tool for forensic 

and regulatory applications in timber trade monitoring (Deklerck, 2019). These alternative 

identification techniques, while still evolving, provide valuable complementary tools to 

traditional wood anatomical assessment, expanding the capacity to identify timber species and 

trace their origins. As research continues and reference databases grow, these methods are 

expected to play an increasingly critical role in timber trade regulation and enforcement. 

The field of wood identification has increasingly explored the use of AI to automate the extraction 

of diagnostic patterns, aiming to enhance objectivity, scalability, and accuracy beyond traditional 

expert-driven methods (Hwang and Sugiyama, 2021; Silva et al., 2022). Image-based analysis of 

wood anatomy has proven particularly effective, demonstrating strong performance in 

distinguishing between timbers with highly similar anatomical structures (Owens et al., 2024; 

Ravindran et al., 2021, 2020, 2018; Rosa da Silva et al., 2017; Wu et al., 2021). In CV-based 

wood identification, the input data typically consists of images derived from various imaging 

modalities, including light microscopy (JANSEN et al., 1998), scanning electron microscopy (Baas 

and Werker, 1981; Jansen et al., 2001, 2000; Jansen and Smets, 1998), and X-ray CT (Dierickx et 

al., 2024). These images may capture one or multiple anatomical sections—such as cross, radial, 

or tangential views (Rosa da Silva et al., 2017)—or even 3D structures (Dierickx et al., 2024), 

depending on the imaging setup. CV-based techniques are being integrated into tools that enable 

non-experts to verify whether traded timber matches documentation, providing a practical 

mechanism for flagging suspicious cases for further forensic analysis. This approach has already 

shown promise in real-world deployments, such as in Ghana (Ravindran et al., 2019). A range of 

systems has emerged, including those using custom-designed microscopes for standardized image 

capture to improve model consistency (Ravindran et al., 2020), as well as smartphone-based 

applications that offer portability and ease of use in the field (Tang and Tay, 2019; Wiedenhoeft, 

2020). 

CV–based approaches to wood identification have explored using classical machine learning 

pipelines using hand-crafted features such as Local Phase Quantization (Rosa da Silva et al., 2022, 

2017), Local Binary Patterns (Dormontt et al., 2015; Souza et al., 2020), Gray-Level Co-

occurrence Matrices (Bremananth et al., 2009), or edge descriptors like Histogram of Oriented 
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Gradients (Sugiarto et al., 2017). These descriptors were then classified with algorithms such as 

SVM (Joachims, 2002), RF (Biau and Scornet, 2016), or gradient boosting (Bentéjac et al., 2021). 

While interpretable and computationally efficient, such approaches were limited by their reliance 

on predefined features, which cannot fully capture the anatomical variation of wood. 

Deep learning has since enabled more powerful alternatives (Hwang and Sugiyama, 2021; Silva 

et al., 2022). Early methods using multilayer perceptron treated images as flattened vectors, 

ignoring spatial structure and requiring large parameter counts, which often led to overfitting on 

small datasets. More recently, Vision Transformers have set benchmarks in general computer 

vision by employing self-attention mechanisms that capture global dependencies from the earliest 

layers (Gufran et al., 2023; Ye et al., 2024). However, their success depends heavily on large-

scale pretraining or extensive labelled data, conditions rarely available in wood identification 

tasks. 

CNNs remain the most effective and practical solution under these constraints. Their hierarchical 

architecture learns feature representations directly from images: shallow layers extract local 

patterns such as edges, vessels, and rays, while deeper layers integrate these into higher-level 

anatomical structures (Hwang and Sugiyama, 2021; Silva et al., 2022). This local-to-global 

progression and efficiency in small-to-moderate data regimes makes CNNs particularly well suited 

to automating wood identification. CNNs can capture subtle structural differences that are 

imperceptible to human observers, substantially enhancing the discriminatory power of 

macroscopic imagery. For these reasons, CNNs were chosen as the basis for the models 

developed in this dissertation. The general principles of AI, deep learning, and the internal 

mechanisms of CNNs for image classification are outlined on further detail in Supplementary 

materials: CNNs for image classification. 

Scalable wood Identification: assessment of available techniques for field-application and 

knowledge gaps 

The scale of global timber production complicates regulatory oversight. In 2022, industrial 

roundwood, sawn wood, veneer, and plywood production amounted to approximately 2,651 

million m³, with tropical species contributing significantly to these figures, with ~16% of logs, 

~15% of sawnwood, ~51% of veneer, ~38% of plywood (ITTO, 2021). Timber is frequently 

processed at different locations worldwide, making traceability increasingly difficult. Given the 

vast volumes of timber moving through complex global supply chains there is a need for 

identification systems that are scalable. Researchers have increasingly focused on methodologies 

that expedite identification while also making it more scalable across global supply chains (Brack 

et al., 2002; Hoare, 2015; Johnson and Laestadius, 2011; Tacconi, 2012). The effectiveness of 

identification methods in a laboratory setting does not necessarily translate to scalability for 

widespread enforcement and trade monitoring (Spiecker et al., 2000; Tardif and Conciatori, 

2015). Regarding feasibility in the field, methodologies should have low costs for initial purchase, 

maintenance, and consumables. In addition, it is favourable if the methodologies involve tools 

are robust and have a long service life. In addition, feasibility entails a low expertise barrier during 

use, so the method can be applied by non-experts. Finally, execution speed is also essential due 

to the large volumes of timber that necessitate rapid assessment to systematically cover enough 

wood. 
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Diagnostic information for rapid identification in the field 

NIRS could become a screening tool, due to the machinery being rather straightforward and fast, 

but requires further development to become a common method in forensic research (Dormontt 

et al., 2015). DART-TOFMS, demonstrated speed and automation potential in extracting 

diagnostic information from wood. However, these methods come with high costs for purchasing 

equipment and require controlled laboratory conditions to prevent contamination, which could 

otherwise compromise identification accuracy. Additionally, DART-TOFMS is not a standalone 

technique; instead, it serves to refine broad identifications initially made through other techniques 

(Cody et al., 2005; Deklerck, 2019; Dormontt et al., 2015). Engineered wood products are 

difficult to identify using DART-TOFMS due to processing steps, such as the incorporation of 

adhesives, resins, and chemical preservatives (e.g., copper-based compounds, borates, creosote) 

or even non-wood materials introducing interference. Genetic methods face similar challenges in 

field applicability. While ongoing efforts aim to develop portable solutions, extracting high-

quality DNA from timber remains difficult (Jiao et al., 2020, 2019, 2012; Michael Höltken et al., 

2012). Especially due to heat treatments frequently applied for drying, which degrades DNA (Jiao 

et al., 2020; Michael Höltken et al., 2012). Nevertheless, as sequencing technologies and stable 

extraction procedure from dry wood advance, costs are decreasing, making genetic approaches 

increasingly viable for forensic applications and combating illegal logging (Deklerck, 2019; Lu et 

al., 2024). The application of stable isotope analysis in forensic wood identification is still 

relatively underexplored (Dormontt et al., 2015; Lin et al., 2024).  

Wood anatomy presents significant opportunities for large-scale applications (Beeckman et al., 

2020; Gasson, 2011). Anatomical structures serve as a stable form of diagnostic information, 

remaining largely preserved despite the transformative processes that roundwood undergoes 

when converted into commonly traded wood products. Visualizing wood anatomy can be 

achieved through various techniques, each with distinct advantages and limitations for field 

applications. The traditional approach involves cutting wood along its three principal orientations 

using sharp blades to expose anatomical structures (Tardif and Conciatori, 2015). This method 

allows for two primary modes of study: thin sectioning, where the excised tissue is observed 

under a microscope with transmitted light, or direct surface examination, where the exposed 

surface is analysed under reflected light (either natural light or enhanced via external light 

sources). Qualitative thin sections are typically cut to a thickness of around 14 µm, allowing 

anatomical features to be observed clearly under transmitted light microscopy (JANSEN et al., 

1998). These sections are bleached to enhance visibility of the cell walls and stained to increase 

contrast between different tissue types. This technique enables the observation of most, if not all, 

of the anatomical features listed by the IAWA. However, certain fine details, such as pit vestures, 

are more effectively visualized using scanning electron microscopy (SEM) (Baas and Werker, 

1981; Jansen et al., 2001, 2000; Jansen and Smets, 1998). While cutting approaches are relatively 

fast and cost-effective, they also present several challenges. An important, limitation of cutting is 

the dependence on wood moisture content and density. As wood dries, it becomes increasingly 

difficult to cut, particularly in dense species, making it challenging to obtain clean surfaces. 

Irregular or torn cuts may obscure anatomical details (on the surface directly) (Ravindran et al., 

2023) and complicate the extraction of clean tissue samples for thin sectioning. To mitigate this 

issue, softening techniques—such as boiling, storing in glycerol, or continuously wetting the 

wood—are often employed (Tardif and Conciatori, 2015)(Spiecker et al., 2000; Tardif and 

Conciatori, 2015; von Arx et al., 2016). However, these additional steps increase both the 
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complexity and time required, reducing the practicality of cutting-based methods for fieldwork. 

Producing high-quality thin sections also demands specialized expertise, followed by additional 

steps such as staining, fixing, and mounting samples on glass slides, which further increase costs 

and preparation time. Another drawback of cutting is the difficulty in achieving precise 

orientations, particularly in field conditions. While microtomes in laboratory settings allow for 

precise sectioning, field applications typically rely on handheld knives. This introduces several 

limitations. Cutting naturally begins at the edge of the wood sample for practical handling, 

meaning the central regions of the wood often remain unsampled, introducing a minor bias. 

Additionally, manual cutting tends to produce concave surfaces, which can distort anatomical 

features and complicate quantitative analysis, especially when preparing thin sections.  

Sanding offers a more accessible and practical alternative for field applications (Arzac et al., 

2018). Unlike thin sectioning, which allows for transmitted light microscopy, sanding only 

permits examination under reflected light. The sanding process involves the sequential use of 

progressively finer grits of sandpaper to expose cellular structures (Spiecker et al., 2000). Like 

cutting, it requires only inexpensive and straightforward equipment, such as manual or motorized 

sanders and sandpaper, and allows for rapid processing. An advantage compared to cutting is the 

fact that the surface quality is not impaired by the density of the material, with only minor added 

processing time as a result. Additionally, sanding is particularly advantageous for preparing large 

surface areas, making it a widely employed technique in dendrochronological studies. However, 

one of its primary limitations is the need for precise and consistent handling, as inconsistent 

sanding can obscure anatomical details and compromise analysis. Achieving high-quality results 

through manual manipulation of sanding tools is challenging, as it demands exceptionally steady 

manual control to ensure uniform surface preparation (Spiecker et al., 2000). Recent 

advancements in robotics, have demonstrated that automating the sanding process can overcome 

these limitations, producing surfaces of exceptionally high quality that facilitate detailed 

quantification of wood anatomical features (Van den Bulcke et al., 2025). Field application of 

robotic sanding remains limited due to the need for stable electricity and controlled conditions. 

However, small handheld tools enable sanding of small sections in under two minutes, achieving 

quality comparable to robotic systems and providing an effective method for rapid and scalable 

wood identification in the field. 

Other advanced techniques, such as laser ablation or diamond fly-cutting, provide high precision 

but come with significant limitations (Fukuta et al., 2016; Guo et al., 2021; Spiecker et al., 2000). 

While effective for exposing fine anatomical structures, the techniques require specialized 

equipment, involves high costs, and are limited to small sample areas, restricting feasibility for 

field applications (Spiecker et al., 2000). In contrast, cutting and sanding remain the most 

affordable and widely accessible methods for wood anatomical analysis (Spiecker et al., 2000).  

Despite its diagnostic power, traditional wood anatomical assessment faces challenges related to 

expertise, limiting scalability. Skilled specialists are required to accurately interpret anatomical 

features, and the increasing demand for large-scale timber identification necessitates further 

advancements in automation and accessibility. To reduce the expertise barrier, limited ranges of 

features have been proposed to serve as preliminary screening tools (Richter et al., 2017; 

Ruffinatto et al., 2019, 2015; Ruffinatto and Crivellaro, 2019). These methods prioritize broad 

taxonomic identification based on key anatomical features that are easy to visualize and assess, 

enabling rapid assessment of potentially suspicious cargo. The cross-section is particularly 



Project  B2 / 202 / P2 / SmartWoodID - Smart classification of Congolese timbers: deep learning techniques for enforcing forest 
conservation 

BRAIN-be 2.0 (Belgian Research Action through Interdisciplinary Networks) 23 

valuable for rapid field assessment. Firstly, among the three principal planes of wood—cross, 

radial, and tangential—the cross-section (or end-grain) is the simplest to locate, as it is 

characterized by the presence of ring-like growth patterns formed by secondary growth. In 

contrast, identifying the radial and tangential sections requires first locating the cross-section and 

then determining their orientation based on the wood’s structure and grain direction. Secondly, 

the cross-section reveals numerous anatomical features that can be examined with the naked eye 

or a hand lens, facilitating on-site wood identification without the need for microscopes. Thirdly, 

radial and tangential sections are often processed and refined for use as aesthetic outer layers, 

whereas the cross-section is generally not utilized for this purpose. This is particularly relevant 

given that most wood identification methodologies involve some degree of destructive sampling, 

such as extracting a small splinter, sawing off a section, cutting the surface with a knife, or sanding. 

Non-destructive methods, such as X-ray Computer Tomography, offer an alternative; however, 

their practical application in the field is limited due to the need for highly precise imaging, costly 

equipment, radiation shielding, complex image processing, and the challenge of selecting 

appropriate resolutions to clearly visualize multiple anatomical features (each requiring its own 

resolution range for accurate anatomical assessment) (Dierickx et al., 2024). Consequently, the 

cross-section is well-suited for sanding and cutting, offering a minimally invasive method for rapid 

wood identification without significantly damaging finished products like furniture.  

The need for reference databases 

Several databases have been developed for wood identification using cross-sectional macroscopic 

anatomy, relying on visual comparison, IAWA features, or a combination of both. Many of these 

have been implemented in field-deployable applications that integrate identification keys with 

visual aids to support user interpretation. Notable examples include macroHOLZdata (Richter et 

al., 2017), CITESWoodID (Koch et al., 2011; Weerth, 2024), the Malaysian Timber Council’s 

Wood Wizard (Malaysian Timber Council, 2018), and the Atlas of Macroscopic Wood 

Identification (Ruffinatto et al., 2019). The most complete online database for wood identification 

is InsideWood, a wood anatomy reference, research and teaching tool, containing wood 

anatomical descriptions of wood based on the IAWA Lists of Microscopic Features for Hardwood 

and Softwood Identification accompanied by a collection of photomicrographs (NS, 1989; 

Wheeler, 2011; Wheeler et al., 2020). This database has a global scope, incorporating timber 

samples from around the world. It includes over 9,400 wood anatomical descriptions of both 

fossil and modern woody dicotyledons, representing more than 10,000 species across 200 plant 

families, and is accompanied by over 50,000 images showcasing both microscopic and 

macroscopic features (Wheeler, 2011). While it serves as a valuable reference resource, the 

anatomical descriptions are generalized and often compiled from varying numbers of individual 

specimens. However, no direct link is provided between the descriptions and specific reference 

specimens, making it impossible to verify the original source material or assess intraspecific 

variation with accuracy. Furthermore, certainly not all species are represented. 

Wood identification is particularly challenging due to the inherent complexity of wood as a 

biological material. Wood is a highly variable natural material influenced by genetic and 

environmental factors (Downes and Drew, 2008; Stackpole et al., 2011; Wodzicki, 2001). Trees 

have evolved over millions of years, diversifying into a vast number of species, many of which 

exhibit similar diagnostic characteristics (Beech et al., 2017). This makes distinguishing between 

closely related species challenging, even for experts. Moreover, diagnostic features not only vary 
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between individual trees of the same species but also within a single tree—depending on the 

organ (e.g., stem, branches, roots), the radial position from pith to bark, and the vertical position 

along the height of the tree. The number of species in tropical regions is especially high, 

increasing the challenge within tropical regions such as the Congo basin (Ifo et al., 2016; 

Partnership., 2005). Furthermore, the taxonomic classification of tree species is continuously 

updated as advances in plant phylogenetics refine taxonomic relationships (Denk et al., 2017; 

Mishler, 2000; Wiley and Lieberman, 2011; Yang et al., 2022). These ongoing revisions can lead 

to inconsistencies, further complicating identification. Beyond biological complexity, industrial 

processing introduces additional challenges. The timber industry often groups multiple species 

under broad trade names based on shared functional properties rather than strict taxonomic 

distinctions (Chudnoff, 1984; Mark et al., 2014). While practical for trade, this practice introduces 

additional ambiguity, making it difficult to identify the exact species composition of a given timber 

product (Mboma et al., 2022). Currently, hundreds of tree species are commercially traded 

worldwide, with an even greater number used locally, highlighting the immense diversity that 

wood identification systems must account for (Chudnoff, 1984; Council and Organization, 2012; 

Mark et al., 2014; Richter and Dallwitz, 2000; tropicaux, 1979). Those challenges underscore the 

need for solid reference databases of the diagnostic features, that encompass enough reliable 

reference specimens to consider biological variations.  

It is the paucity of large databases that cover the variability of diagnostic features, which is the 

main obstacle currently faced when developing wood identification methodologies (Cody et al., 

2005; Deklerck, 2019; Dormontt et al., 2015; Ravindran et al., 2018; Silva et al., 2022). This 

paucity of large-quality datasets stems from the difficulty of acquiring sufficient wood specimens 

that give a faithful representation of all species and their variability. Those wood specimens can 

be gathered by collecting specimens in targeted field expeditions, active timber harvest sites, 

lumber mills or other sites in the field. While such endeavours may faithfully capture the current 

data distribution, they can be logistically challenging and expensive to accomplish at large scale. 

A second source of information is institutional wood collections that have the advantage of having 

specimens readily available and that are, in some cases, the result of century-long collecting 

efforts. This makes them fit for rapidly building reference databases by extracting different types 

of diagnostic features. However, relatively few wood collections meet the essential criteria for 

establishing a robust reference database, particularly regarding collection size and specimen 

reliability. Most collections include only a limited number of specimens per species, typically 

focusing on vouchered samples verified by expert botanists based on traits (e.g. leaves, fruits, 

flowers, roots). While these specimens are representative of the species as a whole, they often fail 

to capture the full range of variation in diagnostic features that can occur within a species. The 

vast number of tree species makes it difficult to capture the full variability of wood anatomy with 

limited numbers of specimens per species. Among the most extensive and scientifically valuable 

wood collections is that of the Naturalis Biodiversity Centre in Leiden, The Netherlands. With a 

long-standing history in wood anatomical research, Naturalis houses the world's largest scientific 

wood collection, comprising approximately 125,000 specimens representing tree species from 

across the globe (Naturalis Biodiversity center, 2025). The second-largest collection is maintained 

by the USDA Forest Service at the University of Wisconsin–Madison, United States. This 

collection contains over 103,000 specimens, including approximately 25,000 samples with 

corresponding herbarium material stored in the Wisconsin State Herbarium (University of 

Wisconsin–Madison, 2025). Another important reference for wood identification is the Thünen 
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Institute for Wood Research in Hamburg, Germany. Serving as a centre of competence on the 

origin of timber, wood samples can be determined at the genus or species level, and the 

geographical origin of the wood can be determined for various tree species (Johann Heinrich von 

Thünen-Institut, 2025a). Forensic research is based on the scientific wood collection of the 

Thünen Institute encompassing 35,000 wood samples from 11,300 species (Johann Heinrich von 

Thünen-Institut, 2025b). The third largest is the Tervuren Wood Collection of the Royal Museum 

for Central Africa (RMCA, Belgium), founded in 1898 to demonstrate the importance of African 

tropical timber for economic purposes. During the first half of the 20th century, the economic 

purpose has been gradually extended with a much broader scientific interest. Not only tropical 

species and lower taxa (subspecies and varieties) with commercial value but also any tropical 

African tree species and lower taxa that could be of interest in comparative wood anatomy or for 

the study of ethnographic objects were collected. From the middle of the 20th century and 

onwards, wood specimens from other continents were also incorporated in the collection 

(Beeckman, 2007, 2003; RMCA, 2019). Today, the wood collection has become the Belgian 

scientific reference collection for wood, containing ca. 81 000 specimens from 13 533 species 

and lower taxa with accompanying microtome sections, ca. 20 500 sets of thin sections in the 

three principal directions (Beeckman, 2007; Deklerck, 2019; RMCA, 2019). Most of the species 

and lower taxa are represented by multiple samples, each from a different specimen. The Tervuren 

Wood Collection holds 26 604 specimens of DRC tree species and lower taxa, which 

encompasses 30% of the total collection, thereby offering the most complete collection of 

reference material for wood identification of >2000 woody species and lower taxa from the DRC 

(timber trees, small trees, shrubs, dwarf shrubs and lianas) (Beeckman, 2007). The Tervuren wood 

collection presents a unique opportunity to develop a robust reference database for wood 

identification, essential for combating illegal logging in the DRC. By leveraging its vast database 

of tree species and lower taxa with potential timber applications, the collection supports efforts 

to protect the Congo Basin—one of the world’s most critical carbon sinks and biodiversity 

hotspots—thereby contributing to climate change mitigation and sustainable forest management. 

Unexplored areas in literature regarding macroscopic cross-sectional identification 

applications 

To facilitate wood identification in species-rich contexts, dichotomous and multi-entry keys offer 

a straightforward means of interpreting wood anatomy without requiring users to memorize 

distinct diagnostic features across a wide range of timbers. These tools guide users through the 

anatomical assessment process by narrowing down potential species based on observed traits 

(Brazier and Franklin, 1961; Ilic, 1993; Richter et al., 2017). Available in both printed and digital 

formats, they provide a structured pathway from standardized anatomical features to a shortlist of 

likely taxa, improving field accessibility (Barefoot and Hankins, 1982; Gregory, 1980; LaPasha 

and Wheeler, 1987; Malaysian Timber Council, 2018; Vander Mijnsbrugge and Beeckman, 

1992). Although their simplicity contributes to their popularity, keys also have clear limitations. 

Their effective use still depends on a foundational understanding of wood anatomy, as users must 

accurately recognize diagnostic features—limiting their scalability. They often fail to 

accommodate intra-specific anatomical variation and do not fully exploit the richness of 

anatomical data. Categorical feature states (e.g., present, variable, or absent) are inherently 

subjective, with thresholds that lack standardized definitions. For example, what one user 

considers a ‘present’ feature may be scored as ‘variable’ by another, leading to divergent 

identification pathways and potentially excluding the correct species early in the process. While 
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multi-entry keys offer more flexibility than dichotomous ones, they still risk generating misleading 

results if the underlying database does not adequately capture natural variation. More critically, 

the limited number of macroscopic diagnostic features constrains the ability of keys to distinguish 

among species in taxonomically diverse or morphologically convergent groups. Combined with 

observer bias, this scarcity of features can result in partial or inaccurate identifications. Despite 

their widespread use, no systematic, quantitative assessment has been conducted to evaluate the 

real-world accuracy of macroscopic features for identification in species-rich contexts. Empirical 

evaluation is crucial to objectively determine the resolution enabled by applied methodologies. 

In this context, raw visual information retains diagnostic patterns that are lost when converting 

the anatomy into the expert-defined, standardized codified features. This has long been leveraged 

in pure visual keys, which offer intuitive, user-friendly tools by presenting curated reference 

images for direct comparison (Kirchoff et al., 2008). These visuals allow users to identify wood 

based on observable traits without requiring extensive anatomical expertise. Building on this 

foundation, the growing need for rapid, accurate, and scalable wood identification has 

accelerated the development of fully automated systems using AI (Hwang and Sugiyama, 2021; 

Silva et al., 2022). Despite advances, CV-based wood identification remains an evolving field, 

challenged by the biological variability of wood and the need for large, diverse datasets. Given 

these challenges, it is essential to evaluate the performance of CV-based methods—especially in 

species-rich, high-diversity contexts—and to compare them with traditional approaches based on 

expert-defined anatomical features. Such comparisons are critical to understanding their relative 

strengths, limitations, and potential for integration into practical identification workflows. 

Wood identification presents some unique CV-related challenges that are rarely encountered in 

other domains. While advancements in CV have improved model robustness to variations in 

lighting, resolution, and image quality (e.g., blur) (Shorten and Khoshgoftaar, 2019), wood often 

exhibits physical anomalies that obscure key anatomical features and complicate classification 

(Goodell and Nielsen, 2023; Niemz et al., 2023a; Schmidt, 2006). As a biological material, wood 

is subject to degradation from disease, infestation, and physical stress. Insects and marine borers 

can damage wood, by removing wood material, and fungi and bacteria can cause discoloration 

and decay (Goodell and Nielsen, 2023; Schmidt, 2006). Furthermore, wood can crack, especially 

during drying (Niemz et al., 2023a). These alterations can obscure diagnostic structures, hinder 

DNA extraction, and even change wood chemistry, thereby complicating both visual and 

laboratory-based identification. However, the impact of these anomalies on CV-based 

classification remains largely unexplored. Owens et al. (2024) is the only study to date that 

systematically tested how CNN predictions are affected by digital perturbations mimicking real-

world wood degradation (Owens et al., 2024). Most other work has relied on defect-free 

specimens (Hwang and Sugiyama, 2021; Ravindran et al., 2021; Silva et al., 2022), overlooking 

the imperfections typically encountered in applied contexts. To ensure reliable field deployment, 

it is essential to evaluate how such anomalies influence model predictions—and to develop 

mitigation strategies that improve classification resilience under realistic conditions. 

Beyond the challenges presented of anomalies on wood, model design—particularly the 

classification strategy—also plays a critical role in the performance and interpretability of CV-

based wood identification. Despite its importance, this aspect remains understudied. Most 

existing approaches rely on a single strategy: multiclass classification, in which CNNs assign each 

image to one of a fixed set of predefined labels, such as species or commercial timber names 
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(Ravindran et al., 2021, 2018; Silva et al., 2022). However, this method assumes a closed set, 

limiting recognition to species included in the training data and struggling with unknown samples 

in real-world applications (Sünderhauf et al., 2018; Wilber et al., 2013). While adding an 

"unknown" class can help, it remains an imperfect solution (Entezari and Saukh, 2020; Geifman 

and El-Yaniv, 2019). Moreover, these models require balanced datasets, yet collecting diverse, 

high-quality timber specimens is costly and time-consuming. As a result, most studies use small 

datasets with limited species diversity, reducing model generalizability (Hwang and Sugiyama, 

2021; Silva et al., 2022). This makes it risky to assume CNN-based wood identification can be 

directly applied in the field, as classifying between learned timbers is not the same as identifying 

or verifying the timber species of field samples. To overcome this limitation, other domains, such 

as facial and vehicle recognition, have adopted open-world approaches like object re-

identification (Kumar et al., 2020; Schroff et al., 2015). Instead of assigning fixed labels, these 

networks compute similarity between images, allowing comparisons against a reference database 

(Yoshihashi et al., 2019). By embedding images into a feature space where distances reflect 

species similarity, object re-identification provides a more flexible solution for handling novel 

timbers (Chen et al., 2017; Ghosh et al., 2023; Ye et al., 2021). Despite its promise, this approach 

remains underexplored in wood identification (Hwang and Sugiyama, 2021; Silva et al., 2022). 

Despite ongoing advances in both identification keys and CV approaches for wood identification, 

these methods have largely developed in parallel, with no current system effectively integrating 

their complementary strengths. Both rely on macroscopic anatomical features, yet they extract 

and interpret these features in fundamentally different ways. Deep learning models autonomously 

learn complex visual representations through optimization, often identifying patterns that differ 

from those traditionally recognized by wood anatomists. This divergence is not a limitation but a 

potential advantage: expert-defined anatomical features may provide structured, interpretable 

information that complements the data-driven outputs of CNNs. Integrating these perspectives 

offers a promising path to improve both the accuracy and transparency of automated wood 

identification. 

The project and research objectives  

The project focuses on the DRC, which comprises more than 3,000 woody species and represents 

~5% of the estimated world's tropical tree flora (Sosef et al. 2017). 27 of these species belong to 

the class I commercial timber species of the DRC (Ministère de l’environnement et de 

développement durable, 2017) and are intensively logged and traded; 20 species are in class II 

(with potentially a large commercial value), 44 are in class III (are considered to be promoted) 

and 879 are in class IV (sufficiently large trees to produce timber, but timber value is poorly 

known). As such, the DRC harbors 970 species that are naturally big enough to produce timber. 

The Tervuren xylarium offers the most complete collection of reference material for the 

development of wood classification and identification approaches for Congolese species, 

comprising more than 2000 woody species from the DRC (timber trees, small trees, shrubs, dwarf 

shrubs and lianas). 

The project aims to use the macroscopic features seen on an end-grain (transversal) surface. 

Correct orientation of a sample is crucial in an assessment of wood anatomical structures. Finding 

the correctly oriented tangential and radial surfaces is often difficult, especially for enforcement 

officers who are not trained in the wood anatomical principles. An end-grain surface is much 
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more straightforward to localize, and many of the wood anatomical features observed on this 

surface are macroscopically observable (i.e. without the need of a microscope). These 

macroscopic features are also recognizable by computer vision and are expected to allow a 

relatively fine classification (Ruffinato & Crivellaro, 2019). Screening of macroscopic features on 

end-grain surfaces is a much faster process than a complete microscopic description and allows 

constructing large databases in a relatively short time span. Furthermore, the focus on 

macroscopic end-grain features permits collecting the input data with commonly available 

equipment such as a flatbed scanner or a smartphone. Existing wood identification and 

classification tools typically do not take full advantage of the power of modern machine learning 

techniques. The construction of a large database with expert annotations will provide extensive 

training data to develop machine learning techniques. The value of illustrated identification keys 

depends on the completeness of the database. Especially for a species-rich country like the 

Democratic Republic of the Congo, databases should be as large as possible to reduce the risk 

that a tool is only developed for a small part of the flora and that a positive identification is not 

possible only because many species are not included in the database. Moreover, it is very unlikely 

that foreign species are being imported in the DRC, so the database should purely focus on a 

maximum of species present in the DRC. A database will be constructed with flatbed scans of 

large end-grain surfaces and description of macroscopic features. The RGB values of the images, 

as a proxy of the natural color of the timbers, will be stored as well. Databases and atlases are 

usually based on a selection of artefact-free images. In contrast, a shipment inspection often 

encounters images that contain traces of damage inherent to the material. To account for these, a 

chapter of the database will, for the studied specimens, also contain information on non-

anatomical phenomena like cracks, mechanical damage and traces of fungi and insect attacks. 

Machine learning will be trained to recognize such irregularities. 

Research objective 1: Establishing a database of flat-bed scans from end-grain surfaces and text-

based feature descriptions  

Wood anatomical assessment is the most used, cheapest and most generally applicable method 

for wood identification. It is possible to identify material that is as diverse as plywood, charcoal 

and solid wood. We will make use of scientific reference material from the Tervuren xylarium to 

establish a database on end grain wood anatomical features of nearly 1,000 timber species present 

in the DRC forests. There are on average five specimens available for a Central African species 

present in the xylarium resulting in an estimated 5,000 surfaces to be scanned.  

End-grain surfaces will be used because non-specialists normally do not encounter difficulties to 

find this orientation. This way the approach mimics a practical setting where enforcement officers 

are expected to do a first screening of timber that is being shipped. At the same time, an 

examination of the end-grain surface is a first logical step in a routine expert analysis of an 

unknown wood sample in a process aiming at identification of the botanical species. 

A rotating machine with gradually finer grain sanding paper mounted on a fixed stage will be 

used to sand the transverse surfaces of the samples. This will produce perfect flat surfaces that 

will be scanned at 1,200 dpi, which is a compromise between storing capacity and resolution. A 

typical image (tiff file of 50 MB) will cover the wood anatomical end-grain structure of a surface 

of 7 cm long and 1-2 cm large (Fig. 1). The digital images cover more variability compared to 

sections of the usual size and provide opportunities for substantial data augmentation (i.e. 

increasing image variability) for deep learning by rotation and cropping. The images also contain 
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quantitative information (RGB values) on the natural color of the wood, which can be 

approximated by making use of a scanner color calibration tile and the procedure described in 

León et al. (2006). Artefacts like fissures, traces of insect, fungi or mechanical damages are present 

as well on many samples and will be included in a specimen-based chapter of the database. The 

resulting images with overlaid grids (Fig. 3) will be used to make text descriptions of macroscopic 

features (Table 1) 

 

Research objective 2: building Illustrated keys 

Based on the database illustrated keys for identification will be developed, at this stage without 

application of machine learning techniques. This first type of keys is sometimes called a Computer 

Aided Identification (CAI) system, giving access to necessary resources to relate observations of 

morpho-anatomical features with names of taxa and information related to these taxa. The Xper² 

(Ung et al., 2010, infosyslab.fr) and Xper³ (Vignes-Lebbe et al., 2015) systems are user friendly 

platforms that manage descriptive data and facilitate identifications through interactive keys. They 

are constructed around four modules: (1) a module for standardized descriptions of an unknown 

specimen, (2) an editor with the features of the taxa, including the related images, (3) management 

tools (e.g. to deal with uncertainties) and (4) a module for creation of interactive keys. 

Dichotomous keys have been the main tool for practical identification of biological material. 

Computers have allowed to develop multi-access systems including images and other sources of 

information. Xper² is a free access software that does not require special computer skills. It is a 

platform dedicated to taxonomic descriptions and computer-aided identification. It is quite 

comparable with other existing software like those developed on the DELTA format. It includes 

an editor to edit taxonomic standardized descriptions and several functionalities to identify 

specimens, to compare and compute morphological dissimilarities and to import or export data 

from other formats. Xper² allows developing offline systems, which is still appealing in conditions 

such as harbors and regions with limited internet connections. Xper³ is a web platform for 
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descriptive data management and interactive identification. Data sharing and interactive 

identification can be done online. 

Table 1: 29 different macroscopic features (Ruffinatto et al., 2015) that can be seen on a high-

resolution scan of an end-grain surface. 
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The database with images and annotations will be implemented in the Xper² system to develop 

an offline classification system and in Xper³ for an online system.  

Research objective 3: Building a machine-learning assisted key 

Machine learning will be used at several stages in the development and application of a second 

type of key: a machine-learning assisted key for wood identification. Machine learning is expected 

to be able to partly (or for a selected number of species even fully) automate the identification 

process. In a first step, the identification problem will be understood as a multi-class classification 

problem where the input is an endgrain image and the output is the taxon name. This is a 

traditional image recognition problem and (deep) convolutional neural networks (CNN) achieve 

state-of-the-art performance here. Species with distinct visual features will probably be identifiable 

by these networks. Therefore, as a first step an image will be fed to this network, and the 

prediction will be verified for correctness by an operator (by comparing it with an image from the 

reference library of that species). However, given the large number of species and the within-

species variability, a correct identification will not be feasible at this point. Nevertheless, if several 

species can be detected with a high degree of certainty by the predicted class probabilities of the 

network, a dedicated, image-specific visual key can be generated on-the-fly that already filters out 

irrelevant species and simplifies the subsequent identification process. Another way in which 

machine learning can partly automate the identification process is by detecting specific 

(anatomical) structures (e.g., the type of porosity) that are used in the decision process of the 

illustrated keys build on the Xper² and Xper³ platforms. If a specific structure that is associated 

with a split in the identification key is detected, the split can be made automatically without the 

need for human interference. On the other hand, if a structure is detected but cannot be reliably 

categorized, this structure can be highlighted automatically such that the user is aware of its 

presence. 
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Machine learning will also be used for assisting the development of a machine-learning assisted 

key for wood identification. Due to the similarity between dichotomous keys and decision trees 

from the field of machine learning (such as CART or C4.5), these algorithms can be used to 

propose a general structure of the key with a minimal number of splits, minimal/maximal depth 

and constrained width. The decision trees found using these algorithms will be complemented 

by a series of additional trees that are inferred using constraint programming (Verhaeghe et al., 

2019) and allow a less greedy and more flexible approach. If the key is used by novices in the 

field of wood identification, it is very likely that classification mistakes will be a result of 

incorrectly identified anatomical structures. The latter approach allows, for instance, to postpone 

the selection of anatomical traits that are hard to observe by a non-expert to deeper splits in the 

tree. In a second step, data on the (potential) faulty identification of traits will be included in the 

tree construction process using decision tree inference procedures that can handle uncertainty in 

the features (Satya Prakash et al., 2012). 

A first neural network will be trained to detect if any artefacts are present in the images that the 

user must be aware of, and should not be identified, by mistake, as a relevant anatomical feature. 

We will therefore use the presence / absence ‘tag’ of a certain artefact attached to each image to 

train. If not sufficiently successful, on-image annotations, on a selection of images covering 

sufficient variability, of the actual artefacts will be performed. Then, we will follow a classical 

approach, by only using the image itself and train existing network architectures to classify the 

images. Given the vast number of species, it can be expected that the overall success rate will not 

be satisfying. 

A second network will be trained on the actual anatomical features, using the formal descriptions. 

If not sufficiently successful, on-image annotations on a selection of images and focusing on the 

anatomical features that define a critical decision node in the illustrated key, will be used as well. 

For each of the selected structures (the artefacts and the macroscopic features seen on end-grain 

surfaces), a separate object detector will be built using deep convolutional neural network (CNN) 

techniques that are trained on the annotated images. For the image classification tasks pre-trained 

networks (VGG-16, ResNet-50, Inception-ResNets) will be used as a basis that, relying on the 

transfer learning paradigm, will be trained using the collected image data (using common data-

augmentation strategies). When annotations are available (for instance of defects/cracks, or 

infestation with a fungus), a (fast) region-based CNN will be used to detect and localize these 

artifacts in new images and alert the user for closer inspection. These networks will be 

implemented using the Python library Keras. This means that there is no need to provide a 

complete segmentation of the image, which can be problematic in the presence of artifacts. The 

user will be given the opportunity to add or remove annotations and attempts will be made to 

extract additional descriptors from the partially annotated image, including the spatial 

arrangement of the identified structures.  

Existing software will be used for the annotations to build a classifier per species that can assist in 

annotation to speed up the process (for instance using WEKA). 
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Position of the project within the state of the art  

SmartwoodID combines human and machine vision. The machine learning method will enhance 

wood identification success and speed, even for non-experts, by tackling two major problems of 

classic identification techniques based on visual hand-lens inspection. A first problem is the fact 

that wood anatomical features can be highly variable, which hampers the development of 

dichotomic identification keys used for routine identification. Secondly, many features seen on 

wood surfaces are artefacts (fissures, traces of mechanical damage, fungi and insect attacks) that 

are not typical for the material and not always easy to distinguish from diagnostic characteristics 

by the untrained eye. Automated classification techniques can tackle these two difficulties. First 

results are promising (Hermanson & Wiedenhoeft, 2011; Rosa da Silva et al., 2017; Ravindran et 

al., 2018; Verly Lopez et al., 2020) and led to the development of a field deployable machine-

vision wood identification system for 150 species, called the Xylotron (Forest Products Lab, 

Madison, USA, see also Ravindran et al., 2019). The Tervuren Xylarium offers the unique 

opportunity to provide the robust reference database needed for machine learning by valorizing 

a vast collection of specimens with a focus on the most important Central African timber species. 

Opportunities for national and international collaboration  

International organizations like CITES and the European commission are asking for more robust 

and readily available timber identification techniques. International collaboration is possible with 

institutions like the Wood Identification and Screening Center (U.S. Forest Service International 

Programs, Corvallis OR, USA), U.S. Fish and Wildlife Forensics Laboratory (Ashland OR, USA). 

Regular updates will be provided towards the Global Timber Tracking Network, a platform 

grouping all actors within timber tracking.  

Scientific collaboration and exchanges of experiences are possible with research teams working 

in the same domain and this as well in Europe, the USA, Brazil and Japan. 
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3. METHODOLOGY  

The methodological approach of SmartWoodID consists of a study of the wood anatomical 

structure of tropical timber species, including the construction of a feature database, the 

development of illustrated keys for classification and applying machine learning techniques. 

Wood anatomy 

Some of the biological and chemical characteristics of lignified material are typical for the 

botanical clade and they can be used accordingly to identify the taxon. The biological 

characteristics allowing taxon identification are summarized in a list of wood anatomical features. 

The successful application of identification techniques relies on extensive databases of 

trustworthy reference material. Such scientific reference material is typically present in a xylarium 

curated within a governmental institute of natural history research. 

A wood anatomical assessment is a visual method most often aided by a range of levels of 

magnification using different techniques (hand lenses, optical and electronic microscopes, X-ray 

computed tomography). The structure of cells and tissues are being visualized and coded often 

with the help of a list of standardized and formal features established by the International 

Association of Wood Anatomists (IAWA), an expert organization existing since the 1930s. There 

are lists of macroscopic features (Ruffinato & Crivellaro, 2019), hardwood features (IAWA 

Committee, 1989), softwood features(IAWA Committee, 2004 & 1989), bark features (Angyalossy 

et al., 2016), and vessel features (Hemling et al., 2018). Optical microscopic assessments can be 

done by incident light equipment, but most often transmitted light is used at different 

magnifications. Therefore, microtomic sections in the principal directions (transverse, tangential 

and radial) need to be made. Most xylaria curate permanent slide collections. Some of the 

observations are ideally made on macerations where the individual cells can be seen dissociated 

from their tissue context. Wood anatomical species descriptions based on the standardized IAWA 

terminology are stored in wide-ranging databases like the online database InsideWood (Wheeler, 

2011), a database of hardwood and softwood species, both living and fossil, that contains next to 

the feature codes also microscopic images. The InsideWood database has evolved to a very 

complete information source of a wide range of species and is as such an indispensable means in 

identification work. A very robust identification key for commercial timbers is the Delta-Intkey 

system (Richter and Dallwitz, 2000 onwards). The classical wood anatomical assessment is based 

on a good expert knowledge of the wood anatomical features which often hampers the use of the 

methodology by untrained staff. For this reason, the concept of visual keys has been introduced 

(Kirchoff et al., 2011), where extensive databases of reference images are constructed that are 

systematically be compared with images from unknown samples. These manual identification 

approaches are expected to be gradually complemented or even replaced by computer vision to 

speed up the process and exclude a certain degree of subjectivism (Hermanson & Wiedenhoeft, 

2011). 

A database will be constructed with standardized descriptions of the visible features making use 

of the macroscopic feature list published by Ruffinato & Crivellaro (2019). The approach will 

result in a classification of the material in species groups. A positive identification of the botanical 

species will be rather exceptional because a tropical tree flora typically consists of several species 

with similar wood anatomy belonging to the same botanical genus. For species identification, 
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other techniques need to be applied, such as observations at higher magnification on longitudinal 

thin sections and chemical analysis of the metabolites.  

 

Machine learning 

Over the last decades, machine learning has gained a lot of interest as a tool to extract relevant 

information. Machine learning is a subfield of computer science that uses computational and 

statistical models to automatically search for patterns present in the data without being explicitly 

programmed. This process is often called “learning”, and its success is determined by the training 

on reference data. Within the field of machine learning, we will also explore the potential of deep 

learning networks. Deep learning is a subfield of machine learning known for its autonomous 

pattern recognition. Machine learning and specifically deep learning can have a high predictive 

power, if enough data are provided to train the network properly (Liu et al., 2017; Kiranyaz et al., 

2019). Deep learning methods are gaining interest because of their excellent performance in 

many computer vision and speech processing applications.  

The wood anatomical approach will result in information-rich images and formal descriptions of 

features, representing a large amount of data. Both the images and formal descriptions will be 

used to train machine learning algorithms (including deep learning networks). 

Rationale w.r.t. literature and state-of-the-art  

The large economic value of wood stimulated the development of identification techniques using 

machine-learning-based image analysis. Semi-automated annotation attempts often rely on 

general purpose software tools (pixel classifiers such as Fiji with Weka-plugin (Arganda-Carreras 

et al., 2017), or Ilastik (Sommer et al., 2011)) that are not tailored to the analysis of wood sections 

and do not take advantage of the power of modern deep learning approaches. More recently, 

several studies used deep learning approaches for wood identification (Ravindran et al., 2018; 

Verly Lopes et al. , 2020)). However, the common approach in these works does not rely on 

training data that has been annotated and therefore only indirectly allows to identify the diagnostic 

characteristics. It has been shown, however, that a reliable identification of some botanical 

characteristics can be achieved using deep learning approaches (Meeus et al., 2019). The 

proposed approach builds upon the latter, where advanced deep learning models are used to 

learn from annotated data to provide more reliable and explainable identifications. A successful 

application of deep learning depends on an image database of reference material that captures 

enough of the biological variability required to successfully carry out classification. Martins et al. 

(2013) built a database containing 2,240 microscopic images, covering 112 species (20 images 

per class with each class corresponding to a species). Paula Filho et al. (2014) did the same but 

for macroscopic images. Their dataset consisted of 2,942 samples from 41 Brazilian species. 

Hafemann et al. (2014) used the dataset collected by Paula Filho et al. (2014) and reached an 

accuracy of 95.77 %. Figueroa-Mata et al. (2018) transformed the images and obtained a dataset 

of 57,024 images which resulted eventually in 98.03 % accuracy. Yadav et al. (2015) selected 

1,500 images covering 75 hardwood species from the dataset of Martins et al. (2013), they 

considered several models and obtained performance of 97.67 % accuracy for grayscale and 

98.40 % for RGB images. Ravindran et al. (2018) tried to classify ten Meliaceae species from six 

genera using a pretrained CNN. At species level, accuracies of 88.7 % were obtained and 97.5 

% at genus level. Cedrela species could not be discriminated, and Khaya species were classified 
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in wrong genera. Machine learning is promising as a screening tool to wood classification, but 

still needs an expert opinion for final conclusion. The expert should either conclude whether 

species cannot be discriminated based on their wood anatomy or an identification has not been 

possible because the database did not cover the complete biological variability which can be 

substantial as is the case for the Khaya genus for example. 

The SmartwoodID methodological approach (Figure 1) is innovative due to the use of long 

transverse surfaces. These cover a higher variability compared to standardized sectioning blocks. 

In addition, the constructed database, with a focus on a species-rich region with major import to 

other countries, will include information on artefacts in the transverse surfaces which can then be 

filtered out. The combination with deep learning will allow us to present a machine-learning 

assistant, a new and robust timber classification technique based on quality reference data coming 

from the Tervuren Xylarium. 

 

 

Using a multi-step approach, the user of the illustrated key will be further supported by the 

machine learning assistant to separate artefacts and wood anatomical diagnostic features and will 

help the actual identification. Contrary to existing approaches, both macroscopic features as well 

as on-image annotations will be used to train machine learning algorithms at key positions in the 

illustrated key. 
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Workpackages 

WP1: preparing, digitizing and annotating the material (research objective 1): C,  P3 

Task 1.1 Preparation and scanning of the material: C 

We adapted a technique developed by Cerre (2016) to prepare high quality end-grain surfaces of 

large quantities of wood samples. A rotating sanding machine mounted on a fixed stage will be 

used with gradually finer grain abrasive paper. This will result in perfectly flat surfaces that will 

allow to be scanned with a flatbed scanner at 1200 dpi. A typical image will cover the wood 

anatomical end-grain structure of a surface of 7 cm long and 1 cm large, but some of the xylarium 

specimens have smaller or larger surfaces. These digital images cover more within-tree variability 

compared to sections usually used in identification which are typically 1 cm² large or less. The 

scans also contain quantitative information (RGB values) on the natural color of the wood. 

Deliverables: 5000 wood samples with polished surfaces (1.1.1.), 5000 digital images obtained 

through scanning (1.1.2.).  

 

Task 1.2. Description of the visual features: annotation of the images: C, P3 

The descriptions of the samples will be based on the list of macroscopic features (Ruffinatto et al. 

2015) and the RGB values of the images. 31 of the standardized features are visible on a typical 

high-resolution scan. Artefacts due to biological or mechanical impacts that do not have a 

diagnostic value will also be coded.  

Deliverable: A specimen-based database with the collected observations (1.2.1.). 

 

WP2: Development of illustrated keys (research objective 2): C,  P3 

Task 2.1. Implementation of text-based and illustrated classification keys: C, P2, P3 

A database with predominantly microscopic images of 60 commercially important species and 

associated visual identification keys are in use by the RMCA, especially in the context of training 

of Central African scientists. The platform used is Xper² because this allows easily to create offline 

systems. SmartwoodID will add more species to the existing system. A parallel system will be 

developed where text-based characters are maximally being replaced by images of these 

characters. This will enable a direct comparison of images of unknown wood with reference 

images collected in Task 1. Furthermore, we aim at building an online Xper³ system and the 

development of interactive teaching software for Central African wood species, which will aid 

experts as well as students of wood anatomy.  

Deliverable: Illustrated classification keys (2.1.1.) and interactive teaching software (2.1.2.). 

 

WP3: Applying machine learning techniques: P4, P5 

Task 3.1. Using machine learning on image material: P5 

This task consists of applying machine learning tools on the available images, without the 

textbased descriptions of the wood anatomical features.  
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Deliverable: list of species, artefacts and features automatically recognizable (3.1.1.). 

 

Task 3.2. Implementation of a machine learning assistant identification system (research 

objective 3):  P4 

At this stage the machine learning will be applied on the complete database consisting of as well 

images as text-based descriptions of the human observations of the end-grain surfaces.  

Deliverable: user-friendly interface for wood identification (3.2.1.). 

 

WP4: Coordination, project management and reporting: C 

The project partners together with the hired staff will meet on a regular base (once a month) to 

discuss and plan the practical work and scientific progress and make maximally use of the 

multiple valorization opportunities. Once a year the project team will report to and meet with the 

followup committee.  

Deliverables: coordinated project team (4.1.1.), administration and budget followed-up (4.2.1.), 

project reports (4.3.1.). 

 

WP5: Data management: P3, C  

The collected images and the associated text-based descriptions will be incorporated into the 

online database of the Tervuren xylarium (http://xylarium.africamuseum.be).  

A selection of the images (species that are not yet covered by InsideWood) will be transferred to 

the North Carolina State University to be uploaded into the InsideWood database 

(https://insidewood.lib.ncsu.edu/search?0). 

The interactive identification keys will be linked to the database 

(https://congobasincarbon.africamuseum.be/):  Xper² as downloadable package, Xper³ as online 

system.  

Deliverables: database of project results (5.1.1.), uploaded data in the Tervuren xylarium database 

(5.2.1., selection of images in InsideWood (5.2.2.). 

 

WP6: Valorization, dissemination, exploitation of results: C, P1, P2, P3, P4, P5  

Project results will be valorized in as well scientific contexts as on forums where mainly policy 

items are being discussed. We expect to be able to produce an image atlas covering the timber 

species of the DRC (possible editor European Journal of Taxonomy or a printed book edited by 

the Royal Museum for Central Africa). We plan to write a research paper on the application of 

deep learning techniques on large end-grain surfaces of tropical timbers. We plan a presentation 

of project results at scientific fora convened by the International Association of Wood Anatomists.  

Other fora include: 

http://xylarium.africamuseum.be/
https://insidewood.lib.ncsu.edu/search?0
https://congobasincarbon.africamuseum.be/
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- Presentation annual Forest Legality Week at the World Resources Institute (Washington D.C.; 

USA)  

- Presentation of the classification keys for master students in DRC, Gembloux and Gent  

- Presentation of the classification keys at the ATIBT (https://www.atibt.org/en/  

- See valorization plans (4.3) 

 

Deliverables: picture atlas (6.1.1.), paper on keys (6.1.2.), group training in DRC (6.2.1.), training 

of Belgian students (6.2.2.) 
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4. SCIENTIFIC RESULTS AND RECOMMENDATIONS 

 

WP1: preparing, digitizing, and annotating the material (research objective 1): 

Task 1.1 & 1.2 

A central challenge in building effective wood identification systems is the immense diversity of 

tree species worldwide, particularly in tropical regions like the DRC. Wood is a highly variable 

biological material, influenced by genetics, environmental conditions, and intra-tree location 

(e.g., trunk vs. branches, pith vs. bark). This complexity makes it difficult to define consistent 

diagnostic criteria. Additionally, taxonomic classifications are frequently revised, complicating 

database curation. Commercial trade further obscures species-level identification by grouping 

timbers under broad trade names based on physical properties rather than botanical identity. 

Current databases, such as InsideWood, macroHOLZdata, and CITESWoodID, and the Atlas of 

Macroscopic Wood Identification, offer valuable resources but may not cover the necessary 

variability that wood anatomical feature can portray within a species. InsideWood, for example, 

compiles species descriptions and images but often generalizes from limited specimens and lacks 

traceability to physical references. This constrains assessments of intra-specific variation and 

undermines the reliability of training data for machine learning models. We built SmartWoodID, 

the largest reference database of annotated macroscopic cross-sectional images designed to 

support rapid and accurate wood identification in the DRC, a hotspot of illegal logging. 

SmartWoodID draws on the extensive Tervuren wood collection and includes multiple high-

quality images per species, prioritizing economically important taxa. Unlike other databases, 

SmartWoodID intentionally includes specimens with natural variation and surface defects (e.g., 

cracks, fungal stains, insect damage) to better represent real-world conditions. This ensures that 

models trained on the dataset are more resilient to the variability encountered in field 

applications. The construction of this database was published in Oxford Academic in 2023. 

Species selection: 

• A selection was made and 954 timber species from the DRC were selected to be part of 

the core collection. 

General progress (1.1.1 / 1.1.2 / 1.2.1): 

• Core collection: 

o Sanding 100% finished (1.1.1) 

o Scanning 100% finished (1.1.2) 

o Annotations 100% finished (1.2.1) 

o Density measurements 100% finished (1.2.1) 

o Pictures 100% finished (1.2.1) 

• Extended collection: 

o Sanding 100% finished (1.1.1) 

o Scanning 100% finished (1.1.2) 

o Annotations 100% finished (1.2.1) 

o Density measurements 100% finished (1.2.1) 

o Pictures 100% finished (1.2.1) 
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WP2: Development of illustrated keys (research objective 2):  

Task 2.1. Implementation of text-based and illustrated classification keys:  

Despite their widespread use in field identification and identification keys, the diagnostic 

resolution of macroscopic features has not been systematically evaluated in species-rich contexts, 

such as the DRC.  

We systematically evaluated the diagnostic utility of 31 standardized macroscopic features across 

601 timber species using the SmartWoodID dataset. While useful for narrowing identifications 

within small taxonomic scopes, these features exhibited limited discriminatory power at broader 

scales. Predictive models based solely on expert-defined features achieved only ~50% genus-

level accuracy across 56 commercial Congolese genera, with significant anatomical overlap and 

large candidate sets required for confident identifications. These findings highlight the need to 

reassess the diagnostic validity of traditional descriptors and suggest that future research should 

explore both improvements to feature-based methodologies and complementary techniques to 

enhance field applicability. The identification key has been built on 954 Congolese timbers using 

Xper2. (2.1.1 / 2.1.2) 

WP3: Applying machine learning techniques:  

Task 3.1. Using machine learning on image material: 

To investigate whether visual information not captured by standard descriptors could improve 

identification, CNN models trained on raw cross-sectional images were explored. These models 

preserved nuanced patterns of colour and texture that experts intuitively use but which are not 

codified in existing feature sets. CNNs achieved substantially better performance than feature-

based models, with precision, recall, and accuracy all exceeding 85% at the genus level. The 

correct genus was among the top six predictions in over 95% of test cases. These results affirm 

that raw visual data contains richer diagnostic information than codified features alone and that 

CV can effectively harness this information. (3.1.1) 

It was investigated whether CNN performance degrades when confronted with anomalies that 

can be encountered on wood in the field and whether training on damaged or mixed-image sets 

improves resilience. Using Grad-CAM, model attention is visualized to determine whether CNNs 

rely on diagnostically meaningful regions or are misled by noise introduced by degradation. The 

findings provide information on the importance of this aspect regarding database construction for 

CV-based models by simulating the imperfect conditions typical of field and enforcement 

scenarios (3.1.1). 

Critical factors in building effective training databases were determined. Empirical analyses 

showed that increasing specimen representation and scan area improved CNN performance, 

underscoring the value of capturing anatomical variability. Models trained on pristine image 

patches achieved higher recall (90.5%) than those trained on mixed (88.4%) or damaged (79.1%) 

patches. Grad-CAM visualizations confirmed that CNNs consistently focused on intact anatomical 

structures, further supporting the emphasis on high-quality specimen preparation and imaging 

during database construction. (3.1.1) 

Furthermore, we evaluated scalable identification strategies for open-world contexts. Binary 

verification emerged as a particularly promising approach, comparing query images to reference 

samples to generate similarity scores rather than fixed labels. This method performed robustly, 
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even for species not included in training, and proved effective in practical scenarios where the 

goal is to verify the plausibility of declared identities rather than assign definitive species labels. 

Binary verification matched or outperformed multiclass models in ranking the correct genus 

among top candidates for the 56 Congolese genera studied. We also evaluated triplet learning, 

which transforms images into numerical vectors representing anatomical patterns. These 

embeddings can be directly compared or fed into lightweight classifiers such as nearest-neighbour 

or XGBoost. Although initial performance was suboptimal, likely due to suboptimal selection of 

hard training examples, the approach remains promising, particularly for integrating multimodal 

data (e.g., DNA, chemical signatures) into unified identification systems. (3.1.1) 

Task 3.2. Implementation of a machine learning assistant identification system (research objective 

3):  

Recognizing that real-world identifications often integrate anatomical descriptors and visual 

impressions, it was examined whether expert-defined features could be used to refine CNN 

predictions. Re-ranking top-k CNN outputs using feature data led to modest improvements for 

some genera but reduced accuracy for others, including priority genera such as Khaya. This 

indicates that while hybrid approaches have potential, their implementation must be carefully 

tailored to avoid counterproductive effects. The code was made for enabling automated 

identification with a baseline graphical user interface. (3.2.1). 

In conclusion, this study provides the first direct comparison of expert-defined feature-based keys, 

CNN classifiers, and re-identification models under realistic, field-like conditions in the DRC. It 

emphasizes the need for open-world recognition frameworks and hybrid strategies to create 

robust, scalable, and interpretable systems for timber identification. The findings have direct 

implications for international efforts to combat illegal logging and lay the groundwork for next-

generation, AI-enabled wood identification tools tailored to the operational realities of 

enforcement. (3.2.1). 

WP4: Coordination, project management and reporting: 

The project coordinator met with the hired staff on a regular basis (once a week) to discuss and 

plan the practical work and scientific progress and make maximally use of the multiple 

valorisation opportunities.  

The weekly meetings with the staff and the meetings between partners on a regular basis provide 

a coordinated project team (4.1.1.). A report was written after every meeting with partners in 

order to ensure good follow-up on the topics discussed (4.3.1.). Administration and budget 

followed-up was performed by the project coordinator and partner 4 (4.2.1.). 

WP5: Data management 

Digitizing the database for public display (1.2.1 / 5.1.1): 

All scans in the SmartWoodID collection and metadata (country of origin, taxonomy, etc.) are 

available on a private link, where they can be used in an IIIF environment (Database URL: 

https://hdl.handle.net/20.500.12624/SmartWoodID_first_edition). (5.2.1) 

A selection of the images (species that are not yet covered by InsideWood) were be transferred to 

the North Carolina State University to be uploaded into the InsideWood database 

(https://insidewood.lib.ncsu.edu/search?0). This consists of 1908 specimens and encompasses 

https://hdl.handle.net/20.500.12624/SmartWoodID_first_edition
https://insidewood.lib.ncsu.edu/search?0
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781 unique wood species (from which 342 wood species were not yet published 

on InsideWood (anno 2022)). (5.2.2) 

WP6: valorisation, dissemination, exploitation of results:  

The picture atlas is being developed in collaboration with Gembloux Agro-Bio Tech (Université 

de Liège), Passage des Déportés 2, 5030 Gembloux, Belgium. This will be published in the course 

of 2026 (6.1.1). 

A chapter was dedicated in the PhD dissertation (defended and successfully obtained on 2/09/25) 

to the implementation of identification keys. This will be submitted to a peer-reviewed journal in 

autumn 2025. (6.1.2) 

A woodshop is being constructed in partner research centres in Luki & Yangambi. Local samples 

will be processed in the same manner as the core and extended collections, to further complete 

the database of the core collection. A group training in DRC has taken place for two weeks from 

21/02/2022 till 04/03/2022. The session focused on task 1.1 to convey the method of sample 

preparation, sanding a scanning to the researchers at Yangambi research centre in DRC. The 

group training in DRC (from 21/02/2022 till 04/03/2022) was considered successful as the local 

researchers and staff were able to produce polished endgrain surfaces of samples of high quality. 

(6.2.1)  

Annual lectures are given to UGent students for the Wood Anatomy course to introduce them to 

the concept of wood identification keys using macroscopic cross-sectional feature 

(2022/2023/2024) (6.2.2).    
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5. DISSEMINATION AND VALORISATION 

 

PARTICIPATION/ORGANISATION OF SEMINARS (NATIONAL/INTERNATIONAL) 

A poster was presented at the online international conference Gapsym14: Africa and its ecologies: 

people and nature in the age of climate change organized in November 2021 by Ruben De 

Blaere. The title of the paper was:” Smart classification of Congolese timbers: deep learning 

techniques for enforcing forest conservation –Why digitizing wood collections and how.”  

A presentation was given at the international conference Closing meeting of the Ambitus project 

in June 2022 in Paris, France by Ruben De Blaere. The title of the presentation was: “Wood 

identification techniques for combatting illegal logging: Importance, issues, techniques, 

applications on wood anatomical assessment and the importance of wood collections” 

A presentation was given at the 6th Annual Meeting on Plant Ecology and Evolution & 

COBECORE meeting  

29th September 2022 in September 2022 in the Meise Botanic Garden, Belgium by Ruben De 

Blaere. The title of the presentation was: “Wood identification techniques for combatting illegal 

logging: Importance, issues, techniques, applications on wood anatomical assessment and the 

importance of wood collections.” 

A joint workshop with Kévin Lievens was given the following day at interested researchers in the 

field of Plant Sciences. The participants were taught how to use the classification key to distinguish 

African timber genera using macroscopic features on the cross section. In addition, a presentation 

and demonstration were given on a prototype CNN, capable of classifying African timbers on the 

genus level. (6.2.2) 

SmartWoodID was presented with live demonstration in the Africamuseum on 17/09/2023 in 

light of September science month by employee Ruben De Blaere. 

SmartWoodID was presented with live demonstration in the Africamuseum on 1/10/2023 in light 

of OpenBedrijvendag by employee Ruben De Blaere along with private tours in the Tervuren 

wood collection. 

Employee Ruben De Blaere attended the online Joint Research Discussion on Developing 

Integrated Timber Data for Xylaria Networking to stay up-to-date on international collaborations 

concerning new developments for forensic timber research, digitisation of xylaria, data sharing, 

and applying deep learning on such data. The meeting was held on the 7/12/2024. 

A short oral by poster will be presented at the 26th IUFRO world congress in Stockholm in June 

2024 by Ruben De Blaere. The title of the poster is Valorizing xylaria using computer vision-

based wood identification: a case study on the INERA-Yangambi xylarium. 
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Collaborations 

Perspectives for collaborations are considered whenever opportunities arise and are explored if 

the common goals are compatible with the workload and do not compromise the objectives of 

this project. 

1. Collaborations were attempted with a company specializing in building apps capable of 

recognizing wood species, Agritix (Compatibility with deliverable 3.2.1). A small number 

of scans containing Asian timbers has been shared and researched by them, with a success 

in recognition of the species. Further collaboration was halted when the workload and 

pay-off were out of balance. 

2. Collaborations with University of Antananarivo Madagascar were initiated to explore the 

potential of distinguishing Malagasy rosewood, palisander and ebony timber on species 

level with look-a-like timbers (3.1.1). Further cooperation is pending, until concrete plans 

of action and data sharing are determined.  

3. A collaboration was initiated with the São Carlos Institute of Physics at the University of 

São Paulo, Brazil to develop and study the potential of convolutional neural networks in 

recognizing wood anatomical features (3.1.1). The study will aim to develop one (or 

multiple) model(s) that incorporates multi-task learning to simultaneously extract features 

and classify the timbers based on the annotations and scans of the SmartWoodID core 

and extended collection (2.1.2). This collaboration shall commence from April 2024 and 

has as a distinct target to be published in co-authorship (6.1.2).  

 

Volunteers 

The Royal Museum for Central Africa (RMCA) engaged a broad audience in the valorisation of 

the wood biology collections through physical Citizen Science (CS) investigation actions. 

Considering this, the SmartWoodID collection was digitized using fast and accessible tools to 

simultaneously:  

• Test the speed and ease of handling for non-experts (6.2.1/6.2.2) 

• Create a reference image collection for publication in the Tervuren wood collection database 

(5.2.1), InsideWood database (5.2.2), image material for classification keys (2.1.1) and a 

picture atlas on Congolese timbers (6.1.1).  

• Foresee future studies and publications on higher resolution images then the current scans of 

the SmartWoodID collection, to develop and embed A.I. into custom built software that can 

automatically quantify wood anatomical features beyond the boundaries in the standardized 

features (3.1.1).  

The Citizen Rescuers for Collections (CRESCO) initiative was started up for this reason at the 

RMCA and employed 5 volunteers, that each performed half-a-day of work per week. The 

volunteers have signed a contract for 2024 to continue digitisation and aid in the annotation of 

wood anatomical features to develop deep learning segmentation models, that can automatically 

detect wood tissue. Those models will be used to study if quantification, beyond the current scope 

of the IAWA features, allows for a finer identification then possible with the main wood 

description, as created in this project. This approach will be submitted for publication in the 

beginning of 2025 with employee Ruben De Blaere as first author, and volunteers and the 

initiative in acknowledgments (3.1.1/6.). 
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Internships 

Employee Ruben De Blaere followed a five-day internship at the Royal Botanic Gardens, Kew, as 

a scientist studying the process of DART TOFMS to identify wood from 13/02/2023 till 

17/02/2023. Specifically, focus was put on identifying the botanical taxa of Pterocarpus and 

Afzelia, two protected African timbers. The goal was to research state-of-the-art wood 

identification techniques to help build a forensic center for wood identification to help combat 

illegal logging. During the internship, my responsibility was to assist in the wood identification 

process using DART TOFMS and XYLOTRON techniques. Research was performed on wood 

specimens of the SmartWoodID collection. The second technique, DART TOFMS, uses mass 

spectrometry to create chemical fingerprints and can be applied to distinguish timbers. Analysis 

techniques were taught to identify species by comparing to the reference database of Ed Espinoza 

and building our own models using random forests and KDA. In conclusion, the internship at the 

Royal Botanic Gardens, Kew, was a valuable experience, providing technical skills and personal 

growth experiences. The research conducted on state-of-the-art wood identification techniques 

will be useful in building a forensic center for wood identification to help combat illegal logging.  

Funding was attained through the 4th and final call of the Synthesys+ grant to follow an internship 

at the Jodrell Laboratory within the Royal Botanic Gardens, Kew from 5/06/2023 till 23/06/2023. 

It provided the opportunity to contribute to the development of a timber identification key for the 

Democratic Republic of the Congo (DRC) (2.1.1). Under the guidance of experts Dr. Peter Gasson 

and Dr. Victor Declerck, work focused on the Economic Botany Collection and World Forest ID 

Collection. Responsibilities concerned:  

• Integration of data from InsideWood and SmartWoodID to create a comprehensive timber 

identification key, emphasizing standardized IAWA features and macroscopic end-grain 

features. 

• Digitization of specimens in the Economic botany collection, absent from InsideWood and 

SmartWoodID at the Royal Botanic Gardens, Kew, using methods such as sanding specimens, 

capturing images with a handheld microscope, and describing macroscopic wood anatomy 

on the cross-section. 

Preliminary conclusions indicated a potential distinguishability of 426 Congolese timber genera 

using InsideWood with macroscopic end-grain features. Discussions with caretakers and 

promoters were deemed necessary for validation. This internship at the Jodrell Laboratory has 

provided a diverse range of experiences, from hands-on wood anatomy work to database 

integration and digitization. The mission, focused on building a timber identification key for the 

DRC, has unveiled both challenges and promising preliminary results. The journey has 

emphasized the complexity of botanical research and the need for collaboration and continuous 

refinement.  

A visit was arranged on 31/01/2024 to the Naturalis Biodiversity centre as a means of networking 

and sharing intermediary results. The visit featured presentations from staff at the research 

department of functional traits, a guided tour throughout the collections and laboratories and a 

visit to the Leiden Natural History Museum. 
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Courses 

Employee Ruben De Blaere followed a Doctoral School Course on Personal Effectiveness to 

improve efficacy and efficiency further still on 27th and 28th of February 2024.  

Employee Ruben De Blaere follows a Doctoral School Course on Advanced Academic English: 

Conference Skills to improve presenting and effective slide design during the first half of 2024. 

Phd dissertation 

Employee Ruben De Blaere has successfully defended his dissertation to obtain the titles of Doctor 

of Bio-science engineering: Natural resources, and PhD on 2/09/2025 at Ghent University. This 

degree corresponds to level 8 of the Flemish Qualifications Structure, as laid down in the Decree 

of 30/04/2009 concerning the Qualifications Structure, and to level 8 of the European 

Qualifications Framework for Lifelong Learning. The dissertation was written on the findings and 

contents of this project. 
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6. PUBLICATIONS 

 

Publications 

• R. De Blaere et al., “SmartWoodID—an image collection of large end-grain surfaces to 

support wood identification systems,” Database, vol. 2023, p. baad034, Jan. 2023, doi: 

10.1093/database/baad034. 

• R. De Blaere et al., “Evaluating the effect of anomalous images on CV-based wood 

identification models”, Wood Science and Technology; “Accepted for publication”; 

19/08/2025 

• R. De Blaere, “Identification of Congolese wood species by use of anatomical images and 

artificial intelligence”, ISBN: 9789463579025, PhD dissertation, defended on 2/09/2025 

• J. Van den Bulcke et al., “Enabling high-throughput quantitative wood anatomy through 

a dedicated pipeline,” Plant Methods, vol. 21, no. 1, p. 11, 2025. 

 

Conference proceedings 

• GAPSYM14: Africa and its ecologies: people and nature in the age of climate change 

(2021): Poster (~45 min) — SmartWoodID: Smart classification of Congolese timbers: 

deep learning techniques for enforcing forest conservation—Ghent, Belgium (online); 

https://www.africaplatform.ugent.be/sites/default/files/GAPSYM14_abstract%20book-

final_1.pdf  

• AMBITUS (2022): Presentation (~15 min)— Wood identification techniques for 

combatting illegal logging: Importance, issues, techniques, applications on wood 

anatomical assessment and the importance of wood collections—Paris, France; 

https://www.facebook.com/ambituseuropa/posts/closing-meeting-of-the-ambitus-project-

on-2-and-3-june-in-paris-the-members-of-t/543063587316223/  

• Joint 6th Annual Meeting on Plant Ecology and Evolution & COBECORE meeting (2022): 

Presentation (~15 min) )— Why digitizing wood collections and how?—and workshop 

(~90 min) )— Why digitizing wood collections and how?—Meise, Belgium; 

https://sites.google.com/plantentuinmeise.be/ampee6/  

• 26th IUFRO world congress (T5.16 IAWA-IUFRO Symposium: Advancing Methods and 

Applications of Wood Identification) (2024): Short oral + poster (~5 min) )— Valorizing 

xylaria using computer vision-based wood identification: a case study on the INERA-

Yangambi xylarium—Stockholm, Sweden; https://iufro2024.com/book-of-abstracts/ ; p. 

3536. 

• 26th IUFRO world congress (T5.16 IAWA-IUFRO Symposium: Advancing Methods and 

Applications of Wood Identification) (2024): Short oral + poster (~5 min) )— The two-

fold role of wood anatomy on a local Congolese timber market: a tool for species level 

identification and a direct link to the adjacent— Stockholm, Sweden; 

https://iufro2024.com/book-of-abstracts/  

• 26th IUFRO world congress (T5.16 IAWA-IUFRO Symposium: Advancing Methods and 

Applications of Wood Identification) (2024): presentation (~10 min) )— In search of 

species level identifications for African CITES timber species: potential of combined 

methods and importance for provenancing— Stockholm, Sweden; 

https://iufro2024.com/book-of-abstracts/  

https://www.africaplatform.ugent.be/sites/default/files/GAPSYM14_abstract%20book-final_1.pdf
https://www.africaplatform.ugent.be/sites/default/files/GAPSYM14_abstract%20book-final_1.pdf
https://www.facebook.com/ambituseuropa/posts/closing-meeting-of-the-ambitus-project-on-2-and-3-june-in-paris-the-members-of-t/543063587316223/
https://www.facebook.com/ambituseuropa/posts/closing-meeting-of-the-ambitus-project-on-2-and-3-june-in-paris-the-members-of-t/543063587316223/
https://sites.google.com/plantentuinmeise.be/ampee6/
https://iufro2024.com/book-of-abstracts/
https://iufro2024.com/book-of-abstracts/
https://iufro2024.com/book-of-abstracts/
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