

NAV CM25 Portfolio

→ THE EUROPEAN SPACE AGENCY

What ESA-NAV offers next

Robust next gen applications & services

Support the development of next-gen applications and technologies by leveraging Belgium's robust industrial base, such as through the development of resilient GNSS receivers

Reinforce Sat-NAV Market leadership

Strengthening national autonomy and technological capability in PNT satellite and payload design

Muli-Layer PNT

ESA offers strategic opportunities in a multi-layer PNT architecture. These technologies will be leveraged to enhance resilience and maximize opportunities for society & industrial players

Advance PNT R&D

Capitalise on strong ecosystem of universities, research institutes, and private sector innovation through enhanced collaboration between key stakeholders to drive added value and impact

Critical Infrastructure Resilience

Advancing Technological Development, Reducing Strategic Dependencies, and Enhancing European Autonomy

Financial Scope

			CM25	CM28	CaC
NAVISP	NAVISP Phase 4		110	tbc	n/a
FutureNAV	Component 1: LEO-PNT	In-Orbit Preparatory Phase (IOPP)	400	150 ^(*)	550
	Component 2: Genesis	Deployment & Exploitation	40	-	n/a
	Component 3: PNT Demonstrators	OpSTAR	130	200	330
		NovaMoon	25	45	70
		Phase 0/A/B1 of future Demonstrators	35	35	n/a

(*) EC MFF or ESA (see FutureNAV Programme Proposal)

The European Context

- Global downstream market ~\$400 B (€361.5 B), 65 %
 for GNSS (2023)
- > 90 % is commercial and accessible to European industry
- Europe losing market share in PNT (EUSPA / EIB)

Why work with nauisp?

PNT focus

- Covering the whole PNT, not just GNSS
- PNT is a growing opportunity for European Industry
- Significant risks to tackle: productization, strong competition from other regions, upcoming national policies.

Supporting industry

- Sharing and mitigating risk across the R&D product cycle technology, market, regulation
- IP developed by industry, for industry
- ESA brand, a door opening

ESA support and expertise in PNT

- Dedicated ESA staff support
- International industrial & institutional network
- nauisp phase 4 will be more agile and responsive to industry needs

NAVISP: Facts & Figures

- Increased Member State Support targeted for CM25
- Proven Economic Impact: Study by London Economics (2024): €1M invested in NAVISP results in €1.8M in GDP
- NAVISP Industry Days 2025 have achieved record registration of > 300

LEO-PNT main benefits

- Increased robustness (new orbits, frequencies and services)
- Industry competitiveness at European and International level.
- Synergies with existing EU programmes and European smart factory developments.
- Industrialisation to reduce cost and ensure time-to-market via fast-track developments.

LEO-PNT In-Orbit Preparatory Programme IOPP

... from prototyping / demonstration to industrialisation / in-orbit validation

LEO PNT In-Orbit Preparatory Phase (IOPP) and future EU LEO-PNT

→ THE EUROPEAN SPACE AGENCY

LEO-PNT IOPP System Architecture

Preparatory programme towards an operational LEO-PNT (in Next MFF or in a Commercial setup) with the following objectives:

Novel **signal design** + additional **frequency bands** for resilience

Miniaturised integrated Payload Modules for low SWaP-C and User Chipsets

Industrialisation of Building Blocks (existing sat. platform for low target unit price)

Boost innovation and European leadership for future market opportunities

ESA's GENESIS

Mission Objective is to contribute to improve ITRF accuracy and stability, with an aimed accuracy of 1 mm and a stability of 0.1 mm/year.

At the foundation of navigation

Gensis in short

- Prime OHB Italia S.p.A.
- ~400 kg Satellite
- Orbit
- ~ 6000 Km Altitude.
- ~ 95 deg inclination
- Very Precise on-Board Metrology
- PDR planned in 2025
- Launch in 2028

Mission scope

- Design, development, qualification and calibration of the satellite (incl payloads) and ground segment
- Launch and early operations including commissioning and in-orbit calibration
- Operations (2 years, option for extension)
- Data exploitation (Including processing, archiving and data distribution from ESA facilities)

Genesis Deployment & Exploitation – Phasing

Component 3: PNT Demonstrators

PNT Demonstrators

Optical Demonstrator (OpSTAR)

Lunar Reference Stations Demonstrator (NOVAMOON)

Phase 0/A/B1 of Future Demonstrators

First Workplan

- Quantum-Enabled Demonstrator
- Al and Payload Digital Technologies Demonstrator

Enhancing Resilience

of PNT-dependent critical infrastructure

Secure PNT Infrastructure

against emerging threats

Safeguarding against interference .

of intentional and unintentional nature

Increased Autonomy.

in orbit and on ground

Optical Synchronized Time and Ranging (OpSTAR) In Orbit Demonstrator

User

- ✓ **Improved PNT performance** (sub-cm position accuracy, ps time accuracy)
- ✓ New (optical) PNT services and users

Resilient & certified timing

Robust governmental timing and ranging

System

- ✓ Increased **Resilience us.**
 - on-board atomic clocks performance
 - Interference/jamming of mission links
 - ground dependency (i.e. on-board autonomy)
- ✓ Secure and accurate time and frequency dissemination using innovative PNT-tailored quantum-optical concepts

Optical PNT Standard for Timing & Ranging:

Made in Europe

Worldwide

Optical PNT: GNSS Game changer Redefining PNT Architecture Towards Multilayer

LEO

MEO/GEO

OpSTAR Demonstrator

Optical Synchronised Time And Ranging (OpSTAR) In-Orbit Demonstrator (IOD)

Optical PNT: A new concept for optical time synchronization and ranging for PNT ESA leading the future Standard of optical technology for timing and ranging

ESA UNCLASSIFIED - For ESA Official Use Only

NOVAMOON FutureNAV Mission Lunar differential and Selenodetic station

- 1. Reference local differential station (augmenting Moonlight to submeter accuracy!) on Lunar South Pole
- 2. Reference International "geodetic" Lunar station on the lunar surface (~cm level surveyed)
- 3. Reference "Lunar Time International" Laboratory establishing the basis for the set-up of a lunar reference time

Cooperation between ESA NAV and HRE Directorate:

- Demonstration payload on Argonaut first mission (5 years life time)
- NAV Payload delivery to Argonaut via FutureNAV Programme (CMIN25)

NovaMoon Payload integrated in Argonaut-1 Mission (2031)
5 years mission – A very high international interest

Phase 0/A/B1 of Future Demonstrators

Quantum PNT

Quantum Sensing for precise orbit determination, RFI monitoring, remote sensing and navigation sensor fusion

Secure Time Transfer through space-ground optical link with Quantum Key Distribution

Optical Quantum Clocks for high accuracy timekeeping

Rydberg Receivers for multi-frequency, multi-system compatibility

NAV Digital Payloads

Software-defined Radios for On-orbit reconfigurable navigation messages

Beamformers & Steerable PNT Antennas for jamming/spoofing mitigation

Self-Assembling Structures for large PNT space segment antennas

Pulsar Antennas for independent timing

AI for PNT

Al-driven System Improvements for ground and space segment (fault detection, autonomy improvements, distributed clock synchronisation,...)

Data Lakes for PNT data-centric solution development

PNT Digital Twins for modelling of PNT systems

Edge Computing For autonomous management of large PNT systems

Evaluate benefits and integration to PNT systems

Explore new PNT system concepts and user needs

Conclusion

- GNSS / PNT is a strategic sector for Society, Economy, Safety, Security
- Europe is playing a leading role
- ESA / EU partnership implementing well-coordinated portfolio of programmes
- NAV CM25 to strengthen Europe's competitiveness and pioneer the future of PNT
 - NAVISP essential instrument to develop the market and boost European Industry competitiveness.
 - FutureNAV shaping the future of GNSS/PNT
 - LEO-PNT
 - GENESIS
 - OpSTAR
 - NOVAMOON
 - Disruptive technologies and System concepts (Quantum, Al) future in-orbit demonstrators

Industry a strategic partner, delivering programmes and supporting ESA in defining the future of GNSS/PNT