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Abstract
Spiraxis interstrialis, and its junior synonym Fayolia mourloni, an uppermost Famennian (Upper Devonian) fossil first 
described as algae and subsequently interpreted as the oldest known chondrichthyan egg case, is reinvestigated based on the 
discovery of several additional specimens in Belgian collections. New data, in particular from micro-CT imaging, allow to 
refute S. interstrialis, and by extension also Spiraxis major (the type species of Spiraxis Newberry, non Adams) and Spiraxis 
randalli from the Famennian of New York and Pennsylvania, as chondrichthyan egg cases. Alternative interpretations of 
these enigmatic helicoidal fossils are discussed. The first occurrence of oviparity in the fossil record of chondrichthyans is 
thus not as old as previously thought and is close to the first occurrence of viviparity in this group, both being recognised 
now in the Mississippian. The question of which of both conditions is plesiomorphic within chondrichthyans, and more 
widely within vertebrates, is discussed. Also, the presence of the genus Spiraxis in both the USA (east coast) and Belgium 
reinforces the strong faunal resemblance already observed in both palaeogeographical areas. It suggests important faunal 
exchanges between these regions of the Euramerica landmass during the Famennian.
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Introduction

Extant chondrichthyans (‘cartilaginous fishes’) domi-
nantly have a viviparity mode of reproduction and ovipar-
ity, characterised by fertilised eggs within capsules (or egg 
cases), which is a much less common mode of reproduc-
tion (Wourms and Lombardi 1992; Blackburn 2005, 2015; 
Musick and Ellis 2005; Wyffels 2009). Whether viviparity 
preceded oviparity in the evolution of chondrichthyans, and 
vertebrates in general, remains debated (e.g. Grogan and 
Lund 2011; Carr and Jackson 2018; Fischer et al. 2014a; 
Trinajstic et al. 2019).

Stainier (1894) described a singular helicoidally enrolled 
fossil under the name Spiraxis interstrialis from the Upper 
Devonian (Famennian) of southern Belgium that he consid-
ered related to algae. This enigmatic fossil was later rein-
terpreted as a chondrichthyan egg case notably by Pruvost 
(1919) and Crookall (1928). This determination must be 
considered doubtful given its age and morphology com-
pared to other chondrichthyan egg cases. However, it is still 
regarded as the oldest occurrence of chondrichthyan egg 
case, notably by Fischer et al. (2014a) who recognised one 
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egg case morphotype in the Belgian Famennian, i.e. Fayolia, 
previously Spiraxis (Stainier 1894, 1935). Yet, Poschmann 
and Schindler (1997, table 1), in their inventory of all Fay-
olia species, scored the Belgian species with half of the char-
acters as unknown (‘nicht erhalten’). That should have raised 
suspicions, but the assignment of the Belgian material to 
egg cases has never been questioned until this paper, which 
consequently has implications for the knowledge on the evo-
lution of the reproductive strategy in chondrichthyans.

The search for the type material led us to revise the inter-
pretation of Stainier’s (1894) species, which was consid-
ered until now the oldest examples of chondrichthyan egg 
capsules (e.g. Fischer and Kogan 2008; Fischer et al. 2011, 
2014a). Careful examination of undescribed similar mate-
rial challenges such an explanation. The aim of this paper 
is therefore not only to re-evaluate this assignment, but also 
to document and to re-illustrate topotypes of the so-called 
Devonian Belgian chondrichthyan egg cases described under 
their original specific names as Spiraxis interstrialis Stainier, 
1894 and Fayolia mourloni Stainier, 1935. It led us also to 
question similar and contemporaneous specimens from the 
USA (New York and Pennsylvania) originally described as 
S. major and S. randalli by Newberry (1885), and to discuss 
palaeobiogeographic considerations and the evolution of the 
reproductive strategy in vertebrates.

Geological setting

The putative chondrichthyan egg cases (Stainier 1894, 
1935) were collected from now disused and almost com-
pletely backfilled quarries located around the village of 
Isnes-Sauvage (now Les Isnes) (Fig. 1), c. 10 km WNW of 
Namur (Namur Province, Belgium). These quarries previ-
ously exploited the micaceous, often dolomitic sandstones 
of the Bois de la Rocq Formation (Delcambre and Pingot 
2008) for the purpose of building construction and interior 
design. The sequence is estimated to be up to 45 m thick and 
fossiliferous at some levels, dating, with some uncertainty, 
from the uppermost Famennian (Strunian) to the lowermost 
Tournaisian (Hastarian) (Poty et al. 2002). Nevertheless, a 
latest Famennian age has to be considered for the quarried 
levels, as only the topmost part (max. 2–3 m in thickness) of 
the Bois de la Rocq Formation is Hastarian in age (Delcam-
bre and Pingot 2008). From a tectonic viewpoint, these quar-
ries are situated in the Brabant Parautochthon (e.g. Belanger 
et al. 2012) (Fig. 1), and were located along the southern 
margin of Euramerica during the Late Devonian.

At Les Isnes, those quarries exploiting sandstones of the 
Bois de la Rocq Formation are now almost completely back-
filled (Delcambre and Pingot 2008) preventing new finds 
and observations. A few kilometres to the east, between Les 
Isnes and Rhisnes (Fig. 1), there is still one active quarry 

Fig. 1   Location and schematic geological map of southern Belgium and neighbouring countries with indication of the localities cited in the text 
(modified from de Béthune, 1954). Abbreviations: F., fault; G.D.L., Grand Duchy of Luxembourg; G., Germany; N., the Netherlands
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exploiting sandstones of the Bois de la Rocq Formation 
(see Delcambre and Pingot 2015). No specimens have yet 
been collected from the latter, and given the small number 
of specimens of Spiraxis that have been found and reported, 
it is likely that these fossils are probably rare. According to 
Mourlon (1875), the macrofauna recovered from the ‘Psam-
mites du Condroz’ in the Les Isnes area includes marine 
invertebrates such as brachiopods, orthoconic cephalopods 
and bivalves (see also Stainier 1922; Asselberghs 1936), as 
well as the edrioasteroid Dinocystis barroisi (Discocystinae, 
Edrioasteroidea). Although detailed accounts on the deposi-
tional and palaeoenvironment of the sediments from the Bois 
de la Rocq Formation are lacking, these fossils indicate that 
at least some of these sediments were deposited in a (shal-
low) marine environment not far from the coast.

Material and methods

The bulk of the material studied in this paper is stored in the 
collections of the Royal Belgian Institute of Natural Sciences 
(Brussels, Belgium, numbers with prefix RBINS; three spec-
imens). Additional illustrated specimens are in the collec-
tions of the ‘Centre Grégoire Fournier’ (Maredsous Abbey, 
Denée, Belgium, number with prefix CGF; one specimen) 
and of the University of Liège (Liège, Belgium, number with 
prefix PA.ULg.; one specimen). North American specimens 
mentioned herein are in the Paleobotany Department of the 
Yale Peabody Museum of Natural History (New Haven, CT, 
USA, numbers with prefix YPM PB).

Three specimens (RBINS a13524 and a13525, and 
PA.ULg. 2020.11.19/1) were analysed using the RBINS 
micro-CT scan RX EasyTom 150, at 150 kv and 200 µA in 
middle spot mode, with voxel sizes of 20.8908 µm (RBINS 
a13524), of 20.8936 µm (RBINS a13525) and at 150 kv 
135 µA in middle spot mode with voxel size of 39.9447 µm 
(PA.ULg. 2020.11.19/1). After scanning, extraction into 
16-bit TIFFs was performed with the X-Act software, and 
3D-rendering and segmentation with Dragonfly ORS (ver-
sion 4.10 for Windows). Figures of the scanned specimens 
were produced with the ‘export screenshot’ function, after 
optimising the 3D rendering by adjusting the histogram, 
contrast, shading, light source position, hard gradient and 
turning off all annotations except the scale bar. In a final 
step, an image processing software was used for the scal-
ing to 600 dpi. In addition to this, 3D-models of the outer 
surface of RBINS a13524 and a13525 can be consulted via 
the RBINS Virtual Collections Platform (http://​virtu​alcol​
lecti​ons.​natur​alsci​ences.​be/)  and of specimen PA.ULg. 
2020.11.19/1  via  https://​www.​morph​osour​ce.​org/​proje​
cts/​00037​9486. The primary scanning data and the set of 
Y slices are stored on Belspo’s LTP platform and can be 

consulted upon request to the RBINS palaeontology collec-
tion manager.

All specimens were coated with ammonium chloride sub-
limate and photographed traditionally.

Systematic palaeontology

Incertae Sedis

Genus Spiraxis Newberry 1885, non Adams 1850
Type species Spiraxis major Newberry 1885 from the 

Conewango Group (Famennian), southern NY, USA, is 
hereby designated as type species following the recom-
mendation 69.A.10 of the International Code of Zoological 
Nomenclature (fourth edition, 1999).

Diagnosis Emended from Newberry (1885): body cylin-
drical, or subfusiform, somewhat abruptly conical above, 
more gradually tapering below; surface traversed by two par-
allel revolving spiral ridges, in some species closely spaced, 
in others separated by an interval half as wide as the diame-
ter; traces of internal structure; no distinct surface-markings 
visible, or only thin continuous, spiral and parallel ridges.

Included species Besides the type species, Spiraxis ran-
dalli Newberry 1885 and Spiraxis interstrialis Stainier 1894.

Remarks Newberry (1885) assigned two species to his 
new genus Spiraxis (no type species was selected in the 
publication), namely S. major from southern New York 
State (Newberry (1885, pl. 18, Fig. 1): specimen YPM PB 
027,174) and S. randalli from the Warren area of northern 
Pennsylvania (Newberry (1885, pl. 18, Figs. 2–3): speci-
mens YPM PB 027,172–027,173). Photographic illustrations 
of the specimens figured by Newberry (1885) are available 
via the website of the Yale Peabody Museum. Facsimile 
of Newberry’s figured specimens was published by Lesley 
(1890) and Crookall (1928); to our knowledge, Crookall 
(1930, pl. 4, Fig. 6) was the first to provide a photographic 
illustration of the species randalli. Moreover, soon after his 
first description, Spiraxis Newberry 1885, was renamed as 
Prospiraxis by Williams (1887) due to a primary homonymy 
issue with the recent gastropod genus Spiraxis Adams 1850, 
although this action is only strictly necessary if Spiraxis is 
to be placed in the Animalia and not in the Plantae Kingdom 
(see discussion on possible affinities of Spiraxis below). Hay 
(1902) selected Spiraxis major Newberry 1885, as the type 
species of Prospiraxis. Zeiller (in Renault and Zeiller 1888), 
who was unaware of Williams’ (1887) publication, consid-
ered Spiraxis a synonym of Fayolia Renault and Zeiller 
1884, and he thus transferred both Newberry’s species to 
the latter genus.

Crookall (1930), who did not examine Newberry’s mate-
rial, but rather specimens from the Warren area collected by 
F.A. Randall in Hall’s collection (now in New York State 
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Museum, Albany), came to the conclusion that (1) Fayolia 
randalli and F. major correspond to a single species, and (2) 
these should be united under F. randalli. Crookall (1930) 
likewise discussed the age of F. randalli from the Warren 
area based on (written or oral) communications provided by 
W. Goldring according to the observations of G.H. Chad-
wick and Ch. Butts. It appears that the randalli specimens 
were collected in two quarries exploiting the Salamanca 
conglomerate, thus the middle part of the Conewango For-
mation, which is the lowest Mississippian (Bradfordian) in 
age according to Ch. Butts. For this reason, Crookall (1930) 
considered Spiraxis interstrialis the oldest Upper Devonian 
Fayolia species, a view followed by subsequent workers such 
as Poschmann and Schindler (1997) and Fischer and Kogan 
(2008). A more detailed look onto the age of the material 
from northern Pennsylvania reveals that the Chemung is a 
now obsolete stratigraphic term for nearshore to outer-shelf 

sandstones, siltstones and shales belonging to different for-
mations of Late Devonian age (Harper and Kollar 2015). 
According to Chadwick (1935), the fossils are confined to 
the Devonian-aged Conewango Group (a term introduced by 
Butts (1910)), of southern New York and Pennsylvania. The 
Conewango Group includes, from base to top, the Venango 
and Riceville formations that are Famennian in age (e.g. 
Harper and Kollar 2015), and the Salamanca conglomerate 
(e.g. Willard et al. 1939) is now part of the Venango Forma-
tion. In conclusion, both North American species described 
by Newberry (1885) are Late Devonian (Famennian) in age.

Spiraxis interstrialis Stainier 1894 (Figs. 2–6)
1894 Spiraxis interstrialis Stainier, p. 26–27, unnumbered 

text-fig.
1910 Spiraxis [Fayolia] interstrialis; Moysey, p. 341.
1919 Spiraxis [Fayolia] interstrialis; Pruvost, p. 447.
1928 Spiraxis [Fayolia] interstrialis; Crookall, p. 326, 

365.
1932 Fayolia interstrialis (Stanier [sic]); Crookall, p. 134.
1935 Fayolia Mourloni Stainier, p. 35.
1950 S. [Spiraxis] interstrialis Stainier; Brown, p. 596.
1997 F. [Fayolia] interstrialis (Stainier); Poschmann and 

Schindler, p. 30–31, table 1.
2008 Spiraxis [Fayolia] interstrialis; Fischer and Kogan, 

p. 79.
2018 Spiraxis of Stainier 1894 [sic]; Carr and Jackson, 

p. 384.
2021 Spiraxis interstrialis; Mottequin, p. 38.
Material Stainier (1894) reported that only one speci-

men from the ‘Psammites du Condroz’ (see above) was 
collected in the quarries of Isnes-Sauvage by M. Mourlon 
and can therefore be considered the holotype by mono-
typy. According to an exchange of correspondence between 
X. Stainier and G. Fournier (famous monk who gathered 
the largest collection of specimens from the Carbonifer-
ous (Viséan) Denée conservation Lagerstätte that made 
the CGF famous: Mottequin 2008; Mottequin et al. 2015) 
preserved in the archives of the CGF, the holotype was in 
1894 present in the collections of the Muséum d’Histoire 
naturelle de Belgique (now RBINS). However, from a letter 
addressed by E. Maillieux (the curator of these collections) 
to G. Fournier, it can be learned that in 1925, the speci-
men was considered lost. Recent searches in the collections 
of the RBINS (including the Belgian Geological Survey) 
were in vain. Therefore, this specimen may be considered 
presumably lost, exactly as did Maillieux almost a century 
ago. Nevertheless, the search for this specimen resulted 
into the discovery of other and formerly unreported speci-
mens: (i) three specimens in the RBINS collection (RBINS 
a13524 (Figs. 3g–h, 4a–h), 13,525 (Figs. 3i–j, 4i–n) and 
13,526 (Fig. 3k–l)) identified (on label, by E. Maillieux) as 
Fayolia mourloni Stainier 1935, from Les Isnes (including 
the villages of Isnes-Sauvage and Isnes-Les-Dames) that 

Fig. 2   Original Stainier’s (1894) 
illustration of the holotype (not 
traced) of Spiraxis interstrialis 
Stainier 1894, from the Bois 
de la Rocq Formation (latest 
Famennian), Isnes-Sauvage 
(Belgium). Scale bar represents 
10 mm
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were acquired by the RBINS in 1930 (one specimen from 
Malaise’s collection, IG 9340) and in 1932 (two specimens 
from Piret’s collection, IG 9694); (ii) one specimen in the 
palaeontological collections of the Université de Liège (PA.
ULg. 2020.11.19/1; Figs. 3a–c, 5, 6; former Henne’s col-
lection) labelled as Spiraxis interstrialis and coming from 
Isnes-Sauvage, which is hereby designated as the neotype; 
(iii) one specimen in the collection of the Centre Grégoire 
Fournier (CGF 2020.11.20/1; Fig. 3d–f), without locality 
and stratigraphy details other than ‘Golzinne area’ (Golzinne 
is near to Les Isnes). This specimen was the subject of the 
correspondence between G. Fournier, E. Maillieux and X. 
Stainier (see above).

Type locality and horizon Isnes-Sauvage (now Les 
Isnes) (Fig. 1), latest Famennian part of the Bois de la Rocq 

Formation (formerly ‘Psammites du Condroz’) (Thorez et al. 
2006; Delcambre and Pingot 2008).

Original description Stainier (1894) provided a 
detailed description (in French) and drawing (refigured 
here in Fig. 2) of the single specimen available at that 
time, i.e. the holotype (lost). His description is as fol-
lows: total length 140 mm, maximum width 25 mm. One 
end is quite pointed, the other one is more rounded. The 
object has noticeably the same width, but its middle part 
is slightly swollen. Its cross section is ellipsoidal, but this 
may be the result from compression phenomena during 
the fossilisation. The surface bears a kind of ridge spiral-
ling around the object, starting from the top right, and 
extending to down left, in making an angle of c. 45 degrees 
with the vertical axis of the object. Towards the top of the 

Fig. 3   Spiraxis interstrialis 
Stainier 1894, from the Bois 
de la Rocq Formation (lat-
est Famennian). a–c PA.ULg. 
2020.11.19/1 (neotype) in 
lateral views; Isnes-Sauvage. 
d–f CGF 2020.11.20/1 in lateral 
(d–e) and terminal (base, f) 
views; Golzinne area. g–h 
RBINS a13524 in lateral (g) 
and terminal (top, h) views; 
Les Isnes. i–j RBINS a13525 
in lateral (i) and terminal (base, 
j) views; Les Isnes. k–l RBINS 
a13526 in lateral (k) and ter-
minal (top, l) views; Les Isnes. 
Scale bar represents 10 mm
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fossil, the ridge has a sharp edge and its upwards-turned 
flank falls steeply into the depression, whereas, down-
wards, this slope gradually decreases towards the depres-
sion. On this slope oriented bottomwards, the main ridge 
is accompanied throughout its development by a second-
ary one that is less prominent, less distinct and less acute 
than it. Both ridges rotate together around the axis of the 
object but as one moves from top to bottom, the secondary 
ridge moves further and further away from the main one 
and becomes more prominent, almost as prominent as the 
latter. As both ridges diverge from each other, two very 
small spiral protrusions gradually appear in the hollow 

between them and are especially visible in the fourth turn 
from the top. Towards the top of the fossil, the prominence 
of the main ridge gives to the spiral turns the appearance 
of a sharp ridge on one side. Between each turn, there is 
a very pronounced depression with a width of c. 25 mm 
measured perpendicularly from the main crest to main 
crest. The depression displays up to nine thin continuous, 
spiral and parallel ridges. The latter are spaced from 2 mm 
and become more and more distinct and more protruding 
bottomwards and for each interval comprised between two 
spiral tours of the main ridges.

Fig. 4   Spiraxis interstrialis 
Stainier, 1894, from the Bois 
de la Rocq Formation (lat-
est Famennian). a–h RBINS 
a13524. i–n RBINS a13525. 
Different views on 3D surface 
renderings (a, e–f, i, l) and 
virtual sections through the 
specimens (b–d, h, j–k, m–n). 
Scale bar represents: 10 mm 
(a, c, e–g, i–o); 5 mm (b, d); 
2.5 mm (h)
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Stainier (1894) stressed on the fact that the specimen was 
composed of yellow, very micaceous sandstone that was 
absolutely identical to the rock in which it was found.

Description of additional specimens All the additional 
specimens are fully three-dimensional fossils, devoid of any 
traces of carbonate or dark-coloured organic matter. They are 
all loose, devoid from surrounding rock. All these specimens 
have some degree of distortion along — what is interpreted 
as — the vertical axis. Most probably this is due to sedi-
ment compaction, as a similar degree of distortion can be 
observed in e.g. bivalves from the same layer and locali-
ties that are in the RBINS collections. These bivalves are 

also fully decalcified and exhibit a slightly different taint of 
yellow than their surrounding sediment. The nature of the 
distortion allows to firmly state that all the additional speci-
mens must have lied, at time of fossilisation, horizontally in 
the sediment.

All of these additional specimens are interpreted as 
being incomplete; only one of the extremities of PA.ULg. 
2020.11.19/1 (Fig. 3a–c), the largest of the additional speci-
mens, may be a (nearly) complete extremity. The sedimen-
tary matrix, these fossils are made out of, is rich in mica 
(the rock is called a psammite), and thus there is a con-
centration of mica plates on the outer surface of PA.ULg. 

Fig. 5   Spiraxis interstrialis 
Stainier 1894, from the Bois 
de la Rocq Formation (latest 
Famennian). a–g PA.ULg. 
2020.11.19/1 (neotype) in dif-
ferent views on a 3D render-
ing (a–c) and virtual sections 
through the specimen (d–g), 
close to the centre (d–e, g) 
and to the proximity (f) of the 
specimen. X, Y, the horizontal 
axes; Z, the vertical axis. Scale 
bar represents: 10 mm (a–f); 
5 mm (g)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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2020.11.19/1. On the outer surface of the other specimens, 
this is less prominent (RBINS a13524 (Fig. 3g–h), a13526 
(Fig. 3k–l)) to even absent (RBINS a13525 (Fig. 3i–j)). In 
the latter case, however, there seems to be an overall lesser 
amount of mica in the sediment. Similar concentrations of 
mica plates are also observed on the surface of bivalves from 
the same beds, and for these bivalves, there is also no void 
left between the matrix and the mica-coated surface of the 
bivalves.

An additional factor that varies from one specimen to the 
other is the preservation of the ornament of delicate ribs, 
which is absent in PA.ULg. 2020.11.19/1 (Fig. 3a–c), only 

faintly preserved in RBINS a13525 (Fig. 3i–j), with the 
exception of one circular spot where it is better preserved, 
and much better preserved in RBINS a13524 (Fig. 3g–h) and 
a13526 (Fig. 3k–l). Specimen RBINS a13526 displays more 
than 12 thin ridges in the depression.

Micro-CT imaging of three specimens allow to study and 
visualise the internal build-up of Spiraxis interstrialis. Of 
these three, the internal structures are most easily observ-
able in PA.ULg. 2020.11.19/1 (Figs. 5d–g, 6b–j). The most 
prominent and largest internal structures are oriented at 
angles between 10 and 20 degrees to the main length axis 
(Figs. 5d–e, 6d), implying that the structure is made from 

Fig. 6   Spiraxis interstrialis 
Stainier 1894, from the Bois 
de la Rocq Formation (lat-
est Famennian). a–j PA.ULg. 
2020.11.19/1 (neotype) in 
3D rendering (a) and virtual 
sections through the specimen 
(d–j), close to the centre (b–d) 
and different sections along the 
X axis (e–j). Scale bar repre-
sents: 10 mm (a–d); 5 mm (e–j)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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partly overlapping whorls that are 3.5–4.8 mm thick. Vir-
tual sections taken much closer to the outer surface (Fig. 5f) 
reveal additional structures which align with the inclination 
of the outer ridges and also some that make an angle with 
these of 5–15 degrees.

Next to these larger-scale features, the virtual sections 
allow to identify a (relatively large) number of faintly to 
very faintly traceable structures. For none of these struc-
tures, there is certainty that these are directly related to the 
fossil itself. One of these possibly unrelated structures that 
easily can be observed both on the outer surface of PA.ULg. 
2020.11.19/1 and in the virtual sections is what is termed 
here as the ‘nipple’ (arrow on Figs. 5a–c, 6a–d, j). Its over-
all shape is spherical, although deformed, it has a maximal 
diameter of 4.5 mm, and based on the different grey val-
ues, it must have a different chemical composition than the 
rest of the sedimentary fill of the fossil. This nipple was not 
observed in any of the other Spiraxis specimens.

Remarks As stated above, Stainier (1894) introduced 
Spiraxis interstrialis based on a single specimen that, 
according to the author, differs from the two species of 
Newberry (1885) by the presence of an outer ornament of 
thin ridges in the depressions separating the crests. More 
than 40 years later, Stainier (1935) mentioned the discovery 
of a second specimen (currently untraced; see above), and 
although this second specimen displayed the same characters 
as the first, surprisingly, these two were used to name the 
new taxon Fayolia mourloni Stainier 1935. For unknown 
reasons, the second specimen was not illustrated, and from 
Stainier (1935), it is also impossible to deduce whether the 
second specimen is the one mentioned by G. Fournier in two 
letters dating to 1925, one to X. Stainier and one to E. Mail-
lieux, which Fournier said he received from an unnamed 
friend. Fayolia mourloni is thus to be regarded as a junior 
synonym of Spiraxis interstrialis.

Occurrence Les Isnes area (Brabant Parautochthon), 
southern Belgium (Fig. 1).

Discussion

Specimens of Spiraxis are not egg cases

Of all the different interpretations that have been proposed 
for Spiraxis (see below), it is the one of chondrichthyan 
egg capsules that received the most attention and which is 
still the one prevalent in the recent literature. However, it is 
noteworthy that the general morphology of Spiraxis only 
bears some vague resemblances with true representatives 
of chondrichthyan egg cases like those of the genus Fayolia 
Renault and Zeiller 1884 (compare with Fischer et al. 2011). 
In addition, the nearly undistorted 3D nature of the Spiraxis 
fossils is notable. This is notable because ‘fish’ egg capsules 

are organic structures that may have some rigidity, and thus, 
one would expect their fossils to be flattened or to only retain 
limited 3D preservation. However, some exceptional exam-
ples of fully 3D specimens, corresponding to the moulds of 
the external structure during the decay of the original egg 
capsule in the sediment, are reported, in particular of Meso-
zoic Palaeoxyris (Frentzen 1932; Vialov 1984; Böhme et al. 
2012), all found in broadly similar sandy lithologies, which 
are sediments with very limited dewatering compaction.

Internal helicoidal cavities for chondrichthyan egg cap-
sules do not exist. The only extant chondrichthyan producing 
helicoidally shaped egg capsules is the Port Jackson shark 
genus Heterodontus, but this helicoidally shaped structure 
is external. The internal cavity of Heterodontus egg cases is 
ovoid-shaped with smooth surfaces (e.g. Powter and Glad-
stone 2008, Fig. 2), thus differing largely from the fossils 
named Spiraxis interstrialis. If we only consider here the 
type species of Spiraxis (S. major Newberry 1885) and that 
of Fayolia (F. dentata Renault and Zeiller 1884, from the 
Upper Pennsylvanian (Gzhelian, Stephanian) of the Com-
mentry Basin in the Allier department (France)), it becomes 
evident that, except for the helicoidal shape, both genera do 
not have many similarities. Moreover, the surface pattern of 
S. interstrialis includes ridges (see Fig. 2) that are clearly 
distinct, a feature not observed in Fayolia representatives.

Nevertheless, the most convincing evidence for refuting 
the egg case hypothesis for Spiraxis interstrialis comes from 
the micro-CT imaging, revealing its internal structure, which 
is not conformable with an egg case interpretation.

Thus, what could Spiraxis be?

Stainier (1894) was not sure what S. interstrialis could be. 
The author was not even sure whether it should belong to 
the Animalia or the Plantae. His best guess was that it was 
related to the algae. But Stainier (1894) also briefly dis-
cussed several other possible assignments of S. interstria-
lis, but without presenting substantial evidence to support 
or disprove any of the hypotheses that he proposed. For 
example, he hypothesized a possible affinity with the spi-
ralled fenestrate bryozoan Archimedes but immediately 
overruled this hypothesis because of the absence of pre-
served internal structures or remnants of calcium carbon-
ate. Nevertheless, as already detailed above, the bivalves 
and brachiopods in the Bois de la Rocq Formation have 
also lost their carbonate shell, and the micro-CT imag-
ing of S. interstrialis specimens revealed the presence of 
internal structures. He also reflected on a possible vegetal 
origin, specifically, he hypothesized it to be the fruit of 
an unknown plant, but there is, to our knowledge, not a 
single Devonian plant producing fruits that even vaguely 
resemble Stainier’s species. Moreover, as is the same for 
the types of S. randalli and S. major, there are no traces of 
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charcoal on the outer surface, although Williams (1887) 
reported on the presence of charcoaled chips of wood in 
the same beds in which Spiraxis is known from in Gen-
esee, NY. Stainier (1894) also evoked the possibility for 
S. interstrialis to be the internal mould of soft-bodied 
sponges, but again, the nearly undeformed three-dimen-
sional nature of the specimens in combination with the 
absence of flattened specimens makes assignations with 
soft-bodied organisms devoid of rigid structures ques-
tionable. In addition, an assignment to siliceous sponges 
(Dictyospongiidae), well-known in the Famennian of Bel-
gium and northern France (e.g. Legraye 1929; Waterlot 
1946), cannot be considered here as the fossils are devoid 
of the characteristic reticulate pattern usually present on 
the internal moulds of these sponges (e.g. Hall and Clarke 
1899).

What Stainier did not consider was that the spiralised 
shape of Spiraxis vaguely recalls that of some coprolites 
(suggested by Hollick (1893) for the North American mate-
rial) and burrows.

Chondrichthyans and other ‘fishes’ such as placoderms, 
actinistians, dipnoans, chondrosteans, amiids and lepi-
sosteids have one of two architectures of valvular intestines 
(valvula volute: scroll valve) and (valvula spiralis: spiral 
valve) which produce spirally shaped faeces (Parker 1885; 
Owen 1866; Williams 1972; McAllister 1987). Spiraxis 
interstrialis has spirals that are distributed evenly along the 
long axis in lateral view, a morphology that would be termed 
amphipolar if it were a coprolite (Neumayer 1904). There 
are coprolites with broadly similar morphology to Spiraxis, 
notably Helicocoprus (Hunt et al. 2015), but they are apa-
titic in composition. In addition, the internal structuring of 
Helicocoprus remains unknown, and the ornament of the 
outer surface differs largely from Spiraxis interstrialis. There 
are uncommon coprolites of filter feeders that are composed 
of sandstone and are known from the Silurian and Permian 
(Gilmore 1992; Retallack and Krull 1999). However, these 
coprolites differ from Spiraxis in having a pronounced spiral 
internal structure and lack spiral ridges on the exterior.

Some eurypterids possessed a partially spiralled gut 
(Waterston et al. 1985), but there is no evidence that they 
produced spirally shaped coprolites. Caster and Kjellesvig-
Waering (1964) described a putative eurypterid coprolite 
containing fragments of the exoskeleton of the eurypterid 
Megalograptus ohioensis and a trilobite cephalon, in asso-
ciation with body fossils of this eurypterid species from the 
Ordovician of Ohio, as evidence of cannibalism. Unstruc-
tured masses containing disarticulated agnathan fragments 
are common in the Monks Water fish bed in the Silurian 
Hagshaw Hills inlier in Scotland, together with the euryp-
terid Lanarkopterus dolichoschelus, and these were inter-
preted as eurypterid coprolites (Selden 1984) as were bodies 
comprising Logania denticles from the Lesmahagow inlier 

(Rolfe 1973). These examples suggest that eurypterid copro-
lites consist of unstructured material that does not have a spi-
ral shape. In addition, although some of the structures seen 
in the virtual sections of S. interstrialis may hypothetically 
be remains of other biological entities, none of them can 
be unequivocally recognised as fragments of eurypterids, 
trilobites or vertebrate skeletons.

Poschmann (2015), in the description of Helicodro-
mites, overviewed a number of (sub)horizontal nearly 
straight unbranched burrows. However, like Helicodro-
mites, all of these consist of a single spiralling cylindrical 
tube, and thus differing from S. interstrialis. Resemblances 
to Skolithos helicoidalis Volohonsky et al. 2008 are also 
only superficial and more importantly, this ichnotaxon is 
vertically oriented, and thus, it is not a match.

A very different interpretation can be made by consid-
ering that originally, Spiraxis interstrialis may have been 
a hard structure, possibly composed out of Ca-carbon-
ate. This would explain its similar mode of preservation 
(largely undeformed three-dimensional fossils, concen-
tration of mica plates on the outer surface) compared to 
the other macrofossils known from the Bois de la Rocq 
Formation. It would also explain the variation in the pres-
ervation of the outer ornament of thin ribs, varying from 
being well-preserved all over the entire external surface 
(e.g. Stainier’s (1894) specimen (Fig. 2), at least, if the 
drawing was not enhanced), to being only partly present or 
even fully absent. This variation also questions the validity 
of the presence of thin ribs as a discriminator between S. 
interstrialis and the two American species. It needs further 
investigation, but the absence of these thin ribs in the type 
of S. major may simply relate to preservation bias, and, in 
addition, faint traces of these ribs seem also to be present 
on one of the two types of S. randalli (YPM PB 027,173). 
The latter specimen also reveals an additional feature that 
may hint for the hard nature of the original structure; it 
seems to lie torn or broken in the sediment, at least in two 
spots. Interestingly, in the interpretation that Spiraxis has a 
hard ‘skeleton’, it may well have been a vertical structure, 
rather than a horizontal one. Stainier’s (1894) reference to 
the bryozoan Archimedes was maybe not that far-fetched 
after all. However, Archimedes has a different mode of 
coiling, and all evidence of fronts is missing.

Palaeogeographical comments

While none of the above discussed hypotheses seems able 
to undoubtedly clarify the higher taxonomic position of 
Spiraxis, there are some striking similarities between the 
localities from which Spiraxis fossils derive. Until now, 
Spiraxis has only been reported from a small number of 
localities in Belgium, NY, and Pennsylvania exposing 
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shallow marine sandy sediments that were deposited at 
a very similar palaeolatitude during the Famennian, at a 
not too far a distance from the shores of the Euramerican 
continent, however, with a mountainous region on that 
continent in between the Belgian and American localities. 
Apart from a remarkable similarity in the composition of 
the other macrofossils found at these localities, faunal and 
floral similarities between both regions as a whole were 
previously already identified, i.e. for plants (Kenrick and 
Fairon-Demaret 1991; Cressler et al. 2010; Prestianni and 
Gerrienne 2010) and for vertebrates (Olive et al. 2015, 
2016; Daeschler et al. 2019).

Implications for the evolution of the reproductive 
strategy in chondrichthyans

For chondrichtyans, viviparity is sometimes considered the 
plesiomorphic condition (Grogan and Lund 2004; Musick 
and Ellis 2005) since it has been evidenced in Carboniferous 
holocephalans, which are regarded as basal chondrichthyans 
(Lund 1980; Grogan and Lund 2004, 2011; Fig. 7a: number 
2). Viviparity has also been observed in various groups of 
placoderms (ptyctodonts, Long et al. 2008, 2009; Trinajs-
tic et al. 2015; arthrodires, Long et al. 2009; Johanson and 
Trinajstic 2014; Newman et al. 2021; Fig. 7b–c: numbers 
7, 8 and 10), the sister-group (in part or in full if they are, 
respectively, considered a grade or a clade, see below) of 
chondrichthyans and osteichthyans. However, oviparity is 
more often cited as the ancestral condition for chondrichthy-
ans (Compagno 1990; Wourms and Lombardi 1992; Dulvy 
and Reynolds 1997; Carrier et al. 2004; Fischer et al. 2014a), 
since (i) the fossil evidence for oviparity preceded that of 
viviparity (Famennian (viz. Spiraxis) versus Late Missis-
sippian (Grogan and Lund 2011)), (ii) it is the only known 
mode of reproduction in the stem-group elasmobranchs Xen-
acanthiformes and Hybodontiformes (Fischer et al. 2014a; 
Fig. 7a), (iii) it has been observed in holocephalans (Fischer 
et al. 2014a) and (iv) it has been suggested in placoderms 
(e.g. Ritchie 2005; Carr and Jackson 2018; probably also 
Downs et al. 2011 since oviparity is suggested by hatchlings 
(Trinajstic et al. 2019)).

Nevertheless, in the present study, we refute the fossil 
evidence of egg cases dating to the Famennian. Spiraxis 
interstrialis was previously considered by various authors 
a representative of Fayolia (e.g. Fischer et al. 2014a), and 
Fayolia egg cases considered egg cases of Xenacanthiformes 
(Fischer et al. 2014a). Therefore, the geologically oldest egg 
cases for the latter group are from the Viséan Hainichen 
Subgroup (e.g. Schneider et al. 2005) in southern Saxony 
(Germany), namely Fayolia sp. from the Asbian Ortelsdorf 
Formation of Chemnitz–Glösa (Fischer et al. 2014b) and 
Fayolia sterzeliana Weiss 1887 (e.g. Moysey 1910; Crook-
all 1928; Nindel 1920; Müller 1978; Rössler and Schneider 

1997) from the Brigantian Berthelsdorf Formation of the 
Chemnitz–Borna area. The Lower Mississippian age of F. 
crenulata Moysey 1910, from Derbyshire (Shipley Manor 
Claypit, near Ilkeston) reported by Poschmann and Schindler 
(1997, table 1) is incorrect, and a Pennsylvanian age (top 
hard coal seam, Westphalian B of the traditional subdivi-
sion) has to be retained for this species (e.g. Frost and Smart 
1979; Guion 1987).

For chondrichthyans as a group, the oldest evidence of 
oviparity by fossilised egg cases is now to be the Viséan 
Palaeoxyris from Chemnitz-Glösa (Schneider et al. 2005; 
Fischer et al. 2014b) and the aforementioned Fayolia spe-
cies. This implies that there is no remaining evidence for 
chondrichthyans developing oviparity prior to the Viséan, 
and that the argument for choosing oviparity over viviparity 
as the plesiomorphic condition in chondrichthyans is weak-
ened with now only a few millions of years between the 
oldest evidence of both (Fig. 7a).

Both oviparity and viviparity possess a long fossil record, 
and both have strong arguments being the ancestral condi-
tion in chondrichthyans. However, the fossil record of these 
evidence is too scarce for this group yet (Fig. 7a), and new 
discoveries are needed. Also, the phylogenetic relationships 
of placoderms, in which both oviparity and viviparity have 
been observed (Fig. 7b–c), need to be clarified since they 
have been resolved as either paraphyletic (Brazeau 2009; 
Davis et al. 2012; Long et al. 2015) or monophyletic (Goujet 
and Young 2004; Young 2010; King et al. 2017; King and 
Rücklin 2020). Placoderms are the sister group (in part or in 
full if they are considered a grade or a clade, respectively) 
of chondrichthyans and osteichthyans and their monophyly 
— or not — has obviously consequences on the considera-
tions on the evolutive history of their reproductive strate-
gies. Also, new discoveries of viviparous and/or oviparous 
placoderms are needed to infer the ancestral state, since our 
knowledge is too scattered (see Fig. 7b–c and the incom-
pleteness of data regarding reproductive strategies within 
placoderms). Finally, the condition in most basal groups of 
vertebrates such as Osteostraci or Galeaspida is currently 
completely unknown, and it would be precious to decipher 
the plesiomorphic condition of the reproduction mode in 
vertebrates. Recently, Chevrinais et  al. (2018) demon-
strated the presence of internal fertilisation in the jawless 
fish Euphanerops from the Miguasha Lagerstätte (Canada). 
Unfortunately, this discovery does not inform on the ovipar-
ity or viviparity condition but remains promising for future 
discoveries.
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Fig. 7   Distribution of oviparous and viviparous modes of reproduc-
tion in chondrichthyans and placoderms. a Chondrichthyan phylog-
eny, modified from Coates et al.’s (2018) and Boisvert et al.’s works 
(2019). Horizontal bars on the coloured columns indicate the oldest 
fossil evidence of oviparity (by egg case symbol) and of viviparity 
(by ‘fish’ symbol) in the fossil record. ‘Fish’ and egg case symbols 
on top of the coloured columns represent modes of reproduction in 
extant chondrichthyans. b Placoderm phylogeny (paraphyletic), modi-
fied from Coates et  al.’s work (2018). Arrowhead points towards 
chondrichthyans. c Placoderm phylogeny (monophyletic), modi-
fied from King and Rücklin (2020). For b and c, colour coding: dark 
green: antiarchs, dark blue: ptyctodonts, orange: arthrodires; taxa in 
bold are sister groups of taxa where oviparity/viviparity has been 
observed but not considered in the phylogenies (Coccosteus for Inci-

soscutum and Compagopiscis, Bothriolepis and B. canadensis for B. 
sp. from PA, USA). Only placoderm taxa with a known reproductive 
strategy are named in terminal position for clarity purpose; the names 
of the other terminal taxa are available in Coates et al.’s (2018) and 
King’s and Rücklin’s (2020) works. Abbreviations: Lland, Llando-
very; Lu, Ludlow; Pr, Pridoli; We, Wenlock. Colours of egg case and 
‘fish’ symbols refer to their taxonomic assignments. Italicised num-
bers refer to the following bibliographical references, 1: Fischer et al. 
(2014a), 2: Grogan and Lund (2011), 3: Fischer et  al. (2014b), 4: 
Wourms (1977), 5: Wourms and Lombardi (1992); Blackburn (2005, 
2015), 6: Fischer et  al. (2014b), 7: Downs et  al. (2011); Trinajstic 
et al. (2019), 8: Trinajstic et al. (2015), 9: Long et al. (2008, 2009), 
10: Ritchie (2005) and 11: Long et al. (2009); Johanson and Trinajstic 
(2014)
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Conclusions

The interpretation prevailing in recent literature (e.g. Fis-
cher et al. 2014a) that Spiraxis interstrialis Stainier 1894, 
and its junior synonym Fayolia mourloni Stainier 1935, 
represent the geologically oldest fossil evidence of chon-
drichthyan oviparity must be refuted, and this new insight 
weakens the widely traditionally accepted concept of ple-
siomorphy of oviparity over viviparity in chondrichthyans. 
A detailed study of previously unconsidered specimens 
of S. interstrialis, in particular by the aid of micro-CT 
scanning, is presented, increasing the knowledge of both 
the external and the internal structuring of this fossil. 
Nevertheless, other than confirming that it is a biological 
and neither a sedimentary nor a diagenetic structure, the 
higher taxonomic affinities and even its position within 
or the Plantae or Animalia remains unresolved. A further 
in-depth study of the North American Newberry’s (1887) 
species S. major and S. randalli, by micro-CT scanning, 
may bring additional insights into these enigmatic fossils. 
Nevertheless, a revision of their age revealed that they 
have a nearly identical age to the Belgian occurrences, 
dating to the Famennian.
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