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I. INTRODUCTION

Convection occurring in a horizontal liquid layer has received extensive attention since

Bénard observed hexagonal roll cells upon onset of convection in a layer of molten sperma-

ceti with a free surface [1]. The phenomenon of convection in an evaporating liquid layer

are of particular interest because of its importance in heat exchangers, distillation, drying

technologies and cooling of microelectronic equipments.

During evaporation, an essential mechanism is that evaporation leads to intensive cooling

of the liquid-vapor interface. When the temperature drop induced by evaporation across the

liquid layer exceeds a critical value, convective instability occurs. This instability mechanism

has been studied by many previous investigators.

In recent years, increasing performance demands in semiconductor technology, including

shrinking feature size, increasing transistor density, and faster circuit speeds, have resulted in

very high chip power dissipation and heat fluxes. It is also leading to greater non-uniformity

of on-chip power dissipation, creating localized, sub-millimeter hot spots, often exceeding

1kW/cm2 in heat flux, which can degrade the processor performance and reliability [2]. Similar

developments are underway in microwave integrated circuits and power amplifier chips,

with even higher localized heat fluxes and heat densities. The industrial and technological

applications mentioned above involve thin liquid films on uniform or non-uniform heated

substrates. To avoid the reduction of their performance by film breakdown it is of crucial

importance to understand when and why instabilities arise that may result in rupture of

the film. Understanding the physical mechanisms of instability and rupture behavior is also

highly desirable for the requirement of seeking effective ways to suppress the rupture of

heated films.

Shear-induced flows of liquid films are important for a number of technological innovations

for ground and space applications. A particularly promising technological candidate to

prevent the rupture of film due to temperature gradients at the interface, allowing to reach

high heat fluxes and to minimize space and mass of cooling equipment, is a set-up where

heat is transferred to subcooled thin liquid film driven by a forced gas on one side of a mini-

channel. It is quite evident that the combined effects of evaporation, thermocapillarity, gas

dynamics, and gravity as well as the formation of microscopic adsorbed film on the wall, are

somewhat complicated issues and have not yet been studied systematically.
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FIG. 1: A sketch of the physical model for problem 1.

From July 2011 to now, three problems have been investigated. The progresses are list

below:

1.Instabilities in a horizontal liquid layer in co-current gas flow with an evaporating interface;

2.Instability of a locally heated falling film subjected to an interfacial shear;

3.Effect of mutual location of heaters on the stability of thin films flowing over locally heated

surfaces.

II. PROGRESS OF THE RESEARCH ACTIVITIES

A. Problem 1

We consider a two-layer system consisting of a liquid layer of thickness dl underlying its

own vapor of thickness dv as shown in Fig.(1). The system is infinite in the streamwise (x)

and the spanwise (y) directions. The acceleration of gravity is opposite to the z direction. We

assumed that the top wall and the bottom wall are rigid perfectly conducting boundaries.

The gas flow is driven by constant pressure gradient. The vapor and liquid phases are

separated by an immiscible and deformable interface where phase change can occur. The

surface tension σ decreases linearly with the temperature T , i.e. σ = σ0−σT (T −T0), where

σT is a constant coefficient and T0 the temperature of reference state.

The goal is to investigate the influences of interfacial shear and evaporation on the sta-
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bility of the system. We chose the system consisting of a water layer in contact with its own

vapor at 100 ◦C. The physical properties of the liquid and the vapor phase are the same

with that in Ref.[3]. The ratios of physical properties are ρ∗ = 6.25 × 10−4, ν∗ = 71.72,

χ∗ = 3.68× 10−2 and κ∗ = 0.118. The Prandtl number Pr = 1.78.

The physics of the coupling of evaporation, interfacial shear, Rayleigh effect and Marango-

ni effect is complicated. When investigate the problem, we will look at different aspects of

the problem separately whenever possible.

1. Rayleigh-Bénard instability

We begin with the influence of evaporation and interfacial shear on the Rayleigh convec-

tion in the system. The depth ratio is an important parameter to influence the Rayleigh

instability of the system. The marginal curves of the critical Rayleigh number versus the

wavenumber are shown in Fig.2.

In order know more about the characteristics of the Rayleigh convection of the liquid

mode and the vapor mode, we plot the flow fields of these two modes on the onset of

convection in Fig.3.

2. Marangoni-Bénard instability

In this subsection, we will study the influence of evaporating and interfacial shear on the

Marangoni instability. Fig.4 shows the effect of non-equilibrium degree at the interface on

the Marangoni instability of the system. In order to know the influence of evaporation effect

and the interfacial shear on the coupling mode between the vapor and liquid layers, we plot

the flow patterns on the onset of shortwave Marangoni instability in Fig.5.

3. Conclusions

We have studied the instability of a horizontal liquid layer in co-current gas flow with an

evaporating interface. In this system, the interfacial shear is induced by the co-current gas

flow. We focus on the effects of evaporation and the interfacial shear on the Rayleigh and

Marangoni instabilities.
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FIG. 2: (a) Effect of the depth ratio d on the marginal curves of the critical Rayleigh number

versus the wavenumber at K = 0; (b) Effect of K on the marginal curves of the critical Rayleigh

number versus the wavenumber at d = 3; (c) Effect of the Reynolds number Re on the marginal

curves of the critical Rayleigh number versus the wavenumber at d = 3, K = 1.

For the Rayleigh problem, convection can initiate in the vapor layer or in the liquid layer,

depending on the depth ratio d. The results show that the change of d only influences

the vapor mode, and the change of the parameter K, which represents the non-equilibrium

degree at the interface, only influences the critical Rayleigh number of the liquid mode.

Both the evaporation and the interfacial shear play important roles in the Marangoni in-

stability. The parameter K has different influences on the longwave mode and the shortwave

mode of Marangoni instability. With the increase of K, the short wave mode becomes more

stable and the longwave mode becomes more unstable. The influence of the interfacial shear

also has different effects on the shortwave and the longwave Marangoni instability. With

the increase of Re the shortwave Marangoni mode becomes more stable and the longwave
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FIG. 3: The flow fields of streamfunction of disturbance initiating in the vapor layer (a) and the

liquid layer (b); (c), (d) the isothermal lines for temperature disturbance. The parameters for (a),

and (c) are Ra = 1421.8, k = 1.04, d = 3, K = 1 and Re = 100; The parameters for (b), (d) are

Ra = 984.1, k = 2.18, d = 1, K = 1 and Re = 10.

mode becomes more unstable.
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FIG. 4: (a) Effect of K on the marginal curves of the critical Marangoni number versus the

wavenumber at d = 1, Re = 0;(b) Effect of K on the marginal curves of the critical Marangoni

number versus the wavenumber in the longwave range at d = 1, Re = 0.

B. Problem 2

1. description of the physical model

We investigate the influence of mutual location of heaters on the dynamics of a thin

film falling down a locally heated plate. The longwave approximation is used to reduce

the Navier-Stokes equations and free-surface boundary conditions to a nonlinear partial

differential equation for the evolution of the local height of the free surface. We will studied

two typical cases, i.e. the heaters with rectangular shapes and with infinite spanwise lengths.

We solved the 2-D and 3-D steady states by Newtonian iteration method for these two cases,

respectively. Moreover, we studied the linear stability and nonmodal stability of locally

heated films for these two typical cases.

Consider a thin liquid film falling down an inclined substrate with inclination angle θ

with respect to the horizontal direction. The coordinate system is constructed with x in the

streamwise direction, y the spanwise direction and z normal to the substrate. A heater is

embedded in the substrate and produces the temperature field T0(x, y) at the plate surface,

and the thickness of film far away from the heater is uniform. The thickness of the film is

h(x, y).
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FIG. 5: (a), (b) The flow fields of streamfunction of disturbance; (c), (d) the isothermal lines for

temperature disturbance. The parameters for (a),(b) are Ma = 410.5, α = 2.44, d = 1, K = 0 and

Re = 100; the parameters for (b),(d) are Ma = 1159.9, α = 3.56, d = 1, K = 10 and Re = 100.

The evolution equation of the thickness of the film is expressed as

∂h

∂t
+∇ ·

(

h3

3Bo
∇∇2h−

h2

2
Ma∇Ti

)

+
1

3

∂h3

∂x
= 0. (1)

In the present paper, we will study the influence of the shape and the mutual location on

the dynamics of the thin film. For a heater with a finite streamwise length and an infinite

spanwise length, the temperature can be prescribed as

T0(x) = f(x) = 0.5[tanh(x− Lx/2)− tanh(x+ Lx/2)]. (2)
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For a heater with a rectangular shape, the temperature can be prescribed as

T0(x, y) = f(x, y) = 0.25[tanh(x−Lx/2)−tanh(x+Lx/2)][tanh(y−Ly/2)−tanh(y+Ly/2)].

(3)

For a couple of heaters arranged in the streamwise direction with a distance of d, the

temperature can be given as

T0(x, y) = f(x− d, y) + f(x, y). (4)

2. results and discussions

In Fig.6, base profiles are plotted for a thin film heated by a single heater and a couple

of heaters with infinite spanwise lengths. As shown in Fig.6(a) and (b), at the upstream

edge of the heaters, the Marangoni stress induced by temperature gradient opposes the flow

of the film, resulting in the thickening of film to maintain a constant flow rate and forming

pronounced thermocapillary ridges. In the case of only one heater, a bump structure has

been formed in these two figures. In the case of a couple of heaters, at d = 1 only one bump

has been formed. As the distances increases to d = 2, two bumps has been formed at the

upstream edge of the two heaters. The amplitude of the downstream bump is smaller than

that of the upstream one. As the distance increases to d = 4, it is found that the two bumps

almost have the same height. These bumps are unstable to infinitesimal disturbance. We

will study the influence of the mutual location on the stability of the film in the next section.

In order to know the effect of mutual location of heaters on the structure of steady profile,

we plot in Fig.7 the contour of thickness of the film heated by a couple of heaters. In Fig.7(a)

for heaters with lx = ly = 2, two lateral waves are formed from the first heater and extend

to a long distance in the downstream direction. The film thickens in the upstream direction

near the first heater and in the lateral waves. The position of the minimum thickness of

film occurs in the downstream direction near the second heater. In Fig.4(b) and 4(c) for

heaters with wider spanwise lengths, the film thickens in the upstream directions near the

two heaters. Two lateral waves are formed from the second heater. In Fig.7(a),(b) and (c),

the position of the minimum film thickness always occurs in the downstream direction near

the second heater.

In order to know the influence of mutual location and the shape of heater on the rupture
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FIG. 6: The film profiles for the steady solutions. (a) Bi = 0 (b) Bi = 0.1. The other parameters

are Ma = 5.0 and Bo = 10.

of the film, we plot in Fig.8 the minimum thickness of the film at various Marangoni numbers

for various ratios r = ly/lx. In Fig.8(a) for films heated by one heater, the minimum thickness

decreases with the increase of the Marangoni number. As the Marangoni number approaches

to a certain value (Mac), the minimum thickness decreases dramatically to zero. For r = 1,

the Maragoni number at which film rupture occurs is slightly greater than 1. In this figure,

Mac increases with the increase of r. As r increase to 8, film rupture occurs at Mac ≈ 3.

This result shows that increasing the spanwise length of the heater can inhibit the rupture

of the film. In Fig.8(b), the curves of minimum thickness of films heated by a couple of

heaters are plotted for various r. Comparing the curves in Fig.8(b) and Fig.8(a), we find

that film rupture occurs at a lower Marangoni number for a film heated by two heaters than

by one heater.

3. Conclusions

The problem is studied in the framework of longwave theory. We studied the influence

of mutual location of heaters on the steady state of the film. As the film is heated by

heaters with infinite spanwise lengths, 2D steady states exist. As the film is heated by

rectangular heaters, the steady state display a typical 3D structure. In the case of streamwise

arrangement of the heaters of rectangular shape film rupture is most likely on the second

heater. A linear stability analysis is performed with respected to both the 2D and 3D basic

state. The results show that the mutual location of heater plays an important role in the
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FIG. 7: The 3-D structure of the surface of film heated by a pair of heaters. The size of the heater

is (a) lx = 2, ly = 2, (b) lx = 2, ly = 8, (c) lx = 2, ly = 16. The other parameters are Ma = 1,

Bi = 0 and Bo = 10.
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FIG. 8: The curves of the minimum thickness versus the Marangoni number. (a) one heater, (b)

a couple of heaters. The other parameters are Bi = 0 and Bo = 10.

stability and transient behavior of the film for 2D steady state. However, the 3D steady

state of a film heated by rectangular heaters is linear stable. This means that the 3D steady

state is a coherent structure in films heated by rectangular heaters.

C. Problem 3

We consider the motion of a liquid film falling down a locally heated planar substrate.

The flow is driven by gravity and a unidirectional ‘wind’ shear τ is applied to the free surface.

The problem is studied in the framework of longwave theory. Marangoni effect due to the

local temperature gradients at the free surface induces a horizontal bump in the vicinity of

the upper edge of the heater and results in an instability in the form of a rivulet structure

periodic in the transverse direction. We focus on the effect of shear τ on the two-dimensional

steady-state solutions of longwave equations. Further we analyse the linear stability of this

bump with respect to disturbances in the spanwise direction. Our computations show that

the shear in streamwise directions will decrease the hight of the bump. We also studied the

influence of τ on the dispersion relations between growth rate of the fastest growth mode and

the wavenumber. It is shown that the increase of τ significantly damps the growth rate of the

most unstable mode. Three-dimensional simulations have been performed to investigate the

influence of shear on development of the rivulet structure beyond the instability threshold.
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1. results and discussions

We obtain the evolution equation of the thickness of the film,

∂h

∂t
+∇ ·

(

h3

3Bo
∇∇2h−

h2

2
Ma∇Ti

)

+
1

2
∇ · (τh2) +

1

3

∂h3

∂x
= 0. (5)

We aim to seek the 2-D steady state of ∂
∂t

= 0 as the base state for 3-D instability analysis.

We assume that for the steady state the flow has no variation in the spanwise direction, i.e.

∂
∂y

= 0, it is obvious that the shape of h for 2-D steady state is independent of the spanwise

component of the interfacial shear. In the present study, two typical cases of temperature

profiles at the substrate surface are used to investigated the instability of the film, i.e. a

simi-infinite heater and a finite-length heater. The temperature profile of a semi-infinite

heater is

T0 = 0.5[1 + tanh(
2l

πL
sin(

πL

l
x))], (6)

with L ≪ l and the wavelength λ = l
L
. A periodic temperature gradient at the plate surface

is prescribed as
∂

∂x
T0 =| cos(πxL/l) | sech2(

2l

πL
sin(

πL

l
x)). (7)

The influence of interfacial shear on the base profile of the interface is presented in Fig.9.

It is shown that with the increase of the interfacial shear the hight of the bump decreases.

In Fig.10, the influence of the interfacial shear on the dispersion relation are presented. It

is shown that the interfacial shear is stabilizing.

III. PERSPECTIVE

We have studied three problems related to stability of evaporating liquid film with co-

current gas flow. In general, we use classical Newton’s cooling law in one-sided model or

the Hertz-Knudsen relation in two-sided model to describe the evaporating interface. In

our further research, we will use more general boundary conditions to describe the non-

equilibrium relation at the interface.
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FIG. 9: Effect of interfacial shear on the film profiles for the steady solutions at Bi = 0. (a),(c)

for semi-infinite heater with l = 20L and the wavelength λ = l/L, (b),(d) for finite length heater

with the wavelength λ = 40. Bo = 10 for (a) and (b), and Bo = 1000 for (c) and (d).

k

β

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

0
0
1
1

τx

(a)

k

β

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

0
0
1
1

τx

(b)

FIG. 10: Effect of interfacial shear on dispersion relations of the growth rate β versus the wavenum-

ber k (a) for semi-infinite length heater with the wavelength λ = 20, Ma = 7.9, Bi = 0.1, Bo = 10.

(b) for finite length heater with the wavelength λ = 40, Ma = 7.9, Bi = 0.1, Bo = 10.
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