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Abstract The dynamics of a low-order coupled wind-

driven ocean–atmosphere system is investigated with

emphasis on its predictability properties. The low-order

coupled deterministic system is composed of a baroclinic

atmosphere for which 12 dominant dynamical modes are

only retained (Charney and Straus in J Atmos Sci

37:1157–1176, 1980) and a wind-driven, quasi-geostrophic

and reduced-gravity shallow ocean whose field is truncated

to four dominant modes able to reproduce the large scale

oceanic gyres (Pierini in J Phys Oceanogr 41:1585–1604,

2011). The two models are coupled through mechanical

forcings only. The analysis of its dynamics reveals first that

under aperiodic atmospheric forcings only dominant single

gyres (clockwise or counterclockwise) appear, while for

periodic atmospheric solutions the double gyres emerge. In

the present model domain setting context, this feature is

related to the level of truncation of the atmospheric fields, as

indicated by a preliminary analysis of the impact of higher

wavenumber (‘‘synoptic’’ scale) modes on the development

of oceanic gyres. In the latter case, double gyres appear in

the presence of a chaotic atmosphere. Second the dynamical

quantities characterizing the short-term predictability

(Lyapunov exponents, Lyapunov dimension, Kolmogorov–

Sinaı̈ (KS) entropy) displays a complex dependence as a

function of the key parameters of the system, namely the

coupling strength and the external thermal forcing. In par-

ticular, the KS-entropy is increasing as a function of the

coupling in most of the experiments, implying an increase

of the rate of loss of information about the localization of

the system on its attractor. Finally the dynamics of the error

is explored and indicates, in particular, a rich variety of

short term behaviors of the error in the atmosphere

depending on the (relative) amplitude of the initial error

affecting the ocean, from polynomial (at2 ? bt3 ? ct4) up

to exponential-like evolutions. These features are explained

and analyzed in the light of the recent findings on error

growth (Nicolis et al. in J Atmos Sci 66:766–778, 2009).
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1 Introduction

The predictability problem of the atmosphere and of its

climate is a long standing question finding his roots in the

pioneering works of Thompson (1957) and Lorenz (1963),

indicating that sensitivity to initial conditions is one central

element of the degradation of the forecasts. Since then many

works have attempted to quantify the limits of atmospheric

predictability (e.g. Kalnay 2003). In this context one central

concern is to know how the presence of coupling with slow

dynamics climate components is affecting the variability

and predictability of the fast components. This has led to

investigate how the ocean known to display longer intrinsic

time scales is affecting the statistical properties of the

atmosphere and in particular the localisation of the storm

tracks and its link with SSTs (e.g. Primeau and Cessi 2001;

Rodwell and Folland 2002; Kravtsov et al. 2006; Kelly

et al. 2010; Frankignoul et al. 2011; Brachet et al. 2012;

Deremble et al. 2012), but also to investigate how the

presence of the ocean is affecting the instability properties

of the atmosphere and its long term predictability (Goswami

and Shukla 1991; Nese and Dutton 1993).
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Recently, several studies have enlightened the decadal

variability embedded in wind-driven ocean (e.g. Berloff

and Meacham 1998; Simonnet and Dijkstra 2002), even in

highly truncated low-dimensional representations (Jiang

et al. 1995; Nadiga and Luce 2001; Simonnet et al. 2005;

Pierini 2011). In the latter works, the bifurcation diagram

and the dynamical origin of this low-frequency variability

were extensively explored, assuming an ideal wind forcing.

In particular double gyres displaying strong resemblances

with the natural wind-driven variability of the North

Atlantic ocean was successfully reproduced.

In the present work, we investigate the impact of the

presence of a more realistic atmosphere on the develop-

ment of gyres, and conversely the impact of the wind-

driven ocean on the dynamics and the predictability of the

atmosphere. To this aim, we have chosen to couple the

low-order atmospheric quasi-geostrophic model developed

by Charney and Straus (1980) and the wind-driven gyre

low-order system developed by Pierini (2011). The cou-

pling considered here is purely mechanical since it will

only express the transfer of momentum between the ocean

and the atmosphere. This particular choice is obviously

restrictive in view of the importance of ocean–atmosphere

heat exchanges, but it will allow to clarify the role of this

mechanical coupling. The impact of heat fluxes will be

explored in a subsequent version of this model. The main

concern will be on the variability of the coupled system and

its predictability at short, medium and long terms.

In Sect. 2, we present the coupled low-order wind-dri-

ven ocean–atmosphere system. Its variability is then dis-

cussed in Sect. 3, as well as the intrinsic predictability of

the system. The conclusions are drawn in Sect. 4.

2 The coupled wind-driven ocean–atmosphere model

In this section, the coupled wind-driven ocean–atmosphere

model is presented. The strategy is to couple two low-order

models that have been shown to provide features with

strong resemblances with the reality, keeping the coupled

system as simple as possible. This type of strategy has

already been adopted before in Lorenz (1984a), Nese and

Dutton (1993) and Veen (2003). Lorenz (1984a) proposed

a ‘‘full’’ ocean–atmosphere low-order system based on a

baroclinic atmosphere and a slab ocean, and containing

many key coupled ocean–atmosphere processes like radi-

ative exchanges, precipitation, condensation, evaporation.

This system has then be extended by Nese and Dutton

(1993) by introducing horizontal transport in the ocean

based on the galerkin truncation proposed by Veronis

(1963). This led to a system of 31 variables. This allowed

them to investigate the role of the ocean dynamics on the

predictability of the coupled system. They suggest that the

presence of the ocean dynamics increases the short term

predictability and also reduces the dimensionality of the

system’s attractor. This question will be reassessed here in

the context of the coupled system presented below.

Veen (2003) uses the Lorenz 3-variable atmospheric

model (Lorenz 1984b) coupled with a low-order ocean model

developed by Maas (1994, 2004) allowing for both wind-

driven effects and overturning. In this model, only single

gyres were developing due to the drastic truncation and it was

not easy to extend the description to more modes as discussed

in Maas (2004) and Veen (2003). Nevertheless, Veen nicely

demonstrated how low-frequency variability is appearing in

the coupled system through a bifurcation analysis.

In the present work, a higher order truncation is adopted.

The atmospheric component is the 2-layer quasi-geo-

strophic low-order model developed by Charney and Straus

(1980), containing 12 variables, and the wind-driven ocean

model proposed by Pierini (2011), containing 4 variables.

This coupled system has a phase space dimension inter-

mediate between the systems studied by Nese and Dutton

(1993) and Veen (2003).

The spectral modes retained in the expansion of the fields in

these models are drastically different due to the presence of

different western boundary conditions, periodic for the

atmosphere and free-slip boundary conditions for the ocean,

and due to the intensification of the ocean currents on the

western part of the basin. These features complicate the

development of the coupled model since the fields are pro-

jected on different bases and since different inner products are

used. These particular features are detailed in the two next

subsections. The coupling between the two components of this

system is limited to the mechanical part in the sense that the

exchange of momentum is made through frictional couplings.

2.1 The atmospheric model

The atmospheric model, developed by Charney and Straus

(1980), is a 2-layer quasi-geostrophic flow defined on a

beta plane. The equations are

o

ot
r2w1
� �

þ Jðw1;r2w1Þ þ b
ow1

ox
¼ �k0dr2ðw1 � w3Þ þ f0H�1x ð1Þ

o

ot
r2w3
� �

þ Jðw3;r2w3Þ þ b
ow3

ox
¼ þk0dr2ðw1 � w3Þ � f0H�1x� kdr2ðw3 �WÞ ð2Þ

o

ot
ðw1 � w3Þ þ Jððw1 þ w3Þ=2;w1 � w3Þ þ k2f0H�1x

¼ k2h0d½ðw
1 � w3Þ� � ðw1 � w3Þ� ð3Þ

where w1, w3, x are the streamfunction fields at 250 and

750 hPa, and the vertical velocity at 500 hPa, respectively.

f0 is the coriolis parameter at latitude /0, b = df/dy at /0,
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k = NH/f0, the Rossby radius of deformation where N is

the Brunt–Väisälä frequency for the atmosphere and H is

the scale height, RT/g, where T is the mean temperature at

500 hPa. kd and kd

0
are the coefficients multiplying the

surface friction term and the internal friction between the

layers, respectively. (w1 - w3)* is a constant thermal

forcing and the coefficient k2h0d is the inverse of a thermal

relaxation time scale. An additional term has been intro-

duced in this system in order to account for the presence of

a surface boundary moving with the velocity of the oceanic

flow defined by W (see next section). This would corre-

spond to the friction on a moving surface and will be the

single interaction of the atmosphere with the ocean.

Note also that the heating term has not been modified

even if heating is coming mostly from the ocean. It is

assumed that this heating is a fast process as compared to

the dynamics of heat transport in the ocean, thereby trans-

ferring almost instantaneously the energy toward the

atmosphere. This is clearly a strong assumption allowing for

an analysis of the impact of mechanical interactions

between the ocean and the atmosphere. This assumption

will be relaxed in a future version of the model in a similar

way as in Veen (2003) or in Deremble et al. (2012). These

equations are then adimensionalized by scaling x0 = x/L

and y0 = y/L, t by f0
-1, x by H f0 and w by L2 f0 and the

parameters are then also rescaled as (r0 = k2/L2, 2k =

kd/f0, k0 = kd

0
/f0, h00 = hd

0
/f0, b0 = b L/f0). The fields are

expanded in Fourier series over the domain y0 = [0, p] and

x0 = [0, 2p/n], and only six modes, Fk, are retained, obeying

the boundary conditions qFk/(qx0) = 0 at y0 = 0, p. n is the

aspect ratio between the lengths of the domain in y and x

directions, n = 2Ly/Lx = 2pL/ (2pL/n). These modes are

F1 ¼
ffiffiffi
2
p

cosðy0Þ
F2 ¼ 2cosðnx0Þsinðy0Þ
F3 ¼ 2sinðnx0Þsinðy0Þ
F4 ¼

ffiffiffi
2
p

cosð2y0Þ
F5 ¼ 2cosðnx0Þsinð2y0Þ
F6 ¼ 2sinðnx0Þsinð2y0Þ

ð4Þ

and the fields are then expressed as

w ¼
X6

k¼1

wkFk

h ¼
X6

k¼1

hkFk

x ¼
X6

k¼1

xkFk

ðw1 � w3Þ� ¼ h�F1

ð5Þ

where h = (w1 - w3)/2 and w = (w1 ? w3)/2. Using the

usual norm,

hf ; gi ¼ n

2p2

Zp

0

dy0
Z2p=n

0

dx0fg ð6Þ

one gets the set of equations reported in the paper of

Charney and Straus (1980), Eqs. (2.10) to (2.27), leading to

12 ordinary differential equations for the dependent vari-

ables wk and hk (note that a typographical error should be

corrected in Eq. 2.18; the term (1 - b) wL should be

replaced by (1 - b)xL in their notation). the climatological

forcing defined by (w1 - w3)* only depends on the first

meridional mode.

The contribution of the coupling term associated with

the motion of the ocean surface, kdr2W where W is defined

in the next section, is also projected on the different

atmospheric modes using the inner product (6). These

additional coefficients are given in ‘‘Appendix 1’’.

2.2 The ocean model

The ocean model is based on the reduced-gravity shallow

water quasi-geostrophic model, already used in several

works on wind-driven ocean modelling (see e.g. Dijk-

stra 2005; Pierini 2011). The forcing is provided by the

wind generated by the atmospheric component of the

coupled system. The equation reads

o

ot
r2W� W

L2
R

� �
þ JðW;r2WÞ þ b

oW
ox

¼ �rr2Wþ curlzs
qH

ð7Þ

where W is the velocity streamfunction (or pressure), q the

density of water, H is here the depth of the fluid layer, and

curlz s, the curl of the wind stress. Usually in low-order

modelling the latter is provided as an ideal profile asymmetric

in the meridional direction. In the present work, this is

provided as a real wind field generated by the atmospheric

model. Assuming that the wind stress is given by (sx, sy) =

C (u, v) where u and v are the horizontal components of the

geostrophic wind, -qw/qy and qw/qx, respectively, one gets

curlzs
qH

¼ C

qH
r2w ð8Þ

with LR ¼
ffiffiffiffiffiffiffiffi
g0H
p

=f0 the Rossby deformation radius (with

g0 the reduced gravity), C the drag coefficient and r a

friction coefficient at the bottom of the fluid layer.

Using the same domain and the same non-dimension-

alization procedure as in the atmospheric model, one gets

an adimensional equation,

o

ot0
r02W0 þ cW0
� �

þ JðW0;r02W0Þ þ b0
oW0

ox0

¼ �r0r02W0 þ dr02w0 ð9Þ
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where x ¼ x=L; y0 ¼ y=L; t0 ¼ tf0; W0 ¼ W=ðL2f0Þ; w0 ¼
w3=ðL2f0Þ; b0 ¼ bL=f0; c ¼ �L2=L2

R; r0 ¼ r=f0 and d =

C/(qHf0).

Let us now define the basis functions on which the

solution fields are projected. Several truncations were

proposed in the literature from 2-mode (Jiang et al. 1995)

up to 4-mode truncations (Simonnet et al. 2005; Pierini

2011), the latter approach allowing for chaotic behaviors.

In the present work, we use the following set of modes,

/1 ¼ 2e�axsinðn=2x0Þsinðy0Þ
/2 ¼ 2e�axsinðn=2x0Þsinð2y0Þ
/3 ¼ 2e�axsinðnx0Þsinðy0Þ
/4 ¼ 2e�axsinðnx0Þsinð2y0Þ

ð10Þ

in order to get the free-slip boundary conditions (and no

normal flow to the wall) in the domain on which the flow is

defined at x = 0, 2p/n and y = 0, p. In addition a specific

inner product is adopted for the oceanic model in a similar

way as in Pierini (2011),

ðf ; gÞ ¼ n

2p2

Zp

0

dy0
Z2p=n

0

dx0fge2ax0 ð11Þ

Introducing the truncated fields,
P

m Am(t) /m, for

m = 1, 4, into Eq. (9) and projecting on each mode using

the inner product (11), one gets a set of 4 ordinary

differential equations for the coefficients Am, as given in

‘‘Appendix 2’’.

3 Variability of the ocean–atmosphere model

The coupled system has now 16 variables, 12 for the

atmosphere and 4 for the ocean. Many parameters should

be fixed and are listed in Table 1. In order to keep the

problem tractable, we have investigated the behavior of the

system by exploring two key parameters, the thermal

forcing, h*, and the coupling strength to the ocean, d. The

rest of the parameters of the atmospheric component were

fixed mostly following Charney and Straus (1980), but also

the subsequent work of Reinhold and Pierrehumbert (1982)

and Cehelsky and Tung (1987). The possible range of

values of the adimensional parameter d was discussed in

Nese and Dutton (1993) and was assumed to vary from

0.0001 up to 0.01.

As a first analysis, d is fixed to 0.0009652 (or equiva-

lently C/(qH) = 10-7 s-1) and h* is varied. In order to

investigate the properties of this system in phase space, an

ensemble of 100 long integrations starting from different

random initial conditions in phase space are performed

for each value of h*. These different integrations are pro-

gressively converging toward asymptotic attractors with

different statistical and dynamical properties. Figures 1a–h

display the dependence of the mean of the variables

A1, A2, A3, A4, w1, h1, w4 and h4 as a function of h*,

obtained after 150,000 days of integration. The asymptotic

values displayed in the figures were selected among the

ensemble of 100 integrations, while the other were dis-

carded due to their very close similarities with the ones

presented in the figure indicating their convergence toward

the same attractor. For small values of h*, a unique well

defined mean state is found: a zero mean stationary state

below 0.02, a periodic orbit for values up to about 0.035.

For values above, multiple simultaneous asymptotic (cha-

otic and periodic) attractors are present. Periodic solutions

are marked by a plus (red) and the chaotic ones by a cross

(green), and were identified through the computation of the

Lyapunov exponents (see next section). The chaotic

asymptotic solutions as obtained for large values of h*

correspond mostly to opposite single gyres at the western

boundary of the domain (clockwise and counterclockwise),

as reflected in the large mean amplitudes of the modes A1

(Fig. 1a) and A3 (Fig. 1c) and the small mean amplitudes

taken by the two other modes, A2 (Fig. 1b) and A4

(Fig. 1d).

The atmospheric components of the model also display

well separated (multiple) asymptotic values for large val-

ues of h*, as indicated for the zonal streamfunction com-

ponents, w1, h1, w4 and h4, in Figs. 1e–h. In particular the

zonal streamfunction components, w4 (Fig. 1g) and h4

(Fig. 1h), display opposite mean values leading to drasti-

cally different mean wind fields components (as it will be

discussed later in more details). In view of these results,

one can wonder whether these opposite oceanic gyres are at

the origin of these different asymptotic wind fields or the

converse. To answer this point, a similar analysis of the

dynamics of the atmosphere without coupling with

the ocean is performed. As shown in Fig. 1i, j, asymptotic

attractors is also found in the context of the decoupled

Table 1 Dimensional and non-dimensional parameters used in the

coupled ocean–atmosphere model

Dimensional parameters Non-dimensional parameters

L ¼ 5;000
p km n = 1.7

Lx ¼ 2pL
n

a = 1

Ly = pL c = -L2/LR
2 = - 1,754

f0 = 1.036 10-4 s-1 h0 0 = k0 = 2 k = 0.0114

LR ¼
ffiffiffiffiffiffi
g0H
p

f0
¼ 38,002 m

b0 = bL/f0 = 0.2304

r0 = 0.1

r0 = 0.0000965

d = [10-4, 10-2]

h* = [0., 0.2]
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Fig. 1 Mean of the a A1, b A2,

c A3, d A4, e w1, f h1, g w4, h h4

as a function of the thermal

forcing h* and for

d = 0.0009652. i and j as in

e and g (but for the uncoupled

atmospheric model version
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atmospheric model. In the latter case, several chaotic (2)

and periodic (1) attractors emerge for large values of h*,

indicating the essential role played by the atmosphere in

the development of the oceanic gyres. Although these

results seem to indicate that the ocean has no essential role

on the atmospheric dynamics, a specific feature emerges

from this diagram due to the coupling to the ocean,

the presence of a second periodic attractor for large values

of h*.

In addition, the ocean–atmosphere coupling plays also

a crucial role on the long term dynamics. For small

values of the coupling, the chaotic attractors associated

with clockwise and counterclockwise (western) gyres

obtained for large values of h* are disconnected, but

for larger values of d natural transitions occur between

these opposite situations. This feature is illustrated

in Figs. 2b, c for h* = 0.2 and d = 0.003861, and

h* = 0.14 and d = 0.003861, respectively. These transi-

tions are accompanied with an important modification of

the atmospheric wind field as illustrated in Fig. 2d for the

mode w4 with h* = 0.2, with a positive shift of the mean

of w4 when the counterclockwise gyre state is reached.

This demonstrates the importance of the ocean on very

long time scales in the context of this system, mediating

the occurrence of transitions between different dynamical

states within the atmosphere. For even larger values of d
(with h* = 0.2), only periodic attractors were found

(sometimes after very long transient chaotic behaviors).

The relevance for the real ocean of these transitions could

be questioned primarily because these single gyres does

not appear in the Atlantic and Pacific regions, as it will

be discussed further below when addressing the impact of

the use of more atmospheric modes. However in this

idealized coupled system these transitions are intrinsic

features related with the coupling and the presence of

these multiple attractors in the atmospheric component of

the system.

Let us now look at the dependence of the mean solutions

as a function of d. Figure 3 displays the variations of the

asymptotic solutions of A1 for 10 values of d and for 5

values of h*, for which the underlying oceanic gyre remains

clockwise. Values of d for which transitions between

clockwise and counterclockwise gyres occur are discarded

and left empty on the figure. One important remark that

could be done here is that the dynamical behavior of the

coupled system is rather complicated in the d - h* space.

This first sketch of the dependence in d - h* space would

be worth investigating further, in particular based on a

detailed analysis of the bifurcation diagram based on

continuation methods (see e.g. Dijkstra 2005). This ques-

tion will be the subject of a future exploration of this

system, possibly with the extension to a higher number of

atmospheric modes as it will be discussed later.

As indicated in Figs. 1 and 2 for h* = 0.2, multiple

states are present. The mean states as obtained over

150,000 days are displayed in Fig. 4 for h* = 0.2 and

d = 0.0009652. The two situations for which large mean

amplitude values of the A1 and A3 modes are plotted on

panels a and b. They display situations for which the ocean

circulations is dominated by a single western gyre with a

chaotic solution (as discussed in the next section). The two

other situations associated with periodic solutions corre-

spond to large mean amplitude values of the A2 and A4

modes, leading to the presence of two western gyres as

illustrated in panels c and d of Fig. 4. This clearly contrasts

with the solutions found by Pierini (2011) using an ideal-

ized wind forcing, namely the double gyres system. To

clarify the origin of this specific structure of the oceanic

flow, we have represented in Figs. 4e–h the spatial struc-

tures of the mean of the atmospheric forcing tendencies

present in the right hand side of the dynamical equations of

‘‘Appendix 2’’, namely

WSCðx0; y0Þ ¼
X4

i¼1

f ðiÞ/iðx0; y0Þ ð12Þ

where

f ð1Þ ¼ g1;2

a1 þ b1

B2 þ
g1;3

a1 þ b1

B3 þ
g1;4

a1 þ b1

B4

f ð2Þ ¼ s2;1

n1 þ m1

B1 þ
s2;5

n1 þ m1

B5 þ
s2;6

n1 þ m1

B6

f ð3Þ ¼ dK3;2

u1

þ b1g1;2

a1 þ b1

� �
B2 þ

dK3;3

u1

þ b1g1;3

a1 þ b1

� �
B3

þ dK3;4

u1

þ b1g1;4

a1 þ b1

� �
B4

f ð4Þ ¼ m1s2;1

n1 þ m1

þ dK4;1

u2

� �
B1 þ

m1s2;5

n1 þ m1

þ dK4;5

u2

� �
B5

þ m1s2;6

n1 þ m1

þ dK4;6

u2

� �
B6 ð13Þ

for the different mean solutions displayed in Figs. 4a–d,

respectively. Note that WSC plotted in Figs. 4e–h is mul-

tiplied by L2f0
2 to recover the dimension. A clear corre-

spondance appears between the spatial structure of the

forcing tendency and the oceanic response. Therefore in

order to get the development of double gyres with a chaotic

atmosphere some modifications of the forcings (Eq. 13)

should be expected. A first possibility is a modification of

the coefficients of the forcing tendencies through the use of

different geometries of the domains over which both the

atmosphere and the ocean are defined. This question is

worth addressing in the future in order to see when the

double gyres could emerge. It could also depend on the

aspect ratio, n, between the meridional and zonal sizes of

the domain. This question has been touched upon by

increasing this aspect ratio beyond 2, but in this situation,
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no chaotic solution seems to emerge and only periodic

orbits are found with large amplitude values of the A2 and

A4 modes.

Another possibility is the specific truncation of the

atmospheric spatial fields to the dominant (planetary scale)

modes (Eq. 4). These modes correspond to an horizontal

wavelength of 2pL/n along the longitudinal direction x,

about 6,000 km in the present context. Now adding modes

with smaller wavelengths could affect the results. A pre-

liminary analysis of the use of additional modes as the ones

used in Reinhold and Pierrehumbert (1982)—referred as

the ‘‘synoptic scale’’ modes in their work—has been per-

formed and the set of additional coupling parameters and

forcing terms are provided in ‘‘Appendix 3’’. The forcing

terms f0(i) displayed in the ‘‘Appendix 3’’ differ from (13)

by important additional contributions coming from the

‘‘synoptic scale’’ modes. Figure 4i displays the resulting

spatial structure of the average streamfunction field in the

ocean with the same domain setting as for the lower order

model version (the 16-variable model referred as A-ver-

sion), but different dissipation (k = 0.025), coupling

(d = 0.00009652), and thermal forcing (h* = 0.24)

parameters. This choice has been made in order to get an

erratic solution for this second model version (24-variable

model, referred as B-version) that could presumably be

chaotic. Clearly double gyres now appear. It must be

mentioned that other attractors are also present in phase

space for these parameters, in particular a double gyre with

opposite flows. This change of dynamics has also an impact

on the possible occurrence of transitions between distinct

-600000

-400000

-200000

 0

 200000

 400000

 600000

 0  100000 200000 300000 400000 500000 600000 700000 800000 900000  1e+06

Α
1

t (days)

(a)Counterclockwise gyre
Clockwise gyre

-3e+06

-2e+06

-1e+06

 0

 1e+06

 2e+06

 3e+06

 0  200000  400000  600000  800000  1e+06

Α
1

t (days)

(b)0.20

-2e+06

-1.5e+06

-1e+06

-500000

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  200000  400000  600000  800000  1e+06

Α
1

t (days)

(c)

0.14

-4e+07

-3e+07

-2e+07

-1e+07

 0

 1e+07

 2e+07

 3e+07

 4e+07

 100000  200000  300000  400000  500000
ψ

4

t (days)

(d)0.20

Fig. 2 a Temporal evolution of A1 starting from two different initial

state in phase space characterized by clockwise and counterclockwise

gyres for d = 0.0009652 and h* = 0.2; b and c temporal evolutions

of A1 for d = 0.003861 and h* = 0.2, and d = 0.003861 and

h* = 0.14, respectively; and d temporal evolution of w4 for

d = 0.003861 and h* = 0.2 during the third rapid transition from
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Fig. 4 Mean streamfunction oceanic fields for a the chaotic clock-

wise gyre, b the chaotic counterclockwise gyre, and c and d for the

two periodic attractors. Panels e, f, g, and h: Mean atmospheric wind

forcing tendency (WSC) for the attractors displayed in (a), (b),

(c) and (d), respectively. d = 0.0009652 and h* = 0.2. i Double gyre

generated by the B-version of the model as described in Appendix 3

based on the atmospheric low-order model of Reinhold and Pierre-

humbert (1982), with parameter values k = 0.025, d = 0.00009652

and h* = 0.24
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well defined oceanic regimes as it was the case between the

single opposite gyre systems present in the A-version of the

model. Since the dominant modes are not A1 and A3 any-

more, these transitions between these opposite single gyres

does not occur, but at this stage of our investigation one

cannot exclude the possibility of transitions between

opposite double gyre regimes in the context of this

B-version of the model. These interesting preliminary

results will be explored in more details when studying this

new system on its own.

For now on, let us focus on the properties of this single

gyre system, since our focus is on the predictability
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Fig. 5 Mean atmospheric streamfunction fields for a the chaotic

clockwise gyre, b the chaotic counterclockwise gyre for

d = 0.0009652 and h* = 0.2; mean atmospheric temperature fields

for c the chaotic clockwise gyre, d the chaotic counterclockwise gyre

for d = 0.0009652 and h* = 0.2. Mean atmospheric streamfunction

fields for the two chaotic attractors without ocean coupling and with

h* = 0.2, in e and f, respectively. g Mean difference between the

streamfunction fields displayed in (a) and (e)
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properties of the flow. Figure 5 displays the isolines of the

mean streamfunction and mean temperature fields of the

atmospheric component for the clockwise gyre (a and c)

and for the counterclockwise gyre (b and d), for parameter

values, h* = 0.2 and d = 0.0009652. Wind fields,

ð� ow
oy
; ow

ox
Þ, are clearly acting in opposite directions, with a

dominant westerly wind for the clockwise gyre in the

Northern part of the domain, while for the counterclock-

wise gyre, the westerlies are far south in the domain. For

the temperature field, the maximum is in the mean posi-

tioned farther north for the clockwise gyre. Panels (e) and

(f) represent the mean streamfunction field but without

coupling with the ocean. In both (uncoupled) cases dis-

played in panels (e) and (f), the solutions are chaotic.

Clearly the mean streamfunction field is pretty much the

same between Panels (a) and (e), suggesting that the ori-

entation of the gyre is mostly determined by the wind, but

the presence of the gyre modifies in turn slightly the sta-

tistical properties of the atmosphere, by the order of 1 % as

illustrated in panel (g). For panels (b) and (f), the picture is

similar. This feature is presumably related to the amplitude

of the forcing applied by the ocean on the lower layer of

the atmosphere, given by the term kdr2W, as compared

with the thermal forcing h*. In the present model setting,

the ratio between the mean amplitude of this forcing to the

thermal forcing is of the order of 10-5.

For sufficiently large values of d, similar spatial struc-

tures of the spatial fields corresponding to opposite gyres

are found. Since transitions are possible between opposite

gyres as shown in Fig. 2, one also expects rapid cata-

strophic changes of atmospheric dynamics. This question is

worth investigating further in the present model and in

more realistic coupled systems, together with the possi-

bility to predict the occurrence of this type of catastrophic

events.

Let us now look at the spectral properties of the fields

generated in the coupled model. Figure 6a displays the

power spectrum for the first ocean mode, A1, based on a

time series of about 250,000 days. The main feature that

emerges is the presence of a red spectrum up to a period of

6,000 days. This suggests that the (chaotic) atmospheric

wind is acting in such a way to produce an ocean dynamics

with strong resemblances with a Brownian motion. On

panel b of the same figure, the spectrum of the first mode of

the wind field indicates a white spectrum for long time

scales (after about a period of 60 days). These spectral

structures do not depend substantially on the strength of the

coupling between the two model components, but well the

amplitude of the power of the oceanic modes. This result

clearly illustrates the development of low-frequency vari-

ability in the ocean associated with realistic wind fluctua-

tions displaying rapid decorrelation times, as already noted

a few decades ago by Frankignoul and Hasselmann (1977).

For the periodic orbits of the coupled ocean–atmosphere

system, the picture is slightly different since no clear sep-

aration of time scales between the ocean and the atmosphere

were found. In the experiments performed, the period of all

the variables of the system is of the order of 100 days,

indicating an activation of the ocean on ‘‘shorter’’ time

scales than in the chaotic situations, coherent with the

periodicity of the atmosphere.

3.1 Short-term predictability of the ocean–atmosphere

model

In the previous section, a sketch of the variety of possible

solutions that can be found in this coupled system has been

provided. In particular, a low-frequency variability is

developing in the ocean under the effect of an aperiodic
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atmosphere. The question still open at this stage is to know

what is the impact of coupling on predictability. Is the

ocean purely passive without any impact on the atmosphere

in the model setting presented above? Or is it some

more subtle features induced by the presence of the ocean

such as an increase of atmospheric predictability?

These questions are now addressed in the current and next

sections. Let us start on the impact of coupling on the short

term predictability of the coupled system through the

computation of the Lyapunov exponents, characterizing the

amplification of infinitesimally small perturbations (e.g.

Legras and Vautard 1996; Vannitsem and Nicolis 1997).

The algorithm used in the present work is based on the

computation of the amplification of a set of perturbations in

the tangent space defined at each point along the trajectory

of the solution. This set is regularly orthonormalized using

the Gram-Schmidt approach in order to avoid numerical

degeneracies between these different perturbations (see e.g.

Parker and Chua 1989). Here the orthonormalization is

performed every integration time step (0.01 time units), but

the results are not sensitive to this interval provided it is

kept small.

Figure 7a displays the Lyapunov spectra for the

uncoupled atmospheric component of this climate system

and for the coupled system with d = 0.0009652 (for the

clockwise gyre). In both cases, the value of the thermal

forcing is fixed to h* = 0.2. The coupling introduces

additional Lyapunov exponents with small amplitudes
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Fig. 7 a Lyapunov spectra for

the atmospheric system only

(red curve) with h* = 0.2 and

the coupled ocean–atmosphere

system (green curve) with

d = 0.0009652 and h* = 0.2;

first and second Lyapunov

exponents as a function of the

coupling parameter d for

h* = 0.20 b, h* = 0.18 c, and

h* = 0.14 d, Kolmogorov–Sinaı̈

entropy as a function of d for

h* = 0.20 (blue curve),

h* = 0.18 (green curve), and

h* = 0.14 (red curve)
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(from 3 to 6). This feature drastically increases the

Lyapunov dimension of the system, but neither the domi-

nant instability (the first Lyapunov exponent), nor the total

dissipation (the sum of all the exponents). However, if the

coupling is increased, the amplitude of the dominant

Lyapunov exponent could display different trends as a

function of the coupling as illustrated in Fig. 7b–d for

h* = 0.2, h* = 0.18 and h* = 0.14, respectively. Clearly

these results contrast with the result found in the context of

another coupled model where it was suggested that the

dominant instability and the Lyapunov dimension are

decreasing in the presence of oceanic flows (Nese and

Dutton 1993). Instead the results of the present work sug-

gest that the value of the dominant instability depends

crucially on the combination of parameters h* and d and no

clear systematic trend (increase or decrease) of the value of

the first Lyapunov exponent with d is found. Conversely,

the second Lyapunov exponent is displaying a systematic

increase as a function of d for the various values of h*

explored, inducing an increase of the Kolmogorov–Sinaı̈

entropy (sum of positive exponents), as illustrated in

Fig. 7e. This last result indicates that the rate of loss of

information on the specific localisation of the solution on

the system’s attractor is increasing, which in turn implies a

need for more observational information to keep track of

the system. Very similar results were obtained with the

counterclockwise gyre for these parameter values.

3.2 Error dynamics in the ocean–atmosphere model

One central question when dealing with climate is to

know what is the limit of predictability of the different

components of this system. This aspect is now explored in

the context of the present model by computing the mean

square error evolution of the instantaneous variables,

hE2ðtÞi ¼ 1=M
XM

j

X

i

ðwi;jðtÞ � w0i;jðtÞÞ
2 ð14Þ

where wi;jðtÞ and w0i;jðtÞ are the system variable i generated

by the reference system (considered as the reality) and the

model, respectively. The index j refers to the jth realization

of an ensemble of M realizations starting from different

initial conditions on the systems’s attractor, see also Nic-

olis et al. (1995). Two typical experiments will be per-

formed: on one hand, an experiment for which only initial
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Fig. 8 Mean square error evolution in the atmosphere a and the

ocean b as obtained using 1,000 realizations. Different initial error

variance were used and are referred in each panel for the

corresponding curve. The green dashed curve in (a) refers to the

intrinsic error evolution of the atmospheric model only (without

ocean). c Error growth curves when different model versions are used

to forecast the evolution of the reference system (full coupled

system). The red curve is the error evolution with the full model with

an initial error in each mode of variance 10-18, the green dashed

curve, without ocean, the blue dashed curve using an ocean mean

surface state, the magenta dotted curve with an ocean initialized with

an initial error equal to the variance of the modes themselves. A

quartic fit of the magenta dotted curve is also plotted. d as in (c) but

for other initial error variances, 10-12 and 10-8
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condition errors are affecting the variables of the system;

and on the other hand, experiments in which the reference

and the forecasting model differ by imposing specific

values to the oceanic modes (without dynamics). In the

latter case, a model error is therefore introduced that will

affect considerably the forecasts.

Figure 8a shows the mean square error evolution for the

variables of the atmospheric component of the coupled

system, averaged over 1,000 realizations. The initial con-

ditions of whole variables are affected by a small error

sampled from a gaussian distribution with mean 0 and an

adimensional variance of 10-18 (corresponding to an error

amplitude of the order of 10-7 m/s for the wind). This

small amplitude value is used for getting access to all the

phases of the error dynamics. More realistic experiments

are also displayed by increasing the amplitude of the initial

error, with an adimensional variance of 10-12 and 10-8

(corresponding to an error amplitude for the wind of the

order of 10-4 and 10-2 m/s). On the same figure, the mean

square error is also computed for the atmospheric system

without oceanic coupling.

The mean square error is rapidly growing for the

atmospheric component of the system, with first a short

initial decrease whose time scale strongly depends on the

atmospheric modes considered, a subsequent increase of

exponential type during which a linearized description is

valid, and finally, a saturation phase during which a non-

linear error growth is taking place associated with the

natural reinjection of the trajectories within the attractor of

the system. The exponential-like growth is related to the

dominant Lyapunov exponent and its variability as dis-

cussed in Nicolis et al. (1995). The beginning of the final

saturation of the error starts between 40 and 50 days. This

last phase starts obviously quite late as compared to what is

found in realistic models, but clearly the initial amplitude

of the error is very small, implying an increase of the

period of error growth and also modifying the properties of

the error saturation itself. This type of behavior has already

been enlightened by Stroe and Royer (1993) and Royer

et al. (1994) who have proposed an equation of the

form dy=dt ¼ rgðtÞð1� expðpðy0Þðy� y1ÞÞÞ to describe

its evolution, where y ¼ lnðhE2iÞ; r, the dominant

Lyapunov exponent, g(t) an oscillatory function taking into

account the temporal variability of the local amplification

rates of the error (associated with the so-called local

Lyapunov exponents, see Nicolis et al. 1995), y1 the sat-

uration error value and, p(y0) a saturation coefficient

depending on the initial error amplitude y0.

For the oceanic component, the error dynamics is dif-

ferent, with a long period during which it is slowly

decreasing (about 20 days for d = 0.0009652), followed

by an exponential-like growth related to the dominant

Lyapunov exponent and its variability (as for the

atmospheric component), and a saturation phase lasting

much longer than for the atmospheric counterpart (Fig. 8b)

up to more than 1,000 days. This slow error saturation is

obviously reflecting the natural low-frequency variability

of the oceanic component, keeping some skill for long

times. When the initial error amplitude is increased, these

features do not change, except the saturation phase starting

earlier. For larger values of d, the period of slow decrease

is reduced and the whole error growth curve is shifted

toward smaller values of time.

One obvious question is to know what is the interest of

having a coupled system when one needs to improve the

predictability of the atmosphere itself. To answer this

question, we perform several additional experiments, one

considering a model such that there is no coupling between

the ocean and the atmosphere, a second for which the cou-

pling is just based on the averaged velocity field of the gyres

(so a constant surface boundary is imposed), and finally an

experiment in which the initial error in the ocean fields of the

model is much larger (based on a random perturbation with

an amplitude equal to the standard deviation of the corre-

sponding variables). Note that the reference is the coupled

system and all the model versions are starting from atmo-

spheric initial conditions on the attractor of this reference, to

which small amplitude perturbations are added. Figure 8c

displays the results for d = 0.0009652 and an adimensional

variance of 10-18 for the perturbations of each atmospheric

mode. First, a quadratic phase of growth up to 1 day is found

for all the experiments (dotted green, dotted blue and dotted

red lines), reminiscent of the generic evolution of model

errors (Vannitsem and Toth 2002; Nicolis 2003). This

phase is then followed by a more complicate behavior

similar to the impact of parameter uncertainties on the error

dynamics, as discussed in Vannitsem (2006).

To interpret this behavior, a more detailed analysis of

the error evolution should be performed as in Nicolis

et al. (2009). First let us consider the case without model

errors (red dotted line). The error evolution of each vari-

able for short times (without model error and for uncor-

related initial condition errors) can be written as (see

Nicolis et al. 2009),

hu2
s ðtÞi ¼ hu2

s ð0Þi þ 2hJs;sihu2
s ð0Þit

þ
X

j

ðhJ2
s;j [ ihu2

j ð0Þi þ hJs;sihu2
s ð0Þi

 !

t2

þ
X

j;k

hJs;jJs;kJj;kihu2
kð0Þi þ 1=3

 

�
X

j;k

hJs;jJj;kJk;si þ
X

j

dJs;j

dt
Jj;s

� � !

hu2
s ð0Þi

!

t3

þ Oðt4Þ ð15Þ
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where ul
2 (0) are the initial quartic error amplitudes, Jl,p, the

entries of the Jacobian matrix and h�i refers to an ensemble

average over the attractor of the system. Considering that

the initial error is small along the atmospheric modes and

essentially affecting the ocean, one can neglect the terms

containing hu2
s ð0Þi;

hu2
s ðtÞi ¼

X

k

ðhJ2
s;kihu2

kð0Þi
 !

t2

þ
X

j;k

hJs;jJs;kJj;kihu2
kð0Þi

 !

t3 þ Oðt4Þ
ð16Þ

suggesting that the error dynamics for the atmospheric

components subjected to large errors in the oceanic ones,

will mostly follow a quadratic evolution for short times

and then will be corrected by higher order polynomial

terms such as t3. The fit in Fig. 8c of the error dynamics

when the ocean is held constant and equal to the clima-

tological mean is indeed reflecting this view. A quartic

function of the form, at2 ? bt3 ? ct4, has been fitted and

shows an amazingly good correspondance with the

numerical error evolution up to a bit more than 10 days.

This result leads us to conclude that the error dynamics in

the atmosphere when the initial condition of the ocean are

poorly known should follow a polynomial evolution. Of

course this picture is valid for a good assimilation system

for the atmosphere, and a balance between the impact of

initial errors in the ocean and the atmosphere in the form

of Eq. (15) is more relevant in a more realistic experi-

mental context.

In the other experiments when the surface boundaries

are forced by fixed oceanic values (green and blue dotted

lines), the presence of these model errors introduces

additional terms in (15). If one defines js as the model error

affecting atmospheric variable s, the additional terms that

should be incorporated are hj2
s it2 and hj2

s

P
j Jsjjjit3, up to

the third order. In this case too, one can assume that a

quartic function is a good approximation for short times

(up to 10 days).

Second, the presence of the ocean shows a clear benefit

as compared with the absence of the ocean with an

improvement of skill of several days for a specific error

threshold. This feature reflects the usefulness of the intro-

duction of good initial ocean boundary fields (even if they

are kept similar during the whole atmospheric forecast in

view of their long time scales).

Figure 8d displays more realistic initial error fields of

the coupled ocean–atmosphere system. In this case the

absence of ocean on the error dynamics does not lead to a

dramatic behavior. This feature is obviously related to the

amplitude of the respective error terms in Eq. (15), and

also to the structure of the Jacobian terms, and in particular

of the coupling terms. More realistic systems are certainly

worth investigating with emphasis on the structure of the

Jacobian matrix and its impact on error growth in the

atmosphere.

4 Conclusion

The dynamics of a coupled low-order wind-driven ocean–

atmosphere system has been explored, with emphasis on

the impact of the ocean on predictability. The low order

model developed is based on the Charney and Straus

(1980) low-order atmospheric model and the low-order

reduced-gravity shallow water ocean model of Pierini

(2011) coupled through mechanical forcings at the

interface.

This coupled ocean–atmosphere deterministic system

has revealed that

(i) In this specific domain setting, only single (chaotic)

gyres are developing concomitantly with a chaotic

atmospheric flow. This dynamics differs from the

double gyre system that seems to provide a better

representation of the real ocean in the North Atlantic

and North Pacific. This difference could be related to

the choice of the aspect ratio between the longitu-

dinal and latitudinal extent of the domain, but also

on some specific parameters like the one associated

with the western ocean current intensification.

Another possibility is the number of modes used in

the ocean and the atmosphere. A preliminary explo-

ration of this aspect has been performed by adding

atmospheric (‘‘synoptic’’ scale) modes as in Reinhold

and Pierrehumbert (1982). This more realistic repre-

sentation of spatial fields with 20 atmospheric

variables indeed allows for the development of

double gyres in the presence of a chaotic atmosphere.

This interesting result suggests that longitudinal

modes with wavelength of the order of 3,000 km

play a crucial role in the developments of the double

gyre system in the context of this idealized coupled

ocean–atmosphere model. The extent to which this

conclusion also holds for the real coupled ocean–

atmosphere system is worth exploring further in

more realistic models. The dynamics of this B-ver-

sion of the present low-order model will also be

explored further in the future.
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(ii) The coupling strength between the ocean and the

atmosphere has an impact on the Lyapunov instabil-

ities of the flow. Although the first Lyapunov expo-

nent could either increase or decrease as a function of

the coupling strength depending on the thermal

forcing, the second Lyapunov exponent is systemat-

ically increasing. This in turn induces an increase of

the Kolmogorov–Sinaı̈ entropy and therefore of the

rate of loss of information on the localisation of the

solution on the attractor. These results contrast with

the ones of Nese and Dutton (1993), in the sense that

here the coupled system is now less predictable in

view of the increase of KS entropy. This view should

be confirmed by exploring a more elaborated system

by introducing a thermodynamic equation in the ocean

and an other scheme of heat exchanges between the

atmosphere and the ocean, more in line with the

system investigated by Nese and Dutton (1993), Veen

(2003) and Deremble et al. (2012).

(iii) The error dynamics for the ocean saturates at longer

time scales, as it could be expected in view of the

slow dynamics found in the ocean, leading to some

hope in getting more skill for the atmosphere itself.

However, it seems that the presence of the ocean

does not affect substantially the intrinsic error

dynamics in the atmosphere, provided the initial

state of the ocean is accurately evaluated. On the

other hand if the ocean initial condition is not well

known or if the interface (coupling) between the

ocean and the atmosphere is fixed to some climato-

logical value, the error within the atmosphere

displays a complex polynomial error evolution that

could be related to the amplitude of the initial

condition uncertainty in the ocean through the short

term approximation given in Nicolis et al. (2009). It

is worth mentioning that if the initial condition of the

atmosphere is quite well known but not the ones of

the other components of the climate system—and

even if the couplings and all the processes perfectly

described—the error will display a dynamics with

strong resemblance with the error dynamics associ-

ated with a model error (see for instance Nico-

lis 2003; and Nicolis et al. 2009). This question is

worth investigating further in the context of a more

realistic coupled ocean–atmosphere system to see

what are the expected gains of assimilating data in

the ocean and the atmosphere.

This analysis constitutes a first step toward a systematic

understanding of the error dynamics in coupled ocean-

atmosphere systems. A more sophisticated system will be

developed in the near future along the lines discussed in

(i) and (ii) and will help us in clarifying the role of heat

exchanges between the ocean and the atmosphere on

predictability.
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Appendix 1: Coefficients of the coupling terms

in the atmospheric model

The coupling term appearing in the lower layer of the

atmospheric model equations, kdr2W, is expressed in the

ith atmospheric ordinary differential equation as
P

j Di,j Aj

where

D1;2 ¼
�4

ffiffiffi
2
p

3p2

n2ð2a2 þ n2=2þ 2Þ
ð4a2 þ n2Þ ð1þ e�a2p=nÞ

D1;4 ¼
�4

ffiffiffi
2
p

3p2

n2ða2 þ n2 þ 4Þ
ða2 þ n2Þ ð1� e�a2p=nÞ

D2;1 ¼
n

p
ð�8a4n� 28a2n3 � 8a2nþ 3=2n5 þ 6n3Þ

ð4a2 þ n2Þð4a2 þ 9n2Þ ð1þ e�a2p=nÞ

D2;3 ¼
�n2

p
ða2 þ 5n2 þ 1Þ
ða2 þ 4n2Þ ð1� e�a2p=nÞ

D3;1 ¼
�16

p
an3ðn2 þ 1Þ

ð4a2 þ n2Þð4a2 þ 9n2Þ ð1þ e�a2p=nÞ

D3;3 ¼
�2

p
n3ðn2 þ 1Þ
aða2 þ 4n2Þ ð1� e�a2p=nÞ

D4;1 ¼
4
ffiffiffi
2
p

3p2

n2ða2 þ n2=4þ 1Þ
ð4a2 þ n2Þ ð1þ e�a2p=nÞ

D4;3 ¼
2
ffiffiffi
2
p

3p2

n2ða2 þ n2 þ 1Þ
ða2 þ n2Þ ð1� e�a2p=nÞ

D5;2 ¼
2n2

p
ð�4a4 � 14a2n2 � 4a2 þ 3=4n4 þ 3n2Þ

ð4a2 þ n2Þð4a2 þ 9n2Þ ð1þ e�a2p=nÞ

D5;4 ¼
�n2

p
ða2 þ 5n2 þ 4Þ
ða2 þ 4n2Þ ð1� e�a2p=nÞ

D6;2 ¼
�16

p
an3ðn2 þ 4Þ

ð4a2 þ n2Þð4a2 þ 9n2Þ ð1þ e�a2p=nÞ

D6;4 ¼
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p
n3ðn2 þ 4Þ
aða2 þ 4n2Þ ð1� e�a2p=nÞ
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Appendix 2: Ordinary differential equations

of the ocean model

The equations of the four modes of the ocean model are,

oA1

ot
¼�L114�L314

a1þ b1

A1A4�
L112�L312

a1þ b1

A1A2

�L123�L323

a1þ b1

A2A3�
L134�L334

a1þ b1

A3A4

þ e1� d1

a1þ b1

A1þ
f1� c1

a1þ b1

A3þ
g1;2

a1þ b1

B2

þ g1;3

a1þ b1

B3þ
g1;4

a1þ b1

B4

oA3

ot
¼ �b1

L114�L314

a1þ b1

�L314

� �
A1A4

þ �b1

L112�L312
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� �
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� �
A2A3

þ �b1
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� �
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e1� d1

a1þ b1

þ d0� e0

� �
A1

þ b1

f1� c1

a1þ b1

þ c0� f0

� �
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dK3;2

u1

þ b1g1;2

a1þ b1

� �
B2

þ dK3;3

u1
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� �
B3þ

dK3;4

u1

þ b1g1;4

a1þ b1

� �
B4

oA2
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¼�L211�L411

m1þ n1
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A1A3
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1
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þ o0� q0

� �
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8an
ðC134 þ C143Þ

L312 ¼
1

u1

ðC312 þ C321Þ; L314 ¼
1

u1

ðC314 þ C341Þ

L323 ¼
1

u1

ðC323 þ C332Þ; L334 ¼
1

u1

ðC334 þ C343Þ

L211 ¼
3p
8an

C211; L233 ¼
3p
8an

C233

L213 ¼
3p
8an
ðC213 þ C231Þ; L411 ¼

1

u2

C411

L433 ¼
1

u2

C433; L413 ¼
1

u2

ðC413 þ C431Þ

1996 S. Vannitsem

123



where

Cijk ¼
n

2p2

Zp

0

dy0
Z2p=n

0

dx0e2ax0UiJðUj;r2UkÞ

Ki;j ¼
n

2p2

Zp

0

dy0
Z2p=n

0

dx0e2ax0Uir2Fj

and where the Bi = wi
3 = wi - hi are the atmospheric

streamfunction variables (mode amplitudes) in the lower

layer.

Appendix 3: Additional coupling terms

for the B-version of the coupled system

In this appendix, the additional coupling coefficients

appearing when considering the additional atmospheric

modes used in Reinhold and Pierrehumbert (1982), and

referred to as the ‘‘synoptic’’ scale modes. These additional

modes are

F7 ¼ 2cosð2nx0Þsinðy0Þ
F8 ¼ 2sinð2nx0Þsinðy0Þ
F9 ¼ 2cosð2nx0Þsinð2y0Þ

F10 ¼ 2sinð2nx0Þsinð2y0Þ

The equations describing the dynamics of the

corresponding amplitudes are given in the Appendix of

Reinhold and Pierrehumbert (1982). The additional

coupling coefficients between the oceanic modes that

should be added in the corresponding equations are,

D7;1 ¼
n

p
ð�8a4n� 100a2n3 � 8a2nþ 15=2n5 þ 30n3Þ

ð4a2 þ 25n2Þð4a2 þ 9n2Þ ð1þ e�a2p=nÞ

D7;3 ¼
n2

p
ð�4a4 � 14a2n2 þ 2a2 þ 6n4 þ 6n2Þ

ða2 þ n2Þða2 þ 9n2Þ ð1� e�a2p=nÞ

D8;1 ¼ �
32n3a

p
ð4n2 þ 1Þ

ð4a2 þ 25n2Þð4a2 þ 9n2Þ ð1þ e�a2p=nÞ

D8;3 ¼
an

p
ð8a2n2 þ 8n4 � 4n2Þ
ða2 þ n2Þða2 þ 9n2Þ ð1� e�a2p=nÞ

D9;2 ¼
n

p
ð�8a4n� 96a2n3 � 32a2nþ 30=4n5 þ 120n3Þ

ð4a2 þ 25n2Þð4a2 þ 9n2Þ ð1þ e�a2p=nÞ

D9;4 ¼
n
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ð�14a2n3 � na4 � 4na2 þ 3n5 þ 12n3Þ
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D10;2 ¼ �
128n3a

p
ðn2 þ 1Þ

ð4a2 þ 25n2Þð4a2 þ 9n2Þ ð1þ e�a2p=nÞ
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n3a
p
ð8a2 þ 8n2 � 16Þ
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Moreover, these ‘‘synoptic’’ atmospheric modes are

affecting the ocean dynamics through additional terms

appearing in the equations given in ‘‘Appendix 2’’. We will

refer to these new forcing tendencies as f0(j), j = 1, 4.
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with

g1;7 ¼ d
3p
8an

K1;7 �
K3;7

u1
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and the other coefficients are as in ‘‘Appendix 2’’.
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