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François Massonnetc, Violette Zunzc, Pierre Mathiotd, Aida Alvera-Azcáratea, Jean-Marie4
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Current ocean models have relatively large errors and biases in the Southern Ocean. The aim

of this study is to provide a reanalysis from 1985 to 2006 assimilating sea surface temperature,

sea ice concentration and sea ice drift. In the following it is also shown how surface winds in

the Southern Ocean can be improved using sea ice drift estimated from infrared radiometers.

Such satellite observations are available since the late seventies and have the potential to

improve the wind forcing before more direct measurements of winds over the ocean are

available using scatterometry in the late nineties. The model results are compared to the

assimilated data and to independent measurements (the World Ocean Database 2009 and

the mean dynamic topography based on observations). The overall improvement of the

assimilation is quantified, in particular the impact of the assimilation on the representation

of the polar front is discussed. Finally a method to identify model errors in the Antarctic sea

ice area is proposed based on Model Output Statistics techniques using a series of potential

predictors. This approach provides new directions for model improvements.
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1. Introduction14

Observations of the sea ice extent in the Southern Ocean derived from satellite data display15

a trend of 0.13 to 0.2 million km2 per decade between November 1978 and December 201216

(Vaughan et al., 2013). Although the magnitude of this trend is subject to uncertainties17

(e.g., Eisenman et al., 2014), the behavior of the Antarctic sea ice cover is in sharp contrast18

with its Arctic counterpart which displays a decrease in sea ice extent over the last decades19

(e.g., Turner and Overland, 2009). Several explanations have been proposed to account for20

the slight increase in Antarctic sea ice extent but no consensus has been reached yet. Among21

the proposed mechanisms, a potential link with the stratospheric ozone depletion has been22

pointed out (Solomon, 1999) but this hypothesis is not compatible with recent analyses23

(e.g., Bitz and Polvani, 2012; Smith et al., 2012; Sigmond and Fyfe, 2013). Changes in24

the atmospheric circulation or in the ocean stratification may also have contributed to the25

observed expansion of the sea ice cover (e.g., Zhang, 2007; Stammerjohn et al., 2008; Goosse26

et al., 2009; Kirkman and Bitz, 2011; Landrum et al., 2012; Holland and Kwok, 2012; Bintanja27

et al., 2013; Goosse and Zunz, 2014; de Lavergne et al., 2014). The internal variability of28

the system, particularly strong in the Southern Ocean, may be responsible for the observed29

positive trend in Antarctic sea ice extent as well (e.g., Mahlstein et al., 2013; Zunz et al.,30

2013; Polvani and Smith, 2013; Swart and Fyfe, 2013).31

Observations in the Southern Ocean are rather sparse in space and time. In particular,32

reliable observations of the sea ice concentration are available from the late 1970’s only (e.g.,33

Parkinson and Cavalieri, 2012). In this context, climate models constitute adequate tools34

to compensate for the lack of observations and investigate the processes that govern the35

behavior of the sea ice cover around Antarctica. Coupled climate models are particularly36

useful to analyze the interactions between the different components of the climate system.37

Present-day general circulation models involved in the 5th Coupled Model Intercomparison38

Project (Taylor et al., 2011) generally simulate a decrease in the Antarctic sea ice extent39

over the last 30 years but a positive trend such as the observed one remains compatible40

with the internal variability simulated by these models (e.g., Mahlstein et al., 2013; Zunz41
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et al., 2013; Polvani and Smith, 2013; Swart and Fyfe, 2013). Nevertheless, these models42

often display systematic biases in their representation of the seasonal cycle or of the internal43

variability (or both) of the Antarctic sea ice (e.g., Turner et al., 2013; Zunz et al., 2013).44

The reconstruction of the sea ice cover in the Southern Ocean provided by these models have45

thus to be considered cautiously.46

One way to more closely constrain the simulation of the ocean and the sea ice is to pre-47

scribe the atmospheric conditions at the atmosphere/ocean–sea ice interface. These so-called48

“forced” simulations resort generally to atmospheric reanalyses as boundary conditions, and49

have been used extensively to study the past variability of the ocean and sea ice states50

(Fichefet and Morales Maqueda, 1999; Fichefet et al., 2003; Zhang, 2007; Holland et al.,51

2014). It is clear the quality of these forced simulations is strongly dependent on that of the52

atmospheric product utilized. Intercomparisons between different reanalysis products and53

assessments against in-situ measurements all suggest that the reanalyzed atmospheric data54

are subject to large uncertainties or systematic errors in the Southern Ocean (Bromwich55

et al., 2007; Hines et al., 2000; Vancoppenolle et al., 2011) translating inevitably to the56

ocean–sea ice system (Timmerman et al., 2004; Stössel et al., 2011).57

An even tighter constraint on the oceanic and sea ice states can be realized if observations58

are used to update model estimates. Data assimilation has been an active area of research59

in climate science. A limited number of studies have, however, attempted to implement data60

assimilation in the Southern Ocean (Stammer et al., 2002; Stössel, 2008; Massonnet et al.,61

2013; Ferry et al., 2012; Balmaseda et al., 2008; Carton and Giese, 2008; Janjić et al., 2012)62

where pressing scientific questions remain, though.63

Implementing a data assimilation method in a large-scale ocean–sea ice model presents a64

number of challenges as several methodological, statistical and physical questions are raised.65

In theory, the background error statistics should be perfectly known in order for the data66

assimilation to produce an optimal analysis. This is not feasible in practice, due to the67

very high dimensionality of the state vector. For this reason, the true covariance matrix68

of background errors is projected onto a space of much lower dimensionality and specified69
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either a priori (Ferry et al., 2012) or estimated on-the-fly (Sakov et al., 2012; Mathiot et al.,70

2012) using a finite-size ensemble. For computational reasons, it is also common to assume71

a diagonal structure for the observational error covariance matrix (i.e., uncorrelated errors)72

while this is not necessarily the case in reality.73

Most data assimilation methods also rely on statistical hypotheses. The gaussianity of74

background and observational errors is often assumed, but rarely fulfilled. Not only can75

this lead to sub-optimal updates, this can also lead to physical inconsistencies. Resorting76

to the transformation of variables (e.g. Bertino et al., 2003; Simon and Bertino, 2009; Béal77

et al., 2010) can be a first step, but it only acts on the marginal, and not multivariate78

probability distribution functions. Likewise, since the background statistics are boiled down79

to the covariance matrix, the update of non-assimilated fields follows their linear relationship80

with the observable; this may result in an unphysical or imbalanced state after the update81

in regions where strong nonlinearities are present, e.g. between sea surface temperature and82

sea ice concentration (Lisæter et al., 2003).83

Last but not least, a central and non-trivial issue concerns the decision on what should84

be estimated. While the state itself is commonly estimated for reanalysis purposes, the85

methods can be extended to the estimation of model bias to identify systematic errors (Sakov86

et al., 2012), to the estimation of model parameters to partly reduce such systematic errors87

(Massonnet et al., 2014) and ultimately to surface forcing estimation (Barth et al., 2011;88

Marmain et al., 2014; Ngodock and Carrier, 2014). The estimation of atmospheric forcing89

in the Southern Ocean has, to our knowledge, not been explored. Because Antarctic sea ice90

trends are largely controlled by the wind forcing (Kimura, 2004; Holland and Kwok, 2012), it91

seems natural to improve the representation of ice drift in the model. We propose to correct92

the wind forcing using satellite sea ice drift data, taking advantage of the strong relationship93

between sea ice drift and the wind field.94

A first set of preliminary experiments have shown the difficulty to assimilate ice drift in a95

coupled ocean-sea ice model. Sea ice drift is strongly related to the wind forcings (Kimura,96

2004; Holland and Kwok, 2012) with a temporal scale of the order of days (about 4 days97
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based on the autocorrelation). The memory of the sea ice drift is thus relatively short. The98

corresponding time scale is in fact more similar to the temporal scale of the atmospheric99

variability than the temporal scale of ocean mesoscale circulation (order of weeks). This100

short scale would require in principle a very frequent assimilation of sea ice drift data to101

adequately resolve its underlying time-scale. However, a too frequent assimilation can102

deteriorate the model results (e.g. Malanotte-Rizzoli et al., 1989; Barth et al., 2007; Yan103

et al., 2014). To improve sea ice drift in the model, we therefore propose to correct the wind104

forcing. This is possible due to the strong relationship between wind field and sea ice drift105

(Holland and Kwok, 2012).106

The objective of the study is to propose a methodology to use surface drift observations to107

constrain an ocean-sea ice large-scale circulation model. We also aim to test this approach in108

combination with sea surface temperature and sea ice concentration assimilation in a decadal109

simulation and to assess the quality of the results with independent data. This study also110

outlines an approach to evaluate the presence of model errors at the forecast step of the data111

assimilation and to identify their potential sources112

The ocean model is introduced in section 2 and then the used observations along with their113

error covariance are discussed (section 3). The procedure adopted to correct the wind field114

is detailed and validated in section 4. The data assimilation implementation is discussed115

in section 5 and the results of the reanalysis are then presented and validated (section 6).116

In the last section, post-processing techniques are used to relate forecast errors in sea ice117

coverage with model errors associated with the dynamics of sea surface temperature.118

2. Model119

The primitive-equations model used in this study is NEMO (Nucleus for European Modelling120

of the Ocean, Madec (2008)), coupled to the LIM2 (Louvain-la-Neuve Sea Ice Model) sea121

ice model (Fichefet and Morales Maqueda, 1997; Timmermann et al., 2005; Bouillon et al.,122

2009). The global ORCA2 implementation is used, which is based on an orthogonal grid with123

a horizontal resolution of the order of 2◦ and 31 z-levels (Mathiot et al., 2011; Massonnet124

et al., 2013). The hydrodynamic model is configured to filter free surface gravity waves by125
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including a damping term. The leap-frog scheme uses a time step of 1.6 hours for dynamics126

and tracers. The model is forced using air temperature and wind from the NCEP/NCAR127

reanalysis (Kalnay et al., 1996). Relative humidity, cloud cover and precipitation are based128

on a monthly climatological mean. The sea surface salinity is relaxed towards climatology129

with a fresh water flux of -27.7 mm/day times the salinity difference in psu.130

As in the following the link between sea ice drift and wind stress is studied, only the equation131

for sea ice drift is given here. The sea ice drift u is governed by the momentum equation where132

the advection of momentum is neglected by scale analysis (Fichefet and Morales Maqueda,133

1997):134

m
∂u

∂t
= −mfez ∧ u + τ ai + τwi −mg∇ζ + F (1)

where m is the mass of the snow-ice system, f is the Coriolis parameter, ez is a unit vector135

pointing upward, τ ai (resp. τwi) denotes the drag with air (resp. water), g is the acceleration136

due to gravity, ζ is the surface elevation and F the force due to the variation of internal137

stresses. For the complete model equations, the interested reader is referred to Madec (2008);138

Fichefet and Morales Maqueda (1997); Goosse and Fichefet (1999).139

3. Observations140

Global foundation sea surface temperature from OSTIA (Operational Sea Surface Temper-141

ature and Sea Ice Analysis Roberts-Jones et al., 2012) at an original resolution of 0.05◦ was142

reduced to a resolution of 2◦ by averaging all temperature values within a 2◦ by 2◦ grid cell.143

This data set also provides an error standard deviation (varying in space and time). Since144

information about the length scales over which the SST errors are correlated are lacking,145

the error standard deviation is also reduced to a resolution of 2◦ by simply averaging the146

standard deviations of all values with a 2◦ by 2◦ grid cell (averaging the standard deviation147

instead of the variances corresponds to the case of perfectly correlated errors, which is more148

appropriate since the OSTIA data set is relatively smooth).149

150
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Global sea ice fraction from the EUMETSAT Ocean and Sea Ice Satellite application Facility151

(OSI-SAF Roberts-Jones et al., 2012) was also reduced to a resolution of 2◦ and assimilated152

with an error standard deviation of 0.1. The OSTIA sea surface temperature and the OSI-153

SAF sea ice fraction are distributed by MyOcean. Daily sea ice drift from NSIDC (National154

Snow and Ice Data Center) is also assimilated in the ocean model. The sea ice drift is155

based on data from the Advanced Very High Resolution Radiometer (AVHRR), Scanning156

Multichannel Microwave Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/I),157

and International Arctic Buoy Programme (IABP) data (Fowler, 2003). The ice drift is158

derived from the satellite data by maximizing the correlation of groups of pixels between159

image pairs. We use version 1 of this data set which does not include derived ice drift160

based on NCEP wind reanalysis (unlike the version 2 of the gridded and combined ice drift161

data set). As the focus of this study is the Antarctic Ocean, only data from the southern162

hemisphere is used. The error standard deviation for the assimilation is assumed to be 0.1163

m/s. The value of this parameter was determined by a series preliminary experiments to find164

the right balance between correcting as much as possible the sea ice drift without degrading165

unobserved variables. The sea ice drift is used at two stages in our study: first it is used to166

adjust the wind fields and, at a later stage, is used during the analysis to correct the model167

state vector. This approach has been adopted as errors in the wind field and errors in the168

ocean circulation manifest themselves in the model sea ice drift (and not only error in the169

wind field). Experiments with different values of the standard deviation of the global sea ice170

fraction error and sea ice drift error were also conducted as detailed in section 5.5.171

4. Wind field adjustment172

Errors in the sea ice drift can be attributed either to errors in the winds fields or to error173

in the ocean currents. As winds and currents have two very different time scale, a two-step174

approach was adopted. First, the wind fields are adjusted using sea ice drift as described in175

this section. In a second step the sea ice drift is assimilated into the ocean-sea ice model in176

order to reduce errors due to the ocean currents (section 5).177
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4.1. Relation between sea ice drift and wind178

The model sea ice drift is strongly related to the used wind forcing. To quantify the relation-179

ship between sea ice drift and wind fields, the complex correlation coefficient (Kundu and180

Allen, 1976) between the daily NEMO-LIM sea ice drift (uice, vice) and daily NCEP winds181

(uwind, vwind) has been computed by introducing the following complex variables (i2 = −1):182

wice = uice + i vice

wwind = uwind + i vwind

In order to maximize the correlation, we correlate the sea ice drift with different transforma-183

tions of the wind field. More specifically, we use different combinations of shifts and filters184

in time of the wind field. We use a time filter because we anticipate the sea ice drift to have185

a certain inertia and thus a memory of previous winds. The time shift and the temporal186

scale of the filter will be determined later. The time filter is implemented using an itera-187

tive diffusion scheme using a forward Euler step and a 2nd-order center diffusion operator188

(Alvera-Azcárate et al., 2009). The complex correlation coefficient between sea ice drift and189

filtered and shifted wind fields is given by:190

γ =
〈wicewwind〉√

〈wicewice〉 〈wwindwwind〉
The over-line denotes the complex conjugate and the angular brackets an average over time.191

The absolute value of the complex correlation coefficient is maximized by changing the192

timeshift and time-filter. The complex regression coefficient r derives an empirical relation-193

ship between the sea ice drift and the wind field. This relationship will be used later for194

wind field adjustment.195

r =
〈wicewwind〉
〈wicewice〉

The complex correlation and regression coefficients are used instead of the (real) correla-196

tion/regression coefficient derived on the zonal and meridional component individually be-197

cause the complex coefficients can represent a rotation by a constant angle between the two198
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vectors (as a result for the Coriolis force) and is thus commonly used to analyze horizontal199

velocities (e.g Kundu and Allen, 1976; Barth et al., 2008).200

The correlation analysis showed a strong correlation with magnitude of 0.9363 and a phase201

of -19.52◦ between sea ice drift and 3-day average wind fields (panel (a) of Figure 1). This202

phase (which is also the phase of the complex regression coefficient) represents the angle203

between the sea ice drift vector and the wind vector. The maximum value was obtained204

with no time lag. These results did not confirm the initial expectation of a time lag between205

wind and sea ice drift as one could assume that the wind (the cause) precedes sea ice drift206

(the effect). The maximum of the correlation as a function of the time lag is very well defined207

while the correlation as a function of the filtering time scale is a bit flatter (panel (b) and208

(c) of Figure 1). A scatter plot of wind versus sea ice drift using the optimal parameters209

(filtering time scale and time lag) shows a good correspondence (Figure 2).210

This strong relationship has been used to correct the surface winds. The general approach211

is to use the regression coefficient to transform the observed sea ice drift as pseudo wind212

observations and to attempt to improve zonal and meridional wind fields components. In213

particular the following procedure has been adopted to compute the adjusted wind field:214

• the first guess wind field is the NCEP reanalysis215

• the model is run with this wind field (here for the year 2000)216

• the sea ice drift error is calculated by comparing model with observed sea ice drift217

• the sea ice drift error is transformed to “wind increment” using the regression coefficient218

r219

• “wind increment” is analyzed with the tool divand (detailed in the next section) on220

the ORCA grid and the first guess (the NCEP reanalysis) is added221

While other calibration experiment are carried out for the year 1985, the wind field222

adjustments are first tuned for the year 2000 due to the availability of the Cross-223

Calibrated Multi-Platform (CCMP) Ocean Surface Wind Vector Analyses (Atlas et al.,224

2011) which will be used to independently validate the results.225
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4.2. Spatial analysis with divand226

The sea ice drift provides only information about the wind field where the model has ice.227

However, if the sea ice drift indicates that the model should be corrected at a particular228

location, one can expect that it should also be corrected in a similar way at neighboring229

grid cells (even if they are not covered by ice). The tool divand (Barth et al., 2014) (Data230

Interpolating Variational Analysis in n-dimensions) is used to spatially interpolate the “wind231

increment” derived from the sea ice drift on the full ORCA2 grid. This tool is similar to232

the variational analysis DIVA (Brasseur et al., 1996) but this latter works on a triangular233

mesh. The DIVA tool cannot represent a periodic domain as is the case with the NEMO234

grid. Therefore the new tool divand was adapted to operate directly on a structured model235

grid with periodic boundary conditions.236

For variational analyses, one requires that the analyzed field ϕ (here the wind increment)237

must be close to the Nd observations dj (j = 1, . . . , Nd) and “smooth”. This is quantified238

using a cost function J :239

J [ϕ] =

Nd∑
j=1

µj[dj − ϕ(xj)]
2 + ‖ϕ‖2 (2)

Each observation has a weight µj which is directly related to its error variance. Abrupt240

variations of the analysis field are penalized using a regularization constraint (as in norm241

spline interpolation):242

‖ϕ‖2 =
1

c

∫
D

φ2 + 2
(
∇̃φ
)
·
(
∇̃φ
)

+
(
∇̃2φ

)2
dx (3)

The normalization coefficient c is set to 4π to ensure that the background covariance matrix243

has a unit variance (Brasseur et al., 1996). The data weight µj represents the radio of the244

error variance of the background NCEP field and the error variance of the observation.245

The correlation length L is introduced by scaling the differential operator for gradient and246

Laplacian:247
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∇̃ = L∇

∇̃2 = ∇ ·
(
L2∇

)
Here the correlation length is a scalar, but it can also be a diagonal matrix in the previ-248

ous equation if the length scale is different for the zonal and meridional dimensions. The249

regularization constraint guarantees that the interpolated field and its first order derivative250

(such as the wind curl) is continuous.251

An estimation of the background NCEP error standard deviation is necessary to define252

the data weight µi. In the present case, the pseudo observation (the wind information253

derived from the sea ice drift observation) error standard deviation is derived using the error254

standard deviation of the sea ice drift. The remaining parameter of the analysis, namely the255

correlation length scale and background NCEP error standard deviation, will be determined256

in the following. The correlation length controls the distance over which the information257

from the pseudo-wind observation is extrapolated spatially and the NCEP error standard258

deviation determines how close the analyzed field has to come to these pseudo-observations.259

4.3. Calibration260

The correlation length is varied from 300 km to 5000 km and the standard deviation error261

is varied from 0.1 m/s to 10 m/s. For each parameter 10 values are tested. These values262

are uniformly distributed in logarithmic space. For each of these parameters, the divand263

analysis is performed and the NEMO-LIM2 model is run simulating the year 2000 with the264

adjusted wind fields. Besides the momentum equation, the norm of the adjusted wind field265

is also used in the heat flux computation via the bulk formulas (which is a separate input266

file for NEMO).267

Figure 3 shows the RMS error between the model sea ice drift obtained using the adjusted268

wind and the observed sea ice drift. This is not an independent validation since the observed269

sea ice drift is used to adjust the wind fields. This comparison is rather a confirmation270

that the adjustment works as expected. The RMS error between the model sea ice drift271
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and observations is 0.1235 m/s with original (i.e. non-adjusted) NCEP forcing. The RMS272

error is indeed reduced thanks to the adjustment (Figure 3) and, as expected, the lowest273

RMS error is obtained when using a large value of the standard deviation of the NCEP wind274

error. In this case, the adjusted wind will thus be forced to come closer to the pseudo-wind275

observations (based on sea ice drift).276

As an independent comparison the CCMP Ocean Surface Wind Vector Analyses (Atlas et al.,277

2011) based on ERA-40 and observations such as QuickScat for the year 2000 south of 60◦S278

is used. Sea ice drift is not used in the CCMP product. For every tested correlation length279

scale and NCEP error standard deviation, the RMS error between the adjusted wind and280

the CCMP wind field is computed (Figure 3, panel b). This comparison shows that the281

wind field is indeed improved using the sea ice drift measurements. As before, the general282

tendency is that the RMS difference between the adjusted winds and CCMP winds decreases283

as the error standard deviation increases. This comparison shows that the optimal range of284

the correlation length scale is between 500 km and 1500 km.285

The model sea ice concentration obtained by the adjusted wind is also compared to the286

OSTIA/OSI-SAF observations (Figure 3, panel c). In general the sea ice concentration287

varies only weakly by changing the parameter of the analysis. This suggests that only a288

small part of the RMS error in sea ice concentration can be attributed to the wind forcing289

and that sea ice concentration is mostly driven by thermodynamic forcings. Contrary to the290

previous comparison the error slightly increases for large values of the NCEP error standard291

deviation.292

Overall a large value of the background error improves sea ice drift and reduces the RMS293

error in comparison with CCMP winds but it degrades the sea ice concentration (if error294

standard deviation is larger than 5 m/s). Correlation lengths between 500 km and 1000295

km give acceptable results. By combining the results from the different comparisons, the296

wind fields have been adjusted using a correlation length of 700 km and a background error297

standard deviation of 2 m/s.298

The adjustment procedure has been applied to the wind field time series from 1985 to 2006.299
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The average wind vector over this period has been computed (Figure 4). The most signifi-300

cant change occurs near the coast where the adjustment generally increase the offshore wind301

and decreases (the generally negative) zonal wind component. Those changes are consistent302

with the changes from low to high resolution atmospheric models (Mathiot et al., 2010) and303

are attributed to katabatic winds which are important to the formation of polynyas (Mas-304

som et al., 1998; Morales Maqueda et al., 2004). As the wind curl is an important forcing305

for Ekman pumping it has been computed for the original and adjusted wind in order to306

determine the effects on the wind curl. The most important changes in the wind curl (in307

term of the RMS error) have been applied in the Weddell and Ross Seas (panel (b) of Figure308

5). Even in these areas the RMS difference is still smaller by a factor of 2 to 3 than the309

standard deviation of the wind curl (panel (a) of Figure 5).310

311

For the year 2006, a problem in version 1 of the NSIDC ice drift product has been identified312

for the Arctic sea ice drift (Sumata et al., 2014). However the authors did not analyse313

the ice-drift in the Southern Hemisphere. The comparison of the free-running model with314

the Antarctic ice drift did not reveal a sudden change in the RMS error for the year 2006.315

However, by using version 2 of the NSIDC ice drift data (based only on Advanced Very High316

Resolution Radiometer (AVHRR), Scanning Multichannel Microwave Radiometer (SMMR),317

Special Sensor Microwave/Imager (SSM/I) but not on NCEP wind field data), the RMS318

error of the wind field compared to CCMP could be reduced by 7% compared to version 1319

of the NSIDC ice drift.320

5. Data assimilation321

The implemented data assimilation scheme is the Ensemble Transform Kalman Filter (Bishop322

et al., 2001). In ensemble-based assimilation schemes, the error statistics of the model323

state vector is estimated by perturbing uncertain aspects of the model. In the present324

configuration we perturb surface winds (10 m) and surface air temperature (2 m). The325

adjusted wind from the previous section are used. Atmospheric parameters coming from326

climatology are not perturbed. The data assimilation scheme employs an ensemble with327
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50 members. Observations are assimilated every 5 days which is a compromise between328

available computer resources and maximizing the usage of the observations.329

5.1. Perturbed forcings330

The perturbation scheme is based on a Fourier decomposition. Formally all perturbed vari-331

ables are grouped into a time-dependent vector:332

x = (uair vair Tair)
T at all grid points (4)

A Fourier decomposition of the NCEP wind vectors and air temperature over the time333

domain is performed (Barth et al., 2011; Marmain et al., 2014):334

x(t) =
∑
k

ak exp(iωkt), (5)

where ωk is the k-th angular frequency (positive or negative) and ak are complex spatial335

vector fields corresponding to the Fourier coefficients of the angular frequency ωk (∆t is here336

24 hours):337

ωk =
2πk

∆t
k = −kmax

2
, . . . ,

kmax

2
− 1 (6)

where kmax is the number of Fourier modes. Using the spatial and multivariate structure of338

the Fourier modes ak, perturbations x′(t) are constructed by:339

x′(t) = α Re

(∑
k

akzk(t)

)
, (7)

where zk is a complex random time series with a temporal correlation scale of Tk = 2π/|ωk|,340

zero mean and unit variance. The value of α is determined by ensemble simulations with341

perturbed forcings to ensure that the resulting ensemble spread is comparable to the expected342

error of the model.343

Only Fourier modes with a time period between 20 and 70 days are used for the perturbations344

in order to exclude the seasonal variations (which have a large variance and whose amplitude345

is not representative for its expected error) and short-scale variations which are not the346
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primary focus of this study. Since the perturbation scheme is multivariate, the same range347

of time scales is used to perturb wind and air temperature. The real and imaginary parts of348

the random time series have the following covariance CT (t, t′):349

CT (t, t′) = e
− (t−t′)2

T2
k (8)

These perturbations have been added to the first guess estimate:350

x(l) = x + x′(l) (9)

where l is the index of the ensemble member. The perturbation scheme is similar to pertur-351

bations generated by Empirical Orthogonal Functions (EOF; e.g. Vandenbulcke et al., 2008;352

Béal et al., 2010). The advantage of perturbations proportional to a Fourier mode is that it353

is easier to associate a time scale to a Fourier mode than to an EOF. The wind perturbations354

have a magnitude similar to the wind correction derived in the previous section. However,355

the wind perturbations have a zero mean so that the wind corrections are still relevant for356

the whole ensemble (and in particular its mean state).357

As the wind speed is an independent forcing field for NEMO, the perturbed wind speed is358

computed for each ensemble member:359

‖uair
(l)‖ =

√
u
(l)
air

2
+ v

(l)
air

2
(10)

The perturbation scheme (without assimilation) is illustrated for the year 2007. Figure 6360

shows the ensemble standard deviation of the wind speed for a particular day (2007-02-361

21). The ensemble standard deviation is high near the polar regions where time variability362

(between 20 and 70 days) is relatively large. The same behaviour was also seen in the air363

temperature (not shown). Figure 7 shows the globally-averaged ensemble spread for one-year364

of spin-up. The spread in SST stabilized relatively fast after 2 months of simulation. Globally365

the uncertainty of the ensemble SST is about 0.8 ◦C which is of the order of magnitude of the366

model error in SST. A meaningful correction of the model state can only occur at locations367

where the model develops a sufficient ensemble spread. The spread of sea ice concentration368
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was computed for the period of minimum and maximum sea ice extent (Figure 8). For the369

minimum sea ice extent period, a spread of 0.3 or larger was generated except in the eastern370

part where nearly all sea ice has melted. During the maximum sea ice extent, areas with371

significant ensemble spread form a ring structure. All ensemble members have no sea ice372

outside this ring and are essentially completely sea ice covered inside this ring. The width373

of this ring represents the uncertainty of the sea ice edge.374

Ensemble simulations have also been carried out with only air temperature perturbations375

and only wind field perturbations in order to determine the impact of those error sources376

individually. Figure 9 shows the resulting ensemble variance after a one-year ensemble spin-377

up for ice concentration and ice drift variance. The air temperature perturbations generate378

a relatively uniform ensemble spread while the wind perturbations enhance the ensemble379

spread mostly near the coastline. As expected, the ice drift variance (computed only over380

model grid points with nonzero ice concentration) does not respond to the air temperature381

perturbations, but it responds quite significantly to the wind field perturbations. The impact382

is strongest in the open ocean where the ice movement is not constrained by the coast. The383

combined effect of air temperature and wind perturbations is relatively close to the sum384

of both perturbations individually which indicates that the wind field and air temperature385

perturbations as well as their response in the model are relatively independent from each386

other even after a one-year ensemble simulation.387

5.2. State vector388

In data assimilation, all model variables to be corrected by the observations are gathered389

in the state vector which is here composed of various hydrodynamic and sea ice variables.390

It includes the horizontal velocity components, temperature, salinity, surface elevation, curl391

of horizontal velocity components, divergence of horizontal velocity components, turbulent392

kinetic energy and barotropic stream function trends. Those variables are necessary to restart393

NEMO. Some of these variables are interdependent as the horizontal velocity components394

are directly related to their divergence and curl. However since the link is linear, the analysis395

will preserve their relationship. As the model uses a leap-frog time step, two time instances396
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of these variables are included in the state vector.397

For the sea ice model, sea ice concentration, sea ice thickness, the horizontal sea ice-velocity398

components, snow thickness and temperature inside the ice/snow layer (at three layers) are399

included in the state vector. The sea ice concentration was transformed with a Gaussian400

anamorphosis (see section 5.3). In total, the state vector contains 28 different variables and401

about 6 million elements (all variables combined).402

A set of experiments was conducted with a reduced state vector, where the snow thickness403

and temperature inside the ice/snow layer was not corrected by the assimilation in order to404

determine if the assimilation has a beneficial impact on these variables.405

5.3. Gaussian anamorphosis406

The Kalman filter analysis provides the most likely state if errors are Gaussian-distributed.407

However some variables are clearly not Gaussian-distributed, in particular sea ice concen-408

tration which is bound between 0 and 1. A linear analysis scheme can produce unrealistic409

values outside of this range. Gaussian anamorphosis (Bertino et al., 2003; Lenartz et al.,410

2007; Simon and Bertino, 2009; Béal et al., 2010) consists of applying a non-linear transfor-411

mation onto the model variable which should make the pdf of the state vector more similar412

to a Gaussian pdf. In practice such transformations are applied to individual elements of413

the state vector and thus operating only on the marginal distribution and not on the full414

multidimensional pdf. Such transformations can be based on an analytic transformation415

(e.g. logarithm, for lognormal distributions) or empirically based on the distribution of the416

observations.417

The initial distribution of sea ice concentration is estimated from a 1-year free-running418

ensemble simulation. The derived transformation function is here independent in time and419

space (Figure 10). The anamorphosis transform was applied to all ensemble members so420

that the ensemble members include the transformed sea-ice concentration. Observed sea ice421

concentration was not transformed, therefore the observation operator includes the inverse422

anamorphosis transform and is non-linear. This approach allows to define the error standard423

deviation of the observations in the original units. The analysis scheme is implemented with424
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the non-linear observation operator as described in Chen and Snyder (2007) and Barth et al.425

(2011).426

Other model variables exhibit a non-Gaussian behavior too as thickness of snow and sea ice427

layers (which have to be positive) and sea water temperature (which has to be above the428

freezing temperature). We limit ourselves to sea ice concentration as this is an observed429

variable and thus large corrections are expected for this parameter. Other variables with a430

non-Gaussian distribution are dealt with using an ad-hoc correction after the analysis step.431

5.4. Analysis432

The analysis scheme is based on the Kalman filter analysis, where the model forecast xf (with433

error covariance Pf ) is updated by the observation yo (with error covariance R) resulting in434

the analysis state xa and its error covariance (Pa):435

xa = xf + K
(
yo −Hxf

)
(11)

K = PfHT
(
HPfHT + R

)−1
(12)

Pa = Pf −KHPf (13)

where H is the observation operator extracting the observed part of the state vector. The436

mean state xf and its covariance are computed from an ensemble of perturbed members437

xf (k) where k = 1, . . . , N (Evensen, 2007):438

xf =
1

N

N∑
k=1

xf (k)

(14)

Pf =
1

N − 1

N∑
k=1

(
xf (k) − xf

)(
xf (k) − xf

)T
= SfSf T (15)

where the columns of the matrix Sf are the difference between each member and the ensemble439

mean (multiplied by 1√
N−1). The ensemble update used here is based on the Ensemble440

Transform Kalman Filter (Bishop et al., 2001). In order to avoid to form Pa explicitly, Pa
441

18



is expressed also in terms of the square root matrix Sa (Pa = SaSaT ) which is possible when442

the following eigenvalue decomposition is made:443

(
HSf

)T
R−1HSf = UΛUT (16)

where UTU = I and where Λ is diagonal. U and Λ are both of size N ×N .444

445

Using this eigenvector decomposition and the Sherman-Morrison-Woodbury formula (Golub446

and Van Loan, 1996) one can compute the analysis xa and the square root of the analysis447

error covariance Sa by:448

xa = xf + SfU(I + Λ)−1UT (HSf )TR−1
(
yo −Hxf

)
(17)

Sa = SfU(I + Λ)−1/2UT (18)

Based on xa and Sa, an ensemble can be finally reconstructed:449

xa(k) = xa +
√
N − 1 Sa(k) (19)

In order to filter spurious long-range correlations, a localization scheme in the observation450

space has been used with a length scale of 2000 km (approximately 20 grid points). This451

assimilation scheme is implemented in a tool called the Ocean Assimilation Kit and described452

in more detail in Vandenbulcke et al. (2006); Barth et al. (2008). The present setup is the453

first global implementation of the assimilation tool and it required some adaption in order454

to properly handle the periodic boundary conditions in the localization scheme.455

5.5. Variant of assimilation experiments456

Different assimilation experiments were conducted to assess the different choices that have457

been adopted during the implementation of the assimilation scheme. Table 1 shows the458

RMS error and skill-score of the model state forecast compared to the observations (not yet459

assimilated). The RMS values for SST and sea ice concentration are computed over the460
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entire globe. If the RMS values for sea ice concentration are to be compared with RMS461

values computed over the latitude range [−90,−φ] and [φ, 90], then the values reported here462

have to be multiplied by 1/(1− sin(φ)). The RMS values for the sea ice drift are computed463

only over the southern hemisphere over the grid cells where sea ice is present in the model464

and in the observations. These experiments were carried out for the year 1985 (the initial465

year of the study). The skill-score is defined as:466

skill score(experiment) = 1− RMS2(experiment)

RMS2(baseline)
(20)

Negative values of this skill score mean a deterioration of the results and positive values an467

improvement. The baseline experiment uses a state vector of 30 variables, Gaussian anamor-468

phosis is applied to sea ice concentration, and the standard deviation error for the sea ice469

concentration is set to 0.1. In a first test, the Gaussian anamorphosis was disabled and the470

sea ice concentration was adjusted to the interval [0, 1] after the analysis (row ExpFNA-0.1471

in table 1). Compared to the baseline experiment, a small error increase in sea ice concen-472

tration was observed, while other variables are not affected. Given the strong non-Gaussian473

character of the sea ice concentration, one could have expected a larger impact of the anamor-474

phosis transform. However, the Gaussian anamorphosis only transforms the marginal pdfs475

while the character of the multidimensional pdf of the state-vector might not be significantly476

changed by the transformation. In the following experiments, the Gaussian anamorphosis477

was kept.478

479

By reducing the error standard deviation (ExpFA-0.07) of the sea ice concentration to 0.07,480

the sea ice concentration forecast was improved by 8 % (compared to the baseline experiment481

with an error standard deviation of 0.1). A larger positive impact on the model variables (and482

especially on sea ice concentration) was obtained by using a reduced state vector excluding483

snow thickness and temperature inside the ice/snow layer (ExpRA-0.05, ExpRA-0.07 and484

ExpRA-0.1). This indicates that the excluded variables are related in a non-linear way to485

the observations and that relationship cannot be represented by a covariance. However, for486
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this experiment the best results were obtained by using again 0.1 as error standard deviation487

of the sea ice concentration. Using a lower value did not result in an improvement contrary488

to the result with the full state vector.489

In summary, the experiments lead to the configuration with a reduced state vector and490

Gaussian anamorphosis of sea ice concentration, where sea ice concentration was assimilated491

with an error standard deviation of 0.1.492

6. Reanalysis493

While the calibration of the assimilation setup was performed on a single year (2000), this494

section presents the model simulations with data assimilation from 1st January 1985 to 31st495

December 2006. The time period was determined to ensure the availability of all used data496

sets.497

6.1. RMS with assimilated data sets498

The comparison with the assimilated data set is instructive to get a first view of the be-499

haviour of the assimilated variables. The RMS error for sea surface temperature and sea500

ice concentration are computed over the whole globe while the RMS error for sea ice drift501

is limited to the southern hemisphere. The free model is not influenced by the observation502

described in section 3. In particular, its wind forcing is the original NCEP wind forcing. As503

mentioned previously, the sea ice drift observations are used at two stages: for correcting504

the wind forcing and during the analysis.505

506

Since the RMS errors showed a clear seasonal behaviour the 1606 assimilation cycles were507

aggregated on a monthly basis (Figure 11). In the free run, the sea surface temperature RMS508

error is on average 0.98 ◦C. This error is strongly reduced after the first assimilation cycle (not509

shown) and maintained at a relatively low level (about 0.5 ◦C) by the continuous assimilation510

of SST data. On average, the SST RMS error is highest during August and a secondary peak511

is observed in January. The seasonal behaviour of the SST RMS is significantly reduced by512

the assimilation. The behaviour of the sea ice concentration is similar, as a clear seasonal513
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cycle can be seen in the RMS error and the average RMS error is highest in September514

(the period with the maximum sea ice extent in the Southern Hemisphere). As expected515

from the previous result, the RMS error of the sea ice drift component (only in the southern516

hemisphere) shows also a strong seasonal cycle. While the model forecast RMS is still smaller517

than the RMS of the free run, the RMS error increases relatively fast after the analysis (not518

shown). This is attributed to the fact that the underlying time scales of the variability in519

sea ice drift are shorter than the 5-day assimilation cycle. The average of the RMS error520

over all assimilation cycles is given in table 2.521

6.2. Validation with the World Ocean Database522

All observations from the World Ocean Database from the period 1st January 1985 to 31st523

December 2006 have been collected. For model verification, the model results are usually524

interpolated on the location and date of the observations (e.g Alvera-Azcárate et al., 2007).525

As the vertical grid of the model is the same at every location, we decided to rather inter-526

polate the observations vertically on the model levels. These vertically interpolated profiles527

are then compared to the model results interpolated horizontally.528

529

The free-running model has the largest temperature error near the surface where the model530

has the most variability (Figure 12). As the model assimilates sea surface temperature,531

the largest impact of the assimilation is indeed at the surface where the RMS error and532

bias (which is partly included in the RMS error) are strongly reduced. The RMS error is533

improved by the assimilation over 200 m depth and the bias over 120 m. Below those depths534

there is a slight degradation of the temperature which is essentially a systematic error in535

form of a bias. One possible way forward for improvement of the assimilation scheme could536

be to include a temperature relaxation toward a climatology to control such error. As the537

ensemble is generated by perturbing the atmospheric fields, the resulting vertical correlation538

scale between the surface and the subsurface level is about 100 meters (as calculated by539

computing the standard deviation averaged over time and horizontal space of the analysis540

increment). As the error increase at depth is not introduced by the analysis step, it must be541
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introduced by the model reaction to an analyzed initial condition. In fact, it is well known542

that sequential analysis can produce shocks after restarting the model from an analysis (e.g.543

Malanotte-Rizzoli et al., 1989; Barth et al., 2007; Yan et al., 2014). Incremental update544

techniques are a promising approach to reduce such problems during the re-initialization of545

the model (Bloom et al., 1996; Yan et al., 2014).546

The model does not assimilate salinity and therefore changes in salinity are only due to547

the multivariate covariance between the observed variables and salinity, and also due to the548

model adjustment after the analysis. The validation reveals that the assimilation reduces549

the salinity RMS error and bias everywhere with a diminishing impact at depth. Contrary550

to the temperature validation, no degradation at depth was observed.551

6.3. Mean sea surface height552

The mean model sea surface height was also compared with CNES-CLS09 MDT version553

1.1 (Rio et al., 2011). The model sea surface height is related to the mean currents by the554

geostrophic relationship. The CNES-CLS09 MDT is essentially based on in situ dynamic555

heights, drifting buoy velocities and the geoid model computed from GRACE (Gravity Re-556

covery and Climate Experiment) data. It is thus an independent data set. The objective of557

this comparison is to assess the impact of the assimilation on the mean sea surface height558

and the mean currents. As the focus of this study is the southern polar region, the compar-559

ison is limited to the area south of 40◦S. A constant over this domain has been subtracted560

to remove any offset which is not dynamically significant. The RMS values represent thus561

centered RMS. The RMS error between the free running model and the MDT over this area562

is 0.218 m which is reduced to 0.165 m between analysis and MDT. The RMS of the 5-day563

forecast based on the analysis is essentially the same with 0.166 m (Figure 13). Overall the564

mean SSH gradient is more realistic in the analysis compared to the free model run leading565

to a more realistic representation of the Antarctic Circumpolar Current. The structure of the566

gradient is also more realistic in the model run with assimilation, especially in the Amundsen567

Sea and Ross sea sector.568

Assuming a jet with a Gaussian velocity profile, one can determine the characteristics of the569
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polar front by fitting the error function on the mean sea surface height h (Gille, 1994):570

h(y) = a+ (b− a) erf

(
y − p
w

)
(21)

where y is the latitude, p is the position, w is the width, a and b are the hypothetical values571

of the sea surface height if y could tend to −∞ and +∞ (respectively). Tests were performed572

to include an additional term to separate the polar and the sub-polar front, however as SSH573

corresponds to mean over a long time period and given the coarse resolution of the model574

results, the sea surface height h did not contain sufficient details to distinguish these two575

fronts. The proposed fit corresponds thus to the overall change of SSH over the frontal576

system. This fit has been performed on the ORCA2 model grid (also for the CNES-CLS09577

MDT) and repeated for all longitudes of the model grid. The model run without assimilation578

reproduces relatively well the position of the front (Figure 14). The RMS error of the position579

(averaged over all longitudes) is 1.70◦. While the assimilation can locally degrade the position580

of the front, it reduces on average the RMS error to 1.61◦. The overall structure of the width581

of the front agrees with the width determined from the CNES-CLS09 MDT. However, the582

width in the free model run is overestimated, indicating that the model is too smooth and583

the ACC (Antarctic Circumpolar Current) is too diffuse. While the width of the front in the584

analysis is still too large, the assimilation improves its representation and the RMS error is585

reduced from 5.96◦ to 3.27◦.586

7. Identification of model errors587

The aim of this section is the proposal of a technique for the identification of model errors588

during the assimilation cycle and its application on the proposed reanalysis for sea ice. Model589

errors can be traced by considering how the data assimilation system tends to pull the anal-590

ysis away from the background towards the observations. Such approach was pioneered by591

Klinker and Sardeshmukh (1992) and further developed by Schubert and Chang (1996) and592

by Rodwell and Palmer (2007). The problem is approached here from a different perspective593

by the use of post-processing techniques and rigorous theoretical considerations. As argued594
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in Vannitsem and Nicolis (2008), forecasts at small lead times can be corrected using Model595

Output Statistics (MOS) techniques in case systematic model errors are present. Random596

initial-condition errors, on the other hand, cannot be corrected. Importantly, additional597

corrections can be obtained by consideration of an additional predictor (other than the one598

corresponding to the predictand) in case this predictor is strongly correlated to the model599

error present. The aim of this section is to diagnose the presence of model errors by seeking600

additional predictors that strongly correct the forecast. The identification of good predictors601

may then lead to an increased understanding of the source of error.602

The data set considered consists of the ensemble-mean of the NEMO-LIM2 reanalysis. The603

observations against which we calibrate and compare the results are the aforementioned604

OSTIA data set.605

7.1. Correction based on post-processing techniques606

Three predictands or corrected forecasts are constructed: The total Antarctic sea ice area, the607

Antarctic sea ice area as a function of longitude and the Antarctic sea ice area as a function608

of latitude. Tests pointed out that the point-by-point or full-field sea ice concentrations could609

not be corrected with the post-processing methods. Full-field calibration methods based on610

EOF analysis might be an alternative that is worth investigating in the future (Di Giuseppe611

et al., 2013), but the present analysis is restricted to spatially integrated quantities.612

The corrected forecast xc is obtained by use of two predictors or model variables, xf1 and xf2 ,613

based on the following regression relation:614

xc = θ
(
β0 + β1x

f
1 + β2x

f
2

)
. (22)

Here the function θ ensures that the corrected sea ice area xc is nonnegative:615

θ(z) = z when z ≥ 0, and, θ(z) = 0 when z < 0. (23)

The regression coefficients β0, β1 and β2 are obtained by numerical minimization of the616

mean squared error, analogous to the technique of Linear Model Output Statistics (LMOS)617
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as discussed by Vannitsem and Nicolis (2008):618

MSE =
〈
(xcn − yon)2

〉
n
, (24)

where 〈·〉n represents the average over the training data set and yo denotes the observation.619

Three correction methods are used here:620

• Bias correction: β1 = 1 and β2 = 0 while β0 is an optimized parameter.621

• One-predictor correction: β2 = 0 while β0 and β1 are optimized parameters.622

• Two-predictor correction: β0, β1 and β2 are optimized parameters.623

As the first predictor xf1 the model variable corresponding to the predictand is taken. For624

the second predictand xf2 , on the other hand, the following variables are considered, all625

taken from the 5-day forecast: ice thickness, ice y-velocity, ice x-velocity, sea surface height,626

barotropic stream function trends, sea surface height mean, sea surface salinity mean, sea627

surface temperature mean, sea surface x (meridional) and y (zonal) mean velocity, diver-628

gence and rotational components of horizontal velocity components, salinity, temperature,629

x-velocity, y-velocity and turbulent kinetic energy. As the model uses a leap-frog time step-630

ping scheme, for some of the variable two consecutive time steps are available and have been631

used as predictors. Extra second predictors are constructed by full-field transformations632

of the aforementioned variables. More specifically, the totally advected, the longitudinally-633

advected and latitudinally-advected quantities are obtained by multiplying the variables634

with the total velocity or the longitudinal or latitudinal surface velocities, respectively. Also635

full-field multiplications are performed with the sea ice concentration SIC, with 1-SIC and636

with SIC(1-SIC) in order to obtain predictors that are only nonzero over sea ice, over open637

sea or near the sea ice edge, respectively. For non-surface variables we consider also the638

vertically-averaged (oceanic) quantities.639

For correcting the predictand Antarctic sea ice area, all predictors are averages over the640

oceanic area south of 50◦S. Similarly the predictors tested to correct the predictands that641

are a function of longitude or latitude are model variables averaged along the same latitudes642
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and longitudes, all south of 50◦S. Note that for each of the three correction methods the643

regression coefficients are calculated separately. Also, longitude-by-longitude (latitude-by-644

latitude) analysis is performed for the predictands that are a function of longitude (latitude).645

Verification scores are obtained by correcting data subsets that are independent from the ones646

used to obtain the regression coefficients. More specifically, a cross validation is performed647

by which each single calendar year is corrected using the coefficients that were trained on648

the other 20 years.649

7.2. Results of post-processing650

The overall impact of all correction schemes on the Antarctic sea ice area is tabulated in651

Table 3 showing in the first column the RMSE values of the corrected forecasts, relative652

to the RMSE of the uncorrected 5-day forecast. Our post-processing technique was also653

applied on the analysis data (taking xf → xa in Eq. (22)) for which results are shown in the654

right-most column of Table 3.655

656

A bias correction of the forecast amounts to a 5% RMSE reduction as compared to the657

uncorrected forecast while an additional variability correction (or one-predictor correction)658

yields 4% of extra reduction. By far the strongest correction (45% extra reduction) derives659

from the use of the best two-predictor correction. The situation is clearly different for post-660

processing applied to the analysis where all correction methods pull the analysis away from661

the observations (increased RMSE).662

The main second predictor that reduces the RMSE associated with the 5-day forecast is663

model sea-surface temperature (SST). Almost all other (second) predictors that are not664

directly related to the model SST improve marginally or deteriorate upon the one-predictor665

forecast. Using the model SST (averaged south of 50◦S) as a second predictor to correct666

the antarctic sea ice area, the RMSE is reduced with 50% as compared to the one-predictor667

forecast (see Table 3). Correcting the Antarctic sea ice area as a function of longitude using668

the model SST amounts to a reduction of 12%. This is a strong indication of a model error669

correlated with SST that considerably affects the forecast of the sea ice area. The global670
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view of the modeling impact on forecasts allows for emphasizing the dominant role played by671

model errors associated with sea surface temperature forecasts. Improvements will therefore672

be expected provided a better representation of sea surface temperature is achieved.673

Fig. 15 shows the average Antarctic sea ice area for the different forecasts, the analysis and674

the observation as a function of the day of the year and the RMSE associated with these675

forecasts is given in Fig. 16. Clearly the RMSE of the two-predictor corrected forecast has676

the weakest seasonal cycle. Analogously, Fig. 17 depicts the longitudinal RMSE dependence677

of the sea ice area as function of longitude. The strongest two-predictor corrections are678

obtained in the Ross and Weddell seas and during Antarctic summer.679

The best two-predictor correction scheme for the analysis leads to a larger value of the680

RMSE. As discussed in details in Vannitsem and Nicolis (2008), the absence of correction of681

the post-processing approach indicates that no model errors nor initial biases (related to the682

observations) are affecting the analyses, or in other words that the sole error present in the683

analysis is a random initial condition error and that the data assimilation scheme has made684

a proper use of the observations.685

686

In turn the presence of a purely random initial condition error affecting the forecast step687

of the data assimilation scheme allows for concluding that the large biases of the five-day688

forecast are predominantly induced by a model error strongly correlated to the model SST.689

Even though so far no specific modeling scheme - such as horizontal turbulent transport - is690

pinpointed as the source of model error, we believe that progress can be made by considering691

other predictors more related to some specific parameterization schemes. This question is692

worth addressing in the future.693

Note that the post-processing approach as proposed here is not equivalent to finding variables694

that are highly correlated with the observations. In addition the use of different interpolation695

schemes could affect the amplitude of the absolute RMSE values, but the ratio between696

the best two-predictor scheme and the one-predictor scheme is not affected, suggesting the697

robustness of the conclusions.698
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8. Conclusions699

This study shows that sea ice drift can be used to correct the wind field over the Southern700

Ocean as the model sea ice drift and 3-day mean surface wind field are strongly correlated.701

This relationship was used to adjust the wind field using pseudo-wind field observations702

based on sea ice drift data. As expected, the model using the adjusted wind field produces703

results closer to the sea ice drift data. But the adjusted wind field is also closer to the Cross-704

Calibrated Multi-Platform Ocean Surface Wind field (based on ERA-40 and observations).705

The impact on sea ice concentration was also assessed. However, only a small error reduction706

was found which suggests that only a small part of the model error in sea ice concentration707

is due to the wind fields.708

Based on this adjusted wind, a reanalysis using the global NEMO model ORCA2 for the709

period 1985 to 2006 using 50 ensemble members has been presented. This model assimilates710

sea surface temperature, sea ice concentration and sea ice drift. The sea ice concentration711

assimilation used a Gaussian anamorphosis to transform this variable into a variable which712

follows more closely a Gaussian distribution. This transformation resulted in an improvement713

of the sea ice forecast. Despite this improvement being relatively small, the cost in term of714

CPU time is vanishingly small compared to the ensemble forecast and the analysis.715

Finally, the reanalysis was compared to the World Ocean Database which is an indepen-716

dent data set. The assimilation was able to reduce the overall RMS error and bias of the717

model compared to in situ temperature and salinity profiles. As the focus of the reanalysis718

is the Southern Ocean, the impact of the assimilation on the ACC (Antarctic Circumpolar719

Current) was also assessed by comparing the mean sea surface height of the model to the720

mean dynamic topography derived from various observations. The assimilation improved721

in general the mean surface height of the model in the Southern Ocean. In particular, the722

overall position and strength of the ACC was closer to observations after the assimilation.723

724

Data assimilation is not directly suited to correct or diagnose consistent model errors since725

these are usually considered as random uncorrelated processes (except when the model bias is726
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related to errors in the model parameters which can be estimated using variational assimila-727

tion or using a Kalman filter with an augmented state vector). The post-processing technique728

known as model output statistics attempts to relate a series of past forecast variables with729

the corresponding observations and is commonly used in numerical weather predictions for730

improving forecasts by reducing the impact of model errors. This technique can also be731

used to identify the presence of model errors by means of the analysis of the forecast im-732

provements obtained using multiple predictors (Vannitsem and Nicolis, 2008). Indeed the733

potential forecast improvement based on a predictor reflects the presence of model errors734

(systematic or not) strongly correlated with this specific predictor. In the present investiga-735

tion, the cross-validated RMS error of the 5-day forecast for the total Antarctic sea ice area736

could be halved using the SST forecast (averaged south of 50◦S) as predictor. This indicates737

that SST is an important predictor strongly affected by the modelling error. This finding738

constitutes a first step to the identification of the underlying modeling scheme at the origin739

of the model error affecting the forecast. The post-processing technique was also applied on740

the analysis but was unable to reduce the RMS error, indicating that there is no obvious741

systematic error affecting the sea ice analysis.742
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Table 1: Calibration of the assimilation configuration. A dash means no significant change.

RMS state vec. anam.
√

Rice SST ice conc. ui ice vi ice

baseline experiment full yes 0.1 0.632 0.087 0.080 0.070

skill score (%) SST ice conc. ui ice vi ice

ExpFNA-0.1 full no 0.1 - -2.766 - -

ExpFA-0.07 full yes 0.07 -2.556 8.094 - 2.254

ExpRA-0.05 reduced yes 0.05 -7.477 12.492 4.000 3.069

ExpRA-0.07 reduced yes 0.07 -2.794 10.046 2.390 2.474

ExpRA-0.1 reduced yes 0.1 - 13.454 - 2.279

Table 2: Total RMS error relative to assimilated data

Free Forecast Analysis

SST [◦C] 0.98 0.59 0.47

ice conc. 0.22 0.085 0.033

uice [m/s] 0.088 0.069 0.041

vice [m/s] 0.074 0.060 0.039
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Table 3: Root Mean Squared Error (RMSE) of the Antarctic sea ice area of different correction methods

applied on the 5-day forecasts (second column) and analysis (third column), all divided by the RMSE of the

uncorrected 5-day forecast for Antarctic sea ice area.

Antarctic sea ice area Forecast

RMSE

(%)

Analysis

RMSE

(%)

Uncorrected 100% 15.7%

Bias-corrected 95% 17.2%

One-predictor corrected 91% 18.2%

Two-predictor corrected (min. RMSE) 46% 16.6%
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Figure 1: Magnitude of correlation coefficient (for the year 2000) as function of time shift and filtering time

scale (panel a). Panel b show the magnitude of correlation coefficient as a function of the time shift for a

filtering time scale sets to 3 days (vertical dotted line in panel a) and panel c show represents the magnitude

of correlation coefficient as a function of filtering time scale for a the time shift set to 0 days (horizontal

dotted line in panel a).
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Figure 2: Scatter plot of NCEP wind versus wind estimated from ice drift (both in m/s) using the complex

regression coefficient (with a filter of 3 days and without timeshift). The dots corresponds to the data from

the year 2000 and to model grid points covered by ice in the Southern Hemisphere.
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Figure 3: RMS difference of the model and observed sea ice drift (panel a), the analyzed winds and CCMP

winds (panel b) and model and observed sea ice concentration (panel c) for different values of the correlation

length and the NCEP wind error.
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Figure 4: The mean NCEP wind vector (panel a) and the mean adjusted wind (panel b) averaged over the

period from 1985 to 2006. The color represents the norm of the wind vector in m/s.
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Figure 5: Standard deviation of NCEP wind curl (panel a) and RMS of the difference between the original

NCEP wind curl and the adjusted wind curl (panel b). The units are s−1.
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Figure 6: Wind speed ensemble standard deviation in m/s (2007-02-21).
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Figure 7: Globally-averaged SST ensemble standard deviation (◦C). The spread is first computed for every

model grid point and then averaged spatially.
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Figure 8: Sea ice concentration standard deviation at the minimum sea ice extent (2007-02-21, left panel)

and during the maximum sea ice extent (2007-09-06, right panel)
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Figure 9: Ensemble variances of sea ice concentration (upper row) and sea ice drift (lower row) based on

only air temperature perturbations, wind field perturbations or both. The ensemble variance corresponds to

the starting day of the assimilation experiment (1985-01-01).
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Figure 10: Illustration of the Gaussian anamorphosis: The left panel shows the original histogram of sea ice

concentration, the middle panel represents the transformation function and the right panel is the resulting

histogram.
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compared to the assimilated data for every month (x-axis) and averaged over all years.
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Figure 12: Validation with World Ocean Database using all observation from 1985-2006. The x-axis is

temperature (upper row) or salinity (lower row) and the y-axis is depth.
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Figure 13: Comparison of mean SSH from observations and from the model (without and with assimilation).

The spatial average of the shown domain was removed.
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Figure 15: Antarctic sea ice area as a function of the day of the year averaged over the period 1985-2007.

Shown are the observation, the reanalysis, the uncorrected 5-day forecast and different forecasts corrected

with post-processing techniques.
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Figure 16: Root Mean Squared Error (RMSE) of the Antarctic sea ice area a function of the day of the year,

averaged over the period 1985-2007, for the uncorrected 5-day forecast and different forecasts corrected with

post-processing techniques.
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east from that longitude (all south of 50◦S).
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