

# **ESA Space Safety Programme**

**Protecting our Planet, Humanity and Assets from Space Hazards** 

### **Quentin Verspieren**

Head, Space Safety Programme Coordination Office

quentin.verspieren@esa.int

ESA UNCLASSIFIED - For ESA Official Use Only

## **Space Safety: A concern for society**



Solar flares in May 2024 revealed Earth's vulnerability to space weather

by **Debra Werner** February 12, 2025















# SpaceX rocket debris crashes into Poland



**Eve Webster** 

**BBC News** 

# S2P: Programmatic goals (2030)





- Providing timely, accurate, and actionable space weather alerts through a preoperational monitoring system
- Cooperating with with a Space Weather governing entity



- Establishing a comprehensive detection and early warning network for asteroids larger than 40 m, providing alerts at least three weeks before impact.
- Deflecting asteroids smaller than 0.5 km.



- Developing technologies for a Zero Debris approach and assessing risks from small-sized debris
- Demonstrating in-orbit servicing technologies to advance the space circular economy
- Enhancing capabilities to evaluate environmental impacts on Earth

### **Achievements: Space Weather**







5 hosted payloads operational



Vigil contract signed



**SWING Space Weather Nanosat** 

# **Achievements: Planetary Defence**





Hera launched



RAMSES signed



9<sup>th</sup> pre-impact detection



FlyEye #1 in Matera

# Achievements: Space Debris & Clean Space





Space debris laser operational DIGOS' ESA Rising Star



All large platforms under zero-debris maturation contract



Rise IOS Mission signed



DRACO re-entry experiment kicked-off

# **Evolution of programme overhead**





### S2P Period 3 Proposal: High-level structure





Reorganised 75% Continuation 25% New





S2P Period 3

ADRIOS Cornerstone

(CS-1, Rise, Encore)



COSMIC



## Classification of programme content





### **Mission Studies**





SWORD: Dedicated mission to provide nowcasts of the radiation belts



NEOMIR: Operational Infrared NEO
Observatory at L1



LEMO-TD: Monitoring of cis-lunar space traffic



VISDOMS-S Space-based Optical Mission



PAN Asteroid Ion Beam Shepherding



Space Weather Nanosat #3



SATIS: Small Asteroid Inspector



SAILOR: Debris Impact Measurements



ECOSTARS IOD of green platforms



Circular Economy Missions

10

### (Pre-Operational) Services Development









SWENET: Space Weather Network

### **Core Technology Elements**







#### Virtual Space Weather Modelling Centre



# Advanced Space Weather Visualisation



### Competitiveness





### **New vs continuation**







# **Space Weather Cornerstone**



# Vigil



Operational mission at L5 providing the capability to monitor and predict space weather activity and provide a timely warning of extreme solar events.

- Space weather events disrupt GNSS, comms, and radar
- Forecast horizon: up to 4–5 days vs. today's 12–18 hours
- Impact timing: cut prediction error from 6–12 hours
- Operational service: agreed availability and low latency to maximize warning time
- Ongoing collaboration with NASA/NOAA
- In complement to an emerging very strategic cooperation with EC
- Satellite PDR planned for Q1 2026





# **Planetary Defence Cornerstone**



### RAMSES



Rendezvous mission with Apophis to monitor the close encounter with Earth and to characterise its interaction with Earth's gravity with high-resolution before and after the encounter

- Once-in-7,500-year Apophis event → global spotlight
- Most credible approach to reach Apophis
- Mature plan: PDR passed (Jan 2025); CDR Q4 2025;
   launch Apr 2028
- Strong international partnership: JAXA, NASA
- Exceptional value: JAXA launcher + high-heritage design
- Budget-efficient: request <€20M</li>
  - with H3 <€15M for a large industrial package
- High visibility and key role for Belgium



### RAMSES



Belgium is one of RAMSES' largest contributors with several key technologies and equipment for the mission being developed in Belgium





### **ADRIOS: Timeline**







### RISE



RISE aims to bring together a service provider and a customer for the verification of life extension of a satellite through Attitude and Orbital Control Takeover (AOCS Takeover) in geosynchronous graveyard orbit (GGO)

- Industry led mission by D-Orbit-IT industry defining the mission and system requirements
- End-to-end contract signed in Q3 2024 covering Phase A to E
- Currently in Phase B1, with SRR in Q2 2025
- Through RISE D-Orbit aims to develop a recurrent commercial service
  - On board computer
  - Propulsion equipment
  - Software



### **Rise: Mission architecture**



#### **Mission Overview**

- Launch injection into Geostationary Transfer Orbit
- 2. Orbit Raise from GTO to GEO Graveyard Orbit
- 3. Rendezvous and Capture Demonstration in GGO with demo customer
- 4. In Orbit Verification Review
- 5. Standby in parking orbit until start of servicing
- 6. Servicing of first commercial customer
- Disposal in GEO Graveyard Orbit



# Capture Payload Bay (CAT)



The Capture Payload Bay (CAT) removal system, utilizing ESA's standardized D4R removal interfaces, requires in-orbit demonstrations (IOD) to establish these interfaces as a trusted and standard solution for future commercial and institutional missions

- To be flown with LUR-1 mission (Spanish regional mission) in 2029
- Most relevant milestones:
  - Phase A kick-off in January 2025
  - o Phase 1 kick-off, IPRev Light in May 2025
  - Participants workshop held in July 2025
    - Ground Segment
    - Platform





- Initialize CAT Mission (Phase B1) (parallel contract) and CAT-EM (Phase 2). KO in Q1 2026
- Mission prime selection and full mission implementation for B2/C/D in Q4 2026





# Cosmic Segments Breakdown





### **Space Weather Sensors**



Distributed Space Weather Sensor System (D3S) aims to monitor "Earth space" environment and provide near-real-time data for operational applications

- Dedicated deep space missions, e.g. Vigil, to facilitate improved space weather nowcasting and forecasting
- Ground based observations systems



#### Aurora

Keeps an eye on auroras and other parts of Earth's protective layers to protect ground infrastructure



#### **Nanosatellites**

Cost-effective missions that support the commercialisation of space weather monitoring



#### **SWORD**

Enables 'nowcasting' the space radiation environment, essential for spacecraft operators



**Hosted payloads** 

### Aurora



Aurora-D demonstration mission will explore the potential of far UV and optical imaging to monitor continuously the Auroral Oval, in preparation of constellation Aurora-C

- Phase B1 underway with OHB Sweden as mission prime,
   Project internal SRR conducted in Q1 2025
- RFQ for Phase B2/C/D to be released immediately after corporate SRR in Q4 2025, Phase E to be initiated later
- Preparation of Aurora-C potentially by EUMETSAT

AUI Instrument prime



### **SWORD**



SWORD mission will provide data on Earth's radiation belts allowing a nowcast of the overall belt status

- ESA internal CDF performed end 2023
- Currently two parallel pre-Phase A studies ongoing,
   primed by 1) Redwire (BE) and 2) Airbus DS SAU (ES)

Mission Prime and platform



### **Develop Space Weather Services**



**ESA Space Weather Service Network** builds and matures the **monitoring services** needed for a dependable European space weather system

**Core Space Weather** focus on **basic developments** that improve European capability

=> R2O(2R) framework for space weather





## Belgium at the heart of Europe's SWE network



- The SSA Space Weather Coordination Centre (SSCC) is located at the Space Pole (Belgium)
- First European Space-Weather Helpdesk
- Solar and space radiation expert service centre leadership
- Service assurance → day-to-day monitoring of continuity and quality for services including federated products
- User impact: tailored bulletins for priority users, professional training programme, active promotion to the SWE community
- Strategic value for Belgium: reinforces Belgium's role as a hub for SWE information and expertise, supporting increased resilience for affected users



### **Predict Asteroid Impact**





#### **Observation**

#### **Neo Survey System**

- FlyEye Telescopes
- Telescope Array

**Near-Earth Object Mission in the Infra-Red (NEOMIR)** 

Satis (Asteroid Inspector)



### **Mitigation**

Precise Asteroid Nudging (PAN)

Ion-Beam deflection method



#### **Assessment**

Near-Earth Object Coordination Centre (NEOCC)

- Aegis: Orbit determination and impact monitoring system
- Meerkat: Quick warning system evaluating imminent impact threats

## **Near-Earth Object Coordination Centre (NEOCC)**



Based at ESA's ESRIN site (Frascati, Italy), the NEOCC is the central access point to an entire network of European near-Earth object data sources and information providers

- Contribute to and coordinate observations of small bodies in the Solar System – such as asteroids and comets
- Provide orbital information, impact monitoring, data provision, risk analysis and propose mitigation measures if needed







## Technologies for a growing space traffic



#### **Laser Tracking of Space Debris**

On-demand ephemeris provision

#### **Core Technologies**

Risk management (re-entries and fragmentation)
Observation – focus on <1 cm pieces of debris
Capacity monitoring
Support understanding of debris consequences



# Destructive Reentry Assessment Container Object (DRACO)

Understanding re-entry and demisability



# Sail Array for Impact Logging in Orbit (SAILOR)

Improve space environment knowledge on least observed size range (sub-mm to cm)



# Lunar Environment MOnitoring – Technical Demonstrator (LEMO-TD)

Monitor space debris in cislunar space

### **DRACO**



**DRACO** (Destructive Re-entry Assessment Container Object) mission will **study in-situ the destructive break-up of spacecraft during atmospheric re-entry** and provide crucial validation data for engineering, scientific, and risk models

- Platform prime DEIMOS (ES), and re-entry capsule leads
   FGE (UK) and VKI (BE)
- End-to-end funded under Period 2
- Scheduled for launch Q1 2027

- Capsule final integration and testing
- Data exploitation



### Toward a clean and zero debris future



By 2030, ESA's ambitious **Zero Debris approach** aims to **stop creating new debris**, and **Green Agenda** aims to **reduce its projects on-ground carbon footprint by 28%** 

### **Zero Debris**

- Zero-Debris satellites, from CubeSats to large platforms
- De-orbiting Kit
- Design for Demise
- Design for Removal

### **Ecodesign**

EcoStars missions

### **Circular economy**

In-Orbit Servicing, Assembly and Manufacturing (ISAM) acceleration platform



### **Zero Debris Platforms evolution**



Coordinated work of integrators and supply chains for evolution of European product lines to align with Zero Debris vision **PDR** RR MTR SRR Platform design and development by the integrators Maturation and adaptation of key technologies Simplify End of Subcontractors' involvement: RFI, RFQ, TDA Life RR SRR PDR Platform design and development by the integrators **Understand &** Maturation and adaptation of key technologies avoid failure Subcontractors' involvement: RFI, RFQ, TDA **SysNova IOD Phase A IOD Mission (Phase A - F)** studies If failure, reduce risk 2024 2025 2026 2027 Large LEO platforms **Small platforms** CleanCube

### Competitiveness



The competitiveness segment aims at developing the space safety market and at exploiting commercialisation dimensions → industry-driven ideas of higher TRL to seed markets!







